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Abstract

We often rely on symmetries to infer outcomes’ probabilities,
as when we infer that each side of a fair coin is equally likely to
come up on a given toss. Why are these inferences successful? I
argue against answering this question with an a priori indifference
principle. Reasons to reject such a principle are familiar, yet instruc-
tive. They point to a new, empirical explanation for the success of
our probabilistic predictions. This has implications for indifference
reasoning generally. I argue that a priori symmetries need never
constrain our probability attributions, even for initial credences.

1. Introduction

I have a die I’m about to throw. I have no information that the die is
loaded, no reason to suspect it is not a fair die. There are six different
ways the die could land, on any one of its six faces. What probabilities
should I assign to these different possible outcomes?

It seems reasonable to assign the same probability to each possibility,
concluding that each face has a 1

6 probability of coming up. This seems
like the right physical probability, or objective likelihood, of getting any
particular face when I throw the die, as well the subjective probability, or
degree of belief, I should have in each one. (You might think that there
are no objective probabilities here. You might think that there can be no
chances other than 0 or 1 if the laws are deterministic; or that there are no
objective probabilities at all in the world. I disagree, but leave this aside
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for now.1 If you have such a view, you can translate my talk of probability
into your preferred subjectivist terms.) Since I have no information that
the die is loaded, and there appear to be no other asymmetries that would
make a difference to the outcome, if I said that the face with number 5 on
it has a probability greater than 1

6 , this would strike you as an arbitrary,
unreasonable preference; I would be irrational to bet at those odds. To
prefer one face without any relevant reason is to rely on factors that have
nothing to do with the actual state or behavior of the die.

Instead, I should infer that each face has a 1
6 probability of coming

up. And my degrees of belief should follow suit. The reason to infer
symmetric probabilities is the symmetry in the die and my epistemic state
with respect to the different possible outcomes.

In cases like these, we reason as follows. First, look at the symmetries
in the set-up. Then use these to determine the outcome space, the set of
elementary possibilities to which we initially assign probabilities. (The
outcome space for the die is {1, 2, 3, 4, 5, 6}.2) Finally, assign an equal
probability to each such possibility. Distribute probabilities, both objec-
tive and subjective, uniformly over the possibility space.3 Calculate the
probabilities of any non-elementary events from these basic probabilities
(using the standard probability calculus, say).

We rely on this principle: assign an equal probability to each basic
possibility, where the possibilities are given by symmetries relative to
our knowledge of the situation. This is an “indifference principle”: infer
a distribution that is indifferent among the outcomes which, for all we
know, could obtain. This principle underlies our everyday reasoning for
the outcomes of die throws, coin tosses, and the like. It works. Symmetric
probabilities approximate the observed frequencies. A fair die does come
up number 5 approximately 1

6 th of the time, an unbiased coin lands heads
in about half the tosses.

1Loewer (2001, 2004) argues that a best-system account of laws, for one, allows for
deterministic chance. (See Frigg (2008a, forthcoming); Winsberg (2008) for disagree-
ment.) More on setting this aside, below.

2We could specify the outcome space in terms of propositions rather than sets.
3Strevens (1998) calls this a “non-enumerative statistical induction.” We infer the

probabilities by inspecting the symmetries in the set-up, not by tallying up the frequen-
cies with which we observe the different outcomes to occur.
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Remarkable. Very little information is needed to infer the right proba-
bilities. Just by inspecting the symmetries in the set-up, before witnessing
any outcomes, we make extremely successful probabilistic predictions.
This arouses suspicion. Do symmetries alone indicate these probabilities?
If not, then why are we so successful in our probabilistic predictions?

One distinguished tradition holds that symmetries do tell us the prob-
abilities.4 On this view, we can have a priori knowledge of outcomes’
probabilities, given the relevant symmetries in the set-up. A similar idea
lies in epistemological views claiming that symmetries dictate what initial
credences one ought to have. Both these views say that symmetries dictate
our initial probability attributions.

I think these views are misguided. Symmetries alone can’t explain the
success of our probability assignments; nor, I will argue, do they suf�ce to
justify the probabilistic inferences we make. Reasons to reject indifference
principles are familiar, but instructive. They suggest a new explanation,
at its core empirical. I argue that these inferences are successful because,
and when, the observed symmetries align with underlying symmetries in
the world, indicated by the fundamental dynamical laws. This tells against
any use of indifference, even for constraining our initial credences.

2. Symmetric probability: classical physics

Do symmetries explain the probabilities we use in physics, as they seem
to do for the outcomes of die throws? An important example suggests
so: classical statistical mechanics.5 Many books and papers on statistical
mechanics cite an indifference principle6 to justify and explain these

4See Van Fraassen (1989, ch. 12) on this tradition, which traces back to Laplace.
5I think that similar conclusions hold for the probabilities of quantum statistical

mechanics, but this raises additional technical issues not central here. (See Wallace
(2002) for argument that things will be different in that case.) I limit discussion to
classical theories. Emch (2007) is a review of issues in foundations of quantum statistical
mechanics.

6Another approach tries to derive the probabilities from the dynamics using results
from ergodic theory. For discussion and references, see Ehrenfest & Ehrenfest (2002);
Sklar (1993); Uf�nk (2004, 2007). The results have not been shown to hold of ordinary
systems (Earman & Rédei, 1996); indeed, Goldstein (2001) argues that the statistical
mechanical conclusions hold regardless of ergodicity. Nor can the ergodic approach
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probabilities7 (if any underlying principle is offered8). Though I agree
that symmetries have a role, I disagree on the kind of symmetries at
work. That disagreement is important. Once we better understand these
symmetries, we can explain the use of these probabilities—in a different,
ultimately empirical, way.

First, a refresher on some features of statistical mechanics that we’ll
need here. There remains lots of disagreement on the proper under-
standing and formulation of the theory. I cannot do justice to the differ-
ent approaches here. I will generally assume a Boltzmannian approach,
though this shouldn’t affect my main conclusions. (This is because the
different approaches all rely on some version of the “statistical postulate”
that is my focus here.)9 At worst, take my conclusions as applying to a
Boltzmannian framework. At best, take them to apply more generally,
while at the same time furthering the cause of that framework.

The fundamental state of a classical system is speci�ed by the po-
sitions and momenta of its particles (along with the particles’ intrinsic
features, like mass and charge). The different possible states of a system

avoid the need for some initial probability assumption. Sklar (1973, 1993, 182-188);
Leeds (1989); Earman & Rédei (1996); van Lith (2001) discuss the problem and proposed
solutions. Malament & Zabell (1980) and Vranas (1998) are improvements on the
traditional approach. For more on the variety of approaches to understanding probability
in statistical mechanics, both historical and current, see von Plato (1994); Guttman
(1999).

7As, for example, in Tolman (1979, 59-61); Landau & Lifshitz (1980, 5); Feynman
et al. (2006, ch. 6). Tolman takes indifference as a prima facie constraint; I argue against
this more limited use of indifference, too.

8Feynman (1998, ch. 1) posits the probabilities more as fundamental law.
9On the idea that the views all rely on a version of this postulate, see Callender (2008).

On the “hodgepodge of approaches, formulations, and schools” (Sklar, 1993, 5), see O.
Penrose (1979); Sklar (1993); Uf�nk (1996b); Frigg (2008b). On the development and
foundations of statistical mechanics, see Ehrenfest & Ehrenfest (2002); Sklar (1973, 1993,
2000, 2001, 2007); Hagar (2005); Uf�nk (2007); Frigg (2008a,b). On Gibbs’ approach,
see Gibbs (1902); Ehrenfest & Ehrenfest (2002); Sklar (1993); Lavis (2005, 2008);
Earman (2006); Pitowsky (2006); Uf�nk (2007). Arguments for Boltzmann’s approach
are in Lebowitz (1993a,b,c, 1999a,b); Bricmont (1995); Maudlin (1995); Callender
(1999); Albert (2000); Goldstein (2001); Goldstein & Lebowitz (2004); against the
approach, see Earman (2006). On ergodicity, see note 6. Some textbooks, of varying
approaches: Khinchin (1949); Prigogine (1961); Tolman (1979); Landau & Lifshitz
(1980); Pathria (1996); Penrose (2005).
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are represented mathematically in a statespace. In classical statistical
mechanics, the statespace is called phase space. For a system of n particles,
the statespace has 6n dimensions, one per position and momentum co-
ordinate per particle (assuming the particles move freely in three spatial
dimensions).10 Each point in phase space represents a different possible
exact state, or microstate, of the system. A macrostate, given by the system’s
macroscopic features, like the average temperature, pressure, and volume,
corresponds to a region in phase space, each point of which represents
a microstate that realizes the macrostate.11 The history of a system is
represented by a trajectory through phase space; this is picked out by the
dynamics, given the initial state and energy function.12

To make predictions about a system, we place a probability distribution
over the region in phase space corresponding to its macrostate—the
region containing the points representing microstates compatible with
the system’s macroscopic features. The standard distribution that’s used
is uniform, with respect to the standard measure (the standard Lebesgue
measure, de�ned over the canonical coordinates).13 This distribution
assigns equal probabilities to equal phase space volumes, on the standard
measure, with the result that the probability of a phase space region,
such as the region compatible with a system’s macrostate, is proportional
to its standard volume. This distribution assigns an equal probability

10In general, the phase space has dimension 2nr, where n is the number of particles
and r is the number of degrees of freedom.

11The set of macrostate regions partitions the available phase space. I leave aside the
question of which features specify a system’s macrostate. We can assume here that there
is a set of macroscopic features, in terms of which there are empirical regularities (such
as those of thermodynamics) that we try to explain by means of statistical mechanics.

12I assume throughout that a given system is energetically isolated. This assumption is
not uncontroversial. It is rejected in particular by advocates of interventionist approaches
to explaining thermodynamics on the basis of statistical mechanics.

13More on canonical coordinates below. This measure is also called the Liouville
or microcanonical measure. Lebesgue measure is the natural extension of volume
to high-dimensional spaces. Following Lebowitz (1999b), let Γ be the phase space,
M the system’s macrostate, and ΓM the sub-region of Γ corresponding to M. The
measure of the set of microstates corresponding to a subset of ΓM is then given by
the 6n-dimensional Liouville volume of the subset, normalized by the volume of ΓM ,
labeled ∣ΓM ∣: ∣ΓM ∣ = ∫ΓM Σ

N
i=1dridpi , with ri and pi the position and momentum of the

ith particle.
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(density14) to each microstate compatible with the system’s macrostate.
A few caveats. First, there are well-known problems with placing

uniform probabilities over the microstates compatible with a system’s
current macrostate. These problems have to do with explaining the time-
asymmetry of thermodynamic behavior.15 Some try to solve the problem
by taking the uniform distribution only over microstates within a proper
subset of the region representing a current macrostate. In section 5, I say
why one’s view on this should not affect things here; in particular, why it
shouldn’t matter for our purposes whether we assume a current uniform
distribution, or one that is uniform at the initial time and conditionalized
on past low entropy for all other times. Set this aside for now.

Second, notice that we do not place the uniform distribution over a
system’s entire, unbounded, in�nite-volume phase space, but over the
(bounded) region in phase space corresponding to its macrostate.16 Typi-
cally, the constant energy is one such constraint. So that the distribution
is uniform over the sub-region of the 6n− 1-dimensional energy hypersur-
face compatible with the system’s other macroscopic features. That is, we
take the induced or conditionalized measure on the relevant region of the
6n − 1-dimensional energy hypersurface (the microcanonical measure);
alternatively, of the thickened energy shell.17

This raises a question. I have been talking as though not only the
initial distribution over a phase space region, but one that is restricted

14For convenience, I talk of probabilities of microstates, represented by points in
phase space, where these are really probability densities; the probabilities of microstates
are really the probabilities of regions of microstates.

15In addition, it is incoherent to apply the uniform distribution at more than one
time in a system’s history, at least given an objective understanding of the probabilities:
see Sklar (1993, 265, 294); Albert (2000, 79-80). Leeds (2003) avoids this problem with
an alternative understanding of the probabilities.

16The assumption of a bounded phase space is made throughout statistical mechanics.
It is crucial to many key results, like Liouville’s theorem. This is a reasonable assumption
to make for classical isolated systems, like boxes of gas, which have constant energy
and are of �nite size. I set aside the large question of how, and whether, we can apply
this to systems in which gravity is the dominant force (where the phase space may be
unbounded): see Earman (1981, 2006); Callender (2008, forthcoming) for discussion.

17The thickened energy shell contains microstates for which the system’s Hamiltonian
lies between energy E and E + δE. (Thanks to an anonymous referee for pointing this
out.)
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to a given sub-region (such as a region of the energy hypersurface), will
be uniform throughout that sub-region. Why think that an initially
uniform distribution will, when conditionalized on a set of macroscopic
features, induce a similarly uniform distribution? This is a big question.
However, it is commonly assumed that an initial uniform distribution,
restricted to such a (possibly lower-dimensional) sub-region, will be at
least approximately uniform over that sub-region. I return to this in
section 5. For the purpose of this paper, I assume that this is plausible;
proofs of such claims in statistical mechanics are notoriously dif�cult to
come by. Yet the dynamics plausibly make the assumption reasonable.
Thus, Lebowitz says that, although it “would of course be nice to prove
this in all cases....Our mathematical abilities are, however, equal to this
task only in very simple situations....These results should, however, be
enough to convince a ‘reasonable’ person” (1999a, 521).18 In any case, and

18Callender writes of this assumption, needed especially by the Boltzmannian who
conditionalizes the uniform distribution on a low entropy past state of the universe:

[T]he Boltzmannian must cross one’s �ngers and hope that the dynamics
is kind. Recall that any sub-system corresponds, in phase space, to a
lower-dimensional subspace of the original phase space. The hope must
be that when we project the original approximately uniform distribution
onto this subspace and renormalize we again �nd a distribution that is
approximately uniform. Pictorially, imagine a plane and a thoroughly
�brillated set of points on this plane, a set so �brillated that it corresponds
to an approximately uniform measure. Now draw a line at random through
this plane and color in the points on the line that intersect the �brillated set.
Are these colored points themselves approximately uniformly distributed?
That is what the Boltzmannian needs for local thermodynamic systems,
except with vastly many higher dimensions originally and much greater
dimensional gaps between the phase space and subspaces.
How are we to evaluate this reply? Based on experience with many types
of systems, some physicists don’t balk at the thought of such �brillation.
They see it in some of the systems they deal with and in the absence of
constraints ask why things shouldn’t be so �brillated. The unhappy truth,
however, is that we simply have no idea how to evaluate this claim in
general (2008, 25).

Even so, Callender says, “My own attitude is to note this assumption as a large one and
move on.” This is what I will do here. (Note that this is where ergodic results can be
useful, by helping to make this assumption plausible.)

A referee objects that the standard restricted measure isn’t uniform over the relevant
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most important for our purposes here, the initial distribution, taken over a
given macrostate phase space region, is generally assumed to be uniform,
regardless of whether or not a relevantly conditionalized distribution
will be likewise uniform throughout a sub-region. And it is this initial
uniformity that is my focus here. Set this, too, aside for now.

There is no question that these probabilities are empirically success-
ful.19 Consider the statistical-mechanical explanations of thermodynamic

sub-space, for it is divided by the gradient of the Hamiltonian; cf. Kac (1959, 63),
Frigg (2008b, 180, eq. 3.46). (Though Jos Uf�nk points out that the microcanonical
distribution on the thickened energy shell will be uniform over the canonical coordinates
of the shell.) Yet as far as I can tell, the restricted distribution is often assumed to be
approximately uniform over a sub-region (for typical macro systems: note 22), while it is
also acknowledged that we don’t have a proof. Sklar (1993, 95-96) writes that, assuming
the distribution is absolutely continuous with the standard measure, “a single probability
function can be obtained that ‘spreads the probability’ over the appropriate region of
phase-space so that the total probability assigned to a region is obtained by a measure
of the amount of the total probability over the whole phase-space that is spread in the
region in question. Most commonly in statistical mechanics it is ‘uniform’ spreading
that is posited, the probability being assigned to a region of micro-states just being
proportional to the size of that region in the chosen measure.” To put it another way, it
is commonly assumed that an initial set of phase points will at later times be “�brillated”
over the available phase space (Sklar, 1993, 233-234). In any case, even if the restricted
distribution isn’t uniform, it is typically obtained by restricting an initial distribution
that is. Similarly, according to the past low entropy approach, uniform probabilities
hold only at the beginning of the universe, at other times approximating uniform ones.

19Although there is a big question about the range of phenomena they are successful
for. Jos Uf�nk objects that the above recipe works only for systems in thermal equi-
librium. For we can prepare systems not in equilibrium, like vials of gas released into
larger containers, for which predictions using the standard measure (over the canonical
coordinates of the larger container) will generally be wrong, at least until equilibrium
is reached. This is true when directed at the techniques of equilibrium statistical me-
chanics. And throughout the discussion that follows, we may assume that the system in
question is in local equilibrium. It is generally agreed that the uniform distribution over
the system’s macrostate region works for equilibrium statistical mechanics; for example,
to calculate the values of its macroscopic features at equilibrium. I happen to think that
we can extend these probabilities to non-equilibrium systems too, though this is more
contentious. For argument that we can so extend them, at least given a Boltzmannian
conception of entropy, see Callender (1999); Lebowitz (1999b); Goldstein & Lebowitz
(2004). Arguably, the above recipe should succeed for predicting non-equilibrium be-
haviors, such as that the gas will spread out until it reaches the equilibrium macrostate
compatible with the new volume constraint, even if it won’t yield the right macroscopic
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phenomena. In equilibrium statistical mechanics, these probabilities are
used to calculate the values of a system’s macroscopic features at thermal
equilibrium. The probabilities can also be used to explain the tendency
of isolated systems to increase in entropy—of a gas to spread out in its
container, of a cup of coffee to cool down. Part of the explanation of this
tendency is that, out of all the microstates compatible with a system’s
current macroscopic constraints, the overwhelming majority, on the stan-
dard measure, lie on trajectories that deterministically take the system
into higher-entropy future macrostates. A uniform probability distribu-
tion with respect to this measure then says that the entropy-increasing
microstates are overwhelmingly probable.20 (Conditionalizing on the
energy constraint, the distribution says that the microstates realizing
the equilibrium macrostate take up the overwhelming majority of the
hypersurface area, and so are overwhelmingly probable.)

But what explains the success of the uniform distribution? Why
are these the right probabilities to use? This isn’t obvious. Since the
set of microstates compatible with a given macrostate is continuously
in�nite, there are many probability assignments we could use. (I return
to this.) Why this one? Similarly, why the standard volume measure?
Different measures of phase space regions will likewise result in different
probabilities for a system’s possible microstates.21

features of the gas until it reaches equilibrium. For, plausibly, the overwhelming majority
of microstates on the energy hypersurface, on the standard measure, will increase in
entropy to the equilibrium macrostate and then stay there. Showing that this succeeds
generally (and in detail, such as predicting the rate of approach to equilibrium) remains
a large project. I take it that recent work (Albert (2000, 2008) being primary examples)
has made this plausible (for more discussion see North (forthcoming)). If you disagree,
consider the discussion as limited to the standard probability measure of equilibrium
statistical mechanics.

20This type of argument is relatively standard (though the interpretation will be very
different on a Gibbsian conception of the probabilities). Proofs are dif�cult to come
by. I take it that the claim is plausible, which isn’t to deny the work in foundations of
statistical mechanics aimed at giving it more conclusive status. See also note 19.

21Of course, when people question the probabilities of statistical mechanics, they
often have more in mind than wondering about uniformity. Some wonder whether
these probabilities are unique; I say later why I think that this worry is misguided.
Others wonder about the nature of the probabilities, especially given the deterministic
dynamics. This is a large issue, which I leave aside; I say below why it shouldn’t affect
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At this point, you might worry about the success that we are trying to
explain. You might worry that the above method for grounding thermo-
dynamic phenomena like entropy increase can’t always work. Thermody-
namic generalizations like the second law are not strictly true. They hold
probabilistically, and only for energetically isolated and large enough sys-
tems.22 Even once a system has reached thermal equilibrium, for instance,
there will be �uctuations out of equilibrium. Indeed, given the time re-
versal invariance and determinism of the underlying micro-dynamical
laws, we know that entropy increase will not always hold.

In reply, keep in mind that our goal is to explain these probabilities,
and their grounding of various macroscopic behaviors, insofar as these
macroscopic behaviors hold. This is not to deny that systems �uctuate out
of equilibrium; that they can exhibit short-term anti-thermodynamic
behavior; that non-isolated systems can reliably decrease in entropy; and
so on. I take it that we already know, from thought experiments like
Maxwell’s demon, and from the reversibility and recurrence objections of
Poincaré, Loschmidt, and Zermelo, that the generalizations grounded
by statistical mechanics are not strict, but probabilistic; and even then,
that they hold only given that we do not have the epistemic access and
manipulative capacities of a Maxwellian demon. The question is: why do
these probabilities work in grounding macroscopic generalizations, to
the extent that those generalizations hold?23

Enter indifference. Any system is in one of the microstates compatible

my conclusions here. My focus is on why the distribution is reasonable and successful,
and to suggest that these same reasons underlie the success of our everyday probability
inferences.

22This is not uncontroversial; see Callender (2001) for argument. A referee mentions
the one-dimensional harmonic oscillator. Its motion is periodic and won’t be accurately
predicted by the uniform distribution; some phase points are preferred (Penrose, 2005,
41). I take it that the goal is to explain the probabilities’ grounding of macroscopic
behavior. And we know that some systems’ motions, like that of the one-dimensional
harmonic oscillator, won’t fall under the thermodynamic generalizations that we use sta-
tistical mechanics to explain; think of a few isolated, non-interacting particles bouncing
back and forth in a box. The intuition is that such systems are rare or special, the more
so the larger the number of particles. As Sklar (1993, 241) puts it, “plainly, the large
number of micro-components is essential for the thermodynamic behavior of systems.”

23More contentiously, statistical mechanics may be able to predict the anti-
thermodynamic behavior as well, as Albert (2000, 2008) argues.
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with its macrostate. And we have no reason to think it is more likely to
be in one rather than any other. Conclusion? Assign an equal probability
to each possible one.24 This is akin to our reasoning for the die. Absent
reason to the contrary, weight each possibility consistent with our knowl-
edge equally. (Hence the ‘hypothesis of equal a priori probabilities’ in
physics books.) It seems we can �gure out what probabilities to use in
statistical mechanics from a priori indifference reasoning, just as we seem
able to do in our everyday inferences about die throws. Initial symmetries
seem to justify our probability attributions and to explain their success.

There are two general reasons that this can’t be right. The �rst
is familiar, but worth mentioning in order to motivate an alternative.
Probability assignments depend on how the possibilities are described.
And in general there is no a priori way of picking out a unique and non-
arbitrary set of parameters to use.25 We must choose a parameterization
in order to assign probabilities, and indifference is no help here. It says,
given a parameterization, distribute probabilities uniformly. It does not
also say which parametrization to use; and there is no a priori reason to
think that any one is correct. Indifference, then, just won’t say what the
probabilities are. At best, it gives probabilities relative to an arbitrary
choice of description.26

24The standard volume measure also seems to give equal sizes to macrostates with the
same “number” of microstates. I return to this in section 4, focusing here on uniformity.

25An example (van Fraassen, 1989, 303): A factory makes cubes with side length ≤ 1
foot. What is the probability that a cube’s side length is ≤ 1

2 foot? The answer depends on
whether we distribute probabilities uniformly over side length ( 12 ), area ( 14 ), or volume
( 18 ). Knowing more about the cube factory could do the job, but this just reinforces
the conclusion that indifference alone will not. Other familiar examples are Bertrand’s
paradox, Buffon’s needle, von Mises’ water and wine case (von Mises, 1981, 66-81). See
van Fraassen (1989, ch. 12) for discussion and references. Nor will indifference suf�ce
for the die: compare the probability of its coming up even vs. odd, prime vs. non-prime,
one vs. non-one (Sklar, 1993, 199). Sklar notes that if the basic possibilities must be
indecomposable events, then indifference will yield unique probabilities; and this differs
from the in�nite case, where the basic events all get probability zero, on any distribution
(note 26). Even then, though, we need an independent sense of indecomposability, and
this won’t be given a priori.

26Things are worse for in�nite possibility spaces like phase space. The basic probabil-
ities won’t determine the probabilities of in�nite (measurable) sets. At best, uniformity
yields the zero-probability outcomes. Take a countable set of possibilities. Equal �nite
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There is a second reason that we cannot infer the statistical mechanical
probabilities from a priori indifference, a reason that I take to be just as
decisive, but which the defender of indifference admittedly needn’t buy.
We use these probabilities to successfully predict and explain the observed
frequencies of outcomes. And it is hard to believe that symmetries could
tell us a priori about this kind of empirical matter. Of course, it is too
strong to object that symmetries do not give a logical guarantee of the
right results. Indifference may simply be an initial, defeasible basis for
inferring probabilities, constraining what we ought to initially infer. Still,
there seems no a priori reason to think the actual frequencies likely to
track the symmetries—no a priori reason that nature will not prefer
some microstates to others—so no a priori reason to think we must set
our credences by the symmetries.27 The proponent of indifference may
deny this (I return to it in the next section), but should at least grant
it intuitively odd to think that symmetries based on what we know of a
system rationally constrains, a priori, what to predict about it.

I think that these two reasons derail the use of indifference for assign-
ing probabilities in physics. Even if symmetries could yield non-arbitrary,
unambiguous probabilities (answering the �rst problem), this won’t suf-
�ce to say what the probabilities are (given the second problem), let
alone why our symmetric inferences are successful. Consider a �nite,
discrete statespace, such as for the six faces of a die. Here there is a unique

probabilities violates a probability axiom; zero probabilities violates countable additivity
(likewise for in�nitesimal probabilities: the sum won’t converge to 1); and even dropping
countable additivity, there is no unique uniform distribution. For uncountable spaces,
think of the points on the real unit interval. Even assuming uniformity, the probabilities
of the points won’t determine the probabilities of sub-intervals ((r1 , r2), r1 and r2 distinct
reals between 0 and 1). For there is no unique measure of the intervals to begin with.

27Analogous objections are in Strevens (1998); Albert (2000, ch. 3); Goldstein (2001);
Loewer (2001); and in a different way Ismael (2009). See van Fraassen (1989, ch. 12)
for more discussion. Similar objections apply to other attempts to salvage indifference.
Thus, Jaynes (1983) argues that the distribution must maximize entropy relative to the
macroscopic constraints and be invariant under scale changes. But a uniform distribution
over one parameterization won’t be invariant to all scale changes; and there is no a
priori way of saying what the right scale changes are: Milne (1983). (See Uf�nk (1996a)
against the entropy constraint.) Jaynes suggests that it comes from the geometry of the
situation, but neither will this be a priori: Marinoff (1994). (See Shackel (2007) against
Marinoff’s attempt to salvage (limited uses of) indifference.)
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uniform distribution; yet even so, systems’ microstates may not actually
be distributed in this way. Hence we seem no more a priori justi�ed in
using indifference-based probabilities rather than others. It is true that
symmetric probabilities and the standard measure both seem perfectly
natural. But this shouldn’t mislead us into thinking that they are thereby
a priori justi�ed. If you reply that symmetries rationally constrain our
credences, providing some initial evidence of the probabilities, then you
should at least grant that this is intuitively odd. In section 4, I suggest an
alternative.

3. Symmetric credence

Even if indifference cannot tell us the (objective) physical probabilities of
outcomes, it seems open to say that it constrains rational belief, dictating
what (subjective) credences one ought to have. I think that this fails for
similar reasons. We can see this by looking at a particular epistemological
view relying on indifference. This will lead to a general conclusion about
indifference and rationality.

The view is Uniqueness.28 Given a body of evidence, there is a unique
set of (degrees of) belief a rational person can have. Though an awfully
strong view, the key idea is intuitive. If there were more than one rationally
permissible conclusion, given one’s evidence, then any belief one winds
up with must really be irrational. If the total evidence fails to uniquely
determine a conclusion, then some other, non-evidential factor must have
played a role in one’s belief formation. But a belief based on arbitrary
factors cannot be rational. For such a belief is no more likely to be true.

There must also be a uniquely rational set of beliefs one can have
before getting evidence. Otherwise, equally rational people with the same
evidence can come to different beliefs, by updating their differing priors.
(Granting a uniquely rational method of updating, assumed here to be
something like Bayesian conditionalization.) The view needs a basis
on which to say that some priors are uniquely rational. A natural idea is
indifference. Uniform probabilities seem to avoid arbitrary preferences.29

28See White (2005a).
29It’s hard to see what else would do. Conditionalizing on vague priors will yield
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This faces the above two problems. The probabilities we assign de-
pend on how the possibilities are described, and there’s no a priori reason
to think that one description is uniquely rational. If so, then there is no
uniquely rational, non-arbitrary way to assign equal subjective probabil-
ities, as Uniqueness requires. And even if there were a unique rational
description, why must we distribute credences uniformly? Empirical
evidence won’t say if some priors are most reasonable, and there’s no a
priori reason to think that uniform credences are more likely to yield
truths about the frequencies.

Now, in saying that it is reasonable to think these priors likely to
succeed, the view may just mean “likely according to the correct prior
distribution.” The problem is that, without measuring a belief’s ratio-
nality by its likelihood of leading to empirical frequencies, Uniqueness
loses its edge over more permissive rivals. The key idea is that if the
evidence does not uniquely determine your belief, then it must be based
on arbitrary factors and thus irrational—irrational because no more likely
to be true. Yet we have seen reasons to doubt that uniformity is more
likely to yield truth. More, we know that it can give the wrong results.
In quantum mechanics, the basic possibilities themselves aren’t given
by initial symmetries; whether an exchange of identical particles yields
a distinct state depends on the type of particle. In other words, which
factors are irrelevant or arbitrary is not something that is a priori.

We do have a strong intuition in favor of symmetry constraints. What
should we infer is the probability that the number of electrons in our
universe is an exact multiple of 10,100?30 Intuitively, it should be very low.
Imagine all the possible numbers of electrons there could be, and it seems
extremely unlikely that the actual number is a multiple of 10,100. Yet
even this inference is presupposing things that we cannot know a priori:
that electrons in our world do not come in multiples of 10,100; that any
number of electrons is as likely as any other, regardless of what the rest of
the world is like. Take a similar inference, familiar from the indifference
literature: a needle is unlikely to land on the �oor at any given angle with

equally vague posteriors. Norton (2008b) further argues that the state of ignorance
described by indifference is incompatible with Bayesian updating, and so is not even
representable as a genuine probability distribution. See also Arntzenius (2008).

30The example is from White (2005b).
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respect to the horizontal. Though intuitive and seemingly a priori, this
inference is based on experience in a world like ours, with no force �eld or
spatial asymmetry picking out a preferred direction or location. I submit
that any case claiming to demonstrate symmetry as a rational constraint
on initial belief really smuggles in some such empirical assumptions.31

Here is the general conclusion. Intuitively, anyone with no evidence,
with no reason to expect one outcome over another, should infer each pos-
sibility equally likely, on pain of irrationality. However, any view claiming
this as a rational constraint on priors (versions of objective Bayesianism,
the bygone Carnapian program, Uniqueness) faces a dilemma.32 Insofar
as we link the rationality of a belief to its likelihood of being true, we
needn’t rely on indifference: symmetric probabilities are a priori no more
likely to be truth-conducive. If we instead say that asymmetric priors are
nonetheless irrational, we give up the tie between a belief’s rationality
and its likelihood of yielding truth; and then it is hard to see why we
should care about being rational in the �rst place. Of course, we need
some initial credences to be able to start taking in evidence. The point is
not that we are unjusti�ed in choosing any priors at all, but that an initial,
pre-evidential, asymmetric set of priors is as good as any symmetric one.
In the absence of evidence, there is no more reason to use a symmetric
distribution rather than some other.33 So choose one, and update your
priors in the right way as the evidence comes in.

4. An empirical approach

I think that we can avoid the unwelcome consequences of a priori sym-
metry constraints on our probability attributions. Return to statistical
mechanics. What tells us to use the uniform distribution here?

Part of the answer is, simply, empirical input from the world: the actual
frequencies we use to con�rm any probabilities in physics. Using these

31Likewise for anthropic principles. There is no a priori reason we must use an initial
uniform distribution over possible worlds, from which to infer that our world is unlikely.

32The problem is for any view claiming that a priori symmetries constrain rational
credence. Other initial constraints on credences may escape these dif�culties.

33Compare von Mises (1981, 75) who says (in arguing against subjectivism) that, “if
we know nothing about a thing, we cannot say anything about its probability.”
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probabilities, we make extremely successful predictions about statistical
mechanical phenomena.

This is only part of an answer, since the empirical frequencies under-
determine the exact form of the distribution. Other, relatively smooth,
not-completely-uniform distributions should yield just as good predic-
tions for statistical mechanics.34 Why the uniform one?

I think that we have an answer to this, though we need to back up
a bit and work up to it. Recall that the basic possibilities in statistical
mechanics are given by the different combinations of particle positions
and momenta. The uniform distribution counts each such combination as
equally likely. You might wonder why we use these coordinates to describe
the possible states to begin with. Aren’t we back at the problem of there
being no unique, non-arbitrary set of parameters over which to distribute
probabilities? Why uniformity with respect to these coordinates and not
others?

Set aside statistical mechanics for a moment and think of the underly-
ing particle dynamics. Ask a similar question: why use the position and
momentum coordinates to describe the states of the particles?

Here we have an answer. These coordinates yield a simple formula-
tion of the classical dynamical laws, Hamilton’s equations. Hamilton’s
equations are formulated in terms of the generalized position and mo-
mentum coordinates, called canonical coordinates. Generalized coordinates
are any set of independent parameters that completely specify a system’s
state. Different kinds of generalized coordinates can be used in the very
same form of the laws. The generalized “positions” needn’t be ordinary
positions, for example; they can have dimensions of length squared, or
energy, or be a dimensionless quantity. What’s required is that the two
sets of coordinates be related in the way allowed by, or coded up in, the
dynamical equations (as canonical conjugates). The allowable sets of gen-
eralized coordinates are the ones that preserve the equations of motion;
the ones that are invariant under canonical transformations.35

34See Strevens (1998); Albert (2000); Goldstein (2001); Maudlin (2007); and below.
35The symplectic form and Hamiltonian H together determine a vector �eld, XH ,

on the phase space. XH , in turn, de�nes a �ow on the symplectic manifold, and by
Liouville’s theorem, Hamiltonian �ows preserve the volume form: Hamiltonian �ows
are canonical transformations. See Abraham & Marsden (1980, 3.3).
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Here is another important feature of the particle dynamics. For-
mulating the equations in this way, with these coordinates, requires a
certain mathematical structure, possessed by the theory’s statespace. This
structure is given by the invariant quantities of the dynamical laws under
allowable sets of coordinate transformations, in the same way that the
structure of a theory’s spacetime is given by invariant quantities under
allowable transformations. In Hamiltonian mechanics, this is symplec-
tic structure: the statespace of Hamiltonian mechanics is a symplectic
manifold. This is a manifold with a mathematical object de�ned on it,
a symplectic form36 (the invariant of the equations), which encodes the
equations of motion, and a scalar function, the Hamiltonian, which en-
codes the dynamical features, such as the energy and forces on the system.
(The equations can also be formulated without mentioning coordinates;
this more directly brings the intrinsic statespace structure to light.)

There are other versions of the dynamics, such as Lagrangian mechan-
ics, which use different sets of coordinates and different statespaces. The
Lagrangian formulation even uses two sets of generalized coordinates
(the generalized positions and their �rst time derivatives, the generalized
velocities). So we seem to be back at our earlier question: why assume
the canonical coordinates of Hamiltonian mechanics?

This is a big question, the answer to which I only outline here.37

The idea is this. The Hamiltonian formulation, given in terms of the
canonical coordinates and a symplectic statespace structure, is, in an
important sense, simpler. The sense of simplicity that I have in mind is
this: the least amount of structure needed to formulate the dynamical laws.
Modern formulations of classical dynamics are de�ned on a statespace,
equipped with a certain structure. Different theories’ statespaces can
differ in that structure. Comparing statespace structures then gives a
measure of theories’ relative simplicity.

We can compare statespace structures in the same way we compare
mathematical structures: by how many “levels” of structure are needed
to de�ne a space, starting from a set of points. The levels are ordered
according to which mathematical objects must be presupposed to de�ne

36A symplectic form is a closed, nondegenerate, antisymmetric 2-form.
37See North (2009a,b) for detailed discussion of the mathematical structures required

by different formulations of the classical dynamics, including the Newtonian one.
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others.38 In this sense, a topological space has more structure than a
“bare” set of points; a topology adds a level of structure, indicating the
open subsets. A metric space has more structure than a topological space;
a metric adds a level of structure, giving distances between nearby points.
(A metric induces a topology; a topology doesn’t give metrical relations.)
Note that, in general, symmetries mean less structure. Given a set of points,
another level of structure is needed to pick out a preferred element, giving
the space asymmetry. A Euclidean plane with a preferred direction has
more structure than a Euclidean plane without one, for example; picking
out a preferred direction requires an additional mathematical object, an
orientation.

In this sense of comparative structure, the Hamiltonian statespace
is simpler than the statespaces of other formulations. Compare the La-
grangian and Hamiltonian statespaces. The Hamiltonian statespace has
a volume measure;39 the Lagrangian statespace has a distance measure.
There is a clear sense in which a space with metric structure has more
structure than one with just a volume element. Metric structure deter-
mines or presupposes a volume structure, but not the other way around
(in the same way that a metric presupposes a topology, but not the other
way around). Intuitively, knowing the distances between points in a space
gives you the volumes of regions, but the volumes won’t determine the
distances.40 Metric structure is an additional level of structure.

Why is “amount of structure” any measure of simplicity or reason to
prefer a theory? I don’t have an argument for this, other than to note
that it is something we generally do in physics. We generally infer the
least structure needed to formulate the fundamental dynamics—both the
mathematical structure used to state the laws, and the physical structure
of a world described by those laws. In particular, we infer symmetries in
the world from mathematical symmetries, or invariances, in the dynamics.
This is clear in the case of spacetime symmetries. From time-translation
invariance of the laws, we infer that time has no preferred temporal loca-
tion. From Lorentz invariance, we infer that spacetime has no absolute

38Compare Burke (1985, 37); Isham (2003). See Sklar (1974, ch. II).
39The symplectic form determines a volume form: Arnol’d (1989, 206). Though note

that a symplectic form is different from, and stronger than, a generic volume form.
40See Schutz (1980, ch. 4).
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simultaneity structure. If the dynamical laws do not require some struc-
ture, if they are invariant under transformations that alter the structure,
we infer that there is no such structure in the world according to the the-
ory. The inference is not conclusive; we can’t be certain that the minimal
structure required by the dynamics is correct. Yet physics has done well
by this methodological principle. It seems a reasonable guide to when we
have inferred the world’s structure correctly.41

You may balk at using this principle for statespace, even if you agree
with its use for spacetime. To the extent that we wish to minimize struc-
ture, we want to minimize structure in the world. And a theory’s states-
pace seems instrumental, a formal tool; not something about the world.
Minimizing statespace structure then shouldn’t matter to the physics.

I disagree. A theory’s statespace does tell us about the world. It
may do so directly, because the statespace is part of the ontology, as the
substantivalist says that spacetime is part of the ontology. Or it may do so
less directly, telling us about the world in the way that the laws do; for the
statespace is the abstract geometric formulation of the laws. Regardless
of your view of its metaphysics, a theory’s statespace is part of its genuine
content. It is an essential component of our best geometric formulations
of the physics. Other things equal, we prefer the simplest formulation
of a theory. And less statespace structure means a simpler formulation,
requiring less mathematical structure and ascribing less structure to the
world. (In the same way that less spacetime structure means a simpler
formulation, regardless of your views on the metaphysics of spacetime.)

Spot me the inference to the minimal structure required by a theory’s
dynamical laws. Where does this get us in statistical mechanics?

I claim that this inference lies behind the standard distribution of
statistical mechanics. The phase space of statistical mechanics is parame-
terized by the coordinates we use to describe the states of the particles.
Phase space then inherits the mathematical structure of the classical dy-
namical statespace. This structure, we’ve seen, includes a volume element:
there is a natural volume measure induced by the canonical coordinates.

41Compare Sklar (1974, 48-49). Earman (1989, 46) considers this a condition of
adequacy on dynamical theories. There remains the big question of simplicity consider-
ations in theory choice. To the extent that we think invariances in the dynamics aren’t
arbitrary but track features of the world, we can sidestep this: see K. S. Friedman (1976).
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A probability distribution that’s uniform over the statistical mechanical
phase space, with respect to the natural volume measure of the dynamics,
is then strikingly simple. It requires no mathematical structure beyond
what is needed to formulate the dynamics. A non-uniform distribution, or
a distribution with respect to a different measure, would require further
structure, a kind of preferred-point or -region in phase space structure—
just as a Euclidean plane with a preferred direction requires an orientation.
A further mathematical object would be needed to pick out the points to
be weighted more heavily, when no such preference is given them by the
dynamics. Since we do not need any additional structure for the dynamics
of the particles in these systems, and since we can formulate a successful
statistical mechanics without it, we should infer the uniform distribution
as the one that accurately re�ects the underlying nature of the world,
just as we generally infer that the simplest formulation of the dynamics
re�ects the world. No more structure is needed to formulate the theory,
and no more structure is needed in a world governed by the theory.

This gives us two reasons for the uniform probability distribution,
with respect to the standard measure, in statistical mechanics. (1) It yields
empirically successful predictions. (2) It is uniform over the structure
needed for the dynamics—uniform with respect to the natural volume
inherited from the dynamics—and so requires no structure beyond what
is “already there” for the dynamics. It is the simplest, most natural,
most mildly-constrained distribution we could use, given the dynamics
of the particles in these systems.42 Although we must ultimately justify
the distribution by its empirical success, as the case against indifference
shows, uniformity over this statespace structure is a further reason for
it. From among the candidate distributions yielding correct predictions,
the uniform one is simplest, relative to the structure of the dynamics.
Although other, relatively smooth distributions should be as successful in

42The same considerations support the view of Dürr et al. (1992b,a); Maudlin (2007),
which requires less structure than a probability distribution. (Volchan (2007) is a different
version of the view. Albert (2008) is a reply.) Consider the above as an argument for
the uniform distribution, on the assumption we need a probability distribution; if not,
these considerations preference their view. The above also supports the proposal of
Albert (2000, ch. 7) that if GRW quantum mechanics is true, we’d have an even simpler
account, eliminating statistical mechanical probabilities altogether. (Price (2002a,b)
disagrees; see North (2002) for a reply.)
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statistical mechanics, this is the simplest and most natural we could use.43

What if uniform distributions over differently-coordinatized states-
paces, for different formulations of the laws, disagree on the probabilities
of microstates?44 This needn’t worry us here. It is reasonable to suspect,
given the above, that the Hamiltonian formulation is simplest, and thus
the one we should infer. However, if there do turn out to be different
formulations that are equally simple, in the above sense, then it is reason-
able to suspect that uniform probabilities over the different statespaces
won’t yield differences at the level of statistical mechanical predictions,
for the reasons that any suf�ciently smooth distribution should work for
statistical mechanics.45

You might object that no more structure need be added to the theory
for a non-uniform distribution. You might think that we needn’t add
structure picking out which points are preferred; we need only say that
there are some regions whose probabilities differ from the standard uni-
form ones.46 But in order to assign non-uniform probabilities in a way
that’s empirically adequate, in a way that’s empirically con�rmable by
the evidence we have for ordinary statistical mechanics, we will have to
pick out the preferred regions or points, in the same way that we would
have to add mathematical structure to pick out a preferred direction in

43All the more so if we need probabilities in somewhere our physics, as argued by
Albert (2008) and Ismael (2009). Note the above is a version of Sklar’s (1973, 212) “simple
justi�cation,” with an added ingredient. Start by guessing at probability distributions,
and see whether they make the right predictions. If one does, then we have chosen
correctly; if not, we keep guessing until we �nd the one that does. The additional
ingredient here, naturalness relative to the dynamics, selects a distribution from those
getting the statistical facts right.

44As should be the case for Hamiltonian and Lagrangian mechanics. The Hamiltonian
coordinates are related to the Lagrangian ones by a (non-measure preserving) Legendre
transform. So a uniform distribution over the Hamiltonian statespace, with respect to
the Lebesgue volume element in its coordinates, needn’t be uniform over the Lagrangian
statespace, with respect to its volume element. It has also been shown that there are
alternative equivalent Hamiltonian descriptions, not related by a measure preserving
transformation to the canonical ones (Ercolessi et al., 2002); though these, too, seem
to presuppose a symplectic structure. I thank Branden Fitelson for discussion and
references.

45Note 34.
46I thank Ted Sider for this question.
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a Euclidean plane. A physical theory which says that some microstate-
regions are preferred, without also saying which ones—a theory which
says there’s a region with twice the probability of another, say, without
saying which region this is—won’t yield predictions resembling those
con�rmed by statistical mechanics as we know it. In order to posit a
non-uniform distribution, either we will have to add structure picking
out the preferred regions, or end up with a theory whose con�rmability
by the empirical evidence is questionable. Either way, general scienti�c
grounds tell against doing so.

Remember the two big problems for indifference. There’s no a priori
way of picking out a set of parameters with which to characterize the
possibilities (and statespace structure); and even if there were, there’s no
a priori reason to distribute probabilities uniformly over the possibilities.
The proposal here avoids both problems. The empirically con�rmed
dynamics says which coordinates to use to characterize the possibilities.47

(Just as empirical evidence says what count as distinct possibilities for
quantum mechanical particles.) And a general methodological principle
tells us to use a uniform distribution over these possibilities.48 Note the
emphasis on empirical considerations. The structure principle comes
into play once we have a range of empirically con�rmed distributions. If
empirical evidence were to discon�rm the uniform one, then simplicity
considerations would pick out some other from among the remaining
empirically adequate candidates. Note also that the methodological prin-
ciple is itself justi�ed by a kind of empirical, if inductive, argument: it has
generally yielded successful theories for our world.

To be clear, there is no a priori reason that this must be the right
probability distribution to use. Nor is it forced on us by the dynamics;
I do not claim that it is uniquely natural in being derivable from the

47Ismael (2009) argues that any such parameterization must be empirically grounded.
48This is similar to Strevens (1998, 241): “It seems to be the case that, for whatever

reason, our standard variables are smoothly distributed....Let me stress that I am not
proposing that our ‘standard’ variables have any special logical status. They are simply
the variables with which we prefer to operate, and which are, conveniently for us, for
the most part smoothly distributed.” My view differs in proposing that the distribution
isn’t just smooth but uniform over dynamical coordinates, and that there’s a reason for
this: statistical evidence plus a successful methodological principle. See section 5.
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dynamics.49 I do claim that it is reasonable, even so, given empirical
evidence of its success and its naturalness relative to the dynamics. The
justi�cation bottoms out in the contingent fact that our world seems
to be parsimonious in this way. Its theory of many-particle systems is
strikingly simple, including the dynamics of individual particles, a natural
probability assumption, and no further structure.50 If you go on to ask
why we should live in such a simple world, I don’t have more to say. Our
world didn’t have to be one for which a natural probability assumption is
the one to use for making predictions about its sub-systems. Our world
happens to exhibit this simplicity; there is no further explanation of this
fact.

Thus, whereas many people think we must prove that this is the
only invariant probability measure—the only one that’s “carried along” or
preserved by the dynamics—on my view this is a feature of the distribution
that is chosen for other empirical reasons.51 It could have been that the
probabilities changed with time (say, the probability of microstates for
gases’ remaining in corners of their containers increased every year). Or
it could have been that no useful probability distribution at all was to be

49In particular, I don’t claim to derive the probabilities from the dynamics in the way
sought by ergodic approaches (note 6). There the goal is to locate, as Sklar (1973) puts
it, more than a reason to think that the distribution gives the right results, but a reason
to think that it should give the right results. On my view, one distribution is natural,
but not by derivation from the dynamics. See Ismael (2009) for general argument that
the probabilities needed in physics are over and above the dynamics. Another worry is
that it begs the question to “assume the actual microstate is always in the set of typical
points” (Callender, 1999, 371), positing the probabilities to explain them by means of
their success. But we justify these probabilities in the same way we do any fundamental
physical posit, by accounting for the phenomena in a simple way. We don’t need a
further reason to eliminate such posits altogether, as argued for in a different way in
Callender (2004).

50Plus (at least) one more component. In my view, the theory also needs a statement
about initial low entropy in order to ground thermodynamic and other macroscopic
asymmetries. Which additional component, if any, we need to ground thermodynamics
is a large separate question.

51The natural volume induced by the canonical coordinates is preserved by the
dynamics: Arnol’d (1989, 204-207). Whether a non-invariant distribution could be
said to assign genuine probabilities is another question. Lebowitz expresses a common
view when he says that, “Without this invariance the connection between phase space
volume and probability would be impossible or at least very problematic” (1999b, 356).
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had.52 Likewise, the distribution need not have been uniform. There are
other worlds, with similar dynamics, in which a non-uniform distribution
is successful (worlds where nature favors compressed gases, say).53 As
far as we can tell, this is not our world. Consider that if we did observe
a reliable preference for gases to stay clumped up in corners of their
containers, then we would posit different probabilities, perhaps altering
the dynamics and spacetime symmetries to re�ect that preference. (As we
might do if we reliably observed systems evolving toward certain spatial
or temporal locations.)54 We think that such preferences would show up
in the dynamical behavior of ordinary systems. Since we don’t observe
these preferences, we reasonably infer that there are none—that we have
posited the correct dynamics and probabilities.

There is a sense, though, in which this is the only measure that
“respects the structure” of the dynamics. Guszcza (2000, Appendix II)
proves that there is a unique measure on a symplectic manifold that is
preserved by canonical transformations, the transformations preserving
the Hamiltonian equations. (He proves that there is a unique (up to
multiplicative constant) measure on a symplectic manifold that is �nite
on compact sets and preserved under all local canonical transformations.)
And he shows that it is the measure associated with the standard volume

52Invariance, that is, is not an a priori constraint. Whether it holds depends on the
theory; see Albert (2000, n. 8, 80). Branden Fitelson suggests this is the only distribution
satisfying certain reasonable constraints, among them invariance. But I prefer not to
impose such initial constraints, for it seems a different distribution could have been
correct.

53Whether we would posit asymmetries in the spacetime, dynamics, or probabilities is
a separate issue. The point is that we would infer some such asymmetries. Cf. Callender
(2000).

54Compare Strevens’ (1998) view that our probability inferences stem from observed
symmetries plus knowledge of the laws, including which features the laws do, and which
they do not, care about. The laws care about the shape of the die but not the number
of dots painted on a side, for example; or so we (defeasibly) infer from the empirical
evidence. Similarly, von Mises (1981, 73) says that, “no concrete case can be handled
merely by means of an a priori knowledge of equally likely cases. It is always necessary
to use more or less general results derived from observation and experience in order to
determine which properties of the apparatus that we are using may in�uence the course
of the experiments, and which properties are irrelevant from this point of view.”
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element given by the symplectic form.55 This gives a precise sense in
which the standard measure is simplest relative to the statespace structure;
it’s the one preserved by the same transformations that preserve the
dynamical laws. The invariant quantities of the laws dictate both the
statespace structure and the natural measure on it. Again, it is a contingent
feature of our world that the right measure to use is natural in this way.

These considerations are independent of your view on the nature of
the probabilities. If you take them to be epistemic or merely instrumental,
then the reason we use uniform probabilities for the purpose of statistical
mechanics is that we generally choose the simplest formulation of a theory,
all else equal. I happen to think that a realist and objective understanding
of the probabilities is more natural; so that when we infer this distribution,
we are inferring something about the world and its actual distribution
of microstates.56 I think that this yields a simpler, more uni�ed theory,
for reasons I expand on in section 5. Yet either way, this distribution is
simplest, all things considered; and so, by our methodological rule, is the
one we ought to infer, unless we were to get evidence otherwise.

Nor do these considerations depend on your view of laws of nature.
The uniform distribution, if not a bona �de law, is an empirical general-
ization with many law-like features (it supports counterfactuals, �gures
in successful empirical explanations and predictions, and so on). If you
have a best-system account of such generalizations, then posit this dis-
tribution on the grounds that it yields the simplest, most informative

55I thank David Malament for the reference. Following Guszcza (2000, Appendix
II), for 2n-dimensional phase space Γ, a canonical transformation is a diffeomorphism
g ∶ Γ → Γ that preserves the symplectic form, ω. A local canonical transformation
is a diffeomorphism g ∶ A → B, for some neighborhoods A, B ⊂ Γ that preserves ω.
Guszcza proves that the natural measure associated with the volume element given by
ω on Γ is the unique measure �nite on compact sets and preserved by the class of local
canonical transformations of Γ. The result follows from Darboux’s theorem and the
fact that Lebesgue measure is the unique translation-invariant Borel measure on R2n .
Darboux’s theorem tells us that every pair of symplectic manifolds is locally isomorphic:
within the neighborhood of every point, there are local (canonical) coordinates such
that the symplectic form takes the canonical form. Two real symplectic manifolds (same
dimension and signature) are locally identical: they can be mapped onto each other so
that their symplectic structures correspond. See Arnol’d (1989, 230); Berndt (2001, 2.2);
da Silva (2001, 8.1).

56Ismael (2009) argues that the probabilities must be so construed.
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summary of the facts. If you are a non-reductionist about laws, then this
is still the distribution to posit, on general methodological grounds. The
non-reductionist will allow that we can be wrong in thinking these the
right probabilities (even if we knew all the facts in the entire history of
the world, say), yet maintain we are empirically justi�ed in positing them.

You may accuse me of advocating a version of an indifference prin-
ciple, something like: infer a distribution that is indifferent over the
structure required by the dynamics. Call it an indifference principle if
you like. To my mind, it is a far enough cry from the traditional idea
that it is undeserving of the name. Unlike traditional indifference, the
symmetry considerations here are not epistemic, a priori, or arbitrary; the
(empirically con�rmed) dynamics picks out the parameters over which to
distribute probabilities uniformly. To the extent that there is any a priori
element here, it is only to the extent that we take our general criteria of
theory choice—simplicity, explanatory power, and the like—to be a priori
to a degree; but only to that extent. Without taking a stand on the epis-
temic nature of those criteria, I claim that the current account is no more
a priori than those. The justi�cation is ultimately empirical, coming from
the evidence we have for statistical mechanics and the particle dynamics,
combined with the methodological principle that we do not infer more
structure to the world and its physics than what the fundamental laws
indicate there is.57

5. From statistical mechanics to coin tosses

Even if you follow me this far, you might wonder about the questions
we started with. What about our usual inferences from symmetries to
probabilities? What does statistical mechanics have to do with those?

I want to suggest that even though it may not seem like it—even
though statistical mechanics seems to have nothing to do with die throws
and coin tosses and the like—once we have the statistical mechanical
distribution in place, it can explain the success of our everyday inferences
from symmetries to probabilities. These inferences succeed because we

57Hence this does not rely on the type of Probability Principle dismissed by Davey
(2008).
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live in a world of which statistical mechanics is true.
Why think this is at all plausible? Let’s look at a simple case of a coin

toss. Before tossing a coin, we infer that each side is equally likely to
come up. Repeated tosses con�rm this prediction. Why does our initial
inference succeed?

For simplicity, imagine that I am holding a coin balanced vertically
on a table. The “toss” will consist in my letting go of the coin and its
falling to the left (to land heads) or to the right (tails). In what follows,
assume that the coin is governed by Hamiltonian dynamics.58

Think of the phase space of this coin. Consider the region correspond-
ing to its initial macrostate. This region comprises the points representing
microstates compatible with the coin’s currently being in this location
on the table, with its having this particular size and average temperature,
with my hand’s exerting this particular pressure on the coin, and any of
the coin’s other macroscopic features.

Out of all these microstates, think of the different possible combina-
tions of positions and momenta for the particles that will result in a heads
as opposed to a tails outcome when I let go of the coin. That is, think of
all the different possible ways the coin’s particles could be arranged—with
different combinations of initial positions and momenta—so that the coin
will land heads; and think of all the different possible ways the particles
could be arranged so that the coin will land tails. Think in particular of
the different possible combinations of momenta. In the idealized case
we are setting up here, slight differences in the momentum of even a
single particle will determine that the coin falls to the left as opposed to
the right when I let go of it. (The classical dynamics is deterministic.59)
Finally, place a uniform probability distribution over this phase space
region—the region corresponding to the initial macrostate of the coin,
the region containing the points representing microstates compatible

58I argued above that we should infer Hamiltonian mechanics. But notice that the
right coordinates are going to be something like canonical coordinates. The classical
equations are second order, requiring two sets of coordinates to characterize systems’
states; in particular, one set of coordinates is the derivative of, or tangent to, the other.
One set effectively characterizes the particles’ relative locations, the other the “directions”
or rates of change of their motions. That is what we will need here.

59Setting aside the cases of indeterminism: Earman (1986); Malament (2008); Norton
(2008a).

27



with the coin’s initial macrostate—just as statistical mechanics would tell
us to do. (Ignoring, for now, the worry that the coin is not a type of
system addressed by ordinary statistical mechanics. I return to this.)

You may be thinking that we must settle deep controversies in the
foundations of statistical mechanics before we can continue. First, there is
debate over whether the distribution is uniform over these microstates or
a (proper) subset of them, viz. those that have evolved from lower entropy
past states (even back to the initial state of the universe).60 Second, there
is debate over whether the initial distribution is taken over the phase space
of the coin or the entire world; and you might think that the latter cannot
be applied to the world’s various sub-systems.61 Third, you may worry
more generally that an initial distribution won’t tell us the probabilistic
behavior of an ordinary system, whose state is con�ned to an energy
hypersurface. Any lower-dimensional space gets zero measure on the
standard volume measure over the whole of a system’s phase space.62

We can leave these issues aside here. For a uniform distribution taken
over the initial macrostate of the coin should yield the same probabilistic
predictions as one that is conditionalized on the past, of the coin or
world.63 A probability distribution taken over the macrostate of the world
at some time, combined with the deterministic dynamics, will induce a
probability distribution over the world’s possible microstates at any other
time; conditionalize the initial distribution on the macrostate at the other
time. Since any microstate of the world includes a microstate for any sub-
system, this procedure will yield probabilities for the possible microstates

60As in the past hypothesis: Albert (2000). Earman (2006) argues against this proposal.
61Winsberg (2004a) argues that this requires a further posit, which we don’t think is

true; cf. Earman (2006, 420). A similar criticism is in Reichenbach’s “branching systems”
account (Sklar, 1993, 8.III); Winsberg (2004b) is an updated version of that idea.

62As in Frigg (2008b).
63That is, the same future predictions. It is in order to get correct inferences for the

past that Albert (2000) argues for conditionalizing the usual distribution on initial low
entropy. Another worry is that it is not true, in general, that the right distribution is
uniform over a given macrostate: not all microstates relative to a set of macroscopic
features are uniformly distributed. In reply, we can restrict the macroscopic features we
conditionalize on (to the usual thermodynamic ones, say), or adopt Albert’s view that
once we include any relevant features, the uniform one (conditional on the past) will be
correct.
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of any sub-system at any time. Importantly, this will assign relatively
uniform such probabilities. A standard assumption in statistical mechanics
makes it plausible that, for an ordinary macroscopic system, a uniform
distribution taken over the entirety of (a bounded region in) its phase
space will be relatively uniform throughout just about any sub-region.64

So that when we conditionalize the initial distribution on the sub-region
(and renormalize), we get another distribution that is relatively uniform.
Whatever your stance on these issues, we can safely assume a relatively
uniform distribution over a system’s initial macrostate.

(Intuitively, place a uniform distribution over a region in a higher
dimensional space—say, a two dimensional plane—throughout which the
“abnormal,” low-probability regions are scattered randomly in tiny clumps.
Project this distribution onto just about any region in a (one dimensional)
subspace—that is, any region that’s not as small and scattered as the
abnormal regions themselves—and renormalize. In other words, take a
uniform distribution, on the standard measure, over the points that are
in both the plane and the one dimensional subspace. Plausibly, this yields
another uniform distribution, with similar probabilistic predictions for the
future, such as extremely low probability for the abnormal microstates.65

Either take a uniform distribution over the current macrostate region of
a system, or over the microstates within this region that came from past
lower entropy, and we should get a relatively uniform distribution.66)

64See, for example, Lebowitz (1993a,b,c, 1999b); Sklar (1993, 206); Pathria (1996,
20); Albert (2000). Thus, let M be a system’s macrostate, Γ its phase space, ΓM the region
corresponding to M, Ma the initial and Mb the later macrostate, and ΓMab the region of
ΓMb that came from ΓMa (the microstates in ΓMb on trajectories coming via ΓMa). Then
“for systems with realistic interactions the domain ΓMab will be so convoluted that it will
be ‘essentially dense’ in ΓMb” (Lebowitz, 1993a, 10); “interactions the domain ΓMab will
be so convoluted as to appear uniformly smeared out in ΓMb” (1999b, S349). Indeed,
this is part of what the arguments of Boltzmann and Gibbs, for grounding the second
law of thermodynamics in statistical mechanics, plausibly show. For skepticism about
its plausibility, see Frigg (2008b, 130-133).

65Indeed, it is because this yields similar probabilities that Albert, for one, argues
that an initial universal distribution should ground our predictions of entropy increase
to the future of individual systems, at the same time yielding correct inferences about
their pasts. See the quotation from Callender in note 18; compare Figure 3.15 in Albert
(2000). But see Frigg (2008b, 130-133) for skepticism about this scattering assumption.

66There is a standard way of restricting the Liouville measure to a subspace like the
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Statistical mechanics says that, compatible with any given macrostate,
including the initial macrostate of our coin, there are just as many mi-
crostates in which a given particle in the system is heading to the left as
there are microstates in which the particle is heading to the right. There
is a one-one mapping between microstates and their time reverses—the
microstates with the time-reversed particle velocities—and for any mi-
crostate that realizes a given macrostate, so will its time reverse. A bit
more precisely, according to statistical mechanics, the phase space vol-
ume of each set of such microstates, out of the total volume of the region
representing the system’s initial macrostate, will be the same.

Keeping in mind that the momenta of the individual particles deter-
mine how the coin will land, the above means that, according to statistical
mechanics, there are just as many ways for those initial momenta to be
arranged, consistent with the initial macrostate, so that the coin will wind
up tilting to the left when I let go of it, as there are ways for the initial
momenta to be arranged so that the coin will tilt to the right. That is,
half the phase space region corresponding to the coin’s initial macrostate
is taken up by microstates such that, if the coin starts out in one of these,
it will (deterministically) fall to the left; half the phase space region corre-
sponding to the coin’s initial macrostate is taken up by microstates such
that if the coin starts out in one of those, it will (deterministically) fall to
the right. The uniform distribution over the phase space region repre-
senting the coin’s initial macrostate then says that any such “left-directed”
microstate is equally probable as any such “right-directed” one.

In other words, out of our two possible outcomes—falling left or
falling right; landing heads or landing tails—statistical mechanics says
that each one is equally likely. Statistical mechanics counts the differences
among possible microstates in such a way that they add up to an equal
probability for each of the two possible macroscopic outcomes. Similarly,
within a bunch of similar coin tosses, statistical mechanics says that their

energy hypersurface, with the volume of the surface the normalizing factor: Kac (1959,
63); Lebowitz (1993c); Pathria (1996, 56). You might wonder whether the simplicity
considerations picking out the standard measure also favor the restricted one; the latter
standardly depends on the Hamiltonian. Yet all we need is that the distribution is
initially uniform, and that it yields an approximately uniform distribution over the
energy hypersurface—a big, but relatively standard, assumption: note 18.
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microstates will be distributed with about half the tosses starting out
in “left-directed” microstates and half in “right-directed” ones. At the
macroscopic level, this yields the prediction that approximately half the
tosses will land heads and half will land tails, or that a given coin toss has
a 1
2 probability of landing heads.67

Here, �nally, is our payoff: that was our initial inference! We infer,
on the basis of the macroscopic information we start out with, before
observing any tosses, that the coin has a 1

2 probability of landing heads
and a 1

2 probability of landing tails. We likewise infer that in a long se-
quence of tosses, we will get heads about half the time. This suggests
that the reason for the success of our initial inference is the truth of the
statistical mechanical distribution. It suggests that our ordinary infer-
ences from symmetries to probabilities succeed when the symmetries
we observe match the symmetries in the statistical mechanical distribu-
tion. For when there is this correspondence between the macroscopic
symmetries—between a heads and a tails outcome, say—and the sym-
metries in the distribution of fundamental microstates—as among the
different combinations of particle momenta—a uniform distribution over
the different possible fundamental states will yield a uniform distribution
over the different possible macroscopic outcomes.

Figure 1 makes this intuitive.68 Each point represents a different
possible microstate for the coin, characterized by the initial height h of
its center of mass above the table and the angle θ between its surface and
that of the table (where θ = 0 when the coin is parallel to the tabletop with
heads up). The coin is released from rest.69 The �gure shows the different

67That is, in the limit of increasingly many tosses, there’s a high probability of heads
about half the time; the set of microstates with this limiting frequency has measure one.

68Keller (1986) gives a similar argument for coin tosses without collision. See also
the example of the Galton board in Maudlin (2007), although Maudlin uses it to argue
that we do not need the full structure of a probability distribution (note 42).

69Suppose that immediately after release, the velocity of the coin’s center of mass
is vertical and the angular velocity is parallel to the tabletop. These features will be
preserved throughout the motion, since the forces on the coin (from gravity and the
table) act vertically. Assume a uniform mass distribution in the coin, a smooth table, and
negligible air resistance. While the coin is falling, its motion is free fall plus rotation at
a constant angular velocity. The outcome, a function of the height of release, is then
caused by the collision(s) of the coin with the table. See Kechen (1990a,b) for discussion.
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Figure 1: From Kechen (1990a,b). Dependence of �nal outcome on initial state
of a coin released from rest above a table at height h. θ is the angle between
the coin and table surfaces; θ = 0 when the coin is parallel to the tabletop with
heads up. Blackened regions represent states leading to heads.

possible states of the coin and shades the various regions according to
their outcomes; regions shaded black represent microstates resulting in
heads. Now place a uniform probability distribution (density), on the
standard measure, over the points in the �gure. This distribution will say
that about half the initial microstates lead to heads (the black regions)
and half to tails (white), or that the coin has a 1

2 probability of landing
heads.70 Indeed, imagine taking a uniform distribution over just about
any reasonably-shaped subregion of the �gure, and we will still get a
probability of approximately 1

2 heads. In other words, plausibly, this
distribution should assign probability 1

2 to a heads outcome even if we
were to conditionalize on further features of the coin toss—that my hand
can release it within a certain narrow range of velocities, for example.71

This is not to say that we must know what the statistical mechanical
probabilities are. Our everyday inferences succeed even though we do

70Where above I argued that uniformly distributed momenta should yield a 1
2 proba-

bility of heads, here we have a similar argument from uniformly distributed positions.
71Compare Kechen: “Moreover, it may also be conjectured that H [the set of initial

microstates leading to heads] is distributed uniformly within any region in phase space
where the energy is large enough, and within any �xed region when coef�cient e [of
restitution] is suf�ciently close to 1” (1990b, 1895).
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not generally know about statistical mechanics. Rather, these inferences
are successful because, and when, the observed symmetries align with
the symmetries in the distribution of dynamical coordinates. The reason
we make these inferences from symmetries to probabilities is our past
experience, and this experience has been in a statistical mechanical world.
We have learned from experience that systems’ microstates are distributed
in the way that the statistical mechanical distribution says they are.72

You might worry that something must be missing from the explana-
tion of the coin toss. Imagine a machine with access to the exact initial
microstate of the coin. Suppose the machine, on the basis of this informa-
tion, can reliably toss the coin so that it always lands heads. Presumably,
the machine can do this without any alteration to the dynamics.73 This
is a general point about statistical mechanical systems. A machine, or
a Maxwellian demon, with knowledge of systems’ microstates and the
ability to act on this knowledge, could reliably cause systems to behave
in anti-thermodynamic ways. Again, I take it that the job is to account
for the use of these probabilities in explaining various macroscopic gen-
eralizations, to the extent that those generalizations hold. And we know
that if we were Maxwellian demons, then the generalizations that we
are trying to explain need not hold. It’s not that we need an additional
component in the explanation, in other words. It’s that the explanation
(and explanandum) hold only given that we don’t have the epistemic and
manipulative capacities of a Maxwellian demon. Otherwise, all bets are
off.

The example of the coin is admittedly idealized. How the coin lands
will depend on many other factors—the velocities of the surrounding
air molecules, the angular velocities of the particles in my hand, and
more besides. This should raise a skeptical eyebrow or two. Why think
this procedure should yield the right probabilities once we include these
real-life complications? The coin is not even a type of system ordinarily
studied in statistical mechanics. Ordinary statistical mechanics talks about

72Compare von Mises (1981, 76): “most people, asked about the position of the centre
of gravity of an unknown cube, will answer ‘It probably lies at the centre’. This answer
is due, not to their lack of knowledge concerning this particular cube, but to their actual
knowledge of a great number of other cubes, which were all more or less ‘true’.”

73I thank Jos Uf�nk for this question.
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boxes of gas and cubes of ice, not dice and coins. Why think this should
work for everyday systems like these?74

Eminently reasonable concerns. Yet I submit this as a plausible con-
jecture even so. As far as we can tell, there is no reason to think that
statistical mechanics should not work for the particles in a coin, given
its success for the particles in a gas. No difference in kind between the
particles in these systems as far as the underlying dynamics is concerned;
hence no difference in kind as far as the statistical mechanical predictions
are concerned. And when we use the statistical mechanical probabilities
to make predictions for something like a coin toss, we plausibly get the
right results. It remains to show rigorously that statistical mechanics can
be applied this generally, but it very well might. The empirical success of
statistical mechanics suggests that the microstates of macroscopic systems
are actually distributed in the way the standard distribution says—the
microstates, that is, of all classical many-particle systems, boxes of gas and
coins alike.75 Given the success of statistical mechanics for these other

74Leeds (2003) is skeptical of any statistical mechanics that tries to carry the theory
beyond the types of systems studied in ordinary research. A similar challenge could
come from the view of Cartwright (1999) that we have no reason to infer that the laws
of physics hold for ordinary systems, even granting their truth for systems we design
in the laboratory. In reply, I think that the success (and truth) of the laws in systems
we have studied indicates their general success (truth), until evidence shows otherwise.
Another challenge comes from the view of Callender’s (2008) that statistical mechanics
is a special science; see North (forthcoming) for a reply.

75Here is one textbook: “Statistical mechanics is a formalism which aims at explaining
the physical properties of matter in bulk on the basis of the dynamical behavior of its
microscopic constituents. The scope of the formalism is almost as unlimited as the very
range of the natural phenomena, for in principle it is applicable to matter in any state
whatsoever. It has, in fact, been applied, with considerable success, to the study of
matter in the solid state, liquid state or the gaseous state, matter composed of several
phases and/or several components, matter under extreme conditions of density and
temperature, matter in equilibrium with radiation (as, for example, in astrophysics),
matter in the form of a biological specimen, etc.” (Pathria, 1996, 1); original italics.
Against such optimism, Callender cautions, “Outside of thermodynamics there is simply
not a shred of evidence” that statistical mechanics underlies other, non-thermodynamic,
macroscopic regularities (2008). Similar views are expressed in Leeds (2003). In reply,
note that statistical mechanics has been applied widely, with continuing success. Where
should we draw the line between thermodynamic and other kinds of macroscopic systems
for which statistical mechanics will cease to work? At this point, we reach competing
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types of macroscopic systems, assumed to be made up of the same kinds
of particles, we have good reason to think the procedure should work
even for a coin. Surprisingly, yet plausibly, the same distribution telling
us that entropy increase is extremely likely in isolated thermodynamic
systems also tells us the probabilities for the outcomes of coin �ips. A bold
hypothesis, to be sure, but one that is plausible all the same. A hypothesis
that we should accept unless, or until, we �nd evidence to the contrary.76

Another view that may strike you as more plausible is that of Strevens
(1998, 2003, 2005). Strevens also argues that underlying mechanical
considerations help explain the success of our macroscopic probability
inferences. He makes use of physical symmetries in the mechanism of a
set-up and what he calls the ‘microconstancy’ of initial condition variables
(roughly, that their values are macroperiodic). Yet his view gets by with
the lesser constraint of a reasonably smooth initial distribution, not a
uniform one. My proposal is more ambitious and correspondingly more
prone to failure. Still, it may be correct; and if it is, it would yield a
more uni�ed overall account. According to it, we in fact have a wide
variety of evidence for these probabilities—not only the different sorts
of evidence we have for both statistical mechanics and the underlying
dynamics, but also our everyday practice of die throws and coin tosses.
The statistical behaviors of ordinary systems provide independent con�r-
mation of the probabilities used in statistical mechanics. If successful, this
account would explain more and in a uni�ed way—including the success
of Strevens’ own microconstancy condition. Since all things equal, we
prefer theories that explain more on the basis of less, it seems worthwhile
to treat it as a working hypothesis, unless, or until, we �nd evidence to
the contrary.

You might worry that this requires understanding the statistical me-
chanical probabilities as objective, as corresponding to features in the
world. I disagree. I do think that an objective construal yields a better

intuitions which I am unsure how to adjudicate. The present paper attempts to push
the optimist line, but this needn’t convince the committed skeptic.

76Since the distribution over initial conditions will, when added to the deterministic
dynamics, yield probabilistic predictions for every event in the history of a system, we can
go further in saying that we ought to accept this until we �nd evidence to the contrary:
such evidence would arguably amount to discon�rmation of statistical mechanics itself.
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overall theory. For it lends itself to thinking of these probabilities as
representing the actual statistical distribution of microstates; which we
can then use to explain the success of indifference principles, when such
principles succeed.77 (In the same way that the scienti�c realist argues
that realism best accounts for the success of our theories.) Yet the reasons
for the uniform distribution remain whatever your metaphysics of its
probabilities. At worst, take the above as suggesting why we use the
uniform distribution, however we construe its probabilities. At best, take
it as further argument that we treat these probabilities objectively, on the
grounds that this view yields a deeper, more uni�ed overall theory.

Finally, there is the question of how much the account will be able to
explain. Does statistical mechanics underlie all successful uses of uniform
probabilities? Do these dynamical considerations suf�ce to pick out the
“right” probabilities for any of the familiar indifference principle cases
(note 25)? I’m not sure. I do claim that this explains the use of uniform
probabilities in statistical mechanics, and that this, in turn, explains the
success of uniform probabilities in things like coin tosses. The extent
of the account—can statistical mechanics explain all empirical statistical
generalizations, as Albert (2000, 2008) argues? or only the predictions of
ordinary statistical mechanical systems, as Leeds (2003) argues, albeit with
the addition of systems like coins?—is for further investigation. Consider
the current paper a modest attempt to nudge us closer to the “imperialist”
view, as Callender (2008) calls it, of statistical mechanics as underlying
many, if not all, of our probabilistic inferences about the world.

6. Conclusion

The statistical mechanical distribution at once explains the success of
our everyday inferences from symmetries to probabilities, and justi�es
our symmetric probability assignments. We do not rely on an a priori
principle to successfully infer the frequencies with which different possible
outcomes occur. Initial symmetries relative to our epistemic state can’t
tell us what the physical probabilities are. For they can’t even tell us what
the fundamental possibilities are, let alone that any particular probability

77Such as the restricted use of the principle given by Castell (1998).
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distribution over them will be successful. For similar reasons, neither
must symmetries rationally constrain our initial credences.

Any seemingly a priori expectation we might have that the frequencies
will match the symmetries in a situation really comes from past experience
in a statistical mechanical world. We have learned from experience how
systems’ microstates are distributed, and we have updated our degrees
of belief in what the initial probabilities are. We have also learned from
experience what the dynamical laws governing systems’ particles are, and
from these what the relevant statespace structure is.

The symmetries in the world’s dynamics and distribution of fundamen-
tal states, and the correspondence between those and the macroscopic
symmetries we observe, explains the success of our everyday probabilistic
inferences. Absent any such evidence, for truly prior credences, we can
rely on symmetry in choosing an initial distribution. But so too can we
choose some other, asymmetric distribution. Neither choice is more rea-
sonable than the other; not until we have some experience in the world.
For us, not until we have experience in a statistical mechanical world.78
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