Comparing Probabilistic Measures of
Explanatory Power

Jonah N. Schupbach*
March 26, 2010

Abstract

Recently, in attempting to account for explanatory reasoning in prob-
abilistic terms, Bayesians have proposed several measures of the degree
to which a hypothesis explains a given set of facts. These candidate
measures of “explanatory power” are shown to have interesting nor-
mative interpretations and consequences. What has not yet been inves-
tigated, however, is whether any of these measures are also descriptive
of people’s actual explanatory judgments. Here, I present my own ex-
perimental work investigating this question. I argue that one measure
in particular is an accurate descriptor of explanatory judgments. Then,
I discuss some interesting implications of this result for both the epis-
temology and the psychology of explanatory reasoning.
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1 Explanatory Reasoning and Bayesianism

Humans are, it seems, constantly making use of explanatory considerations when
they reason. Mundane examples abound: I notice that the books on my shelf are
disarranged, and I reason that my two year old has been playing in the office; I
observe a large crowd waiting at the bus stop and I hypothesize that the 10:00
bus has not yet been by. In both of these cases, there is seen to be some reason in
a hypothesis’s favor precisely because of its ability to explain some observed fact.
Explanatory considerations not only pervade everyday human reasoning, but they
are also ubiquitous in intellectual practices such as science and medicine: scientists
reason to the existence of a hitherto unobserved planet given their observations of
the motion of Uranus; a doctor diagnoses a patient with the measles after consid-
ering that patient’s symptoms.

In recent years, Bayesians have turned their attention to the epistemology of
such “explanatory reasoning.” Okasha (2000, pp. 702-706) proposes necessary
probabilistic conditions for one hypothesis’s being a better explanation than another.
Lipton (2004, ch. 7; see also his 2001), on the other hand, suggests various possible
probabilistic renderings of his notions of explanatory loveliness and likeliness. The
culmination of this work, however, has been the attempt to define a measure of
the degree to which a particular hypothesis h is able to explain some given set of
information d - i.e., h’s degree of “explanatory power” relative to d. Interestingly,
this project was undertaken decades ago by Popper (1959) and by Good (1960,
1968). Very recently, however, McGrew (2003), Glass (2007), and Schupbach and
Sprenger (2010) all propose specific such measures in their work. All of these
corresponding measures, along with some other plausible candidate measures, are
shown in Table 1.

Ep(d,h) = Pr(d|h) — Pr(d)
Ec(d,h) = Pr(d|h) — Pr(d|-h)

Pr(d|h) — Pr(d)

Ep(d,h) = Pr(dlh) + Pr(d) (Popper, 1959)
Pr(dJh)
Ey(d,h)=1n Pr(d) (Good, 1960; McGrew, 2003)
r
Edm=brdrh) ot 1 " (Glass, 2007)
=5 rdve) | Pr(ld) T Pr(din) ass,

Pr(h|d) — Pr(h|-d)
&(d,h) = Pr(hld) + Pr(h-d) (Schupbach and Sprenger, 2010)

Table 1. Candidate Measures of Explanatory Power.

Measures E,; and & are both related to Bayesian measures of confirmation; in
fact, these measures just are the confirmation measures of Keynes (1921) and Ke-



meny and Oppenheim (1952) respectively but with each reference to the evidence
e in these original measures replaced with a reference to h and a reference to the
explanandum d substituted for each reference to h in the confirmation measures.
Measures Ej, and E, have been built in the same way from two other confirmation
measures — due to (Eells, 1982) and (Christensen, 1999) respectively — and added
to the list of measures to consider here.

Popper’s measure of explanatory power Ep is closely linked in two different
ways to two other measures on this list. It is, first of all, a renormalization of Ej
as seen by the fact that the numerator of E, just is E,. But more importantly, E, is
ordinally equivalent to measure E,;. In more detail, this means that, for any h, /’,
d, and d’, Ep(d,h) > (=,<)Ep(d’,}’) if and only if Ey;(d,h) > (=, <)Ey(d’,h’).1
Thus, Ep and E,; always impose the same ordinal relations on judgments of ex-
planatory power.

Measure E;; is unique insofar as it is the only proposed coherence-theoretic mea-
sure of explanatory power. Glass (2007) argues that the explanatory power of h
relative to explanandum d just is measured by the degree to which h coheres with
d. Glass thus analyzes explanatory power in terms of his favorite Bayesian measure
of coherence, which was first proposed by himself (Glass, 2002) and independently
by Olsson (2002).

Each of the measures shown in Table 1 does its part to clarify the precise formal
relations that attain between hypotheses and data when the former are explanatory
of the latter. These measures thus enable us to ask and answer substantive ques-
tions about the epistemic value of explanatory power. As a matter of fact, all four
of the measures of explanatory power that have been put forward in the literature
have also been used to defend explanatory reasoning as having normative merit.
Schupbach and Sprenger (2010, p. 20) show, for instance, that “when all else is
equal, the probability of an explanatory hypothesis in the light of some evidence is
directly proportional to that hypothesis’s ability to explain that evidence.” McGrew
(2003, p. 558) provides a defense of a similar ceteris paribus theorem in terms of
his measure. Glass (2007, p. 294) argues that, according to his account, “good
explanations will be probable explanations and so someone who reasons [explana-
torily] will tend to make probable inferences.” And Popper (1959, p. 401) shows
that the amount of explanatory power that a hypothesis has relative to some evi-
dence is positively related to the degree of “corroboration” that the former receives
from the latter.

These measures thus attempt to provide normative accounts of explanatory
power and explanatory reasoning. First and foremost, they tell us how we ought to
think of the concept of explanatory power. Additionally, they each assert that, un-

1Proof: Dividing the numerator and denominator of Ep through by Pr(d) gives the following:

Pr(dlh)/Pr(d) -1

Ep(d,1) = Pr(dn)/Pr(d) +1

And, for values of r € [0, c0), which is the range of the ratio Pr(d|h)/Pr(d), f(r)=(—-1)/(r+1)isa
monotonically increasing function of r. Thus, Ep is an increasing function of the ratio Pr(d|h)/Pr(d).

But, of course, Ey; = In[Pr(d|h)/Pr(d)] is also a monotonically increasing function of the ratio
Pr(d|h)/Pr(d). O



der certain conditions, explanatory considerations do guide us to hypotheses which
are more probable. Thus, they tell us that we ought to reason explanatorily under
such conditions. These measures unquestionably thus have interesting normative
interpretations and consequences.

What has not yet been investigated regarding these measures is the separate
question of whether any of them are also descriptive of people’s actual explanatory
judgments. Of course, the normative bearings of these measures does not imply
their descriptive accuracy. It may well be that a measure accurately represents the
way people generally ought to think about explanatory power and that, if they think
about it in this way, then they ought to reason in favor of good explanations; and
it may simultaneously be true that people do not do as they epistemically ought.
Alternatively, if some candidate normative measure also doubles as a good descrip-
tor of people’s explanatory judgments, then we have the makings of an interesting
defense of human explanatory reasoning. The issue then is whether people actually
think about explanatory power in the way that these epistemologists have said that
they should.

But the descriptive question also has important bearing for the normative anal-
yses themselves. Here, the question is whether any of the formal accounts fit with
the concept of explanatory power as it is generally used. If all of the measures
diverge widely from people’s actual explanatory intuitions, then it may be that
people do not understand explanatory power in the way that they should; how-
ever, it might more plausibly be the case that the analyses are just wrong. On the
other hand, if any particular candidate measure fits well with such intuitions, then
this not only reflects nicely on everyday human intuitions, but it also provides some
support for the general accuracy of that particular measure.

This paper empirically investigates the descriptive question. As such, and in
light of the above, it holds interest both to philosophers interested in the epistemol-
ogy of explanatory reasoning and to psychologists interested in human reasoning.

2 Experiment: Comparing the Descriptive Merits of
the Measures

In this section, I summarize my own recent experimental research investigating the
descriptive question. The overarching goal of this project was to test and com-
pare the relative descriptive merits of the aforementioned candidate measures of
explanatory power. In order to do this, I used an experimental design based closely
upon a chance-setup previously applied by Phillips and Edwards (1966) and more
recently by Tentori et al. (2007) in their comparison of various Bayesian measures
of confirmation.

2.1 Materials and Procedure

In this experiment, participants were asked to judge how well various hypotheses
explain certain sets of data. These judgments were elicited during an individual



Urn Number of Black Balls Number of White Balls

A 30 10
B 15 25

Table 2. Respective Contents of Urns A and B.

interview involving a probabilistic scenario of black and white balls being drawn
without replacement from one of two possible urns. During the interview, par-
ticipants were first presented with two opaque urns, and then informed of their
respective contents. The urns were composed of black and white balls as specified
in Table 2. At this point, participants were also given a visual representation of the
urns’ contents, which they were free to refer to throughout the experiment.

The decision of which urn to use throughout the remainder of the interview
was next decided via an actual flip of a fair coin. Participants saw that the coin flip
determined our choice of urn; however, whether the chosen urn was A or B was
left hidden. The experiment then proceeded with a series of ten random drawings
without replacement from the chosen urn. These drawings and the corresponding
results were performed in full view of the participants. Additionally, balls that were
the results of prior drawings were lined in front of the participants in the order in
which they had been withdrawn; thus, at any time in the interview, participants
could refer to all of the results up to that point. Throughout each interview, the
coin flip and drawings were truly chance events so that which urn was used and
which balls were withdrawn differed between participants. Participants were faced
with six tasks after each individual drawing.

Task 1. Participants were first asked to make a mark on an “impact scale”
representing the degree to which “the hypothesis that urn A was chosen [(H,)]
explains the results from all of the drawings so far.” Each impact scale was printed
on a strip of paper and consisted of a dotted line with arrows pointing out of either
end. The following five descriptive labels were spaced evenly from left to right over
the line (with the line extending in both directions beyond the labels):

e This hypothesis is an extremely poor explanation of the results collected so
far

e This hypothesis is a poor explanation of the results collected so far

o This hypothesis is neither a good nor a poor explanation of the results col-
lected so far

o This hypothesis is a good explanation of the results collected so far

e This hypothesis is an extremely good explanation of the results collected so
far

Fresh copies of the scale were used for each of the ten drawings, and all of
a participant’s previously marked judgments were organized in his or her view to



refer to if desired. On a given impact scale, the marked distance from the neutral
point was used to quantify judged degrees of explanatory power. Upon receiving
the impact scale, participants were told that the scale was intended to be continu-
ous and that distances would matter to how their responses were recorded.

Task 2. Next, participants were asked to repeat the first task but this time with
regard to the hypothesis that urn B was chosen (Hp). Ultimately then, participants
were asked to make 20 judgments of explanatory power throughout the experiment
(10 pertaining to H,, and 10 pertaining to Hg).

Tasks 3 and 4. In tasks 3 through 6, participants estimated various relevant
probabilities. For the first two of these tasks, participants were faced with the
following two questions (in the questions listed below, n was set to the number of
balls that had been drawn at that point in the interview):

e Considering the color of the first n balls, what now is the probability that the
urn selected is A?

o Considering the color of the first n balls, what now is the probability that the
urn selected is B?

Participants were instructed that their answers could be written in whatever format
they preferred (decimals, fractions, or percentages); however, they had to sum
either to 1 (if they chose to write decimals or fractions) or 100%.

Tasks 5 and 6. For the final two tasks performed with each drawing, partici-
pants were asked the following two questions:

e Assuming that the selected urn is A, what at this point was the probability of
drawing a ball of this color?

e Assuming that the selected urn is B, what at this point was the probability of
drawing a ball of this color?

Again, participants were instructed that their answers could be written in whatever
format they preferred; for these two questions, it was pointed out that there was
no need for the two answers to sum to 1 (or 100%).

Tasks 3 and 4 were used to assess participants’ judgments about the prob-
abilities of the respective hypotheses conditional upon all of the “evidence” re-
ceived from the drawings. That is, in the n’th round of the interview, each par-
ticipant’s response to task 3 was interpreted as that person’s subjective probabil-
ity for H, conditional upon the n results of all of the drawings up to that point:
Proypj(Haldy Ady A ... Ady,). Similarly, participants’ responses to task 4 were taken
to provide values for Prg,;,;(Hg|d; Ady A ... Ad,,).

On the other hand, tasks 5 and 6 assessed participant judgments about the
probabilities of the latest result conditional upon the respective hypotheses and all
preceding results. That is, in the n’th round of the interview, each participant’s
response to task 5 was interpreted as that person’s subjective probability for the
result of the n’th drawing conditional upon H, and upon the n—1 preceding results:
Prgypj(dy|[Hy Ady Ady A ... Ad,_q). Similarly, responses to task 6 were taken to
provide values for Prg,;,;(d,|Hg Ady Ady A ... Ady_q).



Given the chance nature and the quantitative details of this experimental de-
sign, the following, corresponding objective probabilities were calculated for each
drawing in each interview: Prqp;(Hyldy Ady A ... Ady,), Propi(Hgldy Ady Ao Ady),
Propi(dp|Hy Ady Ady A ... Ad_q), and Proyi(dy|Hg Ady Ady Ao Ady_q).

These probabilities (collected in both their subjective and objective varieties)
were sufficient to derive corresponding degrees of explanatory power for H, and
Hjg (relative to the various sets of data) from all of the candidate measures in
Table 1. In this way, this experiment elicited a host of participant judgments about
explanatory power along with the same number of corresponding results derived
from each measure (first using subjective probabilities, and then also derived using
the objective probabilities).

2.2 Participants

26 undergraduate students from the University of Pittsburgh participated in this
study in exchange for $10 each. The average age of the participants was 20 years.
Among the participants, there were 14 men and 12 women.

3 Results

3.1 Preparing the Measures for Comparison

In order to compare the descriptive accuracies of the measures, we rely first upon
the measure of the Euclidean distance between participant judgments and the “the-
oretical results” derived from each particular candidate measure of explanatory
power. This distance (in n-dimensional space) between a set of n judged degrees
of explanatory power and a corresponding set of n theoretical degrees is given by
the following equation — where J(d;, h;) represents participant judgments of the de-
gree to which h; explains d;, and E stands in for any particular candidate measure
of explanatory power:

d(J’ E) = \/XHI(J(di: hi) - E(di; hi))2

i=1

That is, the Euclidean distance d between participant judgments J and the theoret-
ical results derived from E is given by summing the squares of the “residuals” (the
differences between each judged value and theoretical value) and then calculating
that sum’s square root. The lower the value of d, the closer E is to participant
judgments J.

This choice of measure requires defense especially in light of Tentori et al.’s
(2007) similar study comparing the desciptive merits of various confirmation mea-
sures. Tentori et al. rely primarily on a Pearson correlation test to decide which
confirmation measure “corresponds most closely to judged evidential impact” (p.
115). The experimental design applied here is based upon that used by Tentori et
al.; furthermore, the nature of our experimental results and our aims in analyzing
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Figure 1. E(d, h) perfectly correlated with J(d, h) but giving vastly different values.

them are closely related. So why this change in how we proceed with the analysis?
The answer is that a correlation test will inevitably fall short of the sort that we
want to utilize in our comparison.?

Pearson’s correlation test measures the degree of linear dependence that holds
between two variables. As such, it provides a powerful tool for showing the de-
gree to which the values of one variable can be predicted as a linear function of
another variable (whose values are known). More specific to our context, if J and
a particular set of theoretical results derived from a measure E are shown to be
highly correlated, then this would constitute evidence that E could be used as a
predictor of people’s explanatory judgments. This would surely be an interesting
finding. However, a measure of the degree of explanatory power which hopes to
be descriptively valid claims to be more than merely capable of being made into a
good predictor of such judgments; indeed, the most descriptively accurate measure
will be the one whose results actually correspond most closely to judged degrees of
explanatory power themselves. This notion of proximity is just what is measured
by a distance measure such as d. On the other hand, the concept of correlation
can diverge significantly from this notion. Indeed, two variables can be perfectly
correlated even while having vastly different corresponding values (as in Figure
1). Thus, in order to test the full descriptive merits or our measures, we opt for a
distance measure.

Our choice to use a distance measure does, however, lead to a new complica-
tion. In order for us to compare the distances between each of our measures and
actual human judgments, we must first and foremost make sure that all derived and
judged degrees of explanatory power are on the same scale. Participants’ marked

2This is not intended to be a criticism of Tentori et al.’s use of this test. Pearson’s correlation test
does seem to be well-suited for their purposes but not so for our own given the differences between our
respective concepts of interest.



judgments are easily placed onto a [—1, 1] scale with the extreme left point of the
dotted line on the impact scale representing —1, the center point 0, and the extreme
right point 1. Moreover, Ej, E, Ep, and & are all on the same [—1, 1] scale with in-
terpretations corresponding to the labels provided with the impact scale.> Measure
E; has a finite range of [0, 1]; thus, it can quickly be placed on the same scale as
the other measures if we consider the rescaled verion, Eg/(d,h) =2 x E;(d,h) — 1.
On the other hand, rescaling measure E,, proves to be a much more complicated
affair.

Measure E,,; agrees with our other candidate measures of explanatory power
on its neutral point. That is, (substituting the rescaled E for E;) all of the mea-
sures agree that the value O is to be interpreted as the neutral point at which h is
“explanatorily irrelevant” to d. However, while all other candidate measures are
finite, E,; has the range (—00,00). In order to measure the distance between the
results provided by such a measure and a set of judged degrees on a finite scale
then, E;; must be “rescaled” down to a finite scale.

This can be done by feeding the results of E,; into any function that has all of the
real numbers as its domain and the real numbers from —1 to 1 as its range. More
specifically, such a function minimally ought to satisfy the following conditions of
adequacy in order to rescale E,; appropriately:

Finite Boundedness. The function F must have all of the real numbers as its do-
main and the set of real numbers from —1 to 1 as its range: F : R — [—1,1].

Monotonicity. F must be monotonically increasing: V(x)(F/(x) > 0).
Neutrality. F(x) =0 if and only if x = 0.

Asymptotic Behavior. The rate at which F(x) increases or decreases approaches
0 for the limiting points: lim,_,.F’(x) =0 and lim,_,_ F'(x) = 0.

X—00

These conditions of adequacy are all easily motivated as requirements for our
function F. Finite Boundedness has already been discussed above. Monotonic-
ity is required given that we want E,;’s ordinal judgments to be preserved un-
der the transformation affected by F; i.e., for any two pairs (d;,h;) and (d;,h;),
Ey(d;, hy) < (=,>)Ey(d;, h;) if and only if F(Ey(d;,h;)) < (=,>)F(Ey(d;,h;)).
We also want F to preserve the fact that E,; is normalized around O with this
value representing explanatory irrelevance; thus, we require Neutrality. Finally, as
values of E,; increase (or decrease) without bound, corresponding degrees of ex-
planatory power become less distinguishable and their differences less meaningful.
Accordingly, we enforce the Asymptotic Behavior requirement for F.

Hartmann and Sprenger (2010) introduce (for purposes entirely different than
our own) a family of functions that, with a minor modification,* elegantly satisfies
our conditions of adequacy. This family is defined by the following equation:

3For example, &(d,h) = 1 is interpreted as the point at which h provides a full explanation of d,
&(d,h) = 0 the point at which h is judged to be explanatorily irrelevant to d, and &(d,h) = —1 the
point at which h provides a full explanation of —d (Schupbach and Sprenger, 2010, p. 5).

_ 1,2
“For their purposes, Hartmann and Sprenger introduce the measure L,(x) = 1 —e  2:2* defined
over domain R=°. Here, we need a function defined generally over R that is monotonically decreasing
as x — —oo. The modied measure L, achieves these purposes.



Figure 2. Three members of the L, family.

_1 .

1—e 22 ifx>0
La (X ) = 1.2

N

—1+4e 22 ifx<0
L, provides us with any number of functional rescalings of E,; depending upon the
parameter a (three members of the L, family are pictured in Figure 2). This fact
constitutes a significant advantage for E,, when it comes to testing and comparing
our measures’ proximities to participant judgments. To measure E,,’s distance from
participant judgments, we can essentially evaluate a wide range of the members of
L, and then choose that member of L, that is closest. In this sense, E;; is much
more flexible and thereby has an a priori advantage over the other measures.

3.2 Comparing the Measures

We are now prepared to compare the descriptive merits of our various candidate
measures of explanatory power. We first apply the Euclidean distance measure d to
the results derived from each of our candidate measures of explanatory power via
participants’ subjective probabilities. Results (over 260 judgments for each hypoth-
esis) are displayed in Table 3. These results change somewhat if we now apply
the measure d to the results derived from the candidate measures using objective
probabilities. Results are displayed in Table 4.

These tables reveal several interesting findings. First, the last row in each table
provides the distance between participant judgments and the corresponding poste-
rior probabilities (rescaled to [—1,1]) that the urn chosen is A (column 2) or is B
(column 3) in light of d. These probabilities come remarkably close to participant
judgments of explanatory power. In particular, the subjective posterior probabilities
come closest to participant judgments about H, while these probabilities are sec-
ond only to & in proximity to judgments about Hz. These results might suggest
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Measure Distance from J(d, Hy) Distance from J(d,Hg)
Ep 8.563 7.726

Ec 8.455 7.755

Ep 5.437 6.144

Eg 15.048 14.940

¢ 5.597 5.211

Ls 6.928 8.197

Ly 5.935 6.233

Ly 6.376 6.024

2 X Proypj(Ha[Hplld) — 1 5.132 5.404

Table 3. Distances between participant judgments and measures (subjective probabilities).

Measure Distance from J(d, H,) Distance from J(d,Hg)
Ep 8.497 7.596

Ec 8.356 7.555

Ep 5.392 5.952

Eg 14.520 14.887

& 5.617 6.218

Ls 6.217 7.190

Ly 6.118 6.312

L, 6.502 6.218

2% Prop;(Ha[Hglld) — 1 6.587 8.318

Table 4. Distances between participant judgments and measures (objective probabilities).

11




either of the following two hypotheses. First, it could be that participants confuse
the concepts of explanatory power and probability; in this case, when asked to
judge how well a hypothesis explains some set of data, participants tend to read
the question as asking for their judgment of how probable the hypothesis is in light
of that data. Alternatively, participants may have distinct concepts of explanatory
power and posterior probability that are nevertheless closely related (as the nor-
mative implications of our candidate measures would imply). In either case, we
would expect participant judgments of one of these concepts to track judgments of
the other. We will have more to say below about the relative merits of these two
hypotheses.

These tables also reveal E; to be a uniquely bad descriptor of participants’
explanatory judgments. As mentioned previously, E; also happens to be unique
insofar as it is the only formal attempt to analyze explanatory power in terms of co-
herence. Consequently, the descriptive prospects for a coherence-theoretic analysis
of explanatory power look bleak. At least with regards to the notion of coherence
that Glass (2007) has in mind when he introduces E, this study suggests that par-
ticipants are not thinking about how well hypotheses cohere with d when making
judgments about how well they explain d.

Third, the tables show that, whether we use subjective or objective probabili-
ties in our derivations, measures Ep, &, and various rescalings of E,, consistently
come the closest of all of the considered candidate measures of explanatory power
to participant judgments. This observation immediately leads to a further question
insofar as we want a full comparison of the descriptive merits of our measures. Re-
call that measure E;; has the advantage of corresponding to any number of rescaled
measures L,. While E, and & look as though they generally come closer to par-
ticipant judgments than L, L;, or L,, it may be that some other rescaling of Ej,
nonetheless outperforms E, and &. To investigate this possibility, we must run
a more careful analysis of the L, family to get a closer estimate of which of its
members comes the closest to participant judgments. Then, we can compare that
member to E, and &. Figures 3 and 4 summarize the results of such an analysis.
Looking at these figures, we can see that the overall Euclidean distance (over all
520 participant judgments — 260 pertaining to H, and 260 pertaining to Hy) cor-
responding to members of L, never dips below that for E, or for &. We can also
now estimate which member of the L, family is the closest competitor to E, and
&. When using subjective probabilities, we estimate the best performing member
of L, to be L, »5; when using objective probabilities, we choose L ,.

In light of the preceding discussion, at least two important questions still re-
main. First, do participants simply conflate the notions of explanatory power and
posterior probability, or do they take these to be distinct, albeit closely related to
one another? Second, & and E, are generally shown by d to be closer to partici-
pant judgments than the other measures. Yet, one might still wonder what degree
of confidence we can have in this conclusion given our data and whether we can
run a distinct comparison between these two measures which will single one out
as providing the best fit with participants’ judgments.

As it turns out, we can shed light on both of these questions by performing
a more sophisticated comparison of our measures. Specifically, we calculate and

12
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Figure 3. Distances of members of L, versus that of Ep (dotted line) and & (solid line) - calculated
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Measure Mean Residual o Measure Mean Residual o

Ep -.098 497 || Ep -.095 491
Ec -.095 495 || Ec -.095 485
Ep .077 .352 Ep .081 .343
Eg .749 .551 Eg 728 .550
Ly s 112 356 || Ly 134 .362
2% Pro,p; — 1 -.095 313 || 2% Prop; — 1 -.095 456
& -.015 .335 & .071 .361

Table 5. Sample statistics (using subjective probabilities on left, objective probabilities on right).

Ep Ec Ep Eg Lios 2X Prgypj—1

& t=50915 =6.000 t=-7.543 t=-49.702 t=-11.783 =7.833
p<.001 p<.001 p<.001 p <.001 p <.001 p <.001

Ep Ec Ep Eg Lo 2% Prop; — 1

& t=8.092 t=8628 t=-2963 t=-32441 t=-11.896 t=13.074

p<.001 p<.01 p<.005 p <.001 p <.001 p <.001

Table 6. Comparison of & with other measures (theoretical results calculated using subjective
probabilities for top half and objective probabilities for bottom half). Each cell reports the results of a
paired t-test between residuals obtained with & and those obtained with the measure in the associated
column. For each test, N = 520, corresponding to the total number of participant judgments.

compare the means of the residuals (i.e., J(d;, h;) — E(d;, h;)) between the theoret-
ical results provided by each candidate measure and participant judgments. These
mean residuals (and corresponding standard deviations) are displayed in Table
5. As this table shows, &’s results have the mean residual that comes closest to
the ideal value of 0, and this is true whether we are using subjective or objective
probabilities to derive our theoretical values. Furthermore, Table 6 reveals results
from a series of paired t-tests collectively showing that the differences between &’s
mean residual and those corresponding to the other measures are all quite signif-
icant. Note, in particular, that &’s mean residual is significantly closer to O than
that of Ep and L, ,5 (when using subjective probabilities) and E, and Ly (when us-
ing objective probabilities). Accordingly, from our experimental data, we can now
conclude that & comes significantly closer to participant judgments than any other
candidate measure (including any functional rescaling of E,;).

Importantly, & not only does comparatively well in this regard, but it also does
remarkably well on its own. In particular, the mean residual between &’s results
(calculated using subjective probabilities) and participant judgments (Table 5)
does not differ significantly from 0 (N = 520, t = —1.012, p = .312). This result

14



Figure 5. Participant judgments about H, (darkest line) plotted with values derived from & using
subjective probabilities and objective probabilities (lightest line).

Figure 6. Participant judgments about Hy (darkest line) plotted with values derived from & using
subjective probabilities and objective probabilities (lightest line).

does not hold true for any other measure; in all other cases (using either subjective
or objective probabilities) a measure’s mean residual differs significantly from the
ideal value O (for all of these comparisons, p < .0001). Figures 5 and 6 give visual
representations of the fit between & and participant judgments.

We may now return to the question of whether participants are simply conflat-
ing the notions of explanatory power and posterior probability. If this were true,
then we would expect the mean residual corresponding to the posterior probability
to be very close to 0. This should particularly prove true in cases where the residu-
als represent the differences in a participant’s judged degree of explanatory power
and that same participant’s own stated subjective posterior probability. In the sub-
jective and objective cases, however, the mean residual is —.095. This means that,
on average (over 520 data points), participants judge explanatory power to be
significantly lower than the corresponding posterior probability. Thus, our experi-
mental data provides us with evidence that, even while intuitions about explana-
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tory power are linked closely to judgments of posterior probability (as evidenced
by their close Euclidean distance), these notions remain conceptually distinct.

4 Discussion

This experiment has important implications both for the epistemology and psy-
chology of explanatory reasoning. Regarding the former, Schupbach and Sprenger
(2010) argue that measure & corresponds most closely to our notion of explanatory
power because this measure alone satisfies several intuitive conditions of adequacy
for such an analysis. This paper augments that case for & with empirical evidence
suggesting that this measure also does the best at predicting people’s explanatory
judgments in general. The case for & as our most accurate formal analysis of ex-
planatory power thus looks to be strong indeed.

Regarding this experiment’s implications for psychology, the results here sup-
port the claim that & is a useful predictor of human explanatory judgments. At
worst then, & provides psychologists with a useful, but merely instrumental theory
of explanatory reasoning. On the other hand, at best, & may lend insight into some
of the mental heuristics, and ultimately the cognitive mechanisms, that people use
in making judgments pertaining to explanation and probability. To take one ex-
ample, from these experiments, we see clear signs that participants’ judgments of
explanatory power are closely aligned with, though distinct from, their judgments
of probability. This finding accords well with the normative implications of &. It
also suggests that people may well use their intuitions about how well a hypothesis
explains data as a heuristic when trying to gauge that hypothesis’s probability in
light of that data. As Peter Lipton (2004, p. 121) repeatedly quips: “explanatory
loveliness is a guide to judgments of likeliness.”

Last, and of interest to both philosophers and psychologists, these experiments
form the basis of a normative defense of everyday human explanatory reasoning. If,
as suggested here, people’s explanatory judgments fit well with the formal analysis
&, then their judgments will tend to benefit from this measure’s positive, norma-
tive implications. Consequently, given that, according to &, the best explanation
of some set of facts d must also be the most probable hypothesis in the light of d
(under certain formal conditions), and given that people’s explanatory judgments
tend to agree with the results of &, then (given certain corresponding conditions)
people will tend to choose more probable hypotheses when they reason explana-
torily. The specific conditions that must attain in order for this to hold true can
be spelled out quite precisely (thanks to the clarity inherent in the formal analysis
&). Such further work, moreover, can give us a better sense of where we should
expect explanatory reasoning to break down and lead humans astray given &. Such
a project is beyond the scope of the present paper, however, and thus constitutes
one possible route for further research in the light of this study.
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