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PROBABILITIES, CAUSES AND PROPENSITIES IN PHYSICS

EDITED BY MAURICIO SUAREZ. SYNTHESE LIBRARY (SPRINER).

CHAPTER 1: INTRODUCTION

Mauricio Suérez,
Complutense University, Madrid,

The present volume collects ten essays by philasspdf science and physics on
three inter-related themes: probability, causaitg propensities. The discussion centres
on modern physics and, in particular, on the praently probabilistic branches of
physics in our time, quantum and statistical mesarin spite of the technical nature of
most of the papers, this is a collective efforthe philosophical foundations of physics,
and of science more generally. In other wordss #dsentially a book on the foundations
of science rather than its application, and itsmaams are conceptual, philosophical and
methodological. In this introduction | provide axsmary and a philosophical defence of
some of the claims made in the book. The introducis not meant to back up all of the
specific claims made by the different authors (cam it be understood as endorsement,
particularly since some of the authors disagred,wor at least qualify, some of the
claims | have made in my own work). Instead it samt to underscore the importance of
the topics on which the authors focus their anedytigaze, and their detailed

development of these ideas.

The book is divided into three sections each deltieone of the main themes.
Thus the first part contains three essays devaigudbability in science; the second part
contains four on the nature of causality partidylar quantum mechanics; and the final
part contains some essays on propensities agaimymaiquantum mechanics. In spite of
the diversity of aims and interests, there are soameamon themes running throughout
the book. In particular there is agreement in galnan the following four joint themes or

theses (N.B. not all authors would agree with allirf: i) An emphasis on taking



probabilities in physics to be objective featuréshe world as opposed to degrees of
belief; ii) A correlated emphasis on the importarafetransition probabilities — i.e.

probabilities for objective changes of physical testa= over merely conditional

probabilities; iii) An additional reluctance to @mpret all objective probabilities in any
one of the traditional ways (actual or virtual fueqcies, single case or long-term
propensities); and finally iv) A general tendenoyidentify various causal commitments
and presuppositions in foundational physics — iiclg in several cases the causal
relation between underlying dispositional propettier propensities, and their empirical

manifestations in terms of probability distributson

The first three sections of this introduction revitne contents of each of the parts
of the book, always with an eye on these four metated philosophical themes. Then in
sections 4-6 | develop my own philosophical ungerding of these four theses, relating
them to previous discussions in the literaturetipaarly the literature on probabilistic
causation, causal inference, and dispositional et@s. Section 7 draws some

conclusions and provides some pointers for futusekw

1. PROBABILITIES

The first part of the book contains papers by Gudaciagaluppi on transition
probabilities; Sorin Bangu on the principle of iffidience; and Roman Frigg on the
typicality approach to equilibrium. All these papeoncern the nature of probability as it
appears in science, mainly in physics. | next mleva brief summary of their main

results, with an eye on the particular themesrimathrough the book.

Transition probabilities and time-symmetry



In Chapter 2: “Probability and Time Symmetry in €&cal Markov Processes”
Guido Bacciagaluppi argues that time-symmetric diteon probabilities can also be
employed to represent typical examples of timeetia@ phenomena. Therefore transition
probabilities, even if representing the chancepasisible changes of physical states, can
neither entail nor ground an objective distinctiostween past and future. To a first
approximation, this implies that defenders of tengbeories of time and other
philosophers inclined to deny the reality of beaognineed not fear the concept of
transition probability: it is not an essentiallyng-directed concept although it may of
course be used to represent processes that a@fienthlly directed in time. (Later on in
section 6 of this introductory essay it is argubdt tBacciagaluppi’s thesis may have
interesting implications regarding the nature oé thropensities that might underlie

transition probabilities).

Bacciagaluppi follows the usual definition of traimms probabilities in terms of
Markov stochastic processes. Roughly a processaigd if the probability of any state
at any given time is dependent only on the immetliapreceding state; all previous

states are statistically irrelevant. For a stocbgsbcess this entails roughly:

P (S(0)/S() & S(t1) &...& S(ta)) = P (S(E1)/S(¥)) (MP)
where S() is the state of the system at timehd so on.

This equation is a simplified version of Bacciagglts equation (3), where |
have made explicit the dynamical properties ofestaidentifying them by means of time
index variables. | have then kept states in thealbe range of the probability function —

as opposed to placing them in the subscritnd | have represented a static probability,

! Bacciagaluppi’s terminology employs the techniwation of an n-fold joint distribution, which is
standard in the literature on stochastic proce@sese.g. Doob, 1953). According to this terminglog
states 1 to n appear in the subscript of the pibtyatunction, and time indexes in its variablenge. We
then consider the n-fold joint probability distrtimns that the n states define over the time indeXhis
terminology is more convenient for the derivatidriexhnical results but it strikes me as less fivtej at
least for the purposes of this introduction.



when in a stochastic process each probability nyereerally carries a time index too —
which determines the values of the probabilityhait stage of the process. Equation (MP)
hence expresses a kind of statistical independethee:state at any given time is
statistically independent from any previous stataditional on the state just prior to it.
In the language of contemporary theories of caudalence, the state at timg $(t)
screens off the later state ;§t from any previous states St ..., S(1). In this

simplified terminology the concept of transitioropability can be expressed concisely:
P (S (§+1) / S() = Regn) (S (1+1) & S(§)) /R (S (§) (FTP)

The equation expresses ttransition probabilitythat a system will physically
undergo a changgom state S (J at time fto state S (i;) at a later timejt,. We may
refer to this as &rwards transition probabilit(FTP) since it expresses the transition
probability R:1; from an earlier to a later timef a change of state §)(into a state S
(tj+2). 2 (FTP) may be contrasted with the expression far backwards transition
probability (BTP), i.e. the probability of the sarcleange of statbut from the later to the

earlier time 3

Piie1 (S (§+1) / S()) = Py (S (1) & S(8)) / Bea (S (1)) (BTP)

Forwards and backwards transition probabilitiesdneet be equal, and typically
they are not. A stochastic process that is fundaaigrime-asymmetric would normally
establish different forwards and backwards proltedslfor the same change of state. For
instance a process directed ‘forwards’ in time wlog#t one or zero backwards transition

probabilities, while setting forwards transitioropabilities between zero and oioe the

2 These notions are again expressed in my own tefogg. The notation of n-fold distributions has,
undoubtedly, an advantage at this point sincdate us to distinguish the conceptsyimmetryof the
transition probability from the concept détailed balancésee Bacciagaluppi’s section 3, where it is also
claimed that under standard conditions these caseep equivalent as statements of time-symmeBiy).
the distinction plays no role in this introduct@gsay which focuses instead on conceptual issgasdiag
objective probability.

% So, importantly, a backwards transition probapikitnot the forwards transition probability of the time-
inverse of the state change: Prob(S (§1) / S(§)) # Proky; (S () / S(41)), with .4 > . The latter is
rather a different transition probability altogatheelonging to an entirely different Markov proses



very same change of staté process directed ‘backwards’ in time wouldadmversely.

If the forwards and backwards probabilities for @langes of state are equal, then the
process is time-symmetric in a robust sense. Mpeeigcally, if all processes are time-
symmetric then a consideration of the probabiliiefined for the world-dynamics (i.e.
the probabilities for all the changes throughowstdry of all the states of all systems in
the world) would leave the direction (the ‘arrowdj time completely undetermined.
There would be no way to pick out a particular clien of time from any transition
probabilities. Although such ideal and abstract ldvodynamics is not helpful in
modelling any particular stochastic process, itsdsbow that there is nothing in the
concept of transition probabilitper sethat contradicts time-symmetric fundamental
laws. In other words, we may also define genuimagition probabilities in worlds
endowed with fundamentally time-symmetric laws.

In the main section of his paper (section 4), Bagaluppi considers and rejects
three different arguments that may be raised ag#mis conclusion. These arguments
purport to show that transition probabilities ddfaest conflict with time-symmetric laws
and, therefore, require a direction of time. Royghky go as follows. First, there is the
argument that ergodicity on its own defines anwarod time because it entails that most
systems will tend towards equilibrium. In our cakes should mean that the stochastic
process will tend to equilibrate in time, i.e. thtawill tend to define identical and hence
symmetrical probabilities for all state transitidnsthe limit (or to put it another way its
single time n-fold distribution Jt) becomes time-invariant in the limit). This seeto
require asymmetry at some point in the processréefquilibrium is reached. Second,
there is the idea that, at least for some commarcgsses, backwards transition
probabilities fail to be time translation invariaf@onsider decay processes where the
probability of decay from an excited to a grounatestin unit time is finite. Finally, there
is the thought that backwards transition probaédiare not invariant across experiments
with varying initial distribution, i.e. experimentghere the initial time series data differs.

In all these cases transition probabilities seencawflict with time symmetric

laws because a fundamental distinction seems torgembetween forwards and



backwards transition probabilities. Yet since weréhgust argued that the concept of
transition probability itself cannot be used taadluce any fundamental time-asymmetry,
it follows that these arguments must employ addaiassumptions. It is to be expected
that these assumptions are responsible for thelicdonfith time-symmetry and

Bacciagaluppi argues convincingly that they rediacthe same mistaken presupposition
in all three cases, namely: that the calculatiotrarisition probabilities is to be worked
out on samples that aneot in equilibrium. In such cases the inference frome t

frequencies in the sample to the transition prdhi@s will yield an apparent time-

asymmetry. However, once the samples have beeanwdel’ in order to generate
‘unbiased’ ones, the apparent time-asymmetry disag There is an interesting
philosophical insight buried in this argument, whicshall take up briefly later in section

4 of this essay.

The principle of indifference

In the second chapter, Sorin Bangu reconsidersrdbe of the principle of
indifferencein the ascription of probabilities with a partiaulemphasis on its use in
physics. Keynes first stated it as folloWs‘The principle of indifferenceasserts that if
there is no known reason for predicating of oufjecttone rather than another of several
alternatives, then relatively to such knowledgeahbsertions of each of these alternatives
have an equal probability”. There are a number efi Wnown arguments against the
principle, many of them taking the form of countemmples, or paradoxes. Typically
these counterexamples show that the applicatiorthef principle leads to several
inconsistent probability ascriptions to the samenévThe so-called Bertrand paradoxes
stand out: on the basis of geometrical considergtiand under several assumptions of
continuity and smoothness of the probability densihey show that the principle of
indifference leads to inconsistent probability gstesns. A very simple version due to

* In theTreatise on ProbabilityKeynes, 1921) which traces it back to Bernousligpplication of the
principle of sufficient reason. For discussion ak® Gillies (2000 chapter 3).



Van Fraassen is often discusse@onsider a factory that produces cubes of lehghto

2 centimeters. What is the probability that thetreesbe produced has an edgé cm? A
straightforward application of the principle of iffdrence yields probability = %. But,
we could have formulated the question in seveffégmint ways. For instance, what is the
probability that the next cube has sides with aaarl cnf? The principle now yields
the answer ¥%. And how about the probability that miext cube has volume 1 cnt?
The answer provided by the principle is now 1/8edé are all inconsistent with each
other since they ascribe different probabilitieshi® occurrence of the very same event.

More generally the principle of indifference emmog problematic inference
from our epistemic situation of relative ignoran@egarding the outcome space of a
stochastic process to a definite probability agicnipover the various outcomes. The
inference is problematic in just the way any infex@ from ignorance to truth is
problematic.’ But in addition there is a sense, which | disdasthe second part of this
introduction, in which the principle may invite dregitimate inference from a merely
epistemic fact about our knowledge (or lack théreof an objective fact about the

physical world — more in particular about its dispional properties.

Bangu agrees that there is at least a priori nsore& support the principle, and
he does not attempt to provide new arguments tpatjit. His aim is rather to contest
two other arguments against the principle, a atassgument by Hans Reichenbach
(1971 /1949), and a more recent one by Donald&Si([2000a). These arguments attempt
to show that the principle is not an a priori truéimd is moreover redundant even as a
contingent truth about the correct adscription @iability values in specific situations.
In other words the principle is not even a necegstzol or condition for the practice of
probabilistic inference. Or, to invoke Reichenbactivn terminology/ the principle of

indifference can neither halidateda priori norvindicateda posteriori.

® Van Fraassen (1989, pp. 303-4).

® See Strevens (1998, p. 231) for further discussion

" As applied to the rather different problem of intian — see Reichenbach (1951, chapter 14) andd®alm
(1991) for a critical discussion.



Reichenbach’s argument appears to aim for a stroomeclusion than Gillies’.
Reichenbach proposes a proof that the principlendffference grounds no sound
inferences at all to the probabilities of physiegkentsthat can not be established by
other empirical meandn other words, the principle does no outstanduagk at all in
practical inference. By contrast, Gillies acceptattthe principle does some heuristic
work — in suggesting new hypotheses or physicalrtee entailing probability values for
various outcomes. However, although it may be k#aoally useful in generating new
physical theories or hypotheses, it has no stands@ logical principle. Employing
Reichenbachian terminology once again, we may kay, taccording to Gillies, the
principle has an inferential function in the cortex discovery, while lacking it in the
context of justification. By contrast, Reichenbagipears to claim that the principle has

no inferential function in any context whatever.

Nevertheless both arguments share the aim to dhatte principle is redundant
in the ascription and justification of probabilgieany work the principle could appear to
do in providing probability values for outcomesany context, is work that can be done
by other methods. More generally both Reichenbact &illies aim to provide
alternative means for the justification of probait hypotheses and stochastic laws,
which would eliminate any need for the principleyender it otiose for this purpose. We

may thus refer to their arguments as ‘eliminativist

Bangu finds both ‘eliminativist’ arguments defeetivHe first shows that
Reichenbach’s argument is either circular or undoeither the principle of indifference
is itself assumed in the proof or it remains thgtdy unjustified. Reichenbach’s
argument is a development of yet another argunamtd in Poincare, and goes roughly
as follows.® Consider a roulette wheel, evenly divided into sl black intervals,
corresponding to red and black numbers. In theradesef any further information, an
application of the principle of indifference ensathat the probability of obtaining a red
or a black outcome should be the same and egdal Tthe question is whether there is a
distinct procedure that would enable us to defieedame result but without invoking the

8 Reichenbach (1949); Poincare (1912). For a sumaratyreview see Strevens (1998, pp. 236-8).
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principle at all. Poincare and Reichenbach reasofoliows. Consider that the outcome
of the game is determined by where the wheel stapd, may be represented by a
variableB ranging between 0 andti2Let then d @) be the probability distribution ovéx
The probability of obtaining a red number is giv®nthe sum over the probabilities that
0 falls in a particular red square. Now assuming tha intervals alternate rapidly &
and that the function d@) is smooth over the intervals (even though notessarily
constant), then the probability of red and blackegual. This reasoning appears to
provide us with a procedure that enables us toveehie correct ¥z probability values for
red and black from the physical symmetry of thelette wheel without apparently
invoking the principle of indifference. However &angu points out, the argument
depends upon the function €) (is smooth. And the only real reason to suppogeish
that the symmetry of the wheel requires tha@)dig uniform, i.e. that it is the same for
every discrete value . To say this is just to state the principle ofiffedence over
again: we ascribe equal probability to all possiécomes because there is no reason to
anticipate one rather than another result. Unfatiely what this means is that the
smoothness of dBf depends upon the principle of indifference itsetf the procedure
described by Reichenbach and Poincare does nadllgctlo away with the principle in

practice. Hence a vindication remains a possibility

Bangu then discusses Gillies’ argument and he elaivat it does not hold water
either. He points out that the kinds of methods @idlies invokes as replacement for the
principle of indifference for the justification gfrobabilistic hypotheses are subject to
precisely the same kind of objections that show ghaciple itself to be untenable.
Gillies claims, following Jaynes, that the prineipbf indifference provides us with a
heuristics for seeking new statistical theories layjbtheses’ But he also claims that the
principle is dispensible as a method for justifyististical hypotheses, which may
always be justified by means of a more appropmagthodology. In particular Gillies
defends a ‘methodological falsificationist’ apprbado the testing of statistical

hypotheses, partly inspired by Popper and partlythey classical statisticians Fisher,

° Gillies (2000, p. 47-49), where several examplemfphysics are provided, such as the viscosityases
and Bose Einstein statistics.
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Neymann and Pearson. In this accouriglsifying rule for probability statemen(ERPS)

is formulated, which enables us to construe pradiséibi statements as falsifiable ‘in

practice’, even though from a strictly deductivenpaf view, such statements are in
principle unfalsifiable!® A statistical hypothesis H is then methodologicédlisified by

a sample of data points {ee, &, .... ,@} if there is a test statistic X whose value lies

below the statistical significance level, whichypically fixed at 5%

Howson and Urbach have argued that the falsifyinlg requires a decision
regarding the outcome space of the test statistibnt whether or not the data points
may be said to falsify the hypothesis H may wepeted on this decision. In particular
they claim that a decision is required to deterntime “stopping rule” describing the
conditions under which the experiment is terminatedfinalised. For instance in
assessing of the hypothesis that a particular isdiair, we must repeat the experiment a
number of times and different rules may be appieethe termination point. As a result
the outcome space (the space of all possible segs@i outcomes) is affected.Bangu
goes further in claiming that the decision regagdihe outcome space is akin to the
decision that the principle of indifference pron®ote order to ascribe equal probability
to outcomes evidentially on a par. In both casesdcision involves fixing the outcome
space. According to Bangu this compromises Gill@gument for the dispensability of
the principle of indifference. The type of methaup} that we would be attempting to
replace the principle with is thoroughly infusediwjust the sort of difficulty that led us
to abandon the principle in the first plat&Thus, Bangu concludes that there is not yet a

good argument against the vindication of the pplecof indifference in practice.

10 See Gillies 2000, p. 147.

A test statistic for an experiment is a randomalde X, whose value can be calculated as a fumctfo
the data sampled, X, &, ..., €), and that can be taken to represent the outcdtie @xperiment.
Note that the same experiment may yield differeti@s for the test statistic, depending on the data
sampled.

2 Howson and Urbach (1993, pp. 210-212). In theimeple we may choose either to terminate the
experiment as soon as 6 heads occur, or rather2éfteials regardless of the outcome. The sizhef
outcome space is then predetermined in the ladte = 2°) but not so in the former. Even if the outcome
spaces happened to have the same size in both(basasise say thd'ead happens to occur on th&'20
trial), it would still be the case that the stogpimle could affect the result of the applicatidrire
falsifying rule, falsifying it in the former but méhe latter case.

13 Note that Gillies disagrees that a falsificatiomigethodology is in any way threatened by Howsah an
Urbach’s argument. See patrticularly the discussidis interesting review of their book (Gillies9® pp.
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Typicality in Statistical Mechanics

In the third and last chapter in the probabilityctsen of the book, “Why
Typicality does not Explain the Approach to Equiliin?”, Roman Frigg critically
evaluates attempts in the philosophy of statisticathanics to provide typicality-based
explanations of thermodynamic irreversibility. Cmies a classical system consisting of n
particles, each endowed with three degrees of &dmedcind governed by Hamiltonian
dynamics. Its state may be represented in a camsttabn-1 dimensional energy
hypersurfacd e of the corresponding 6n-dimensional phase spadéach macroscopic
state (defined by sets of macroscopic propertiesyvill define disjoint and exhaustive
subregiond’y; of I'e. The second law of thermodynamics is then supptseatail that
the evolution of the entropy of the macrostaterof @reely evolving) system mirrors the
increase of thermodynamic entropy over time, reggghi maximum value at equilibrium.
Suppose the initial state of the system isgx @nd the final state is x (). Then &ias
I'equi be the past and the equilibrium macrostates osyiseem, so xgJ € I'ras; @and X(t)e
[equi- It seems to follow from the second law that apsteam whose initial macrostate is

IpastWill eventually wind up i gqui.

Why is this so? And more particularly: is there eplanation for this fact in
statistical mechanics?* We may refer to any approach that aims to prowde
explanation by invoking the notion of ‘typical stgtas a ‘typicality explanation’ (of the
approach to equilibrium). This type of approachesebn the thought that the equilibrium

macrostatd gqi IS the largest among all the regiokig under some standard natural

90-97). Howson and Urbach respond in tifeeglition of their book (p.p. 214-215). This debates on
whether or not the stopping rule is relevant toghgformance of the experiment, and therefore agleto
the evaluation of the application of the falsifyinde. It is surprising that this debate does rattappear to
have been linked to the question of the naturéefrobabilities involved, and in particular whettteey
are subjective or objective probabilities.

14 Should there be one? The presumption that thengldlis of course tantamount to the view that
thermodynamics should be reduced to statisticahagcs. It is controversial whether such attemptgeh
been successful. Moreover it is unclear that theykl be in order to ground thermodynamic
irreversibility. See for instance Sklar (1993, deay®). Such interesting questions are beyond tingigw
of this essay or this book.
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measure, such as the Lebesgue measudreFrigg discusses three different typicality
approaches and his sober conclusion is that n@nacinally viable. As is often the case
in a philosophical dispute much hinges on theahitormulation of the problem. Frigg

first outlines a standard formulation which he hely refers to as ‘gloss’, and which he
goes on to dispute (in section 4 of his paper)sTarmulation is however sometimes
adopted by other authors as a fact, namely ‘thé tfzett equilibrium microstates are
typical with respect to'e and the Lebesgue measure p’ (p. 5). Indeed thee th
approaches discussed by Frigg in some way link ‘tisss’ to the dominance of the

equilibrium macrostate.

The first approach appeals to the brute fact oicaljy itself. In other words it
aims to explain the approach to equilibrium as sulteof the typicality of equilibrium
states. Frigg rightly points out that there is aason to suppose that atypical states need
evolve into typical states just because the forameratypical and the latter are not. And
this is true even if the atypical states made upeasure zero set. The evolution of the
states depends rather on the specific dynamica that operate, and cannot be settled
just by looking at the measures (relative sizethancase of the Lebesgue measure) of

different regions of phase space.

The second approach consequently focuses on dysaBdadtzmann’s original
ergodic theorem is an attempt at a dynamic exglamgtoughly the ergodic theorem
states that the dynamics of the state is suchathatrajectory sooner or later visits every
point in I'e. In other words regardless of the initial micrésta system will eventually
take every other microstate compatible with the nosopic constraints}® There are
however well known problems with Boltzmann’s origiergodic theorem, and improved
ergodic explanations of the approach to equilibrinave also been criticised’ This
solution seems to be rejected by those who advdbateypicality explanation in any
case. Another reading of the second (dynamicalycambh regards chaotic dynamics as

the key to the explanation of the approach to dguiim. Frigg in turn distinguishes two

15 A measure usually defined over the semi-closeshvals of the real line (see Halmos, 1974, pp..p5ff
16 Sklar (1993, pp. 159-160).
" For a thorough critique see Earman and Rédei (1996
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versions of a chaotic explanation. The first isdohspon the sensitive dependence on
initial conditions characteristic of chaotic belawi, and only requires chaos locally in a
particular subset of the phase space. Sensitigityitial conditions has been argued to
ground a typicality explanation of equilibrium, iime sense that the trajectories that will
exhibit random walk behaviour are ‘typical’. Morpegifically, the region of the phase
space that contains the initial states of trajeesothat exhibit this type of random walk
behaviour has a Lebesgue measure arbitrarily ¢tode Frigg refers to this condition as
the Typicality Past Hypothesis (TPH) but rejects itlea that all those trajectories that
satisfy this condition actually carry typical imticonditions into the equilibrium region.
He claims that there is an important set of suafettories belonging to KAM systems
that do not do so. So this typicality explanatideoaseems to fail for reasons not
dissimilar to the ergodic explanation. The secoadion of the dynamical explanation is
more promising according to Frigg. This focusest@nnotion of global chaos, where the
entire phase space exhibits chaotic features ahduabisolated subsets of the phase
space. Frigg discusses several ways of trying tkentiae notion of global chaos more
precise and ground the explanation of the approaaquilibrium. The most promising

are still prey to some of the objections that waised against ergodic approach.

Frigg discusses yet a third approach, due to Lefzoamnd Goldstein, which
focuses on the internal structure of the microaegi'y; rather than the entire phase
space. The important feature, according to Frigghe property of each statelig; of
being “entropy-increasing”. This is a relationaloperty of states and dynamical
trajectories: a state is entropy increasing ifes lon a trajectory that takes lower entropy
states into higher entropy states. A system is tdefined as “globally entropy
increasing” roughly if every subset of its phasacgpis densely populated by such
entropy increasing states. One would then hopegludial entropy increasing systems
are all necessarily equilibrium approaching. Howewes is unfortunately not the case,
and any attempt to work out a fit between these mwtions still requires us to make
assumptions regarding the typicality of entropyréasing states within the phase space

regions in accordance to the standard Lebesgueuneeas
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Frigg’'s conclusion is that any proper explanatiérih@ approach to equilibrium
will require a dynamical explanation; merely groungdit upon the typicality of the
corresponding states within the phase space weelt ee sufficient. It does not matter
whether entropy increasing states are typical is sense — what matters is rather the
details of the dynamical laws that evolve low epyrinto higher entropy states. Without
a reference to the dynamical transformation ofstla¢es, such explanations appear empty

or vacuous. (See section 6 for a discussion oflyim@amics of propensity states).

2.CAUSES

The second part contains essays by Federico Laadifize nature of causation in
modern physics, Joseph Berkovitz on the more dpe$ue of backwards in time
causality in quantum mechanics, Miklés Rédei anda&a Gyenis on the causal
completeness of probabilistic models, and a joapggy of mine with Ifiaki San Pedro on

causal inference in the context of EPR experiments.

From Metaphysics to Physics

In chapter 5, Federico Laudisa takes up the isdueaasation in quantum
mechanics, particularly in connection with the E€tRRrelations. Laudisa first rejects the
idea that causality is anathema to quantum mechamigeneral. He then endorses a form
of causal pluralism that leads him to the view timainy questions regarding causality in
guantum mechanics may receive different answedsferent frameworks, or depending
on interpretation. (In fact he later makes it knotlvat he subscribes to a stronger claim
which | have defendedis a visthe EPR experiment, namely: that such issues have
determinate answers independently of the detailgthef models of the correlations

provided within each interpretation). The rest bé tpaper is a review of the main
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difficulties that emerge in the attempt to provichusal accounts, mainly with reference
to the EPR correlations within some of the differemodels and interpretations of

guantum mechanics. In particular Laudisa focusetheiRW and Bohm's theories.

One feature of Laudisa’s analysis is his assumptibat performing a
measurement and obtaining an outcome is essentialysame event. The causal
connections that he has in mind are between measuteand-outcome events. (It is
arguable that this rules out a propensity integiret of the quantum state, something
that | shall discuss in due course). Laudisa thitlieg the superluminal nature of any
putative connection in this case yields a ‘weakhfaf causality, which seems to violate
intuitions regarding the necessary temporal pgyoat causes. Hence after reviewing
some of the literature that disputes that thenseisessarily a conflict between a causal
reading of the EPR correlations and special retgfivaudisa raises the question: is it
possible to provide a causal understanding of thienection that does not require
backwards in time causation? The key to a propalyais, according to Laudisa, lies in a

better ontological account of the theory in thetfplace.

This leads Laudisa to address two different inetgirons, the GRW theory
(section 4) and Bohmian mechanics (section 5). GR&V interpretation is well known
for its postulate of spontaneous collapses of tlevefunction. These spontaneous
localisation events occur sufficiently often for ethdetection of macroscopic
superpositions not to be possible in practice. Qutstanding problem with the account is
related to its relativistic extension since thealmation events seem to privilege a
particular hypersurface and might select a framaudisa distinguishes two different
proposals for its ontology, the ‘matter densitydathe ‘flash’ ontology*® The former
assumes that a continuous field on 3-dimensioratespepresents the matter density in
each point of space at each instant. The latteronyrast assumes a discrete ontology, in
which matter is made up of discrete points (‘flashen spacetime such that to each of
these flashes there correspond one of the spontammetiapses of the wavefunction. One

advantage of the flash ontology is that it has b&ewn to be Lorentz-invariant, while

18 See Tumulka (2007) for the distinction and a depelent of the ‘flash’ ontology.
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prescribing the relevant probability distributiofte all observables. This avoids any

conflict between GRW and the temporal priority atises over effects thesis.

Laudisa then considers the non-relativistic alteveato select a preferred
foliation of spacetime. He finds that while thissasiption is unjustified for orthodox
guantum mechanics, it is unavoidable in the cadgobimian mechanics. In this context,
as is well known, whatever mutual causal influenicere is between the quantum
potential or wavefunction in configuration spacedathe particles inhabiting 3-
dimensional space, is both simultaneous and episa#igninaccessible in the sense that
only the consequences of the causal interactioa ftbsitions of the particles) are
detectable by measurement apparati, but not theataunteraction itself. (Again, it is
worth noting that a propensity interpretation of state in orthodox quantum mechanics

would share this feature).

Causal Loops in Retro-Causal Models

In chapter 6, Joseph Berkovitz carefully considarsiumber of retro-causal
models of the Einstein-Podolsky-Rosen correlatidiese are models that postulate the
existence of causes acting backwards in time. dittomal objection against such causes
in general states that they may generate loopgmia thich give rise to inconsistent
effects. In the simplest case, suppesause<, but thatc precede® and is moreover an
inhibitor of e, i.e. c is a cause ofe. Now suppose the causing is deterministic in both
instances: it then follows thatif and only if-e. The most straightforward way to avoid
such inconsistency would be a total ban on retreaéty. But there might be other less
sanguine ways to keep such inconsistencies atdoaylar to those often used to keep at

bay the inconsistencies generated by ‘bilking’.Berkovitz focuses on the particular

9 In the case of the famous ‘bilking’ argument (Blat956), the assumption is simply that an evsst
the positive cause of an everthat lies in its past. The issue is then how tvpnt the bilking ot aftere
has occurred. For if we prevemfrom happening after e has already occurred, thisrwould generate the
inconsistency that both ‘c is the cause of €' anid not the cause of e’ are simultaneously truechAwill
depend on whether ‘bilking’ is actually physicatigssible in the particular circumstances that gise to
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conditions that obtain in an EPR experiment, withegie to investigating ways in which
causal loops maybe evaded even if the postulateshtatructure contains causes that act
back in time in at least some frames of referehtéhe end Berkovitz's assessment is
sober: even where such models may be postulated@amadt entail inconsistency, there
are problems regarding their predictive or explanatpower; and the problems are

sufficiently severe to make the models dubioust ¢east unnecessary.

Berkovitz applies retrocausality to a specific expental setting that he calls
experiment X. This is an EPR experiment where idfie hand side measurement takes
place before the left hand side setting in thedatooy rest frame. Let us denotelby
the settings on the left and right hand sides;gnd andR the measurement outcome
events on the left and right hand sides respegti&Iippose further that the right hand
side outcomeR, is a deterministic cause of the left hand sidérggl. Since we have
assumed tha occurs beforéin the rest frame of the laboratory, the causaheation
betweerR andl is hence forwards in time in that frame. Howewe®@ retrocausal model
we additionally require either thatliyetro-causes the complete state at the sour@g, or

bothR andL jointly cause the complete state at the source.

We may then go on to appropriately distinguish tiiféerent kinds of retrocausal
models: deterministic and indeterministic. In agneat with the standard understanding
of these terms, a deterministic cause invariabiygsrabout its effects in the appropriate
circumstances. An indeterministic cause by contm@dstermines the probabilities of its
effects between zero and one — so it brings abisueffects but only with certain
probabilities. For instance in a typical retrocdusaodel of experiment X, the
measurement setting on the left, I, may be a pabii& deterministic cause of the
complete state at the source, which in turn is rigbabut indeterministic cause of the
outcome events. (This seems to be what Berkovgzhanind with his ‘DS model’). By
contrast, if the setting only prescribes the probabilities for the complstate at the

source, the model is indeterministic. In eitherecabere is a causal influence from

c ande. Similarly for the type of inconsistency that calisops may generate: much will hinge on the
particular circumstances that bring about the E@fRetations.

19



settings or outcomes back towards the completee staitthe source at the time of

emission.

More specifically retrocausal models are typicalgsumed to violate the

condition known ag-independence, or ‘hidden autononm?:

pAlTy&l&r)=pQly)

where/ is the complete (hidden variable) state of the aiaihe sourcey is the quantum
mechanical state, ariéndr are the settings of the measurement apparatusée deft

and right side of the experiment respectively.tlmreo words, in these models the hidden
state at the source is statistically dependent tip@guantum state and the left and right
settings. However, recall that in a typical EPRezkpent the setting events take place in
the rest frame of the laborataajter the emission event at the source and thus aker th
hidden state is determined. If the statistical deleace expressed hyindependence
reflected direct causal influence it would follolat posterior events causally influence

antecedent one$&

Berkovitz carefully analyses different kinds ofrcstausal models of experiment
X and concludes that these models entail the ewastef causal loops. The issue is then
how to interpret such loops and their consequerasesbin particular whether they imply
inconsistent predictions. Berkovitz concludes thatcausal loops within some
deterministic models entail inconsistent predictiomhile those entailed by
indeterministic models are unable to determinedib&ibutions over complete states or

measurement outcomes (unless supplemented witipfitepriate statistical rulesy. So

20 ‘Hidden autonomy’ is Van Fraassen’s (1982) terrtogy.

2 But does statistical dependence reflect causarigncies? Arguably the relationship is more cormple
and subtle. First, it is well known that statistidapendencies may mask hidden factors or hiddemamn
causes. And second, the relation of conditionababdity P (x / y) need not indicate that the cdiudied
upon eveny is a direct cause of the evenfThis requires a further assumption (see sectiortifis essay).

| will follow Berkovitz here and assume for the sak argument that causal dependencies can befead
statistical relations. In the second part of thteohuction, | argue that conditional probabilitea® not
generally a reasonable way to read propensities.

“2 Throughout his paper Berkovitz assumes a singie-paopensity interpretation of probabilities. Bet
shows that analogous results stand if the protigsilare understood as frequencies.
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in the deterministic case, retrocausality possetsgegotential to generate contradictions,
while in the indeterministic case it is unable engrate any meaningful predictions at all.
Either way these are important arguments agaitrstcausal models of the EPR

correlations in general.

Causal Completeness of Probability Theories

In chapter 7 Balasz Gyenis and Miklés Rédei proddeview and reassessment of
recent work regarding the notion of causal complkess for probability spaces. They
provide very precise formal definitions of somethé most important terms in this
literature. For instance, they define the concépmiemeralised Reichenbachian common
cause (in section 3) and the notion of causal cetapéss that follows from it (section 4).
They then review some of the main results on catmalpleteness derived within the so-

called ‘Budapest schoof?

The basic formal notion is that of a general prdiigbneasure space (), where £
is an orthocomplemented lattice abds a generalized probability measurestate aoc-
additive mapd: £ — [0, 1] where® (0) = 0 andDd (1) = 1. (Roughly: the elements of the
lattice {A, B}, or variables, correspond to one-@nsional observables while the
measured defines the probabilities over the values of theagables ascribed by a
guantum mechanical state). We may then define r@letion as follows: Cogr (A, B) is

the measure of correlation between compatible bba$aA and B in the statb.

A generalised version of Reichenbachtiterion of the common causé may then

be formally characterised as follovs:

Cx is a Reichenbachian common cause of the correl&@uarg, (A, By) > 0 between
A, and Bif ® (Cy) # 0 for all ke K and the following conditions hold:

% The name ‘Budapest school’ was introduced by Jgiutterfield (2007, p. 807).
24 For the distinction between the ‘criterion’ ané tpostulate’ of common cause see Suarez (2007b).
% See Gyenis and Rédei’s Definition 3.1.
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1. Corrp (A1, C) > 0.
2. Corrp (Bj, G) > 0.
3. Corrp (A, B3/ C) =0 for all ke K.

Gyenis and Rédei then show that these conditiorticee to the usual
Reichenbach characterisation of common causes anlithiting case of two-valued
variables. The intuitive idea is indeed the sanamely screening off: conditionalising
upon the common cause renders its effects statfigtindependent. (The first two
conditions assert that the common cause is statilstirelevant to each effect taken

separately).

The question of causal completeness of probalspgces is then in a nutshell the
following: given any correlated variables, B; € £, can we expand the probability space
(E,@) so as to find a common cause variable €atisfying the relations above, which is
included in the space? Gyenis and Rédei formafsenbtion ofcausal completeness
follows: A probability space () is causally complete with respect to a causal
independence relation R and correlation functiorrrLaf for any two compatible
variables A B;in £ there exists a generalized Reichenbachian commase€a of size
K > 2 in £ of the correlation?® The causal independence relation R minimally megui

logical independence — but it must impose additicoaditions.?’

Under these conditions Gyenis and Rédei reviewnabeu of important results on
causal completeness; the most important seems tprbposition 8”, which states that
‘every atomless general probability space is céysalent-complete’. This means that
there are statistical theories that are causallynptete: i.e. they contain the

Reichenbachian common causes of their correlati@genis and Rédei point out that it

% See Gyenis and Rédei’s definition 4.1. A commamseavariableCy has size 2 if it has two values. For
instance an indicator function (on-off) can be es@nted as a size two variable (C, = C).

27 Gyenis and Rédei leave open what this further itiomg may be, which seems wise since their aito is
describe formal models applicable to any physiealups. In causal modelling one would of course tik
know more about this relation, and in particular ghysical conditions that must obtain for A, Boto
causally independent in the prescribed sense.
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follows from this result that one may not refuteidRenbach’s common cause principle

by appealing to the thought that statistical tredregenerallycausally incomplete®

Robustness and the Markov Condition

Chapter 8 is my own discussion (jointly with Ifisgan Pedro) of the relationship
between the robustness condition once defended ibjaddl Redhead for the quantum
correlations and the Causal Markov condition (CM@at has been much discussed
recently in the causal inference literature. Weuartpr a tight connection between these
two conditions, namely: robustness follows from @EIC together with a number of
additional assumptions. First we take Richard Heéal€1992) distinction between two
forms of robustness, each appropriate for the assam of total or partial causes.
(Healey reserves the term “robustness” for the Gondition only, while using “internal
robustness” for the second condition.) We then shioat each notion of robustness
follows from CMC and the assumption of either tatalpartial causes under the only
further assumption that there exists one independesturbing cause acting on the
putative cause of the cause-effect link (in otherds, that a form of intervention is
possible). This entails that from the standpoinaofinterventionist account of causality
there is no real difference between applying rabest or the CMC. And the latter
condition is more general since it does not reguiterventions (or disturbing causes). So
it may be safely assumed in all future discussigarding the status of causality in
guantum mechanics. The robustness literature is shown to be superseded, and we
recommend philosophers of science and causal mathgists alike to focus on the

status of the CMC in quantum mechanics instead.

This argument so far supports the programme ofcthesal Markov condition
theorists, such as Jim Woodward and Dan Hausmawetr, in the second half of the

chapter we go on to disagree with Hausman (199@)Hausman and Woodward (1999)

% The reasoning is convincing but one wonders totwkeent the arguments against Reichenbach’s
Principle depend on the claim of (formal) incomptletss. For discussion see San Pedro (2007, cl&pter
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over the status of causation in quantum mechattibas traditionally been supposed that
guantum mechanics provides a striking refutatiothef principle of common cause and
other standard methods of causal inference. Thiddvarguably compromise the validity
of CMC — at least in indeterministic contexts. Haas and Woodward have claimed that
the CMC is not false in quantum mechanics, butemathapplicable That is, they
maintain that the conditions that would allow uspply CMC are not met in this setting,
and it is impossible to tell whether CMC obtainsi®wiolated. We argue that on the
contrary there is in principle no reason why the@b&nnot be applied. What's more the
application of CMC does not support the traditiojuglgement regarding causation in
guantum mechanics. On the contrary our assessraetiai whether or not CMC is
violated depends very sensitively upon both theaitket statistics modelled, and the
interpretation of quantum mechanics applied. Asegample we discuss the status of
causality in EPR in the context of the model of Bidn mechanics. Steel (2005) has
argued that in this context the CMC fails; we argbat to the contrary it arguably
obtains, provided enough attention is paid to tleaits of the model itself. More
generally, our paper is a call to apply the CMQ@t@antum mechanics in order to figure
out causal structures, but to do so judiciouslynd this, we claim, requires a healthy
dose of methodological pragmatism. Philosophersibtggstart by looking at the diverse
range of models available first within a numbediferent interpretations and then draw

their judgements on the basis of a consideratigheif details.

3. PROPENSITIES

The third and final part of the book contains thessays on propensities, mainly
in the quantum domain. Mauro Dorato reassessesotbeof dispositions in quantum
mechanics, Nicholas Maxwell reviews the latestestafghis ‘propensiton’ theory, and lan

Thompson provides a philosophical analysis of redigpositions in physics.
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Dispositions in the Ontology of Quantum Mechanics

In chapter 9 Mauro Dorato considers the role ofpal#tions in quantum
mechanics. In particular the most substantial mdrthe paper defends a role for
dispositions within the so called Ghirardi-Riminiéber (GRW) interpretation. Dorato
defends the view that the probabilities for colla@scribed by these theories can be
given an objective reading — in particular, theg amterpretable as propensities. He
suggests two different ways for doing this. Fits¢, aims to show that dispositional
readings of the spontaneous collapses postulateddsg theories are not only possible
but natural. Second, he argues against alternatvedispositional interpretations of
collapse probabilities, particularly the Lewis-gtylest system analysis account.

On the first issue, Dorato argues that dispositemesnatural on both the original
mass density localisation proposals of Ghirardi-RiflVeber (1986) and the most recent
proposal attributed to Tumulka (2006), the so-chlttash ontology’ proposal. (The
supposed advantage of the latter is the existeheerelativistic extension). Secondly,
Dorato argues against Frigg and Hoefer’'s (200 &ngtt to read quantum probabilities in
the GRW interpretation in a Humean way, in accocgawith the best system analysis.
Dorato’'s main claim seems to be that the quantuwbabilities are conditional
probabilities and therefore relations between eétsvents or properties at the quantum
level. A Humean reading of such probabilities wotlidn incur a fallacy of omission —
since it fails to explain what such conditional Ipabilities are conditional upon
(Dorato’s claim is controversial and heavily depemidupon the interpretation of
conditional probability; the claim however has arencolid basis if grounded on
transitionas opposed to merely conditional probabilitiesid bargue in this introduction

that quantum probabilities should be understoauaassition probabilities).
In the final section of the paper Dorato arguesirsgjamy own selective

propensity interpretation (Suarez 2004; 2007a),ciwvthe appropriately links to some

aspects of Bohr’'s response to the measurementgmolAs | understand it Dorato is
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charging the selective propensity interpretatiothve possible fallacy in its description
of the actualisation of dispositional propertiescl$ actualisations may or not be physical
processes. If they are physical processes, thensdfective propensity account is
incomplete since it does not describe them. (Nwae it follows from this that all collapse
interpretations, including GRW on Dorato’'s own dispional reading, are also
incomplete). If on the other hand such actualisetiare not physical processes then the
application of propensities remains mysterious (amsl explanatory power is
compromised): we are back to the old ‘dormitivetug objection to dispositions in

general.

Dorato’s objections are intricate and interesting in my view they ultimately
fail to hit their target. The selective propens#gcount indeed remains silent on the
physical processes that underlie the actualisatiopropensities. It takes the standard
propensity view that dispositions are displayedorobability distributions, each in its
proper context of applicatiof’ But it does not aim to explain the mechanismsanif —
that connect dispositions and probabilities. Suachanisms would appeal either to
categorical properties in which case dispositiores @timately reduced, or to further
dispositional properties. Either option seems \adlbdm a dispositionalist point of view,
but neither seems called for since the very exigtenf such a mechanism seems a
remnant from categorical property-speech. Conseatyukalso disagree with the need to
provide a categorical basis for the dispositionsictvhDorato and | do agree are
applicable to Bohmian mechanics (We agree on tipécability of dispositions, but the
agreement seems to end there — | take such digmssitmay well be ultimately
irreducible while Dorato thinks they must be redieito the only categorical property

available in Bohmian mechanics, i.e. positiShfhe general explanatory question that

29 Mellor (1971).

30 introduce irreducible dispositions into Bohmiarechanics in Suéarez (2007, section 7.2). However, |
was not the first person to suggest such a reaBiagonis and Clifton (1995) are an antecedentdiadth

to my mind they mistakenly understand dispositiatationally, and identify them with aspects of
Bohmian contextuality). An attempt closer to my omlaas is due to Martin Thomson-Jones (Thomson-
Jones, unpublished). We both defend irreduciblpadigions with probabilistic manifestations for Boian
mechanics but unlike Thomson-Jones | restrict gmi@ability claim to the causal or maximal
interpretation. Thomson-Jones’ unpublished manpsizidated after the submission date of the final
version of my paper. However, | was in the audidmath in Bristol (2000) and Barcelona (2003) where
preliminary versions of Thomson-Jones’ paper weesgnted. Although | don’t recall the details afgh
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Dorato wants to ask: “by virtue of what mechanisdmes a propensity generate a

distribution?” has in my view no genuinely dispasialist answer.

The Propensiton Theory Revisited

Chapter 10 contains Nicholas Maxwell’s latest deéerof his ‘propensiton’
version of quantum theory, which he has been deuwsdofor more than three decades
now (see Maxwell, 1972 for the earliest defencejxiell argues that the propensition
guantum theory (PQT) has testable consequencesdliéd in principle distinguish it
empirically from the orthodox quantum theory (OQ%¥p the PQT is not merely an
interpretation of quantum theory: it is an alteivettheory in its own right. Its main
merit, according to Maxwell, is to combine indeter®m — understood as the idea that
there are essentially stochastic or probabilistmcesses out there in the world which
generate certain outcomes with certain probatslitieand realism — the view that at the
guantum level nature too is determinate: propetigge values all the time independent

of whether or not subjected to measurement.

Maxwell is right that indeterminism and realism am®t necessarily in
contradiction. Some of the extant alternative tetations of quantum mechanics — such
as the Ghirardi-Rimini-Weber (GRW) collapse intetation, and the Quantum State
Diffusion (QSD) theory — are already living prodt.And Maxwell is right to claim that
his propensiton theory (PQT) was formulated betbese theories came onto the market.
The PQT is distinct from either of these more di&thbd alternatives on several counts.
The most important difference is that Maxwell pteties the existence of distinct entities
- propensitons - which live in physical 3-d spaoe avhose states are described by the
guantum wavefunction. It is the physical interacti®etween such entities that ‘fires’ the

spontaneous collapse of the wavefunction.

talks | am sure | was influenced by them, as welirany friendly chats with Martin over the yeafor-
which | am very grateful.

311t is not surprising that such theories have alya@ceived interpretations in terms of disposiiersee
Frigg and Hoefer (2007) and Suarez (2007, sectibn 7
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The theory has several virtues, not the least ochwviis to have anticipated
collapse interpretations, and Maxwell canvassesstndies them well. Like any other
version or interpretation of quantum theory thepersiton theory also has its own
difficulties. They are related to Maxwell’'s essahtm about laws combined with the
claim that the nature of the entities fundamentdi®ypends upon the laws that govern
their behaviour. In tandem these two assumptiotelehat the shape of the propensitons
is given by their geometrical counterpart in thenayical evolution of the
wavefunctior’? Indeed Maxwell’s physical picture takes it thatauple of propensitons
(‘expanding spheres’) at some point clash, and idiately contract at that point. But
this view faces a plethora of problems and diftiesl, all connected with the literal
geometric interpretation. First, there is the peoblof how to interpret the contraction of
the spheres; and in particular whether this proobsys energy momentum conservation;
second there is the problem of how to interpret WilKs claims that the contraction
processes result from inelastic scattering thaatesenew particles — particularly in light
of the fact that some measurements on the face wéate no new particles — such as

destructive measurements.

Derivative Dispositions

In the last chapter of the book lan Thompson fageso a fundamental question
for dispositionalism, namely the nested exercise defpositions in physics. The
manifestation properties for dispositions needb®tategorical. Rather dispositions will
often be manifested in further dispositional prdlesr Thompson cites potential energy
force and force as characteristically nested difipos. (Potential energy force is the
disposition to generate a force, while force isdisposition to accelerate a mass). These
are, in his terminologyderivative dispositions. It is interesting to apply the ideathe
dynamical evolution of quantum systems (section).4SBippose a system in an initial

state¥ (tp) is evolved by a Hamiltonian H to a new st@tét;). Thompson suggests that

32 See Thompson (1988) for a similar assessment.
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the Hamiltonian be a disposition to evolve the estathile the states be themselves
dispositional properties, namely propensities tmdpce measurement outcomes with the
various probabilities p= | <w, | v (t) > |>. The Hamiltonian represents a ‘dynamical’ or
diachronic disposition that generates further fistabr synchronic dispositional

properties, or propensities, on measurem&htWe may then refer to the latter as

derivativedispositions.

The full range of derivative dispositions generatégrid’ of dispositions that we
may refer to as enultiple generative levelfhompson introduces a number of additional
distinctions and terminology to supplement thisaid@he terminology is essentially
causal because Thompson assumes that the actigminodry dispositions over the
inferior levels down the grid is causal in natuf€hus he would say the Hamiltonian
dispositioncauseshe successive sets of static propensities). fiégid that dispositions
and their manifestations are causally related isnew. ** It suggests that there is a
particular time or instant at which the dispositioes to generate its manifestation. And
this introduces questions regarding the naturehef ‘firing’ event, and whether it is
grounded upon further dispositional properties. &ldenot enter these difficulties here.
The point Thompson's essay makes admirably is thwembasic one that the

manifestation properties of dispositions may bgakgional too.

4. TRANSITION VERSUS CONDITIONAL PROBABILITIES

¥ The idea strongly recalls the distinction betwdgnamical and value states within the modal
interpretation of quantum mechanics. See Van Fesad991, chapter 9).

34 Nor is it uncontroversial. Lewis (1997, pp. 14pfftroduced the idea of causal bases for dismosti
Bird (forthcoming) discusses objections to the ithest stimulus conditions cause dispositions toifean
themselves. For the purposes of this introductibave ignored stimuli and concentrated on the disipo
— manifestation relation itself (e.g. in the diskios in sections 5-6).
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Most of the authors in this volume discuss, oftppravingly, the idea that the properties
dealt with in fundamental physics and, particulairly quantum mechanics, may be
essentially dispositional, or propensities. Objextphysical propensities or chances are
sometimes represented as forwards in time conditipnobabilities. In this section, |

provide a brief argument that the best represemat instead by means of transition

probabilities, and that both representations asemuit.

Transition probability: Take One

Consider the equation for a forwards transitionbptulity discussed in section

one:

Pi1j (S (§+1) / S(§)) = Begrn (S (12) & S(6) /R (S (§) (FTP)

This equation does not express a well-defined ¢mmdil probability. The
probability functions are different in each sidetloé equality since the time sub-indexes
are different. Rather the formula enables us tocutale the probability for a physical
transition from the state §(to the state Sj(i) by working out the probability of the
earlier state at the time of its occurrence and the joint probability of both states at the
conjunction ofboth distinct times. Let me discuss more precisely riieaning of this
expression shortly. For now let us just note thatexpression of a transition probability
crucially differs from the similar expression fdret conditional probability of successive

states at timg:t

P (S (1) /S() =R (S () &S®) /B (S () (CR)

It also differs from the conditional probability efich states but calculated at the

later time §.4: *°

% On the assumption of a fixed past and an opemd{{UR,,) does not express anything informative since
P21 (S (#) =1and Ry (S (1:1) / S(})) = Bs1 (S (3+1)) for any states St S (i.1). But Bacciagaluppi is
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Pir1 (S (}:1) / S(8) = Bea (S (§+1) & S(§)) / P (S (§) (CR.1)

Thus, a transition probability is at leagirima facie distinct from the
corresponding conditional probability regardlessha time that it is calculated at. The

formal difference between the expressions reflactsep physical distinction.

Transition Probability: Take Two

As a matter of fact (FTP) does not express a ciamgit probability at all since a
transition probability is neither conceptually idieal nor reducible to a conditional

probability. We would be better advised to writenisition probabilities down as follows:

P> 1 (S() » S (1)) = Regeyy (S (f1) & S(6) /B (S (§) (TP)

A new symbol ‘»" has been introduced to represkatdactual physical transition
from state Sf}J at { to state Sft;) at t.1. The symbol characterises what is distinct about a
transition, namely the actual dynamicathange or transformation, of the state.
Consequently one must distinguish carefully thebphbility of a state to state transition
from the conditional probability of one of the sttconditional on the other. P (H¢t
S(t+1)) expresses the probability of a transition, wHi€S(t.1) / S(§)) expresses the
probability of the later state conditional on trelier one. Conditional probability does
not require nor entail a dynamical process thatsajly transforms the prior into the
present state; it simply expresses statistical midgrecies between different states
regardless of what goes on ‘in between’. (Condélgobability is compatible with such
a process — the point is that it neither requitesor does it ascribe it a probability). In
other words (TP) and (GQPare not equivalent in the fundamental sensettiet do not

express the probability of treame event(TP) expresses the probability of a dynamical

interested in the meaning that these expressiodsthe corresponding concepts, may have in thenabse
of any assumptions regarding becoming or any atkgmmetry in time. So he is right in consideringrth
as distinct possibilities. The only reason | igne&,,) in what follows is that all the considerationstie
text above against reading (L Bs a transition probability apply just as welltto
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change of state and it presupposes that such eeristsand moreover that they may be
meaningfully represented in the sigma field thatstiutes the domain of the probability
function. (CR) by contrast expresses a conditional probabilityhe state at a certain
time given the state at another time, and it idgo#ly legitimately well defined on a
sigma field where only states are representedodis chot requirehangesor physical
transitions from one state to another to be reptesein the domain of the probability

function; in fact it does not require such changesansitions to be events at all.

The advantage of starting out with (TP) as a deédiniof transition probability is
that it becomes immediately clear that a good amotisubstantial argument would be
needed to show that transition probabilities cotedfy reduce to conditional
probabilities ofeitherthe (CF) or (CR:1) types.*® In particular, the argument required is
not simply formal, but would imply a difficult taugtify restriction of the sigma fields
over which these functions are defined.

Transitions are not conditionalisation processes

Transition probabilities (TP) are also distinctrfrdBayesian conditionalisation
events, which are often taken to express the nuleational change of subjective degree
of beliefs:

P (S (}1) ) =R (S (1) / S§) = B (S (k1) & S(1)) / B (S (1) (Cond)

Conditionalisation is often invoked by Bayesianaasechanism for the updating
of rational degrees of belief in theories, laws,otlner general hypotheses. It is rather
unclear what it could possibly mean in the contaxstate-transitions. It could start to

make sense if we could speak of a learning prosbeseby some agent first learns that

3 A different further question is whether these pioibties (in particular (TP) and (@Pwhenever they
are both well defined) should coincide numericétiiythe initial and final states of any state titias. A

study of the conditions under which they coincisibéyond the reach of this essay — but it seemetto
be an interesting and promising research project.
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state S} occurs, and then wants to update her estimatbeoprobability of S (1) in
light of this new knowledge. However, the correging change in degrees of belief
would take place at time 1, the time at which the state changes to becomadhestate
S (+1). So by the time we are supposed to update, thestate already has objective
probability one. Why would anyone want to use ctiadalisation in order to update her
degree of belief in a state that has already oed@riVhy, more generally, conditionalise
on the basis of information that is already old?aféker (Cond) means it is certainly
formally distinct from the expression of a trarmitiprobability (TP) — the latter neither

requires nor entails any updating rule for the philities at any given timé’

Biased and unbiased samples

The key to transition probability is the expansion the sigma field of a
probability function in order to include a repregion of physical transitions or state-
changes. An interesting question is whether thispgromises the notion that an unbiased
data sample must be in equilibrium since we knoat famples out of equilibrium may
generate qualitative time asymmetries between fatsvaand backwards transition
frequencies (c.f. the discussion of Bacciagalupgitgument in section 1). There is reason
to think that it does if there is reason to thihk&ttphysical transitions or changes of state
necessarily take place forwards in time. If so, tmy events that are additionally
represented in the sigma field of a transition plolity are physical changes of state
forwards(S(t) » S (}+1)), but not physical changes of stateckwardg(S(t:1) » S (})). As
a result the data samples can at best contairotheef type of events but not the latter.
Not surprisingly, forwards transition frequenciesepothese data samples will appear to
be time invariant but not so backwards transiti@yfiencies®® In the view defended in
this essay propensities are represented by forleatdng transition probabilities. So in
this view it is automatic that forwards transitidrequencies measure the relative

outcomes of genuine dynamical changes, while baalavéransition frequencies are

3" For a different argument to a similar anti-Bayasianclusion see Guerra (2009, chapter 8).
3 See Arntzenius (1995, esp. section 2) for a d=taikample and discussion.
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merely relative ratios of states calculated by mseai the forwards transition

probabilities and initial condition&?

I conclude that the ontological primacy of forwarmger backwards transition
probabilities can only be denied if either i) gemiphysical changes of state occur
backwards as well as forward in time, or ii) no giee physical changes of states occur
ever at all. The former option entails denying tpatpensities, or objective transition
probabilities, are time oriented. The latter optiemntails denying that such things as
propensities, or transition probabilities, existadit— in either direction in time. Both

entail a major shift in our ordinary ontology.

5.PROPENSITY AS PROBABILITY

Transition probabilities are thus probabilities ggnuinely physical changes of
state. They somehow reflect the tendencies or popes that systems possess to exert
such changes. How should we represent them? |agltipt the view that quantum
propensities are displayed in probability distribns, namely the usual transition
probabilities provided by Born’s rule. In this deat | elaborate on the notion of
propensity that underlies their discussion, inipalar with reference to some of the key
texts and positions in the more general literaturdirst distinguish the notion of
propensity discussed in the book from the more lyi@aown propensity interpretation

of probability | then discuss some historical precedents fostneof view that | discuss

39 Penrose (1989, pp. 355-359) defends an appantllar view regarding the quantum mechanical
algorithm for computing transition probabilitiei¢tBorn rule) in general. He claims that the algoni can
err if applied to compute backwards state-trans#idThe rules [...] cannot be used for such revetsad
questions” (ibid, p. 359). The representation ahsition probabilities proposed here makes it oldar
this should be the case.
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here. Finally, | address the principal objectioraiagt the propensity interpretation in

recent years, namely “Humphrey’s paraddX”.

Long-run versus Single Case Propensities

The philosophy of probability literature appropelgt distinguishes two types of
propensity interpretations: long run and singleecdsThe difference between these two
types lies in the object that is identified as grepensity. Long run interpretations of
propensity identify propensity with the disposit@rproperty of a chance set up to
generate frequencies in sequences of outcome, triddde single case interpretations
identify it with the tendency to generate a paticwutcome in a given trial. There are at
least two long run interpretations: those whichegténfinite virtual sequences and those
which accept only long yet finite sequences. Alhdorun interpretations have the
following in common: a chance set up (an arrangeénoéndistinct parts capable of
generating a sequence of stochastic outcomes of set) may possess a propensity for
some type of outcome if and only if the limiting@fuency of such a trial outcome is well
defined in each (long but finite, or virtual andfimite) sequence. Hence long run
propensity interpretations agree with frequencgrmtetations in requiring sequences for
the ascription of probabilities. The differencahat a long run propensity interpretation
will not focus on the properties of the sequenéeg)encies) but rather on the properties
of chance set ups that generate those sequencethenwords, a long run propensity
interpretation does not identify probability witheiuency, but with the tendency to

generate the frequency instead.

Similarly, a single case propensity interpretatiat not identify probability with

any trial outcome but with whatever dispositionabpgerty generates a particular trial

0 The view of propensities that | shall be defendiege is very much my own (see Suérez, 2004, 2007a)
and none of the contributors in the book has eitjlicommitted to it. However | believe that thiew, or

a similar one, is required for the coherence of yrmaoenouncements made in the book, particulartyhen
third part. If so, we may take this or a similaewito be implicit in the book, and its defencetiis tsection

to provide support for it.

“1 Gillies (2000a, pp. 124-126); Fetzer (1981, chapje
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outcome. So a probability in this case is a tengahat is exerted in every trial; no
frequency in any finite — however long — sequenicsuch trials may fail to agree with
the particular probability. The only frequenciesatthon a single case propensity
interpretation, need to agree with the probabdita¥e those pertaining to the virtual
infinite sequences that would be generated if irewpossible to repeat the same
experiment an infinite number of times. Yet, unlikke long run propensity
interpretation, the single case interpretation does identify propensity with the
tendency to generate any frequency, whether fiaitanfinite. Rather, it associates

propensity with the tendency to generadehparticular outcome in the sequente.

When authors in the book discuss propensities #impost invariably have in
mind a single-case interpretation. There are, hewevnumber of interesting differences
among different single case interpretations ani$ ivorth to review them quickly*®
Gillies divides propensity interpretations into ttypes depending on what is regarded as
an appropriate chance set up — i.e. the set ofitbonmsl that must obtain at a given time
for the appropriate tendencies to be instantigdtkdnphreys by contrast divides single
case propensity interpretations into three addiidgpes differing in their account of
dynamics for propensities — i.e. their time evantiover a period and their effect on

different events at successive stages.

Let me consider Gillies’ taxonomy first, which dias all propensity
interpretations intaepeated conditiongnd state of the universenterpretations. The
chance set up may be a simple enough arrangenantdbld be specified by means of
just a few free variables or parameters. (The ¢dsscoin is an example). If so, a chance
set up is defined by just a few conditions that r@eatable and hence allows for the
same sort of trial to be repeatedly carried outsidgle case interpretation of this sort
implicitly requires all propensities to be conditad on such a set of repeatable
conditions. Alternatively, a chance set up may udel the complete hypersurface

“2 Long run propensities as tendencies to generatebat finite sequences are defended by Poppe®)195
and as tendencies to generate long but finite segseby Gillies (2000a, Ch. 7). Single case profiess
are defended by Fetzer (1981, Ch. 5) and Millee£9

3] essentially follow the exposition in Gillies @0a) and Humphreys (2004) and introduce further
considerations along the way.
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corresponding to a particular tinhelf so, a chance set up is defined by the whate sif
the universe at This type of single case interpretation too reggiall propensities to be
conditional — albeit conditional on a complete hypeface* In either view, there are no
absolute propensities Pr§Aor any event or proposition A at any timheéAny seemingly
absolute propensity is really a conditional propgn®r (A / &) with t’ < t, where S is
either the full state of the universetator the particular set of conditions required by a

appropriate chance set upt'at

On the assumption that all propensities are canthti Paul Humphreys provides
a different taxonomy based on the dynamical evotutf conditional propensitie§> A
coproduction interpretatiomssumes that the conditional propensity is fixedeoand for
all at the initial timet whether by a particular set of relevant conditiahs or by thet
hypersurface or time slice. Thus all propensiti@sycan implicit time index which need
not coincide with the time index of either conditgal or conditioning event. For example
Pr (Ar | &) is the propensity dtfor A att” given S at’. Under the natural assumption
that t < t' < t” a coproduction interpretation asses that the conditional propensity of
Ay given S is already fixed at the original timeiven the background conditions at that
time. A temporal evolution interpretatioby contrast assumes that propensities evolve
continuously in time so the propensity of Aatt need not be identical to thattat The
conditional propensity of A given $ must then be evaluatedtatPr (A / &) as the
temporal update of the original propensity B / &). Finally, arenormalisation
interpretation assumes that updating is necessary even though i$hewo continuous
temporal evolution of the propensity. (The differerbetween the renormalisation and
the temporal evolution interpretations is that fimener does not presuppose continuous

evolution so updating in intermediate stages israquired. In the temporal evolution

*4 The different interpretations are then classifisdollows: Fetzer (1981) defends a single caseategl
conditions interpretation, while Miller (1984) defis a single case state of the universe interjpoatat
Gillies (2000a, pp. 130-36) argues that these pm&tations succumb to Humphrey's paradox, and disfen
instead a long run repeated conditions interpiaiati

> Humphreys (2004).
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interpretation, by contrast, an updating’atof a propensity first defined atnecessarily

requires an intermediate updating’it*®

The two taxonomies are orthogonal and, in principtey of the 15 combinations
is logically possible. Humphreys and Gillies inesff argue that as long as applied to
single case propensities all fifteen of them atedwut by Humphrey’s paradox. In what
follows | review the notorious paradox. For now usf note that all propensity
interpretations so far analysed have one thingpmmaon: they presuppose that there are
no genuine absolute propensities and that all mgipes are implicitly or explicitly
conditional. Later on | shall argue that there aghmg in the dynamical interpretations
per sethat implies that this should be the case; and tthexre are alternative ways of

understanding botrelevant conditionsndstate of the universaterpretations.

Humphrey’s Paradox

‘Humphrey’s Paradox’ (HP) was first described byafég Salmon (1979, pp. 213-4)
and James Fetzer (1981, p. 283) who was also refgp@nfor naming it. Most
commentators describe it not so much as a ‘paraa®x powerful argument against the
propensity interpretation of probability’ The key idea underlying this argument is
roughly that propensities partake of the asymmaifycausation in a way that
probabilities do not. But if propensities are cdlysasymmetric and probabilities are not,
then they can not be the same kind of thing. Henatolesale propensitgterpretation

of (the classical — Kolmogorov - calculus of) prblhigy is out of the question.

Let me use a simple everyday example to try to nthkerough idea a bit more
precise. Some of my friends have remarked on mgensity to travel to North America
in the spring. On the basis of the relative freqyen the last ten years, we may estimate

6 Humphreys actually lists a fourth case, taesal interpretatiofHumphreys, 2004, p. 673). However,
the causal interpretation is not really on a pahwhe other three since it is nur sea dynamical
interpretation of the evolution of propensitiesfadot it does not seem to exclude any of the atere
dynamical interpretations, being rather compatitith any of them.

* Fetzer (1981, pp. 283-286); Gillies (2000a) ar@D@); McCurdy (1996); Miller (1994); Milne (1986).
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the probability corresponding to this propensitygbly at P (NA / S) = 0.9 (where NA is
my travelling to North America, and S stands fog th northern hemisphere — spring).
We can then apply Bayes theorem in order to finctloel value of the inverse probability
of spring conditional on my travelling to North Anea: P (S/NA) =P (NA/S) x P (S)
/ P (NA). Dividing the year in four seasons andIging some estimates for the priors,
we obtain P (S / NA) = 0.56. Let us suppose thatethis a set of causal facts {F}
underlying my friends’ propensity adscription alahg lines of the intended implication,
namely that {F} are features unique to the sprimgs®n that attract me to North
America, and cause me to travel there. We can sgpfiat {F} includes (in addition to
facts regarding the seasonal weather in springoth bontinents) some facts about my
psychology, habits and values, my work schedulefanyly and financial situation, etc.
Whatever these causal facts {F} are, they fail twerpin similarly any propensity
corresponding to the inverse probability. For whatet is that causes me to travel does
not also cause spring. In these terms, the inyandeability P (S / NA) does not seem to
have any possible causal underpinning. The relevasal facts relate to the
conditioning event S, while the effects of intenedate to the conditioned event NA. But
the inverse probability has inverted conditionedl aonditioning events. And it is
implausible to suppose that there are other fa€fsabout North America — or about my
travelling there — that cause or bring about spriiily a 0.56 chance. (Certainly those
very causal facts which underlie my propensity ravel there in the spring do not
probabilistically cause it to be spring when | ghwo {F} # {F}; and it is hard to see
what other facts could be cited§.

On the basis of examples like this, many commergatoave asserted that
Humphreys’ Paradox shows that very many well defioenditional probabilities are not
propensities. This seems to rule out the propeivsigypretation of probability in general
since there is nothing about P (S / NA) that makasany way suspect as a well defined
probability (certainly not as long as P (NA / Swsll defined too). Notice that there are

two assumptions underlying this use of the examfhe first Assumptiori) is that the

“8 For the convenience of the story, | am assumingttie relata of causation are facts along the lafe
Mellor (1995). But the argument does not hingetos assumption.
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propensity interpretation applies to conditionadhmbilities.*® The secondAssumption

2) is that a propensity interpretation applies onhen the conditioning event is a cause
or partial cause of the conditioned event. Thisiaggtion trades on a supposedly intimate
link between propensity and causation whereby tnér inherits the asymmetry

characteristic of the latter.

Paul Humphrey's own version of HP is not explicibuilt on either of these two
assumptions. But the assumptions are brought ifiditiyp This is perhaps clearest in the
discussion of the notorious example involving tfamsmission and reflection of a photon
from a half-silvered mirror®™® A source emits photons spontaneously; a few o§ethe
photons reach the mirror; among these a few arealiygttransmitted. Now let us
consider the propensity for a single photon torbéted at the source at timg to hit the
mirror at time %; and to be transmitted at timg And let us consider the complete state
of the source and mirror at timg t.e. after the emission of the photon at the seur

Humphreys invites us to consider the following gssient of propensities at timge t

i) Pra (Tis/ e Bu) =p >0
ii) 1>Px (le/By)=q>0
III) Pl'tl (Tt3/ = |t2 Btl) =0

where B; represent the background conditions;at the incidence of the photon
upon the mirror at timeyt and T the transmission event of the photon. According to
Humphreys these three propensity ascriptions armileth by the physical and
experimental circumstances. They do not follow fribva formal features of the calculus
of probability because the arguments in the praperfanctions designate physical
events and do not necessarily pick out subsetsmoéasure theoretic outcome space.

Indeed once the formal framework for the repredemtais chosen the content of

*9 This need not rule out absolute propensitiespaljh some commentators — notably Gillies (2000a, pp
131-132) — go further to claim that all propensitége implicitly if not explicitly conditional. Ithis view a
propensity interpretation of probability is alwayfs(and only of) conditional probability.

> Humphreys (1985, p. 561).

*1| have adopted Humphreys’ suggested terminologyrafer to propensities as Pr (-) and probability
functions as either Prob (-) or simply P (-).
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ascriptions i), i) and iii) is not formal but ennjgial. However, it does not follow from the
physical and experimental circumstances that tlopemsities involved are conditional
nor does it follow that they must be formally reggeted in a way akin to conditional
probabilities. This is a point that | shall take later — and demonstrates tietsumption

1 is built into the discussion of the example.

Humphreys invites us next to consider the followimgnciple of conditional
independence for propensiti&s:

Conditional Independend€l): Pr; (li2 / Tiz Ba) = Pk1 (lo / = Tis Bu) = Pk (li2 / By).

Together with the ascription of propensities abdtes principle contradicts the
(Kolgomorov) axioms of classical probability. Thentradiction with the fourth axiom,
in the form of Bayes Theorem for conditional praligbis particularly easy to show?
So, at least one among these assumptions musibge &sponses to HP have focused
on trying to show that principle Cl is false whegphedto this particular example* But
in retort Humphreys produced yet another exampé ¢bnclusively obeys CP> Other
authors endorsed the HP argument as a definitigsore to abandon the propensity
interpretation altogetheP® Humphreys himself concluded that the axioms o$sitzl
probability can not represent propensities acclyatBut instead of abandoning
propensities, he recommends abandoning the clasgi@mogorov) calculus of

probability as a representation of chance or oljegrobability.

Conditional Propensities

2 Humphreys (1985, p. 561; 2004, p. 669).

3 Humphreys (1985, p. 562).

> McCurdy (1996).

> See Humphreys (2004). My objections below to @haary different in nature and cannot be answered
by means of new examples.

¢ Milne (1986).
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The CI principle and its use in the derivation afiriphreys’ Paradox require
some careful analysis. Strictly speaking Cl mesthtes that the propensity of the photon
impinging on the mirror attis independent of the (later) event of transmissibg, and
depends only on the background conditiong.@uit Humphreys seems to think that the
actual principle of conditional independence is en@eneral, and Cl as formally
expressed above is merely a consequence of sueheaad principle. For he writes that
the CI principle ‘claims that any event that isthe future of & leaves the propensity of
I, unchanged. [...] This principle reflects the ideattthere exists a non-zero propensity
at t; for I to occur, and that this propensity value is urcéfé by anything that occurs
later than . (Humphreys, 2004, p. 670).

Thus conditional independence in general, unlikenQdarticular, applies tany
eventlater than 4 and not just to & in particular. So the expression above is not a
definition of conditional independence in generblt rather the application of
conditional independence to the particular examihe. main intuition is presumably that
the propensities of the photon atéan be altered only by events at times t Bt the
only reason to suppose this is the temporally asstnonature of the “altering” relation
— soAssumption 4s involved after all. More generally the intuiticeems to be that a
system’s propensities at {x, y, z, t} can only Iker@d by events in {Xx, y, z, t}'s past light
cone. If so, Cl presupposes the view that propiessitre time asymmetric in just the way
causation is asymmetric in relativity theory unttex ‘causal’ interpretation: no cause can
lie outside the past light cone of its effects. &wersion ofAssumption 2s again built
into the application of a general principle of ciiahal independence to the photon

example.

How plausible is this relativistic version éssumption 2 There are many good

arguments against the ‘causal’ interpretation @fc&p relativity.>” And even in a non-

" See Maudlin (1995), particularly chapter 5.
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relativistic settingAssumption 4s inconclusive since backwards in time causaiioa

fixed frame has not been decisively ruled 6.

Humphreys claims that CI holds in theo-production interpretationof
propensities>® presumably because in this interpretation all pnsities are fixed at the
initial time . But if this grounds independence at all, it is tiery general claim that all
propensitiesat time later than;t(including therefore but not only the propensity Tis)
are independent of the propensity fer. This claim goes well beyond the general
conditional independence that we have considerddrse which included only events in
the future of £ The co-production interpretation on its own grounds Ct ltualso
grounds other similar independence conditions Wetvould not want to have to assert
in this case. The only apparent way to extract ipedg Cl out of the co-production
interpretation is by addingssumption 2r a similar causal principle. The co-production
interpretation, in conjunction witlAssumption 2then entails thatyl is conditionally
independent with respect to those events outsids pfoper past light cone. In particular
it follows that |, is conditionally independent ofs] as stated in Cl. So, CI requires

Assumption 2fter all, even in the co-production interpretatity

Humphreys argues against th@production interpretatiomnyway, on the basis
that it is not a genuine single case propensitgrpretation. He claims that it does not
classify conditional propensities as real cond#iothances in an ontological sense, but
only in the measure theoretic ser¥d.suppose that he must have in mind the view that

at time { all of the probabilities are fixed for all the pensities afterwards. So barring

%8 |n fact many of the arguments against backwardisria causation turn out to depend on the finengmi
space-time structure of the putatively refutingregées. Others, such as the bilking argument, attend
agency only, but seem inconclusive. See Black (1868 Dummett (1964) for two classic sources and
discussion.

%9 See for instance the table in Humphreys (20087).

9 We may wonder about the status of conditional frethelence in other interpretations of propensits.
holds in the temporal evolution interpretation rcgi the propensity oflis updated at time.tSo Pg (I /
Tz Bu) =Pk (lo/ = Tz By) =Pk (I / By) =1 or 0. But it fails in the renormalisationenpretation since
Prs (I / Tz Bu) # Pl (o / = Tz Byy) in general. However, Humphreys (2004, p. 673)dithat a similar
principle holds in the renormalisation interpretatinamely thdixity principle. (The fixity principle states
that: Py (I / Tis) = 0 or 1, which holds in the renormalisation iptetation since Rr(l / Ts) =0 or 1). In
all cases, | contend, Assumption 2 is implicithie derivation of CI.

1 Humphreys (2004 p. 675)
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the very ascription conditions at time dnd events prior to this, all other events are
included in the outcome space and must be repes@émthe sigma field that defines the

probability function.

But if this is a reason to reject the-production interpretationit is also a reason
more generally to reject the representation of @nsjiies as conditional probabilities. Let
us accept like Humphreys that a ‘conditional prgighis a sui generisontological
relation between two events (or event tymeaphdb. This relation is entirely independent
of any formal representation in measure theoryggithe typical underdetermination of
mathematics by physics it is in fact natural topge that the same propensities may be
represented by means of very many different meaBuretions). Why are we then
obliged to represent them by means of the standapdesentation for conditional

probabilities? Why are we obliged to provide a nieasheoretic representation at all?

6. PROPENSITY AS DISPOSITIONAL PROPERTY

As long as propensity is understood asrdarpretation of probabilitywe have
no choice. Probability is routinely representedrieasure theoretic terms, and there are
even some good representation theoréfmBut why suppose that propensitterprets
probability?®® Once the idea has been given up that propensitygarticular kind of
probability, or an interpretation of the term ‘pedfility’, it becomes possible to suppose
that the relation between these two terms is sangthifferent; for example, something

akin to theoretical explanation.

62 As good as they come — typically not up to uni@ssn In particular, and rather to the point, thetfo
Kolmogorov axiom is sometimes disputed — see,lagek (2003).

8 Why suppose that objective probability, or chamequires any interpretation at all? After all many
theoretical concepts bring their own interpretatiod / or require no interpretation at all. ElliStiber for
one has recently argued for a no-theory theoryabability in Sober (2005).
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Propensities Display Probabilities

Propensities and objective probabilities are distmotions and it is the job of a
propensity theory to establish how they are congyt related. The two theories that
have fundamentally taken this insight to heartcare to Hugh Mellor (1971) and James
Fetzer (1988). Their view is that propensities digpositional properties that are
displayed in probability distributions but may g identified with them. Instead of
providing semantics for probabilities in the motletoretic sense, propensities may be
said toexplain probabilities since they explain how a certaintrthsition rather than
another one comes about in specific circumstai@sif we accept this understanding of
propensities as dispositional properties, therense® be no reason why the relations
between such properties need be represented agi@oaldprobabilities. Consider first
the relation between the possession and manifestatinditions of a propensity, such as
those involved in the fragility (F) of a glass aitsl breaking (B). Supposedly this is a
deterministic disposition under certain conditidiswe may assume that it displays the
conditional probability P (B / F & C) = 1. Everyafyile glass that is hit under specific
conditions (certain strength, etc) will break. Buhy represent this propensity as a
conditional probability? Under different conditioDs the same propensity gets displayed
in a probability of breakage less than one: P [B& D) = x< 1. So, in general, it makes
sense to formally distinguish propensities from pinebability distributions that display

them.

There are at least three alternatives to the dondit probability representation.
First, we may represent the displays of properssdlevays as absolute probabilities in the
restricted probability outcome space. Thus, instadriting P B/ F& C)and P (B/ F
& D) we may always write Pgc (B) and Peep (B), defining these probability functions
on the smaller space. Since the functions arerdiite their values may correspondingly
differ too. The advantage of this representatiotha& every probabilistic display of a
propensity ascription is then relative to a set anftcumstances or manifestation
conditions. The disadvantage is that it does nlotvalis to ascribe probabilities to the
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propensities themselves since {F, F etc.} are regresented in the sigma field that

defines the probability.

An alternative is to come up with a distinct regr@sng symbol for what is, after
all, a distinct relation. There are at least twifedent ways of doing this. We may first
consider transitions of state, and put to use ttation that we devised to this effect in
the previous section. Thus, EB denotes the transition from the dispositiontdts’ F to
the manifestation ‘state’ B under circumstancesinc.the case of propensities the
manifestation property is itself a probability disution, and we may write ¥ (B) =
pi where B are the different possible values of the manitestaproperty B. In this
representation the outcome space is incluideth property possession and property
manifestation events as part of the propensity muasifestation ‘states’. So, we can
define probability distributions over propensitiesanifestation properties, and their

transitions. | shall for the most part employ thigation in my discussion below.

Yet, note that another alternative would allow aisepresent the relations among
different propensities, whereby the possessionoaies propensity may causally affect
another set of propensities. This is obvious in ¢hse of logical entailment among
properties, which may be modelled as deterministigsation. (A typical macroscopic
case is colour under a dispositionalist readingfasoinstance being white ipso facto
entails being coloured, etc). But in addition theray be genuine ‘productive’ causation

among dispositional propertie¥. Both may be understood under a very general causal

relation and represented by some appropriate sysumbl as £”. 65 We may then write

‘A causes B’ as “A— B”. We saw in section 3 that there is a debatéh literature

about whether propensities cause their manifesistidf it is the case that the

manifestation relation is causal, then we can WRite- — B;) = p instead of F »P (B)

= p without loss of generality. However, in line withly previous discussion | shall not
assume that the manifestation relation is itseléasal relation, but shall instead employ

% For the distinction between ‘productive’ and ‘degence’ or counterfactual causality, see Hall (3004
% The symbol employed by Cartwright (1983, chap)eoBthis relation.
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the ‘neutral’ notational system for transitionsstéite in general. From now propensities
and their probabilistic distributions shall be diabas F » P (8= p where | shall drop

the ¢ subscript for convenience.

Absolute Propensities

We are now able to represent changes of propestsity as follows. Suppose that
S is the full state of the system expressing alprgperties, whether dispositional or not,
at time { and $ is the full state at time.tThen $ » P () = p expresses the fact that the
transition probability for a change of statg iBto S is p. This notation makes it
unnecessary to represent a transition probabitg aonditional probability P £3 S) =
p. As we saw in section 4 the conditional probabiliotation for transition probability is

not only unnecessary but undesirable.

There are a number of advantages to this new radt®ystem for propensities.
Let me just comment on two of them since they eeclat issues that were already
mentioned in this essay. First, | address the raistn between different long run
propensity theories that were reviewed in sectio®econd, | address some difficulties
related to the principle of indifference that wémgefly mentioned in the summary of

Bangu'’s paper in section 1.

Firstly, in section 5 Gillies distinction betweespeated conditionand state of
the universenterpretations was reviewed. Let us continuesterrto the propensity as F.
In the standard propensity interpretation of praligithis propensity is identified with
the corresponding conditional probability: F 5 & / ) = p where the {A} are the
values of a given quantity to be measured at tintleet{n} represent their probabilities,
and $ is either the (hypersurface) state of the univaase’ or the set of repeated
conditions at t' (with t' < t). However, in the @aunt defended here, these long run
propensities must be reformulated as dispositiquralperties that display absolute

probabilities. In accordance with our notation, mest write F ¢ P. (A;)) = p when
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under the circumstances S at t’, the propensity @nifests itself as a probability
distribution over the values of A at t. We leaveeopvhether Srepresents the state of
the universe at t' or the set of repeated condstiant’. In either case propensities are
dispositional properties that ensue — or evolve int probability distributions. The

conditional probability representation is altogethenecessary.

Secondly, in the discussion of Bangu’s chapterhim first section, a source of
difficulties associated with the principle of inidifence was mentioned. In particular, |
voiced the concern that the principle may inviteillgitimate inference from a merely
epistemic fact about our knowledge (or lack théreof an objective fact about the
physical world — and in particular about its disposal properties. | can make the claim
more precise now. Under a conditional propensitgoant such as Humphreys, the
principle of indifference leads from facts aboutr dack of knowledge regarding the
outcome of a particular experiment to an incorsttription of objective properties in
the world. For instance, under total lack of knayge regarding the outcomes of an
experiment A performed under repeated conditionsvé& would be advised by
indifference to ascribe equal probability to allcuoutcomes and the corresponding
propensity would be given by Pri(AS) = p, withX p =1 and p=p for any i, j. It
seems clear that no knowledge (or lack thereo@ngffinite sequence can justify such an
ascription of a propensity. So, under this constafapropensities, the principle of
indifference leads to an incorrect ascription ofecbve facts about the physical world,

namely its propensitie&®

Now, interestingly, the problem disappears as sl dispositional account of
propensities is embraced, with a concomitant remtasion in terms of the notation that
we have developed. We must then writesFP»A) = p for the manifestation of F as A
under circumstances c. It is then perfectly possiblapply the principle of indifference
in order to fix the values of; in the absence of any knowledge regarding theoous.

We obtain thak p, = 1 and p= p for any i, j, as in the previous case. However,noe

% The problem is most acute for long run propertsigpries. Gillies (2000a) attempts to solve thebfem
by appealing to the notion of a falsifying rule &tatistical hypothesis. But this is a controvédrsidution
as discussed in the summary and discussion of ehapt
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make no statement whatever regarding the propehsihat underlies this distribution.
The principle of indifference applies only to thelpability distribution that displays F
but not F itself. Thus, we no longer commit théaf@y of going from lack of knowledge

to objective facts®’

Humphreys’ Paradox Revisited

Let us now bring the discussion to bear on HumpirBaradox. We are discussing
the view that propensities are dispositional proeerthat are manifested as probability
distributions under the appropriate circumstan&sppose that under circumstances
propensityF is displayed as the probability distributidh over the values of some
manifestation propertB. | have argued that this is appropriately expresseF » P (B).
One of the relata of the manifestation relatioa {@obability distribution — in agreement

with the thought that propensities manifest themeseln probability distributions.

It should be obvious that symmetry fails on thipresentation. It does not follow
from F » P (B) that B » P (F); it does not even follow that B has any manifésta
properties at all’® The ‘inverse’ manifestation relation is not getigravell defined.
Moreover, Bayes Theorem has no application in tleases since all the probabilities are
absolute and not conditional. So even restrictimgelves to the probability distributions

that display the propensities, the ‘inverse’ proligds need not be well defined either.

" There is an interesting question here for thesafiunotation alternative mentioned earlier. Intttase

we would write P (F~ A)) = p with X p = 1, and p= p for any i, j. Here the application of the prineipf
indifference would lead us to infer objective fadtowever, these facts do not regard the distritoudif
propensities but refer exclusively to the caustita&ty of propensities in generating distributiolss an
open question to what extent such an inferenceolsilpited by the sort of arguments routinely empldy
against the principle of indifference. Bertrandestyaradoxes, for instance, are prima facie inapple
given the apparent absence of any causal relatich®se geometrical examples. This is an intemgsti
topic for further work.

% Note that failure of symmetry is the case in ttausal’ notation too. Thus it does not follow fr&(F

— B) that R (B = F). It does not, in fact, follow that F has amyses at all, never mind that B is one of
them.
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One possible objection is that there is alwaysqnvalent representation in terms of
conditional probabilities. However, | do not thirtkat a conditional probability
representation of the above manifestation and, nspecifically, causal relations is
possible without significant loss of meaning. As algeady saw in section 4, transition
probability, which is possibly the most favourabbese for the equivalence claim, is best

understood as a change of propensity state analsrbe outcome of conditioning.

In this account, the reasoning underlying Humphiegsadox goes wrong at the very
start. The representation of photon state tramstias ‘conditional propensities’ (i.e.
conditional probabilities) is incorrect. Insteattese processes should be represented
properly as involving probabilities for manifestati or causal relations between
propensities. It is the photon incidence upon theram that manifests itself in its
transmission (or partially causes it together with background conditions aj).t The
incidence of the photon is a manifestation of jec&on or at least partially caused by it.

Etc. The first three conditions should then bexpressed accordingly:

i) Itz Buu » Ry (Tws) = p > 0.

ii) Bu» Py (Ip) = g, where 1> q > 0.

III) - |t2 Btl » Ptl (Ttg) =0.

These equations represent the probabilities dieglalgy propensities and their
relations. Since these probabilities are absolB@yes Theorem has no significant
application. It is impossible to derive from thesaditions a violation of Bayes Theorem
whether in conjunction with a conditional indepemcke principle such as Cl — or any

other of the principles discussed such as theinfit®nce or the fixity principle®®

% The same conclusion follows in accordance to thesal’ notation. Humphreys conditions would be

formalised as follows: i) P(lo By = Tw) = p; i) 1 >R (Bu = i) =q > 0;iii)) By (- lp By — T) = 0.
Since Bayes Theorem has no application, no comrtiadican ensue.

50



7.CAUSAL AND DISPOSITIONAL PRESUPPOSITIONS IN PHYSICS

The overall outlook of the book is decidedly in dav of dynamical, causal, or
dispositional presuppositions underlying the pracdf probabilistic modeling in science.
The authors find that probabilistic modeling oftearries an implicit or explicit
commitment to such notions. When it does not inihficor explicitly carry such a
commitment, it often needs to be supplemented wadtme inferential rules that can be
grounded only upon such notions. Thus, transitieababilities express dynamical
processes; the selection of probabilistic hypothesten requires information regarding
the physical properties of the systems described;the explanation of equilibrium in
statistical mechanics requires essential referémé¢ke dynamical character of statistical
laws. Causal hypotheses and causal reasoning gtere@ to understand statistical
inference in quantum correlation phenomena; sucisatahypotheses may imply some
temporal orientation on pain of causal paradoxelmaps. On the other hand, a proper
analysis of these questions requires philosoplerine to grips and apply the latest
techniques in the field of causal inference, inclgdhe latest versions of the principle of
common cause and the causal Markov condition. Fyinguantum systems are likely
endowed with dispositional properties that get ldigpd under the appropriate

circumstances as the characteristic probabilityridistions provided by Born’s rule.

In this introduction | argued that these diversespppositions are interlinked in
many different interesting ways. For instance, sion probabilities must be understood
as the probabilities of dynamical changes of staied often express a system’s
dispositional properties. The manifestation of gmgities may be understood as a kind
of causal relation between the possession conditaord the manifestation outcomes.
Statistical inference from frequencies to probéb#i in quantum mechanics often
requires causal hypotheses which are extremelyitsen® the particular interpretation

of quantum mechanics employed in deriving thoseeatsdtc. Every single one of those

51



connections opens up a host of interesting philomap problems and issues. The book

demonstrates that work in the foundations of plsysialls for deep and sustained

philosophical reflection on such issues.
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