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Abstract

Malament-Hogarth spacetimes are the sort of models within gen-
eral relativity that seem to allow for the possibility of supertasks.
There are various ways in which these spacetimes might be consid-
ered physically problematic. Here, we examine these criticisms and
investigate the prospect of escaping them.

1 Introduction

Within general relativity, some models seem to allow for the completion of an
infinite number of tasks (a supertask) in finite amount of time.1 Such models
– called Malament-Hogarth (M-H) spacetimes – may have significant impli-
cations for the foundations of computability theory. For example, some have
argued that the supertasks enabled by M-H spacetimes refute the physical
Church’s Thesis by allowing for the computation of a Turing non-computable
function [11]. M-H spacetimes can be defined as follows [10].

Definition. We say (M, gab) is an M-H spacetime if there is a future-directed
timelike half-curve γ ⊂ M and a point p ∈ M such that

∫
γ
dτ = ∞ and

γ ⊂ I−(p).

Here, the curve γ represents the worldline of some observer. Because γ
has infinite proper time, she may complete an infinite number of tasks. But,

1What we mean by an “infinite number of tasks” is left deliberately vague; it is noto-
riously difficult to be careful about such things. An excellent introduction to supertasks
as well as a survey of the relevant literature is given in [4]. For the background structure
of general relativity, see [9] and [16].
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at every point in γ, it is possible to send a signal to the point p. Because
there always exists a curve γ′ with future endpoint p which has finite proper
time, we can think of γ as the “sender” and γ′ as the “receiver” of a signal.
In this way, the receiver may complete an infinite number of tasks in a finite
time. To illustrate these basic features of the definition, it helps to examine
various instantiations. Here is a toy example [3]:

Example. Let (R2, ηab) be two-dimensional Minkwski spacetime. Consider
a compact set C ⊂ R2, a point q ∈ C, and point p such that C ⊂ I−(p). Now
let Ω be a strictly positive smooth function on R2 − {q} such that, Ω = 1
outside of C and, as q is approached, Ω becomes infinite. (R2 − {q}, Ω2ηab)
is an M-H spacetime with any future-directed timelike curve γ approaching
q representing the sender and p as a point on the worldine of the receiver
where γ ⊂ I−(p) (see Figure 1).

.
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Figure 1: The spacetime (R2 − {q}, Ω2ηab).

Now we want to consider physical constraints that may be used to eval-
uate whether there exist M-H spacetimes in which a supertask may be plau-
sibly completed. We want to assess not only the physical reasonableness of
the M-H spacetime in question, but also the physical implementability of the
supertask within that spacetime. To do this, we will need a way to represent
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such setups within M-H spacetimes. Consider the following definition.

Definition. Let (M, gab) be an M-H spacetime. Let γ ⊂ M be a future-
directed timelike half-curve such that

∫
γ
dτ = ∞. Let p ∈ M be such that

γ ⊂ I−(p). We say the ordered triple ((M, gab), p, γ) is an M-H setup.

We note that there is, associated with every M-H spacetime, an infinite
number of M-H setups. What follows are characterizations of certain con-
ditions, many of which are found in [3], that an M-H setup ((M, gab), p, γ)
must satisfy in order for it to be considered physically reasonable.

2 Conditions of Physical Reasonableness

The first condition, inextendibility, is one which is regularly used to rule out
seemingly artificial models. Roughly, the idea is to require that spacetime
extend out “as far as it can.” Formally, we have the following.

Definition. A spacetime (M, gab) is inextendible if there is no isometric em-
bedding θ : M → M ′ into a spacetime (M ′, g′

ab) such that M is a proper
subset of M ′.

Though the metaphysics involved can be questioned, we will follow gen-
eral practice and assume that, for any spacetime to be physically reasonable,
it must be inextendible.2

Next, consider the following M-H setup.

Example. Let (S × R, ηab) be two-dimensional Minkowski spacetime which
has been “rolled up” along the time axis. Let γ be any future-inextendible
timelike curve and let p be any point in S×R. The triple ((S×R, ηab), p, γ)
is an M-H setup because I−(p) covers the entire manifold (see Figure 2).

Given this example, it may seem that M-H setups are too easily con-
structed if causal misbehavior is permitted. This is the first worry noted by

2See [2, pp. 31-33] for a disucssion.
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Figure 2: “Rolled” Minkowski spacetime.

Earman and Norton [3] and the intuition can be realized in the following
easily proved proposition.

Proposition. If a spacetime contains closed timelike curves, then it is an
M-H spacetime.

Proof. Let (M, gab) be a spacetime. Let γ ⊂ M be a closed timelike curve.
Let γ∞ ⊂ M be the curve that results from staring at a point p ∈ γ and
looping around γ an infinite number of times. Clearly γ∞ is, by construc-
tion, a timelike half-curve such that

∫
γ∞

dτ = ∞. Of course, γ∞ ⊂ I−(p). So

(M, gab) is an M-H spacetime. �

Whether acausal spacetimes should be classified as physically unreason-
able is the topic of another paper. But for the time being, we can nonetheless
require that M-H spacetimes have well-behaved causal structure. There is
one caveat, however. We cannot become too causally strict or we risk labeling
all M-H spacetimes as physically unreasonable. We have the following result.

Proposition. (Malament) If a spacetime is globally hyperbolic, then it is
not an M-H spacetime.

Proof. Given in [2, p. 122].
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So, in order to entertain the the notion of M-H spacetimes, one must be
willing to welcome at least a bit causal mischief. The task is to find some
causal condition which is strong enough to exclude trivial M-H spacetimes
but not too strong so as to eliminate all of them. Following [3], our preferred
condition will be stable causality.

Definition. A spacetime (M, gab) is stably causal if there exists a non-
vanishing timelike vector field ξa on M such that the spacetime (M, gab+ξaξb)
contains no closed timelike curves.

A second concern given in [3] has to do with possible infinite blueshifts
recorded by the receiver. An informal argument summarizing the distress is
recounted here:

During her lifetime, [the sender] measures an infinite number
of vibrations of her source, each vibration taking the same amount
of her proper time. [The receiver] must agree that an infinite
number of vibrations take place. But within a finite amount of
his proper time, [the receiver] receives an infinite number of light
signals from [the sender], each announcing the completion of a
vibration. For this to happen, [the receiver] must receive the
signals in ever decreasing intervals of his proper time. Thus, [the
receiver] will perceive the frequency of [the sender’s] source to
increase without bound [3, p. 30].

There is a technical result offered in support of the informal argument
given above [3, p. 31]. The precise formulation of the result need not concern
us here. For our purposes, it is enough to note that arbitrary M-H setups do
not satisfy the antecedent assumptions of the given result.3 Thus, although
the result nicely labels some M-H setups (those satisfying its assumptions) as
blueshift delinquent, the lemma says nothing concerning setups falling out-
side its scope. Accordingly, we would like to find a condition that, if satisfied,
would seem to label an M-H setup without blueshift complications as such.

3For example, it is not always possible to find a family of null geodesics connecting
points in the the worldline of the sender to the worldline of the receiver. In addition, even
assuming that such a family of null geodesics exists, there is no guarantee that they will
form an integral submanifold or that the order of emission from the sender will match the
order of reception by the receiver.
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We have the following.

Definition. Let ((M, gab), p, γ) be an M-H setup. Let {qi} be a countably
infinite sequence of points in γ such that, for all i, the distance (as mea-
sured in proper time along γ) between qi and qi+1 is the same. We say that
((M, gab), p, γ) satisfies the bounded blueshift condition if (i) there exists a
timelike curve γ′ with future endpoint p such that there is a future-directed
null geodesic Ki from each qi to some q′i ∈ γ′ and (ii) there is a δ > 0 such
that, for all i, the quantity (V

′ak′
a)|q

′
i/(V aka)|qi is less than δ where V a

|qi
and

V
′a
|q′

i

are, respectively, the unit tangent to γ at qi and the unit tangent to γ′

at q′i and ka
|qi

and k′a
|q′

i

are, respectively, the tangents to Ki at qi and q′i.

We want to emphasize that it is not clear from the outset that any M-H
setups satisfy the bounded blueshift condition. In fact, citing their propo-
sition and numerous examples, Earman and Norton seem to think that the
divergent blueshift problem is essentially inescapable [3, p. 33].

Next, we consider a third worry given in [3]. Some spacetimes, such as the
toy example mentioned above, do not satisfy the the so-called “energy con-
ditions”. For each spacetime (M, gab), we associate via Einstein’s equation, a
stress-energy tensor Tab defined on all of M . The energy conditions are con-
straints on placed on Tab which are thought to be satisfied by all physically
reasonable matter sources. We will define two of these energy conditions
here.4

Definition. A spacetime (M, gab) satisfies the dominant energy condition

if, for all future directed timelike vectors ξa, then T a
bξ

b is a future directed
causal vector where Tab is the stress-energy tensor associated with (M, gab).

Definition. A spacetime (M, gab) satisfies the strong energy condition if, for
all unit timelike vectors ξa, then Tabξ

aξb ≥ −1

2
T a

a where Tab is the stress-
energy tensor associated with (M, gab).

Next, we note that in some M-H setups ((M, gab), p, γ), the curve γ is a

4A third energy condition, not defined here is called the “weak energy condition” and
is satisfied whenever the dominant energy condition is. For more on the energy conditions,
see [3].
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geodesic but that this is not always the case. Consider a setup generated
from anti-de Sitter spacetime.

Example. Let t and x be standard coordinates on R2. Consider the space-
time (R2, gab) where gab = cosh2 x∇at∇bt − ∇ax∇bx. Here, the null cones
rapidly widen as x increases in absolute value. Thus, for any point p ∈ R2,
there are future-directed timelike curves γ in I−(p) with infinite proper time
(see Figure 3).

.

p

γ

I−(p)

Figure 3: Anti-de Sitter spacetime.

In the example above, it can be shown that not only is γ not a geodesic,
but its total (integrated) acceleration is infinite [3, p. 36]. Given such exam-
ples, Earman and Norton demand a finite bound on the total acceleration of
γ. This seems sensible – a rocket ship which carries a finite amount of fuel
cannot traverse a curve with infinite total acceleration (assuming it cannot
refuel along the way) [1]. So, we have the following.

Definition. We say that the M-H setup ((M, gab), p, γ) satisfies the finite

acceleration condition if
∫

γ
a dτ < ∞ where a is the scalar value of accelera-

tion defined at each point in γ.

In an M-H setup ((M, gab), p, γ), the sender γ is represented by the world-
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line of a point particle. However, it has been emphasized that such repre-
sentations are not realistic [3]. Instead of a single worldline γ, one must be
concerned with a congruence Γ of such worldlines which more appropriately
represents the sender. But, if the sender is to carry out her tasks, we must
verify that the tidal forces on such a congruence Γ remain bounded. As-
sociated with each spacetime (M, gab) is a Riemann curvature tensor Ra

bcd

defined on all of M . Because the tidal forces are proportional to the Riemann
curvature tensor, we feel the following constraint is a reasonable one to place
on spacetime:

Definition. A spacetime (M, gab) satisfies the tidal force condition if there
exists a k > 0 such that the Kretschmann curvature scalar RabcdR

abcd is less
than k and greater than −k at all points in M .

Earman and Norton have a sixth worry. They contend that the receiver
in an M-H setup can always question the reliability of the signal sent by the
sender. The concern has its roots in the following precise claim [3, p. 37].

Claim. Let ((M, gab), p, γ) be an M-H setup. If Σ ⊂ M is a spacelike hyper-
surface such that γ ⊂ I+(Σ), then p /∈ int[D+(Σ)].5

The idea is that Σ is a spacelike surface from which the physical situa-
tion on all of D+(Σ) can be determined. If γ were in D+(Σ), then initial
conditions on Σ would guarantee the completion of the sender’s tasks and
signals. Clearly, γ ⊂ D+(Σ) implies γ ⊂ I+(Σ). However, as Earman and
Norton point out, if p /∈ int[D+(Σ)] then “events at p or at points arbitrarily
close to p are subject to nondeterministic influences” [3, p. 38]. So, if the
above claim is true, there would always be room for the receiver to doubt the
reliability of the sender’s signal. Earman and Norton have offered a proof of
the claim so it would seem that the matter has been settled. However, we
note here that the claim is false as presented.6

The formulation of the claim can be altered so as to make it true by
assuming that Σ is achronal; it is likely that this was the intended theorem.
But we note that this additional assumption significantly weakens the result

5Here, as in [3, p. 35], we define the future domain of dependence D+(Σ) of Σ as the
set of all points p ∈ M such that every causal curve which passes through p without past
endpoint meets Σ. This agrees with the formulation given in [9].

6For a counterexample, the interested reader may consult the proposition below.
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and we question its imposition.
In some texts, the future domain of dependence D+(Σ) of a set Σ is only

defined when Σ is achronal [16]. But, we want to make it very clear that
this is done for mathematical convenience only [5, p. 438]. The domain of
dependence can be and, in places such as [3] and [9], has been defined for
arbitrary sets. So, we emphasize that the achronality of Σ is not implicit in
the formulation of the claim above.

One attempt to justify the achronality assumption is to argue that non-
achronal spacelike hypersurfaces somehow signal causal misbehavior. But
such an argument is inadequate. While it is true that some causally delin-
quent spacetimes do not admit any achronal spacelike hypersufaces (e.g.
Gödel spacetime), every spacetime has innumerable spacelike hypersurfaces
which are not achronal.7. So the existence of such surfaces in no way flags
causal mischief.

Besides, we argue that any worries concerning unruly causal structure
should be formulated as a condition satisfied by the whole of spacetime.
We have, for example, already stipulated that (for our purposes) an M-H
spacetime must be stably causal to be considered physically reasonable. In
our opinion, this seems to be enough to rule out causal pathologies.

Consequently, we feel that the claim above can be used to formulate a
condition on M-H setups ensuring signal reliability. We have the following.

Definition. The M-H setup ((M, gab), p, γ) satisfies the signal reliability con-

dition if there is a spacelike hypersurface Σ ⊂ I−(p) such that γ ⊂ D+(Σ)
and p ∈ int[D+(Σ)].

Here, we have required that not only γ be in I+(Σ) but that it be in
D+(Σ) as well. We have also insisted that Σ be in I−(p). Together, these
constraints ensure that the receiver at p has the resources to determine the
behavior of γ. In addition, we demand that p ∈ int[D+(Σ)]. This secures the
determination, from p, of events sufficiently close to p. Hence, the reliability
of the sender’s signal is guaranteed.

Clearly, the rolled Minkowski spacetime example given above satisfies the
signal reliability condition. However, it is not clear from the outset that the
condition is satisfied by any causally well-behaved M-H setup. All examples
considered in [3] do not. This includes Reissner-Nordström spacetime.

7For an example in Minkowski spacetime, see [8, p. 246]
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Figure 4: Conformal diagram of Reissner-Nordström spacetime.

Example. Reissner-Nordström spacetime.8 This spacetime represents a
spherically symmetric electrically charged body (see the conformal diagram
given in Figure 4). In the diagram, the future-directed timelike curve γ ap-
proaches the singularity at i+ and is such that

∫
γ
dτ = ∞. However, the

point p is such that γ ⊂ I−(p).

3 An Example M-H Setup

We have outlined seven conditions regarding the physicality of M-H setups.
These conditions seem to be substantial in that no M-H setup presented in
the literature escapes them all. Accordingly, one might be tempted to con-
clude that there do not exist physically reasonable M-H setups. However,

8Details can be found in [9, pp. 156-161].
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we suggest here that such a conclusion may be unwarranted. Indeed, we
now present a spacetime which avoids all of the problems discussed above.
In lieu of a formal existence proof of such a model, we offer an argument
sketch accompanied with diagrams which, we hope, will better convey the
basic structure of the example in mind.

Proposition. There exists an M-H setup ((M, gab), p, γ) such that all of the
following hold:

(i) (M, gab) is inextendible.

(ii) (M, gab) is stably causal.

(iii) ((M, gab), p, γ) satisfies the bounded blueshift condition.

(iv) (M, gab) satisfies the dominant and strong energy conditions.

(v) ((M, gab), p, γ) satisfies the finite acceleration condition.

(vi) (M, gab) satisfies the tidal force condition.

(vii) ((M, gab), p, γ) satisfies the signal reliability condition.

Proof Sketch. Here, we provide a two-dimensional example. It is not difficult
to see that the example generalizes to spacetimes of dimension four.

Let (R2, ηab) be Minkowski spacetime in standard t, x coordinates (here
ηab = ∇at∇bt − ∇ax∇bx). Now, cut slits Si, Ui, Li, and C as shown in the
bottom portion of Figure 5. For each i ∈ N identify the upper edge of Ui with
the lower edge of Li+1 (excluding boundary points). Similarly, identify the
lower edge of Ui with the upper edge of Li+1. Let (M, ηab|M ) be the resulting
spacetime.

Now consider another copy of Minkowski spacetime (R2, ηab). Now, cut
slits S ′

i and C ′ as shown in the top portion of Figure 5. Let (M ′, ηab|M ′)
be the resulting spacetime. Now we attach the spacetimes (M, ηab|M ) and
(M ′, ηab|M ′) as follows: For all j ∈ Z, identify the upper edge of Sj with the
lower edge of S ′

j (excluding boundary points). Similarly, identify the lower
edge of Sj with the upper edge of S ′

j . Make similar identifications with the
sets C and C ′. Let the resulting spacetime be (M ′′, gab).

Let p and γ be as shown in Figure 6. Note that γ continues until the lower
edge of U0 which, by construction, is identified with the upper edge of L1.
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Similarly, the curve γ continues until it reaches the lower edge of U1 which
is identified with the upper edge of L2. The process continues ad infinitum.
Thus, it is clear that

∫
γ
dτ = ∞. It can be verified that there exists a future

directed timelike curve from every point in γ to the lower edge of Sj for some
j. So there is a future directed timelike curve from any point in γ to the
upper edge of S ′

j for some j. But clearly, the lower edge of C, and hence the
upper edge of C ′ is in I−(p). So, the upper edge of every Sj is in I−(p). So,
γ ⊂ I−(p) and (M ′′, gab) is an M-H spacetime.

Now we show that ((M ′′, gab), p, γ) satisfies conditions (i)-(vii). By con-
struction, (M ′′, gab) is inextendible and locally carries the Minkowski metric.
So, (i), (iv), and (vi) are easily satisfied. Because the curve γ is a geodesic,
condition (v) is satisfied as well. Let Σ be the spacelike hypersurface as
shown in Figure 6. Every past-inextendible causal curve from γ intersects
Σ. So, γ ⊂ D+(Σ). One can also note that, for any point in Σ, there is a
future-directed timelike curve from that point to some Sj or to p. So, this
implies that Σ ⊂ I−(p). Also, it an be easily verified that p ∈ int[D+(Σ)].
So, (M ′′, gab) satisfies condition (vii).

Let Ki and γ′ be as shown in Figure 6. Without too much trouble, it
is possible to verify that (V

′aka)/(V aka) = 1 where V a and V
′a are, respec-

tively, the unit tangent to γ and γ′ and ka is the tangent to the Ki. So
((M ′′, gab), p, γ) satisfies condition (iii). Note also that the order of signal
transmission matches the order of signal reception.

Finally, one can verify that (M ′′, gab) is stably causal therefore satisfy-
ing condition (ii). Here, we simply show that it contains no closed timelike
curves. We first claim that any future-directed timelike curve γs with past
endpoint s ∈ M ′ cannot return to s. It is easy to see that if γs never leaves
M ′, it cannot return to s. And if γs does leave M ′, it must do so in one of
two ways: either through one of the S ′

i or through C ′. Clearly, if γ leaves
through C ′ or one of the S ′

i, and hence enters M , it can never leave M . So,
there is no closed timelike curve through any point in M ′. Now consider any
point s ∈ M . We also claim that any future-directed timelike curve γs with
past endpoint s ∈ M cannot return to s. Because of the previous argument,
such a curve cannot enter C or any Si and be closed. If γs enters some Li,
then it must exit some Ui and can never return to any point to the past of
any Li (including s). If γs enters some Ui, it may exit through any Lj where
i < j. But, for all i < j the timelike future of Lj does not contain Ui. So, γs

cannot return to s. It is clear that any γs which remains in M but does not
enter any Ui or Li cannot be closed. �
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4 Conclusion

We want to make it very clear that we do not feel that the example just
presented is physically reasonable. We simply emphasize that the potential
problems outlined above fail to rule it out. In addition, it must be remem-
bered that the proposition can have physical relevance even if the particular
cut and paste model constructed in the proof does not. Geroch explains:

“The space-times obtained by cutting and patching are not
normally considered as serious models of our universe. However,
the mere existence of a space-time having certain global features
suggests that there are many models – some perhaps quite reaon-
able physically – with similar properties” [6, p. 78].

Of course, one can consider other requirements in addition to those pre-
sented here. Here, we briefly note some of these.

One way of ruling out our example above is to insist that spacetime be
“hole-free” [7]. Intuitively, this condition guarantees that, for any spacelike
surface Σ, the set D+(Σ) is “as large as it can be”. We note here, however,
that it is not clear that all physically reasonable spacetimes are hole-free [12],
[14]. But, even granting this assumption, it is not as if a no-go theorem is
then straightforwardly obtained.

A different sort of objection is hinted at by Earman and Norton. Follow-
ing [15], they believe that although the sender, by construction, has “time
enough” to complete its tasks, a physically reasonable M-H setup must guar-
antee that there is “world enough” as well. The problem is that a compu-
tational device with a limited amount of computational space does not seem
to have the resources to complete a supertask [3]. We acknowledge that this
concern deserves attention, but for now, it is unclear how exactly to formalize
such a worry.

Next, Norton9 has pointed out the possibility of energy related problems
even for M-H setups satisfying the bounded blueshift condition. The concern
is that if the receiver, in a finite time, receives an infinite number of signals
from the sender and if each signal has the same energy on arrival, then the

9Private communication.
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total energy received may diverge. This may well be a serious problem. But,
we also note that if the M-H setup satisfies the signal reliability condition,
the sender need not send an infinite number of signals to the receiver in order
to complete certain supertasks – at most one is needed. Imagine the sender
checking a conjecture of number theory for ‘1’, for ‘2’, etc. If a counterex-
ample to the conjecture is found, the sender sends one signal to the receiver.
Otherwise, no signal is ever sent.10 Since the signal (or non-signal as the
case may be) is trustworthy in the sense of the signal reliability condition,
the receiver would seem to be able to settle the conjecture.

Finally, one might insist that the receiver must “bring about” the su-
pertask instead simply finding it already completed. Consider an M-H setup
((M, gab), p, γ). In order for a supertask is to be completed at p, then at some
point q (where γ∪{p} ⊂ I+(q)), the receiver must manufacture and initialize
a computational device. But, it seems there would be no reason whatsoever
for the receiver to manufacture and initialize the device at q if there was no
assurance at q that a supertask at may be completed at p. In other words,
it seems that part of what it means to say that the receiver brings about a
supertask is that she is be able to predict, from q, the relevant spacetime
structure to the causal future of q.11 And, given that (M, gab) necessarily
fails to be globally hyperbolic, the receiver seems to be incapable of such
predictions. (We note, however, that there is a sense in which every observer
in every spacetime is unable to make sure predictions concerning her casual
future [13].)

This objection is certainly significant as a practical matter but we argue
that it does not undermine the physical implementability of supertasks. It
may be that that the receiver at q, not knowing with certainty the spacetime
structure to her casual future, decides to manufacture and initialize a com-
putational device anyway. She simply bets that at some later point p, the
intended supertask may be completed. If her hopes are realized, wouldn’t we
want to say that she, in some way, brought about the outcome?

In sum, there are indeed other worries concerning the physical reason-
ableness of M-H setups. But, given the resilience of examples like the one
presented above, it is not yet clear that such potential problems will turn out
to prohibit the physical implementability of supertasks.

10This setup is suggested in [3, p. 29].
11I am grateful to Robert Geroch for this point.
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Figure 5: The spacetime above is (M ′, η′
ab|M ′). The spacetime below is

(M, ηab|M) where, for each i ∈ N, the upper edge of Ui is identified with

the lower edge of Li+1 and vice versa. The two spacetimes are connected to

make (M ′′, gab) by making the following identifications: For all j ∈ Z, iden-

tify the upper edge of Sj with the lower edge of S ′
j and vice versa. Make

similar identifications with the sets C and C ′. Drawn to scale.
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Figure 6: The spacetime (M ′′, gab) with p, γ, γ′, Σ, and Ki indicated. Drawn

to scale.
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