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Abstract

In a famous experiment by Tversky and Kahneman (1983), featuring Linda the bank teller,

the participants assign a higher probability to a conjunction of propositions than to one

of the conjuncts, thereby seemingly committing a probabilistic fallacy. In this paper, we

discuss a slightly different example featuring someone named Walter, who also happens to

work at a bank, and argue that, in this example, it is rational to assign a higher probability

to the conjunction of suitably chosen propositions than to one of the conjuncts. By pointing

out the similarities between Tversky and Kahneman’s experiment and our example, we

argue that the participants in the experiment may assign probabilities to the propositions

in question in such a way that it is also rational for them to give the conjunction a higher

probability than one of the conjuncts.

1 Introduction

In recent years, a famous experiment of Tversky and Kahneman (1983) has attracted the atten-

tion of formal epistemologists.1 In the experiment participants are provided with information

about a woman named Linda: Linda is 31 years old, single, outspoken and very bright. She

majored in philosophy. As a student, she was deeply concerned with issues of discrimination and
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social justice, and also participated in anti-nuclear demonstrations. The participants are then

asked to rank the following statements in terms of their probability:

i) Linda is a bank teller.

ii) Linda is bank teller and Linda is a feminist.

In the experiment, Tversky and Kahneman found that the majority of the participants ranked

the second statement as more probable than the first. As it is a law of probability that the

probability of the conjunction of two propositions cannot be larger than the probability of any

of the conjuncts, it seems inevitable to conclude that in some cases people behave in violation of

the laws of probability.

However, the fact that a conjunction can never be more probable than one of its conjuncts

only holds in a ceteris paribus sense: that is, we should assume that all relevant factors are equal

in the case that we compare the probability of the conjunction to the probability of one of its

conjuncts. That this is not a mute point is shown by the recent discussion in epistemology about

whether coherence can be a truth conducive property of an information set. In their (1994),

Klein and Warfield use the same theorem of the probability calculus to show that coherence

cannot be truth conducive in the sense that a more coherent information set will also have a

higher probability. For, as they argue, in some cases the coherence of an information set can

increase by adding a proposition to the set. But as a conjunction cannot be more probable than

any of its conjuncts, the new set cannot be more probable and, therefore, coherence cannot be

truth conducive.

However, as Bovens and Olsson (2000) have pointed out, Klein and Warfield’s argument no

longer works if we do not consider the propositions on their own, but instead as reports by

different sources. For if each proposition is reported by a source, then the background conditions

in the case of the conjunction are different from those in case of each of its conjuncts: in the first

case we have two reports, while in the second only one. And then the condition that all relevant

factors must be equal no longer holds. Since then, this approach to analyzing the relation between

coherence and probability has been further elaborated upon in various other publications.2

In this paper we will apply the same approach to a thought experiment that is similar to

Tversky and Kahneman’s Linda experiment. We will show that for this example at least, we

can present a model similar to the one used in the coherence discussion according to which the

participants are rational in preferring the conjunction over one of its conjuncts. The example we

present will be slightly different from the Linda example. So the conclusion that the participants

are rational in our example does not immediately tell us anything about the Linda example.
2See, for instance, Bovens and Hartmann (2003) and Meijs (2006, 2009). Meijs and Douven (2006) and Olsson

(2005) argue that coherence is not truth conducive, even if Klein and Warfield’s dismissal was too quick.
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Nonetheless, we will argue in the last two sections that the two examples are much more similar

than one may have imagined.

2 Walter the Banker

Consider the following situation:

Suppose you are a philosopher who knows a little, but not much about the current

status of formal epistemology. Suppose also that you are intimately connected with

the university of Leuven, and that through this you know that there will be a confer-

ence on probabilistic paradoxes next week. Suppose that on one morning you meet

a stranger in the commuter train to his work and you start talking. Now suppose

that when the stranger finds out that you are a philosopher, he starts talking about

an acquaintance of his, who happens to be a philosopher as well. In summary, you

learn that this guy’s name is Walter, that he is 31 years old, outspoken, bright, with

a background in philosophy and physics (“would you believe that?!” - the stranger

exclaims) and did some work on probabilistic modeling. The stranger continues to

make some comments about the merits of formal epistemology in general and then

proceeds to inform you that, by the way, Walter is a banker, working as a manager

for one of the world’s largest financial services providers. Now suppose you arrive at

your stop and after saying goodbye, you leave the train. Call this scenario 1.

Now consider scenario 2, which is like scenario 1, but before you say your goodbyes,

the stranger mentions one more fact: that Walter will be speaking at a conference in

Leuven next week.

Clearly, this example is quite similar to the Linda example. But there are also a number of

important differences between the two examples. First, in the Walter example we have a clear

source who reports the information and the credibility we assign to that source is crucial for

determining the probability that what he reports is true.

Second, there is a difference in how we should treat the background information. In the Linda

case, the information provided about Linda is presented as being beyond doubt – the participants

should assign unit probability to these statements. In the current example, this is not the case:

the information provided about Walter being bright, outspoken, etc., is just as much part of the

story as the rest of the information.

Third, intuitively, it is no longer clear whether it is irrational to assign a higher probability to

the information reported in the second scenario of the Walter example than to the information
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reported in the first. And, as the next section will show, the laws of probability may actually

support this statement.

3 Walter formalized

It goes without saying that we will not propose to change one of the axioms of probability theory

in this paper. But as we saw, the fact that the probability of a conjunct cannot be higher than

the probability of any of its conjuncts only holds ceteris paribus. In the Walter example there is

an explicit mention of the source that reports the information, the “stranger” that you meet in

the train. And when we condition on the reports of the stranger, it no longer needs to be the

case that the probability of the conjunct is equal to or larger than the probability of each of the

conjuncts.

To formalize this, we first define the following propositions:

H1: Walter is 31 years old, outspoken, bright, and has a background in physics and philosophy.

H2: Walter works at a bank.

H3: Walter attends a conference on formal epistemology in Leuven.

These propositions represent facts. Note that the first scenario is represented by the set

SI := {H1,H2} and the second scenario is represented by the set SII := {H1,H2,H3}.
Next, we define propositions that represent reports: Ri is the proposition that the stranger reports

that Hi is the case. For example, R2 stands for “The stranger reports that Walter works at a

bank”.

We will then show that it can be the case that

p(H1,H2,H3 | R1,R2,R3) > p(H1,H2|R1,R2) (1)

for plausible probability distributions.3 Hence, the probability of the conjunction of three propo-

sitions can be larger than the probability of two of the conjuncts, if one conditions on the

corresponding reports.

The value of a posterior probability, such as p(H1,H2|R1,R2), depends critically on the credi-

bility of the witness. If we know, for instance, for certain that the witness always and only report

the truth, then the posterior probability will be unity. If, on the other hand, we know that the

witness is fully untrustworthy, then the posterior probability will equal the prior probability

p(H1,H2): the reports do not tell us anything about the facts in question.

3Here p(A,B) denotes the probability of the conjunction of the propositions A and B. p(A) is the prior

probability of A, and p(A|B) is the posterior probability of A given B.

4



Moreover, if the reports of the witness are fully dependent on one another, then the second,

third, etc, witness reports will not add anything to the value of the posterior probability. The

more independent the witness reports are, the larger the posterior probability, ceteris paribus.

In the remainder of this section we will construct a model that allows us to study the case

at hand in detail. To do so, we propose an account of witness credibility and show how different

independent reports of one partially reliable witness can be combined. We will then show that

for plausible probability distributions over the different propositions, we will be more justified in

believing information set SII than information set SI .

It proves useful to introduce the following binary propositional variables: For i = 1, . . . , n,

let us call Hi (in italics) a fact variable and Ri a report variable. Hi can take two values: Hi and

¬Hi (both in roman script). Similarly, Ri can take two values: Ri and ¬Ri. Ri is the proposition

that, after consultation with the proper source, there is a report to the effect that Hi is the case.

¬Ri is the proposition that, after consultation with the proper source, there is no report to the

effect that Hi is the case.

Witness credibility. There are various ways to model the credibility of a witness.4 Following

the ‘Scandinavian School of Evidentiary Value’ (see Hansson (1983)), we assume that a witness

is either reliable or unreliable. If the witness is reliable, he is a truth-teller. If the witness is

unreliable, learning about his report does not teach us anything about the hypothesis. In this

case, the witness randomizes.

To formalize this, we introduce a further binary propositional variable: The reliability vari-

able Rel, which can take two values: Rel is the proposition that the witness is reliable (and,

hence, a truth-teller), and ¬Rel is the proposition that the witness is not reliable (and, hence, a

randomizer). We then set for all i, j = 1, . . . , n:

p(Ri|Hj,Rel) = δij , p(Ri|Hj,¬Rel) = aij (2)

The parameter aij is called the randomization parameter.5 Following Olsson (2002), we set for

all i, j = 1, . . . , n:

aij = p(Hj) (3)

This choice makes sense in our case: Without any additional information, a witness will random-

ize on the basis of his prior beliefs (see also Bovens and Hartmann (2003: ch. 5)).

Independence conditions. Next, we formalize what it means that different reports are prob-

abilistically independent. To do so, we introduce further propositional variables.
4See Bovens and Hartmann (2003) for a discussion of several options.
5The “Kronecker delta” δij equals 1 if i = j and 0 otherwise.
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We make the following assumptions: First, each fact variable is independent of the credibility

of the witness. In formal notation and for all i, j = 1, . . . , n:

Hi ⊥⊥ Rel (4)

In terms of probabilities, this requirement amounts to:

p(Hi|Rel) = p(Hi) (5)

Intuitively, this assumption makes sense: learning something about the credibility of a witness

should not tell us anything about the probability of a proposition without a report by the witness.

Second, the witness report is independent of all other witness reports, given the (values of

the) corresponding fact and the reliability variables. Put formally, we consider the case that the

witness makes n reports and assume for all i,

Ri ⊥⊥ R1, . . . , Ri−1, Ri+1, . . . Rn|Hi, Rel. (6)

In terms of probabilities, this condition amounts to

p(Ri|R1, . . .Ri−1,Ri+1, . . . ,Rn,Hi,Rel) = p(Ri|Hi,Rel). (7)

For a similar condition, see Bovens and Hartmann (2003: 65).

Note that the probabilistic versions of conditions (4) and (6) hold for all instantiations of the

corresponding propositional variables (see Bovens and Hartmann 2003: ch. 3).

Our independence condition (6) may be somewhat difficult to read and the reader may wonder

why we would not opt for a simpler proposal such as for all i, j = 1, . . . , n,

Ri ⊥⊥ Rj (8)

or, probabilistically,

p(Ri |Rj) = p(Ri). (9)

However, this condition would be too strict since it would exclude the possibility that a report

can increase the probability that the witness is a truth teller, which in turn may influence the

probability of a next report. More specifically, it may increase or decrease it, depending on the

prior probability of that proposition.6

There is also a more pragmatic defense of our independence condition (6). For the only reason

to disagree with an independence condition is if it would be unreasonable to assume that the

reports are independent in the sense specified by the condition. Therefore, we have an a priori
6This case is argued at length in Meijs (2009).
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Figure 1: The Bayesian network representing our witness scenario. The dashed lines connecting

the His represent any arrows between the various fact variables.

reason to prefer a weaker condition over a stronger. The only reason not to drop the independence

condition completely is that in that case we would never see an increase in probability at all.

The independence conditions (4) and (6) and our model for the witness credibility are cap-

tured by the Bayesian network represented in figure 1.

The posterior probability. In Appendix A we show that given the above conditions, we

can derive an expression for the posterior probability p∗(S) := p(H1, . . . ,Hn|R1, . . . ,Rn) of an

information set S := {H1, . . . ,Hn} given a corresponding set of reports R := {R1, . . . ,Rn}.
Although the derivation can be done without the theory of Bayesian networks, it turns out that

the calculation simplifies considerably if we use this powerful tool. We obtain:

p∗(S) =
p(Rel) + p(H0) · · · p(Hn) p(¬Rel)

p(S) p(Rel) + p(H0) · · · p(Hn) p(¬Rel)
p(S) (10)

With this expression we can determine the posterior probability of both scenarios involving

Walter the Banker:

p∗(SI) =
p(Rel) + p(H1) p(H2) p(¬Rel)

p(H1,H2) p(Rel) + p(H1) p(H2) p(¬Rel)
p(H1,H2) (11)

p∗(SII) =
p(Rel) + p(H1) p(H2) p(H3) p(¬Rel)

p(H1,H2,H3) p(Rel) + p(H1) p(H2) p(H3) p(¬Rel)
p(H1,H2,H3) (12)
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The difference function. Note that set SII is more probable than set SI if and only if the

difference function

D(SI ,SII) := p∗(SII)− p∗(SI) (13)

is positive. The following theorem provides a necessary and sufficient condition for the positivity

of the difference function.

Theorem: D(SI ,SII) > 0 if and only if p(H3|H1,H2) > p(H3) · (1 + δ) with the error measure

δ =
p(H1,H2) p(Rel) + p(H1) p(H2) (1− p(Rel))

[1− p(H1,H2) (1− p(H3))] p(Rel) + p(H1) p(H2) p(H3) (1− p(Rel))
· (1− p(H3)) .

Note that δ � 1 if p(H1), p(H2) and p(H1,H2) are small and if (approximately) p(Rel) ≥ .5. See

Appendix B for a detailed discussion and the proof of the theorem.

To understand the theorem and its relevance, note that the principle at work in our example

is that H1 and H3 positively support each other, while H1 and H2 are negatively relevant for

each other. That is, we have:

(a) p(H2 | H1) < p(H2)

(b) p(H3 | H1) > p(H3)

The main condition in the theorem (neglecting the error term),

(c) p(H3|H1,H2) > p(H3) ,

states that the second set has a higher posterior probability than the first set if H2 does not

destroy the positive relevance between H1 and H3. We believe this is a plausible assumption

in this case. That is, we believe that the relevance between the proposition that Walter is 31

years old, with a background in physics and philosophy etc. with the proposition that Walter

will attend the epistemology conference is strong enough to not be completely destroyed by the

report that he works at a bank. We show in Appendix B that our result can also be put in the

following way: the second set has a higher posterior probability than the first set if adding H3 to

H1 and H2 increases the coherence, i.e. if SII is more coherent than SI . The coherence increase

has to be the larger, the smaller the witness credibility.

Summarizing this section, we conclude that given some plausible assumptions about the

probabilities of the propositions in the Walter example, the second set does indeed have a higher

posterior probability than the first. And anyone who does not believe that the second set is more

probable than the first is irrational.
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4 What Walter tells us about Linda

So far we have done a couple of things: We have introduced an example in which intuitively

it makes sense to argue that we are more justified in believing a conjunction than one of its

conjuncts. Furthermore, we have shown how taking the witness reports into account supports

this conclusion. Finally, we have shown that given a number of assumptions about the witness

and his reports, we can calculate that the posterior probability for the conjunction of the three

propositions is indeed larger than the posterior probability of the two propositions. This led us

to the conclusion that participants who do not assign the conjunction a higher probability are

in fact irrational. The fallacy has completely disappeared.

In these final two sections, we would like to pursue the argument that just as in the Walter

case, the participants in the Linda experiment, too, should assign a higher probability to the

conjunction. We will do this by pointing out how the same model that we used above for Walter

the Banker can also be applied to the Linda case.

Clearly, for this argument to succeed, we would need to show that both cases are similar in

all relevant respects. We believe that the three assumptions we make about the probabilities

(conditions (a), (b) and (c)), hold in both examples. Just replace the propositions H1,H2 and

H3 by the propositions H′1,H
′
2 and H′3 with

H′1: Linda is 31 years old, single, outspoken and very bright. Etc.

H′2: Linda is bank teller.

H′3: Linda is a feminist.

Nonetheless, there are also important differences between the Walter and the Linda examples.

We believe the two most important ones are:

(1) In the Linda experiment, the background information about Linda is assumed to be certain

while in the Walter example it is part of the analysis.

(2) In the Linda experiment the statements about Linda are not presented as reports while in

the Walter example they are.

Let us take up each of these in turn. First, the reason why we do not take the background

information about Walter as given is that we do not fully trust the source. Clearly, in the Linda

case the information is reported by a source as well: we have an “experimenter” who tells us

certain things about Linda. However, in the Linda case the experimenter is supposed to be fully

credible – the participants are supposed to take for granted anything he or she tells them is the

case. So even if we were to agree to see the experimenter as a witness, we should assume this
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witness to be fully reliable and should assign any statements he or she presents as facts with unit

probability. As assigning unit probability to the background information about Linda (i.e. H′1)

would make it impossible to exploit the confirmation given by the background information to

the proposition that Linda is a feminist (i.e. H′3), we could no longer adopt the same reasoning

as we did in the case of Walter above.

Nonetheless, we believe we should not immediately dismiss the possibility that the source that

reports the background information to us (to wit, the experimenter) is not fully trustworthy. No

doubt many of you have tried this example with friends or students and, if so, we would expect

that you, just as we did, recognized in your audience at least some distrust, some slight uneasiness

while they were trying to determine if, and if so in which way, you were trying to trick them.

Such uneasiness may even be larger when put into an official experiment as everybody in the

experiment knows that the experimenter is not genuinely interested in what you believe about

Linda.

However, if we cannot fully trust the experimenter to present true facts, we should not assign

any of his or her statements unit probability. This would immediately lead us to assign less than

unit probability to the background information provided about Linda.

It would also make it much easier to argue that the statements the participants are given are

interpreted as reports by the experimenter as well. That is, it would allow us to argue against

difference (2) above by pointing out that participants may very well view these statements as

reports by the experimenter and feel as if they are asked to judge which of these reports are more

probable.7

And so we conclude that if we accept that the participants do not view the background

information as having unit probability and if we accept that they view the statements about

Linda as reports by the experimenter, then the fallacy no longer arises for plausible probability

distributions.

In the recent literature there are quite a number of arguments that attempt to show that

the participants in the Linda example do not commit a fallacy. In Hertwig et al. (2008), an

overview is given of different arguments that attempt to show that the use of the ‘AND’ operator

in ordinary language is different from the ‘AND’ operator used in propositional logic. Such

arguments would lead us to conclude that the ‘and’ in ‘Linda is a bank teller and a feminist’

would be different from the corresponding logical operator and so no fallacy arises.
7Participants have also been found to commit the conjunction fallacy if no background information is provided

by the experimenter. To fit these cases into our account, we conjecture that the participants also consider their

background beliefs about the situation at stake (= H′′1 ) and proceed as described above. If this conjecture is

correct, however, our model has to be modified as the experimenter now only presents the propositions H′′2 and

H′′3 . See also our fifth objection in the next section.
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Others have argued that although the fallacy does arise, it can be explained by showing that

the participants in the example are using some sort of rule that in other cases would lead them to

favor the proposition with the highest probability. So for instance, Shogenji (2009) argues that

participants favor the proposition with the highest epistemic justification, which in many cases

coincides with the proposition with the highest probability, though not always, as the Linda

experiment shows. In a similar vein, Crupi et al. (2008) and Atkinson et al. (2009) argue that

participants choose the proposition that has the highest degree of confirmation, which, again,

often but not always points us to the proposition with the highest probability (cf. Schupbach

(2009a) and Tentori and Crupi (2009)).

But note that our argument is different from either of these. However, we agree with the

second approach that we should analyze the ‘and’ by using the logical ‘AND’ operator, and

we agree with the first approach that the participants are not making a mistake in the Linda

experiment. And so the participants would commit a fallacy if they were not to assign the

conjunction the highest probability. And we believe that this is an argument that has not yet

been defended by anybody.

Our argument is inspired by a proposal by Bovens and Hartmann (2003: ch. 3), who an-

alyze the Linda example by taking the corresponding reports into account and showed that

p(H′2,H
′
3|R′2,R′3) can be greater than p(H′3|R′3) for plausible probability distributions. However,

the analysis of Bovens and Hartmann differs from ours in important respects: First, they as-

sume that the background information about Linda is certain, i.e. they effectively work with a

probability function that conditions on H′1. Secondly, Bovens and Hartmann model the witness

credibility differently. While we assume that an unreliable witness randomizes with the prior

probability of the corresponding proposition, Bovens and Hartmann introduce a randomization

parameter a (see eq. (2)) which is fixed and hence independent of the prior probability of the

proposition in question. We think that our assumption is descriptively more realistic and nor-

matively more appealing. What is more, our main results, captured in our theorem, crucially

depend on our way of modeling the witness credibility.

5 Anticipated objections

Clearly, the argument in the previous section is still quite tentative. For one thing, we would need

actual experimental data to support some of our statements about the beliefs of the participants.

But let us at least discuss a few possible objections that we believe are especially noteworthy, as

they may further explain our claim above.

First, one could insist that the experimenter is not part of the experiment and that she can
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therefore simply not be modelled as a witness with a certain credibility. Clearly, this is a critical

assumption for our argument to succeed. Without it, we cannot argue that the background

information has a probability different from unity or that the statements about Linda can be

modelled as witness reports. We argued in favour of it by pointing out that there is good reason

to distrust the experimenter. We could argue at length in favor of this argument, but in the end

this is an empirical claim which should be tested experimentally. This is simply not a question

that philosophy alone can answer.

Second, one may object that no matter how the participants view the experimenter, they

can never be rational. For this type of experiment has also been conducted using bets with

actual money and the participants who put their money on the conjunction instead of on one

of the conjuncts will certainly end up losing money. But this would be a misinterpretation of

our argument. For we certainly do not believe that the participants are assigning the correct

probabilities to the propositions. Indeed, they are not. For we all know that the experimenter

can indeed be trusted (or at least with respect to the propositions that he or she is reporting).

Our point is rather that the participants in the experiment may believe otherwise. That is, there

is good reason to believe that many of the participants will assign probabilities to the different

propositions such that they are fully rational in assigning a higher probability to the conjunction.

Third, similar experiments have been conducted in which experimental data are used instead

of a made-up story about Linda. In such experiments (which Hertwig et al. (2008: 741) call

‘frequency representations’), the participants should know the probabilities involved and we

really have an independent experimenter. However, in that case, too, the experimenter is still

the person relating the story and the participants still seem to have no a priori reason to expect

the experimenter to be fully reliable with regard to the information that he or she is reporting.

Fourth, one may wonder why, provided that our argument is correct, still a substantial number

of participants assign a larger probability to the first set. This, however, is not difficult to answer:

Our theorem provides a necessary and sufficient condition for D(SI ,SII) > 0. If this condition

is not satisfied, then it is rational to assign the first set a higher posterior probability than the

second set.

Fifth, one may point out that our model assumption that the witness is either a truth-teller

or a randomizer is highly idealized. After all, there seems to be a whole spectrum of possibilities

between truth-telling and randomizing. And why don’t we take into account that the witness is

deliberately lying? Moreover, one could criticize our independence assumption either by arguing

that it is too weak or mistaken in another way or even by arguing that it is too strong and

does not make sense in the case where we have only a single witness. We respond that it is an

empirical matter which mechanism for the witness credibility is at work and which independences
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hold. This clearly depends on the particular scenario under investigation. The goal of this paper

was rather modest: We only wanted to show that for a specific (though plausible) case rational

participants should assign a higher probability to the larger set of propositions. And this we did.

Finally, one may argue that condition (c) is implausible or ad hoc. It certainly is not clear

a priori whether participants who consider SII to be more probably than SI do indeed comply

with this condition. We agree. This is an empirical questions and corresponding experiments

have to be conducted to test it. To do so, our model will presumably have to be elaborated and

better adapted to the Linda experiment.

Fortunately for us, this paper was meant as a first step in that direction and we think that

we can safely conclude that its goal has been accomplished.
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Appendix A: The posterior probability

From the Bayesian network in figure 1, we can read off an expression for the joint probability

over all variables (see Neapolitan (1990)):

p(H1, . . . ,Hn, R1, . . . , Rn, Rel) = p(H1, . . . ,Hn)P (Rel) Πn
i=1 p(Ri|Hi, Rel)

With this we can calculate

p(H1, . . . ,Hn|R1, . . . ,Rn) =
p(H1, . . . ,Hn,R1, . . . ,Rn)

p(R1, . . . ,Rn)
.

Let’s first calculate

p(H1, . . . ,Hn,R1, . . . ,Rn) =
∑
Rel

p(H1, . . . ,Hn,R1, . . . ,Rn,Rel)

= [p(Rel) · 1 + p(¬Rel) Πn
i=1 p(Hi)] · p(H0,H1, . . . ,Hn) .
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Similarly, we obtain:

p(R1, . . . ,Rn) =
∑

H1,...,Hn,Rel

p(H1, . . . ,Hn,R1, . . . ,Rn, Rel)

= p(Rel)
∑

H1,...,Hn

p(H1, . . . ,Hn) Πn
i=1 p(Ri|Hi,Rel)

+ p(¬Rel)
∑

H1,...,Hn

p(H1, . . . ,Hn) Πn
i=1 p(Ri|Hi,¬Rel)

= p(Rel) p(H1, . . . ,Hn) + p(¬Rel) Πn
i=1 p(Hi)

Putting it all together, we obtain equation (10).

Appendix B: Proof of the theorem

To simplify the notation, we introduce the following abbreviations: hi := p(Hi) (for i = 1, 2, 3),

h12 := p(H1,H2), h123 := p(H1,H2,H3), r := p(Rel) and x := 1 − x for all variables x. We

assume that 0 < h1, h2, h3, h12, h123, r < 1 and obtain for the difference function:

D(SI ,SII) =
r + h1 h2 h3 r

h123 r + h1 h2 h3r
h123 −

r + h1 h2 r

h12 r + h1 h2 r
h12

=
h1 h2 r {

[
(1− h12 h3) r + h1 h2 h3 r

]
h123 − [r + h1 h2 r] h12 h3}

(h123 r + h1 h2 h3r) (h12 r + h1 h2 r)

=
h1 h2 h12 r

[
(1− h12 h3) r + h1 h2 h3 r

]
(h123 r + h1 h2 h3r) (h12 r + h1 h2 r)

· {h123/h12 − h3 (1 + δ)}

with

δ =
h12 r + h1 h2 r

(1− h12 h3) r + h1 h2 h3 r
· h3 .

Note that δ > 0. We conclude that D(SI ,SII) > 0 iff

h123/h12 > h3 · (1 + δ), (14)

which proofs the first part of the theorem as h123/h12 = p(H3|H1,H2).

It is interesting to note that δ is a negative function of h3 (proof omitted), i.e. the larger h3, the

smaller δ (and hence the “better” condition (c)).

Eq. (14) can be rewritten in the following way:

h123

h1 h2 h3
>

h12

h1 h2
· (1 + δ)
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Figure 2: The error measure δ for r = .5 as a function of h1 for set 1 (solid line), set 2 (dashed

line) and set 3 (dotted line).

This equation can be expressed in terms of Shogenji’s measure of coherence (Shogenji 1999):8

c
(n)
S :=

h1...n

h1 · · ·hn
.

Hence, condition (14) is equivalent to

c
(3)
S > c

(2)
S · (1 + δ) . (15)

Let us now examine the error measure δ. To do so, we plot δ as a function of the probability

of the background story (i.e. h1 with .01 < h1 < .99) for r = .5 and three different sets of

parameters, which satisfy conditions (a) and (b). The parameter sets are:

Set 1: h2 = h3 = .1, h12 = .001, h13 = .009

Set 2: h2 = h3 = .05, h12 = .0005, h13 = .0495

Set 3: h2 = h3 = .01, h12 = .0001, h13 = .0099

As figure 2 shows, the error is small even for large values of the parameters.

Next, we examine the r−dependence of δ. To begin with, note that δ is strictly monotonically

decreasing for 0 < r < 1 with

lim
r↘ 0

δ =
1
h3
− 1, (16)

lim
r↗ 1

δ =
h12 (1− h3)

1− h12 (1− h3)
= h12 (1− h3) (1 +O(h12)) . (17)

8Shogenji’s measure has been criticized. See, for instance, Bovens and Hartmann (2003) and Fitelson (2003).

For a recent defence of (a modified version of) Shogenji’s measure, see Schupbach (2009b). It remains to be

examined whether a condition similar to eq. (15) obtains for other coherence measures discussed in the literature.
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Figure 3: The error measure δ as a function of r for set 4 (solid line), set 5 (dashed line) and set

6 (dotted line).

(Note that limr↗ 1D(SI ,SII) = 0 as p∗(SI), p∗(SII)→ 1 as r approaches 1 from below.) As h12

is assumed to be small (see condition (a)), condition (c) and the equivalent coherence condition

c
(3)
S > c

(2)
S (18)

become increasingly good as r increases. Figure 3 illustrates this for the following three parameter

sets:

Set 4: h1 = .8, h2 = h3 = .1, h12 = .06

Set 5: h1 = .4, h2 = h3 = .05, h12 = .015

Set 6: h1 = .2, h2 = h3 = .01, h12 = .001

Figure 3 also show that condition (c) and the equivalent coherence condition (18) are not good

guides for values of r smaller than approximately .5. Eq. (16) shows that they are also not good

guides for small values of h3. In these cases it is rational to assign a higher probability to SII

than to SI only if the (Shogenji) coherence of SII is considerably greater than the (Shogenji)

coherence of SI .
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