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Abstract  

 

It has recently been aptly emphasized that how models are used is essential to what 

scientific models are. But the explanations of why and how a model is used or why a model is 

scientifically valuable are still merely in terms of the relation between the model and its target, 

just as they were before the explicit mention of uses and users. To use a model is to perform an 

action, and as for any action, different accounts can be given depending on the perspective that is 

adopted. An account of use and users in terms of relations between the model and its target is 

close to the poorest we could get of the role of the users and the function of models. 

I will argue that models need to be regarded as elements of an epistemic space, a space of 

related models-of-phenomena and activities of modeling. On that view, whether a model-of-X is 

epistemically valuable or scientifically worthwhile depends on the difference it makes in this 

epistemic space with respect to the investigation of scientifically significant problems. I will 

focus on the most common way for a model to make a difference: to be used in the construction 

of other models.  
 

 

0. Introduction  

It has recently been aptly emphasized that how models are used is essential to 

what scientific models are. The reasoning runs roughly as follows: nothing is a 

representation in and by itself but only in virtue of being used to represent or being used 

as representation, and models are representations, therefore it is essential to models that 

they are used, used as representations. What is curious, however, is that in spite of this 
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emphasis on uses and users, the explanations of why and how a model is used or why a 

model is epistemically valuable, scientifically worthwhile, are still merely in terms of the 

relation between the model and its target, just as they were before the explicit mention of 

uses and users. 

For instance, in his inferential conception of representation, Suarez (2002) insists 

that ‘the reference to the presence of agents and the purpose of inquiry is essential’.  But 

the reason is that, regarding the agents, “some agent’s intended uses to be in place” is 

required to establish and maintain the representational force of the source, and regarding 

the purpose, it depends on the aim of the inquiry what level of competence is required to 

draw inferences from the source about the target. And his assertion that “scientific 

representations have cognitive value because they aim to provide us with specific 

information regarding their target” shows that all that matters in the assessment of the 

cognitive value of models still lies in the relation between the model and its target. 

Similarly in Contessa’s (2007) interpretational conception of representation, users are 

there to interpret the vehicle in terms of the target, and the use of the representation is 

surrogative reasoning about the target. Finally,  in Giere’s intentional conception, which 

does place the representational function in a larger context, the function of the agents is 

still restricted to ‘specify[ing] which similarities are intended’, and the use of the model 

is ‘to represent physical processes in the real world’ (Giere, forthcoming). 

It is important to clarify the sense in which models function as representation, but 

it should be clear that saying that models are used as representation says very little, in 

fact, about their use, and that they are representations says very little about their scientific 

worth. Not because it is not true that models are representations, if by that one wishes to 

underline that a model is something meaningful, that a model is a model of something 

and wishes to account for the fact that models enable scientists to make some claims 

about what they are models of. Representation talk is not very illuminating, however,  

when it comes to understanding how models are constructed, how the determination of 

what the model should account for can be the subject of long-standing controversies, how 

such controversies are resolved in practice, or how the conception of the target is 

transformed in the course of the process of modeling. But I have discussed this aspect of 

models and modeling elsewhere (Peschard, 2009) and I want here to discuss still another, 
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even though related, shortcoming of representation talk on models. It is that however 

representation is understood, focusing on representation, insofar as that would amount to 

simply considering the relation between the model and the phenomenon it is a model of, 

suffers from a dramatic lack of perspective when it comes to accounting for the use and 

the scientific value of models.  

 

To use a model is to perform an action, and as for any action, different accounts 

can be given depending on the perspective that is adopted. To account for the use and the 

scientific value of a model in terms of the relation between the model and what it is a 

model of is a bit like explaining why I took the BART (Bay Area Rapid Transit)  at 

8:30am today in terms of my getting to the other side of the Bay at 9:00am. It is true that 

what is good about the BART is that it takes me there at the chosen time. But this 

understanding of the action is close to the poorest one could get.  That the explanation 

leaves out much that is crucial becomes clear if one imagines that once arrived on the 

other side of the Bay the passengers cannot get out of the station. Similarly, an account of 

use and users in terms of relations between the model and its target is close to the poorest 

we could get of the role of the users and the function of models. 

If the cognitive or scientific value of models were limited to the relation between 

models and targets, the historical importance of certain scientific models, the model of 

the DNA or of the atom for example, would hardly make sense, and scientific modeling 

as a whole would reduce to a mere accumulation of models.  

I will argue that an account of the use and value of models which doesn’t reduce 

scientific modeling to so dramatically short-sighted a kind of action needs to look beyond 

the relation between a model and what it is a model of.  

 

Rather than asking about the scientific value of models, and appealing to their 

relation to phenomena, we should ask about the scientific value of the model-of-X as a 

scientific unit of use and of epistemic assessment. A crucial corollary of this modification 

is that models are not to be considered as situated merely somewhere along a line relating 

theories to phenomena. They will be regarded as elements of an epistemic space, a space 

of related models-of-phenomena and activities of modeling. On that view, whether a 
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model-of-X is epistemically valuable or scientifically worthwhile depends on the 

difference it makes in this epistemic space with respect to the investigation of 

scientifically significant problems. I will focus on the most common way for a model to 

make a difference: to be used in the construction of other models, or the constructive use 

of a model. By being instrumental in the generation of new models, a model is an 

instrument of progressive transformation of an epistemic space. It opens up new 

possibilities of investigation.  

Parts I and II will successively address the constructive use of what may be 

regarded as two different sorts of models, ‘abstract models’ and ‘experimental models’. 

This distinction broadly corresponds the distinction made by Giere between “principled 

models” and “representational models”, only the latter being fully specified. It is 

tempting to take Giere’s distinction as a distinction between models being used to 

construct a model and models being used as a representation: principled models are 

models used to construct representational models, and representational models are used to 

represent a system. What part II will show, by looking closely at the use of some 

‘representational models’ -- namely, fluid mechanics models of a wake and of coupled 

wakes -- is that one should resist the temptation. The main reason will be even in this 

case, the representational relation falls short of accounting either for their use or for their 

scientific value. What needs to be taken into account is their constructive use.  

 

I. Use and value of an intermediary model  

I. 1. The Landau model 
Not all models can be easily regarded as representations of something. 

Schrödinger’s equation or Newton’s laws, in and by themselves, do not enable us to 

calculate or infer anything specific about any particular system. The former requires the 

specification of an Hamiltonian and the latter that of a force function. Still, one should 

think that they have some use, and that they are scientifically valuable. To distinguish, as 

Giere (forthcoming) or Cartwright (1999: 180) do, two sorts of models, those that are 

abstract and those from which specific claims about a particular system can be made, 

suggests that the questions of their use and scientific value will need different sorts of 
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answers. On the other hand, however, that most of the models actually used by scientists 

are of an intermediary degree of generality suggests rather that the same sort of answer 

may cover the whole span and bridge the difference between the two extreme sorts of 

cases.   

In order to clarify this issue, I will then start with such an intermediary model, 

which in fact constitutes a background for the models considered in the second part. This 

model, hereafter ‘the Landau model’, was proposed in 1944, by Lev Landau, Russian 

theoretician physicist, winner of the physics Nobel prize in1962 for his contribution to 

the theory of superfluidity.  The Landau model describes in the following way the growth 

of a perturbation in a parallel flow, when the control parameter (generally a function of 

the velocity of the flow) is just above the critical threshold: 

dA/dt = (ar + iai) A – (lr +ili) |A|2A 

where A is the complex amplitude of a perturbation, (ar + iai) is the coefficient of linear 

growth, and  (lr +ili) is the coefficient of non-linear effects of saturation of the amplitude.  

Supposing the perturbation to be oscillatory, it describes, for a positive value of the 

eigenvalue ar, the evolution of the amplitude of the perturbation as following first a linear 

growth and a progressive inflection of the growth rate due to the compensatory effects of 

the non-linear term, until the linear and non-linear contributions to the growth of the 

amplitude balance each other. If Re represents the control parameter of the system, ar is a 

linear function of (Re - Rec), where Rec represents the critical value of the control 

parameter, the value at which the system becomes unstable and the perturbation starts 

growing.  

The model is intermediary, between the most general and the most specified in the 

following sense. It is not as general as Newton’s law in that the class of systems that 

forms the target domain is smaller: the model characterizes the dynamics of a fluid, 

forming a parallel flow, undergoing a change of stability resulting from the growth of a 

periodic perturbation, for values of the control parameter close to the critical value. But it 

is not as specified as a model that would have quantitative implications as to the 

evolution of the amplitude A for a particular experimental system. For that, the other 

terms of the models would have to be defined in terms of measurable physical quantities, 

and ascribed a particular value characterizing some particular experimental conditions.  
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I. 2. Scientific value of the model 
This model was not derived from the Navier-Stokes equations, which stand as 

theoretical laws in fluid mechanics, nor was it based on experimental measurements. The 

model was not shown to account for previous measurements and was too general to allow 

specific inferences about a particular system. But it certainly has a historical status, it is a 

landmark in the study of instabilities. And this is all the more surprising given that the 

conception of turbulence which Landau presents in the same paper, as a motivation for 

the formulation of the model, is now regarded as mistaken.  

In effect, according to Landau, turbulent motion consists in the superposition of 

an infinity of modes of different frequencies which, as the control parameter increases, 

become successively instable and, one after the other, start growing. This theory 

constituted a new approach to the longstanding and opaque problem of turbulence: 

“Although the turbulent motion has been extensively discussed in literature from 

different points of view, the very essence of this phenomenon is still lacking sufficient 

clearness. To the author’s opinion, the problem may appear in a new light if the process 

of initiation of turbulence is examined thoroughly” (Landau 1944: 387).  Instead of 

vainly trying to make sense of turbulence by looking at fully developed turbulent motion, 

fully unpredictable and unanalyzable, Landau proposes to look for understanding of 

turbulence in the process of development of turbulence. The model that he presents 

purportedly describes the development of the first, the most instable mode of the flow, 

and Landau invites the reader to do the same for the subsequent modes, each time on the 

basis of the new basic flow generated by the combination of previous developments.  
In the 80s, however, it was shown that just three independent modes were 

sufficient to produce a chaotic evolution (Ruelle & al. 1978). So the unpredictability 

characteristic of turbulent motion doesn’t require an infinity of modes; Landau got the 

number wrong. But he was right in the method, in the way of proceeding: the new theory 

objected to Landau in his own terms, still giving an interpretation of the turbulent motion 

in terms of a combination of successive modes, and the theoretical study of  turbulence is 

still, and more than ever, what Landau said it had to be, one that focuses on 

understanding the development of these modes.  
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So much for the theory. As for the model, it can be read as a description of the 

first step of the transition towards turbulence, independently of how many steps were 

supposed to be needed after it. And indeed, the fate of the theory did not prevent the 

model from being used in the investigation of the development of the first instability in 

diverse types of systems. I will focus on one of these systems: the wake that develops 

behind a cylinder when the velocity upstream reaches a certain critical value and vortices 

are emitted alternatively on each side of the cylinder and carried away with the flow (see 

figure 1). The motion of the flow behind a cylinder (which is an idealization of the flow 

behind an island, a rock, a pole, the pylons  of a bridge, etc.) is one of the typical 

problems in fluid mechanics, especially difficult to deal with because, by contrast with 

other typical species in the fluid mechanics garden such as the problems of the parallel 

flow between two planes, of the flow in a cylinder or a jet, or the flow between two 

concentric cylinders, it adds the complication of the obstacle, with the loss of symmetry 

that this implies.  

 

 
Figure 1: Wake behind a cylinder (on the left). The wake is formed by the vortices 

emitted on each side of the cylinder and carried away with the flow (from left to right)    

 

The way in which the Landau model has been and is still used to investigate this 

and other problems, is by constituting the basic material, a template, for the construction 

of models, for instance models of wakes and coupled wakes. The model of the wake is 

obtained by specifying the order parameter and control parameter in terms of measurable 
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physical quantities characterizing the experimental system of the wake1 (Mathis & al. 

1984).  This is how the Landau model is used.  The model opens up new forms of 

investigation and characterization of the development of the wake in terms of the 

quantities and relations constituting the model. By offering a new way of thinking about 

the phenomenon, it made possible new questions, new challenges, and thereby pointed 

towards what not only could but needed to be done. Thereby it was instrumental in the 

development of a new, fecund and prolific research activity of modeling and 

experimenting. It  is precisely so as to make sense of this transformative and enabling 

dimension of models that, Rouse argues, models should be thought of simulacra rather 

than representations: “simulacra … transform the available possibilities for human action. 

They do so both by materially enabling some activities and obstructing others, and also 

by changing the situation such that some possible actions or roles lose their point, while 

others acquire new significance” (Rouse, 2002: 177).  Not all models have such a deeply 

transformative effect on how to go about exploring the phenomenon. The more they have 

that effect, the more scientifically valuable they are.  

I. 3. Use of the model 
How the Landau model is used is not different from how even more general 

models, like the Navier-Stokes equations or the third of Newton’s laws, are used. In the 

same way as, say, in the model of the dynamics of a spring, the force function takes the 

form F=-kx, in the model the dynamics of a the wake behind a cylinder, the control 

parameter will take the specific form Re = (U*D)/ν, where U is the upstream velocity of 

the flow, D the diameter of the cylinder and ν the viscosity. Only when U, D and ν  are 

ascribed a particular value, within a certain range of values, would it be possible to make 

quantitative inferences from the model about the evolution of the amplitude of the 

perturbation that forms the wake. But in the present case, and this is not an exception, this 

is not the level of specification that is interesting. We do not necessarily want to think of 

different values of the control parameter as characterizing different systems. This would 

                                                
1 The amplitude of the perturbation is the amplitude, in the direction of the flow and at 5 diameters behind 

the cylinder of the vortices ‘emitted by’ the cylinder, whereas the control parameter is the Reynolds number 

as a function of the velocity upstream, the diameter of the cylinder and the viscosity. 
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even be at odds with the notion of control parameter, which implies some control over 

one system, that is, the possibility of fixing different conditions for the same system. So if 

some models are to be regarded as representations of a system, that should not require 

that all the terms of the model take a particular value.  Rather, the important difference 

between the Landau model and the model of the wake is that after the terms of the 

Landau model have been specified in terms of measurable physical quantities, these 

terms are quantitatively specifiable in a way that characterizes a physical system.  That is,  

it is then possible to give values to the term representing the control parameter that 

correspond to some particular experimental conditions for the development of the wake.  

It is not clear, if we are ready to say that of the model of the wake is a 

representation, why we would not say the same thing of the Landau model since they are 

both meaningful, both about something, even though this something differs in degree of 

abstraction. In addition, as I will argue in the next section, regarding models on the most 

specific end of the spectrum,  ‘being used as representation’ accounts neither for their use 

nor for their scientific value. And even worse: the more specific the model becomes, the 

less illuminating its ‘being used as representation’ proves to be. For these two reasons, I 

will speak of these models that can be used to investigate specific systems, not as 

‘representational models’ but as ‘experimental models’.  

 

II. Use and value of experimental models  

What I call experimental models are models that  are developed, that are 

constructed, in the context of an experimental activity. An experimental model is a model 

of an experimental system (in the sense of Rheinberger, 1997: 28). 

II. 1. Model of a wake 
In the 90s, the Landau model of the development of a perturbation was used to 

construct a model of the wake formed behind a cylinder of a very small aspect ratio 

(length/diameter = L/D = 5), which will be referred to as a very ‘short’ cylinder. As 

explained before, the model for this class of systems was obtained by specifying the 

terms of Landau model: the control parameter is the Reynolds number, here a function of 

the velocity upstream, the diameter of the cylinder and the viscosity of the fluid, and the 
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variables of interest are the amplitude and the frequency of the vortices emitted behind 

the cylinder (Peschard & al. 1999).  What characterizes a value of the aspect ratio as 

small is that it is far from the asymptotic limit where the value of the aspect ratio doesn’t 

make a difference anymore to the main features of the system, such as the value of the 

critical Reynolds number. Because of this invariance, the results obtained in the 

asymptotic domain (L > 50*D) where the cylinder is regarded as infinite have a more 

general significance and consequently most studies are made in this domain. But the 

attempts to use the Landau model was confronted to some difficulties: some of the 

experimental results were not accounted for by the model.   

On the other hand, the development of the wake in the particular conditions of a 

small aspect ratio could be successfully characterized in terms of the development 

described by the Landau model combining linear growth and non-linear saturation.  

The model can be decomposed into two parts, sub-models: one for the evolution of the 

real amplitude with the Reynolds number, the other for the evolution of the frequency. 

Both sub-models were shown to be in good agreement with the outcomes of 

measurements. But what is the scientific value of a model with such a limited domain of 

application? 

An account of the use of models in terms of the relation between the model and its 

target would underline the fact that the model could then be used to predict, given a value 

of the Reynolds number, the value of the amplitude or the value of the shedding 

frequency of the system. It is true that once the model is deemed reliable, when  it is 

regarded as accounting for the evolution of the variable, one could infer the value that the 

variable would take for any value of the control parameter in the range covered by the 

model. That may be of interest to an engineer but to the scientists, insofar as the 

predictions for the values of the variable agree with the measured values, it is often of 

little intrinsic interest what these values are. What matters is that the model accounts for 

the evolution of the variable. So the real question is: what is the point of having a model 

accounting for the evolution of this variable? The fit between the predictions of the 

models and the outcomes of measurements gives credential to the claim that the system in 

question instantiates particular mathematical relations. But whatever we learn about the 

system is scientifically interesting only if the system itself is scientifically interesting. 
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Two main ways in which it can be scientifically interesting are 

a) if it is representative of a large or significant class of system   

b) if it is normally part of a larger system too complicated to be studied as a 

whole.  

The small value of the aspect ratio characteristic of the modeled system prevents both of 

the above conditions to be realized. As we saw, ‘small value’ means well before the 

range of values for which the main features of the system, like the value of the critical 

Reynolds number, become ‘universal’, that is, independent of the aspect ratio. A system 

of high aspect ratio would be representative of a large class of systems, which is the one 

that is theoretically, and practically because of the large scope of application, 

scientifically significant. So what is the point of having a model of the wake in the small 

aspect ratio value type of configuration?  

We need to grant scientists a vision, and see modeling as an activity embedded in 

a larger endeavor. The scientific value of a model may not be an immediate one but come 

from the role it plays in a larger project. Part of the background knowledge that will be 

required to really make sense of this model is that attempts to construct a model for the 

‘preferred’ class of wakes behind an infinite cylinder had encountered puzzling 

difficulties.  Whereas the model of the wake implies a linear relation between the value of 

the shedding frequency and the Reynolds number, the observations with an infinite 

cylinder showed a totally unexpected discontinuity in the linear evolution for a certain 

range of value of Re. Such a discontinuity is absent from the measurements made with a 

‘short’ cylinder. One possible account for the difference would be that the discontinuity 

observed with an infinite cylinder be a mere artefact from parts of the experimental set-up 

that are different in the two cases (for instance the cylinder being longer the amount of 

irregularities in the diameter increases, the vibrations of the cylinder are more difficult to 

control, etc.) But the constructive of the model for a short cylinder takes place in the 

exploration of another possible explanation of the difference between the two cases, short 

and infinite cylinder, and of the discontinuity that was observed in the latter case.  

    It is worth noting that the above two ways for a model to be scientifically 

interesting take us already away from the strict relation between the model and its 

immediate target. But there is another way which is exemplified in this case and it takes 
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us even further. It is to use the model to construct a larger system representative of a large 

or significant class of systems. The idea is that constructing the larger system will be a 

source of insight into the mechanisms at play both in its behavior and that of similar 

systems in the same way as constructing a machine is a way to understand how it works. . 

This long-term project of construction started with the model of a wake behind a short 

cylinder.    

II. 2. Model of two coupled wakes 
The next step was to construct an experimental system by adding another identical 

cylinder next and parallel to the first (Peschard and Legal 1996).  

The model for one wake was then used to construct a model for a system of 

coupled wakes. The new model is obtained on the basis of two models, one for each 

wake, by supplementing each model with terms representing a linear coupling between 

the wakes amplitude: 

 dt A(t) = (ar + iai)A(t) – (lr +ili) |A(t)|2 A(t) + (gr + igi) [(B (t) – A(t)] 

 dt B(t) = (ar + iai)B(t) – (lr +ili) |B(t)|2 B(t) + (gr + igi) [(A (t) – B(t)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Two states of a system of coupled wakes developing behind cylinders placed side by 

side at varying distance. The two cylinder are on top of the photo, seen form above. (2a): The 
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system is in a symmetric state. (2b) The system is in an asymmetric state.  

 

Hans-Jörg Rheinberger’s remark that “sufficiently stabilized epistemic things turn into 

the technical repertoire of the experimental arrangement” (1997: 29) is particularly 

appropriate. What was previously the target of the experimental investigation and 

empirical characterization through the procedure of measurement, namely the single 

wake, has now become the material for the construction of a new experimental target, the 

system of coupled wakes.  

But at the same time, what was a model under investigation, the model of a single, 

isolated wake, has become material for the construction of a new model, a model of the 

new target, the system of coupled wakes. It is to be faithful to this two dimensional 

activity of construction that the unit of use and assessment has to be identified as the 

model-of-the-wake rather than the model alone. It is the model-of-the-wake that will be 

deemed scientifically valuable if its use proves fruitful; and its use is intrinsically related 

to a new activity of modeling.  

 

Some difficulties may seem to hamper an account of the epistemic value of a 

model A in terms of its use to construct a model B. First of all, it seems to lose sight of 

the use of models as instruments of transformation of the world. Some models are used to 

construct or transform, not other models, but things, bridges, planes, and foremost 

instruments. And here, undoubtedly their scientific value comes from the accuracy of the 

inferential relation they entertain with what they purport to be models of, that is, their 

value seems to be fully accountable in terms of the relation between the model and the 

phenomenon.  

That’s true, but those who construct these objects are engineers or technicians,  

and I make a distinction between the activity of the scientist and that of the technician or 

engineer. Models constructed in relation with an experimental system can be used by 

engineers or technicians to construct models of the particular system they are interested 

in. What makes a model valuable for the engineer is not the same as what makes a model 

valuable for the scientist -- fluid mechanics offers a striking example of two traditions, 

the scientist’s and the engineer’s that have developed for a long time in parallel with their 
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own models disregarded by the other side: “Whereas hydrodynamicists applied advanced 

mathematics to flows rarely encountered by engineers, hydraulicians used simple 

empirical or semi-empirical formulas that defied deeper theory” (Darrigol, 2005: vi).  

 

Another concern may be that using models to construct models looks like an 

aimless or at least vain activity. What’s the point of replacing a view of scientific activity 

as mere accumulation of models, which I said earlier is what reducing our perspective on 

models to their relation with the purported target leads to, with one as a game of model 

construction? There would indeed not be much point if we didn’t look further than the 2-

place relations between the model used to construct a new models and this model. This is 

why models of phenomena and their constructive use have to be located in an epistemic 

space. Part of what characterizes what I call, in the context of this paper, an epistemic 

space is a set of fundamental questions or problems2 and what makes the construction of 

the model scientifically valuable is the new light it casts on such problems and the new 

terms it offers to deal with them.  

 

Admittedly, that raises a challenge for the model of coupled wakes: what’s the 

point of having constructed this model? One could say, for instance, on the basis of the 

publication of the study on coupled wakes, that the simulation of the model makes it 

possible to draw a map of the possible states of the experimental system as a function of 

the parameters of the model. The possibility of making specific inferences about the 

experimental system though requires a precise coordination of the theoretical parameters 

of the model to measureable forms of intervention on the physical system through some 

systematic experimental observations. The ability to make inferences serves as regulative 

‘principle’ in the making of the model-- but that does not mean that it is by itself 

epistemically valuable. Rather, it is a symptom of the achievement of the coordination 
                                                
2 In her study of the use of classical models of chaos to construct models of quantum chaos, Alisa Bokulich 

shows how this construction is a source of insight into fundamental questions like intertheoretic relations, 

and what makes the construction of the quantum model scientifically valuable is the new light it casts on 

such problems and the new terms it offers to approach them.  
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between the model and the experimental system, with the upshot of a general 

understanding of the empirical meaning of the terms of the model, for instance the term 

of coupling, the mathematical identification of the different observable states of the 

system, and even a guiding tool in research pertaining to states not yet observed. 

To understand how the model of coupled wakes could be expected to contribute 

to general problems in fluid mechanics, one more step is needed. It is the use of the 

model of two coupled wakes, behind short cylinders, a detail that will soon prove crucial, 

to construct a model of a row of similar wakes.  

II. 3. Row of coupled wakes 
The new model is constructed on the basis of the previous one (Legal & al. 1996). 

The term of coupling now takes into account the presence of neighbors on each sides: 

dt An(t) = σ An(t) – l |An(t)|2 An(t) + g [A n+1(t) + An-1(t) – 2An(t)] 

The experimental is constituted of a row of wakes the develop behind cylinder of short 

aspect ratio, put side by side along the direction perpendicular to the direction of the flow 

(see figure 3)  

 
Figure 3: View from above of a row of wakes behind cylinders placed side by side in the 

direction perpendicular to the direction of the flow. The cylinders are on top of the photo. The 

fluid is flowing towards the bottom of the photo.    

 

Here again, it is possible to give a short-sighted version of the use of the model: to 
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guide, on the basis of the simulation of the model, the empirical exploration of the 

possible states of the system, through the mathematical identification of observed motion, 

or even the observation of new states of the system for a certain interval of values of the 

parameters which had not been explored with sufficient precision. But the ‘real’ 

motivation, the most ambitious one, lies, again, beyond the relation between the model 

and the system it is a model of. It locates the model within an epistemic enterprise for 

which it is the model-of-the-row, as epistemic unit, which is an instrument of 

investigation.  

To understand how it plays this role we need to go back several years ago to the 

difficulties related to the study of the wake beyond a long cylinder. Associated with the 

discontinuity I mentioned was observed a phase dynamics along the axis, instead of the 

expected invariance by translation along the axis of the features of the shedding 

(Williamson, 1989). One of the hypothetical explanations proposed soon after was in 

terms of a continuous coupling of oscillators along the axis. The idea behind the 

modeling of coupled wakes, with the progressive increase of the number of wakes, was 

then a reaction to this proposal. By adding wakes to the system, a discrete version of the 

span-wise spatial dimension of the long cylinder is progressively generated with the 

coupling mechanism, identified with the distance between the wakes, being a controllable 

parameter of the system. The systematic investigation of the effect of the coupling was 

seen as a possible way of gaining some insight, in the continuous limit, on the role of a 

coupling mechanism of the phase dynamics of the wake.  

 

Now we can see why the basic wake, element of the construction of the row of 

coupled wakes, had to be a wake behind a short cylinder: because in the wake that forms 

behind a short cylinder, there is no dynamics along the axis of the cylinder. We have a 

‘pure’ oscillator. Hence, it is possible to regard the progressive construction of a row of 

coupled wakes as the generation of a spatial dimension corresponding, in the long 

cylinder configuration, to the spatial dimension containing the axis of the cylinder.  

Now we can see also how far from the mere relation between the model and its 

target we may need to go in order to understand the motivation for the construction of a 

model and the source of the epistemic value of a model. The model of the single wake, 
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behind a short  cylinder, makes possible a process of construction of other models, which 

have to be apprehended from a perspective large enough to contain the whole project of 

developing an original form of elucidating or at least gaining some clarification on a 

system that is not among  the targets of these models. 

One may try to salvage the central importance of the relation of representation by 

objecting that the process of construction is directed at a better understanding of a 

particular system: the wake behind a long cylinder. Isn’t the final aim to make a model of 

this phenomenon? Yes, it is, but only because this phenomenon is an interesting one: 

“Science as an ongoing practice of inquiry discounts truths that are trivial, marginal, 

anomalous, arcane, or otherwise ‘uninteresting’, in order to focus resources and attention 

upon others that are taken to be significantly revealing” (Rouse, 2002: 157).  

 

Scientists rarely take the pain to explain in their scientific publication why the 

phenomenon they are investigating is worth investigating; ‘everybody’, that is, the 

intended readers of the article, know it. Sometimes, happily, they indulge themselves in 

making a few comments about it: “the flow past a cylinder, in particular, has served for 

nearly a century now as a model for fundamental studies of external flows. Morkovin 

(1964) has aptly characterized the flow past a cylinder as ‘a kaleidoscope of challenging 

fluid phenomena’ referring to the variety of fluid structures and different flow regimes 

that are observed in this flow” (Karniadakis & Triantafyllou 1989).  More specifically, 

the phase dynamics that develops along the axis of a long cylinder raises a fundamental 

challenge to the ability of the theory of instability in that it testifies to a three dimensional 

dynamics where “no three-dimensional instability of the two-dimensional basic flow is 

expected” (Albarede and Provansal 1995). 

 

 III. Constructive use of models 

My emphasis on the constructive use of models and thereby on the notion of 

construction of models requires that I clarify the differences and similarities between this 

view and other approaches to the construction of models. By showing the diverse 

elements that were drawn on for arriving at the London model, Suarez and Cartwright 
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(2008) argues that it undermines the idea of models being derived from a theory. The 

comparison of a theory with a toolbox suggests a process of model construction for which 

the theory (only) provides some pieces. Another strong case for the constructive character 

of modeling activity is offered by (Boumans 1999) where Boumans gives a striking 

illustration of the diversity of the elements that may go into the construction of a model, 

theoretical principles, mathematical techniques, metaphor, analogies and empirical data 

that needs to be accounted for by the model under construction. Whereas Suarez and 

Cartwright were particularly concerned with the relation between theory and models, the 

two main points Boumans’ makes in addition is that 1) there is no general recipe for the 

construction of models and 2) when the model is constructed so as to account for 

empirical data, some empirical justification is built-in through the process of construction 

itself, hence blurring the distinction between procedure of discovery and procedure of 

justification. 

The cases that I discussed could have been presented in a way that fully agree 

with both accounts. For instance, regarding the construction of a model of a wake, the 

observation of an oscillatory dynamics was among the elements of construction: the 

model had to account for this type of behavior. And the construction of a model of 

coupled wakes drew, by analogy, on other studies made with electro-dynamical 

oscillators to determine the form of the coupling term as linear rather than non-linear.  

But it is not the aim of this paper to discuss or analyze the process of construction of 

models. Boumans’ study on the construction of model will help me to clarify the 

difference between this type of concern and the one that motivated this paper. 

First, whereas Boumans’s perspective is from the model being constructed and 

directed towards the elements of the construction, my perspective is from models used in 

the construction  and directed towards the model that is to be constructed. An analysis of 

the way in which a model M1 is used to construct another model M2 would reveal the 

recourse to other elements going into the process. I am not offering such an analysis here; 

I am focusing on one of these elements and the fact that it is used, without details on the 

procedure through which it is used. Whereas it is, at least implicitly, admitted that 

abstract models are used to construct what I call here experimental models, the models 

that are then obtained are usually regarded as being used merely to represent a specific 
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model. In relation to what they are model of, their target, models are they are not even 

used at all to represent, but rather they are used as representation, for instance to make 

some claims about the behavior of the target system. More importantly, I have argued 

that these experimental models themselves may be used, in turn, for the construction of 

other experimental models, that is, have a constructive use..  

Second, whereas Boumans’ other main concern is the built-in justification of the 

model that is constructed, one of my main concern is the epistemic value of models and 

especially the epistemic value that stems from their constructive use. The source of this 

epistemic value lie beyond the empirical justification of this model and beyond the use of 

this model to make claim about its target system; it lies beyond itself, in its use to 

construct other models. Making sense of modeling will then require to situate the relation 

between a model and its target P within a larger picture, a process of construction in 

which it is the model-of-P that is epistemically significant.   

Conclusion 

 I have argued that in order to account for the use and the scientific value of a 

model, we need to look beyond the mere relation between the model and the phenomenon 

it is a model of. The aim of modeling activity is not to accumulate models of phenomena, 

as a perspective limited to the relation between models and the phenomena they are or are 

purported to be models of may suggest. Scientific modeling is historically motivated and 

future oriented, driven by the ambition to impact on the development of a domain of 

investigation structured around some significant questions. But what motivates models-

of-phenomena and what they make possible, the way they respond to important problems 

and transform the way in which these problems are to be apprehended, is not visible in 

the relation between models and the phenomena they are models of. 

By considering the case of both abstract and experimental models, I have shown 

that the unit of use and assessment is not models, it is models-of-phenomena and their use 

and assessment pertains to an epistemic space constituted by a network of models and 

modeling activities. Models-of-phenomena are used as material for the construction of 

models and new experimental systems. The scientific value of a model of a certain 

phenomenon lies in  its making possible new forms of investigation of phenomena  
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through modeling activities building on them as basic structures or templates for new 

models.  
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