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PROBABILITIES, CAUSES AND PROPENSITIES IN PHYSICS 

 

EDITED BY MAURICIO SUÁREZ. SYNTHESE LIBRARY (SPRINGER). 

 

CHAPTER 1: INTRODUCTION 

 

Mauricio Suárez, 

Complutense University, Madrid, 

 

The present volume collects ten essays by philosophers of science and physics on 

three inter-related themes: probability, causality and propensities. The discussion centres 

on modern physics and, in particular, on the pre-eminently probabilistic branches of 

physics in our time, quantum and statistical mechanics. In spite of the technical nature of 

most of the papers, this is a collective effort in the philosophical foundations of physics, 

and of science more generally. In other words, it is essentially a book on the foundations 

of science rather than its application, and its main aims are conceptual, philosophical and 

methodological. In this introduction I provide a summary and a philosophical defence of 

some of the claims made in the book. The introduction is not meant to back up all of the 

specific claims made by the different authors (nor can it be understood as endorsement, 

particularly since some of the authors disagree with, or at least qualify, some of the 

claims I have made in my own work). Instead it is meant to underscore the importance of 

the topics on which the authors focus their analytical gaze, and their detailed 

development of these ideas. 

 

The book is divided into three sections each devoted to one of the main themes. 

Thus the first part contains three essays devoted to probability in science; the second part 

contains four on the nature of causality particularly in quantum mechanics; and the final 

part contains some essays on propensities again mainly in quantum mechanics. In spite of 

the diversity of aims and interests, there are some common themes running throughout 

the book. In particular there is agreement in general on the following four joint themes or 

theses (N.B. not all authors would agree with all four): i) An emphasis on taking 
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probabilities in physics to be objective features of the world as opposed to degrees of 

belief; ii) A correlated emphasis on the importance of transition probabilities – i.e. 

probabilities for objective changes of physical state – over merely conditional 

probabilities; iii) An additional reluctance to interpret all objective probabilities in any 

one of the traditional ways (actual or virtual frequencies, single case or long-term 

propensities); and finally iv) A general tendency to identify various causal commitments 

and presuppositions in foundational physics – including in several cases the causal 

relation between underlying dispositional properties, or propensities, and their empirical 

manifestations in terms of probability distributions.  

 

The first three sections of this introduction review the contents of each of the parts 

of the book, always with an eye on these four interrelated philosophical themes. Then in 

sections 4-6 I develop my own philosophical understanding of these four theses, relating 

them to previous discussions in the literature, particularly the literature on probabilistic 

causation, causal inference, and dispositional properties. Section 7 draws some 

conclusions and provides some pointers for future work. 

 

 

 

 

1. PROBABILITIES  

 

The first part of the book contains papers by Guido Bacciagaluppi on transition 

probabilities; Sorin Bangu on the principle of indifference; and Roman Frigg on the 

typicality approach to equilibrium. All these papers concern the nature of probability as it 

appears in science, mainly in physics. I next provide a brief summary of their main 

results, with an eye on the particular themes that run through the book. 

 

 

Transition probabilities and time-symmetry 
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In Chapter 2: “Probability and Time Symmetry in Classical Markov Processes” 

Guido Bacciagaluppi argues that time-symmetric transition probabilities can also be 

employed to represent typical examples of time-directed phenomena. Therefore transition 

probabilities, even if representing the chances of possible changes of physical states, can 

neither entail nor ground an objective distinction between past and future. To a first 

approximation, this implies that defenders of tensed theories of time and other 

philosophers inclined to deny the reality of becoming need not fear the concept of 

transition probability: it is not an essentially time-directed concept although it may of 

course be used to represent processes that are fundamentally directed in time. (Later on in 

section 6 of this introductory essay it is argued that Bacciagaluppi’s thesis may have 

interesting implications regarding the nature of the propensities that might underlie 

transition probabilities). 

 

Bacciagaluppi follows the usual definition of transition probabilities in terms of 

Markov stochastic processes. Roughly a process is Markov if the probability of any state 

at any given time is dependent only on the immediately preceding state; all previous 

states are statistically irrelevant. For a stochastic process this entails roughly: 

 

 

P (S(tj+1)/S(tj) & S(tj-1) &...& S(t1)) = P (S(tj+1)/S(tj))   (MP) 

 

where S(tj) is the state of the system at time tj, and so on.  

 

This equation is a simplified version of Bacciagaluppi’s equation (3), where I 

have made explicit the dynamical properties of states, identifying them by means of time 

index variables. I have then kept states in the variable range of the probability function – 

as opposed to placing them in the subscript.1 And I have represented a static probability, 

                                                 
1 Bacciagaluppi’s terminology employs the technical notion of an n-fold joint distribution, which is 
standard in the literature on stochastic processes (see e.g. Doob, 1953). According to this terminology, 
states 1 to n appear in the subscript of the probability function, and time indexes in its variable range. We 
then consider the n-fold joint probability distributions that the n states define over the time indexes. This 
terminology is more convenient for the derivation of technical results but it strikes me as less intuitive, at 
least for the purposes of this introduction. 
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when in a stochastic process each probability more generally carries a time index too – 

which determines the values of the probability at that stage of the process. Equation (MP) 

hence expresses a kind of statistical independence: the state at any given time is 

statistically independent from any previous state, conditional on the state just prior to it. 

In the language of contemporary theories of causal inference, the state at time tj, S(tj) 

screens off the later state S(tj+1) from any previous states S(tj-1), ..., S(t1). In this 

simplified terminology the concept of transition probability can be expressed concisely: 

 

Pj+1/j (S (tj+1) / S(tj)) = Pj&(j+1)  (S (tj+1) & S(tj)) / Pj (S (tj))  (FTP) 

 

The equation expresses the transition probability that a system will physically 

undergo a change from state S (tj) at time tj to state S (tj+1) at a later time tj+1. We may 

refer to this as a forwards transition probability (FTP) since it expresses the transition 

probability Pj+1/j from an earlier to a later time of a change of state S (tj) into a state S 

(tj+1). 
2 (FTP) may be contrasted with the expression for the backwards transition 

probability (BTP), i.e. the probability of the same change of state but from the later to the 

earlier time: 3 

 

Pj/j+1 (S (tj+1) / S(tj)) = P(j+1)&j  (S (tj+1) & S(tj)) / Pj+1 (S (tj))  (BTP) 

 

Forwards and backwards transition probabilities need not be equal, and typically 

they are not. A stochastic process that is fundamentally time-asymmetric would normally 

establish different forwards and backwards probabilities for the same change of state. For 

instance a process directed ‘forwards’ in time would set one or zero backwards transition 

probabilities, while setting forwards transition probabilities between zero and one for the 

                                                 
2 These notions are again expressed in my own terminology. The notation of n-fold distributions has, 
undoubtedly, an advantage at this point since it allows us to distinguish the concept of symmetry of the 
transition probability from the concept of detailed balance (see Bacciagaluppi’s section 3, where it is also 
claimed that under standard conditions these concepts are equivalent as statements of time-symmetry). But 
the distinction plays no role in this introductory essay which focuses instead on conceptual issues regarding 
objective probability.  
3 So, importantly, a backwards transition probability is not the forwards transition probability of the time-
inverse of the state change: Probj/j+1 (S (tj+1) / S(tj)) ≠ Probj+1/j (S (tj) / S(tj+1)), with tj+1 > tj. The latter is 
rather a different transition probability altogether, belonging to an entirely different Markov process.  
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very same change of state.  A process directed ‘backwards’ in time would do conversely. 

If the forwards and backwards probabilities for all changes of state are equal, then the 

process is time-symmetric in a robust sense. More specifically, if all processes are time-

symmetric then a consideration of the probabilities defined for the world-dynamics (i.e. 

the probabilities for all the changes throughout history of all the states of all systems in 

the world) would leave the direction (the ‘arrow’) of time completely undetermined. 

There would be no way to pick out a particular direction of time from any transition 

probabilities. Although such ideal and abstract world dynamics is not helpful in 

modelling any particular stochastic process, it does show that there is nothing in the 

concept of transition probability per se that contradicts time-symmetric fundamental 

laws. In other words, we may also define genuine transition probabilities in worlds 

endowed with fundamentally time-symmetric laws.  

 

In the main section of his paper (section 4), Bacciagaluppi considers and rejects 

three different arguments that may be raised against this conclusion. These arguments 

purport to show that transition probabilities do in fact conflict with time-symmetric laws 

and, therefore, require a direction of time. Roughly they go as follows. First, there is the 

argument that ergodicity on its own defines an arrow of time because it entails that most 

systems will tend towards equilibrium. In our case this should mean that the stochastic 

process will tend to equilibrate in time, i.e. that it will tend to define identical and hence 

symmetrical probabilities for all state transitions in the limit (or to put it another way its 

single time n-fold distribution pn(t) becomes time-invariant in the limit). This seems to 

require asymmetry at some point in the process before equilibrium is reached. Second, 

there is the idea that, at least for some common processes, backwards transition 

probabilities fail to be time translation invariant. Consider decay processes where the 

probability of decay from an excited to a ground state in unit time is finite. Finally, there 

is the thought that backwards transition probabilities are not invariant across experiments 

with varying initial distribution, i.e. experiments where the initial time series data differs. 

  

In all these cases transition probabilities seem to conflict with time symmetric 

laws because a fundamental distinction seems to emerge between forwards and 
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backwards transition probabilities. Yet since we have just argued that the concept of 

transition probability itself cannot be used to introduce any fundamental time-asymmetry, 

it follows that these arguments must employ additional assumptions. It is to be expected 

that these assumptions are responsible for the conflict with time-symmetry and 

Bacciagaluppi argues convincingly that they reduce to the same mistaken presupposition 

in all three cases, namely: that the calculation of transition probabilities is to be worked 

out on samples that are not in equilibrium. In such cases the inference from the 

frequencies in the sample to the transition probabilities will yield an apparent time-

asymmetry. However, once the samples have been ‘cleansed’ in order to generate 

‘unbiased’ ones, the apparent time-asymmetry disappears. There is an interesting 

philosophical insight buried in this argument, which I shall take up briefly later in section 

4 of this essay. 

 

 

The principle of indifference  

 

In the second chapter, Sorin Bangu reconsiders the role of the principle of 

indifference in the ascription of probabilities with a particular emphasis on its use in 

physics. Keynes first stated it as follows: 4 “The principle of indifference asserts that if 

there is no known reason for predicating of our subject one rather than another of several 

alternatives, then relatively to such knowledge the assertions of each of these alternatives 

have an equal probability”. There are a number of well known arguments against the 

principle, many of them taking the form of counterexamples, or paradoxes. Typically 

these counterexamples show that the application of the principle leads to several 

inconsistent probability ascriptions to the same event. The so-called Bertrand paradoxes 

stand out: on the basis of geometrical considerations, and under several assumptions of 

continuity and smoothness of the probability density, they show that the principle of 

indifference leads to inconsistent probability ascriptions. A very simple version due to 

                                                 
4 In the Treatise on Probability (Keynes, 1921) which traces it back to Bernouille’s application of the 
principle of sufficient reason. For discussion see also Gillies (2000 chapter 3).  
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Van Fraassen is often discussed. 5 Consider a factory that produces cubes of length l up to 

2 centimeters. What is the probability that the next cube produced has an edge ≤ 1 cm? A 

straightforward application of the principle of indifference yields probability = ½. But, 

we could have formulated the question in several different ways. For instance, what is the 

probability that the next cube has sides with an area ≤ 1 cm2? The principle now yields 

the answer ¼. And how about the probability that the next cube has volume ≤ 1 cm3?  

The answer provided by the principle is now 1/8. These are all inconsistent with each 

other since they ascribe different probabilities to the occurrence of the very same event.  

 

More generally the principle of indifference employs a problematic inference 

from our epistemic situation of relative ignorance regarding the outcome space of a 

stochastic process to a definite probability ascription over the various outcomes. The 

inference is problematic in just the way any inference from ignorance to truth is 

problematic. 6 But in addition there is a sense, which I discuss in the second part of this 

introduction, in which the principle may invite an illegitimate inference from a merely 

epistemic fact about our knowledge (or lack thereof) to an objective fact about the 

physical world – more in particular about its dispositional properties. 

 

Bangu agrees that there is at least a priori no reason to support the principle, and 

he does not attempt to provide new arguments to support it. His aim is rather to contest 

two other arguments against the principle, a classic argument by Hans Reichenbach 

(1971 /1949), and a more recent one by Donald Gillies (2000a). These arguments attempt 

to show that the principle is not an a priori truth, and is moreover redundant even as a 

contingent truth about the correct adscription of probability values in specific situations. 

In other words the principle is not even a necessary tool or condition for the practice of 

probabilistic inference. Or, to invoke Reichenbach’s own terminology, 7 the principle of 

indifference can neither be validated a priori nor vindicated a posteriori. 

 

                                                 
5 Van Fraassen (1989, pp. 303-4). 
6 See Strevens (1998, p. 231) for further discussion. 
7 As applied to the rather different problem of induction – see Reichenbach (1951, chapter 14) and Salmon 
(1991) for a critical discussion. 
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Reichenbach’s argument appears to aim for a stronger conclusion than Gillies’. 

Reichenbach proposes a proof that the principle of indifference grounds no sound 

inferences at all to the probabilities of physical events that can not be established by 

other empirical means. In other words, the principle does no outstanding work at all in 

practical inference. By contrast, Gillies accepts that the principle does some heuristic 

work – in suggesting new hypotheses or physical theories entailing probability values for 

various outcomes. However, although it may be heuristically useful in generating new 

physical theories or hypotheses, it has no standing as a logical principle. Employing 

Reichenbachian terminology once again, we may say that, according to Gillies, the 

principle has an inferential function in the context of discovery, while lacking it in the 

context of justification. By contrast, Reichenbach appears to claim that the principle has 

no inferential function in any context whatever. 

 

Nevertheless both arguments share the aim to show that the principle is redundant 

in the ascription and justification of probabilities: any work the principle could appear to 

do in providing probability values for outcomes, in any context, is work that can be done 

by other methods. More generally both Reichenbach and Gillies aim to provide 

alternative means for the justification of probabilistic hypotheses and stochastic laws, 

which would eliminate any need for the principle, or render it otiose for this purpose. We 

may thus refer to their arguments as ‘eliminativist’.  

 

Bangu finds both ‘eliminativist’ arguments defective. He first shows that 

Reichenbach’s argument is either circular or unsound: either the principle of indifference 

is itself assumed in the proof or it remains thoroughly unjustified. Reichenbach’s 

argument is a development of yet another argument found in Poincare, and goes roughly 

as follows. 8 Consider a roulette wheel, evenly divided into red and black intervals, 

corresponding to red and black numbers. In the absence of any further information, an 

application of the principle of indifference entails that the probability of obtaining a red 

or a black outcome should be the same and equal to ½. The question is whether there is a 

distinct procedure that would enable us to derive the same result but without invoking the 

                                                 
8 Reichenbach (1949); Poincare (1912). For a summary and review see Strevens (1998, pp. 236-8). 
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principle at all. Poincare and Reichenbach reason as follows. Consider that the outcome 

of the game is determined by where the wheel stops, and may be represented by a 

variable θ ranging between 0 and 2π. Let then d (θ) be the probability distribution over θ. 

The probability of obtaining a red number is given by the sum over the probabilities that 

θ falls in a particular red square. Now assuming that the intervals alternate rapidly in θ, 

and that the function d (θ) is smooth over the intervals (even though not necessarily 

constant), then the probability of red and black is equal. This reasoning appears to 

provide us with a procedure that enables us to derive the correct ½ probability values for 

red and black from the physical symmetry of the roulette wheel without apparently 

invoking the principle of indifference. However as Bangu points out, the argument 

depends upon the function d (θ) is smooth. And the only real reason to suppose this is 

that the symmetry of the wheel requires that d (θ) is uniform, i.e. that it is the same for 

every discrete value of θ. To say this is just to state the principle of indifference over 

again: we ascribe equal probability to all possible outcomes because there is no reason to 

anticipate one rather than another result. Unfortunately what this means is that the 

smoothness of d (θ) depends upon the principle of indifference itself, so the procedure 

described by Reichenbach and Poincare does not actually do away with the principle in 

practice. Hence a vindication remains a possibility. 

 

Bangu then discusses Gillies’ argument and he claims that it does not hold water 

either. He points out that the kinds of methods that Gillies invokes as replacement for the 

principle of indifference for the justification of probabilistic hypotheses are subject to 

precisely the same kind of objections that show the principle itself to be untenable. 

Gillies claims, following Jaynes, that the principle of indifference provides us with a 

heuristics for seeking new statistical theories and hypotheses. 9 But he also claims that the 

principle is dispensible as a method for justifying statistical hypotheses, which may 

always be justified by means of a more appropriate methodology. In particular Gillies 

defends a ‘methodological falsificationist’ approach to the testing of statistical 

hypotheses, partly inspired by Popper and partly by the classical statisticians Fisher, 

                                                 
9 Gillies (2000, p. 47-49), where several examples from physics are provided, such as the viscosity of gases 
and Bose Einstein statistics. 
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Neymann and Pearson. In this account, a falsifying rule for probability statements (FRPS) 

is formulated, which enables us to construe probabilistic statements as falsifiable ‘in 

practice’, even though from a strictly deductive point of view, such statements are in 

principle unfalsifiable. 10 A statistical hypothesis H is then methodologically falsified by 

a sample of data points {e1, e2, e3, .... ,en} if there is a test statistic X whose value lies 

below the statistical significance level, which is typically fixed at 5%. 11 

 

Howson and Urbach have argued that the falsifying rule requires a decision 

regarding the outcome space of the test statistic X. And whether or not the data points 

may be said to falsify the hypothesis H may well depend on this decision. In particular 

they claim that a decision is required to determine the “stopping rule” describing the 

conditions under which the experiment is terminated or finalised. For instance in 

assessing of the hypothesis that a particular coin is fair, we must repeat the experiment a 

number of times and different rules may be applied to the termination point. As a result 

the outcome space (the space of all possible sequences of outcomes) is affected. 12 Bangu 

goes further in claiming that the decision regarding the outcome space is akin to the 

decision that the principle of indifference promotes in order to ascribe equal probability 

to outcomes evidentially on a par. In both cases the decision involves fixing the outcome 

space. According to Bangu this compromises Gillies’ argument for the dispensability of 

the principle of indifference. The type of methodology that we would be attempting to 

replace the principle with is thoroughly infused with just the sort of difficulty that led us 

to abandon the principle in the first place. 13 Thus, Bangu concludes that there is not yet a 

good argument against the vindication of the principle of indifference in practice. 

                                                 
10 See Gillies 2000, p. 147. 
11 A test statistic for an experiment is a random variable X, whose value can be calculated as a function of 
the data sampled, X (e1, e2, e3, ... , en), and that can be taken to represent the outcome of the experiment. 
Note that the same experiment may yield different values for the test statistic, depending on the data 
sampled. 
12 Howson and Urbach (1993, pp. 210-212). In their example we may choose either to terminate the 
experiment as soon as 6 heads occur, or rather after 20 trials regardless of the outcome. The size of the 
outcome space is then predetermined in the latter case (= 220) but not so in the former. Even if the outcome 
spaces happened to have the same size in both cases (because say the 6th head happens to occur on the 20th 
trial), it would still be the case that the stopping rule could affect the result of the application of the 
falsifying rule, falsifying it in the former but not the latter case. 
13 Note that Gillies disagrees that a falsificationist methodology is in any way threatened by Howson and 
Urbach’s argument. See particularly the discussion in his interesting review of their book (Gillies 1990, pp. 
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Typicality in Statistical Mechanics 

 

In the third and last chapter in the probability section of the book, “Why 

Typicality does not Explain the Approach to Equilibrium?”, Roman Frigg critically 

evaluates attempts in the philosophy of statistical mechanics to provide typicality-based 

explanations of thermodynamic irreversibility. Consider a classical system consisting of n 

particles, each endowed with three degrees of freedom, and governed by Hamiltonian 

dynamics. Its state may be represented in a constrained 6n-1 dimensional energy 

hypersurface ΓE of the corresponding 6n-dimensional phase space Γ. Each macroscopic 

state (defined by sets of macroscopic properties) Mi will define disjoint and exhaustive 

subregions ΓMi of ΓE. The second law of thermodynamics is then supposed to entail that 

the evolution of the entropy of the macrostate of any (freely evolving) system mirrors the 

increase of thermodynamic entropy over time, reaching a maximum value at equilibrium. 

Suppose the initial state of the system is x (t0), and the final state is x (t). Then let ΓPast, 

ΓEqui be the past and the equilibrium macrostates of the system, so x(t0) є ΓPast, and x(t) є 

ΓEqui. It seems to follow from the second law that any system whose initial macrostate is 

ΓPast will eventually wind up in ΓEqui.  

 

Why is this so? And more particularly: is there an explanation for this fact in 

statistical mechanics? 14 We may refer to any approach that aims to provide an 

explanation by invoking the notion of ‘typical state’, as a ‘typicality explanation’ (of the 

approach to equilibrium). This type of approach relies on the thought that the equilibrium 

macrostate ΓEqui is the largest among all the regions ΓMi under some standard natural 

                                                                                                                                                 
90-97). Howson and Urbach respond in the 2nd edition of their book (p.p. 214-215). This debate turns on 
whether or not the stopping rule is relevant to the performance of the experiment, and therefore relevant to 
the evaluation of the application of the falsifying rule. It is surprising that this debate does not yet appear to 
have been linked to the question of the nature of the probabilities involved, and in particular whether they 
are subjective or objective probabilities.  
14 Should there be one? The presumption that there should is of course tantamount to the view that 
thermodynamics should be reduced to statistical mechanics. It is controversial whether such attempts have 
been successful. Moreover it is unclear that they should be in order to ground thermodynamic 
irreversibility. See for instance Sklar (1993, chapter 9). Such interesting questions are beyond the purview 
of this essay or this book.  
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measure, such as the Lebesgue measure µ.15 Frigg discusses three different typicality 

approaches and his sober conclusion is that none are actually viable.  As is often the case 

in a philosophical dispute much hinges on the initial formulation of the problem. Frigg 

first outlines a standard formulation which he helpfully refers to as ‘gloss’, and which he 

goes on to dispute (in section 4 of his paper). This formulation is however sometimes 

adopted by other authors as a fact, namely ‘the fact that equilibrium microstates are 

typical with respect to ΓE and the Lebesgue measure µ’ (p. 5).  Indeed the three 

approaches discussed by Frigg in some way link this ‘gloss’ to the dominance of the 

equilibrium macrostate. 

 

The first approach appeals to the brute fact of typicality itself. In other words it 

aims to explain the approach to equilibrium as a result of the typicality of equilibrium 

states. Frigg rightly points out that there is no reason to suppose that atypical states need 

evolve into typical states just because the former are atypical and the latter are not. And 

this is true even if the atypical states made up a measure zero set. The evolution of the 

states depends rather on the specific dynamical laws that operate, and cannot be settled 

just by looking at the measures (relative sizes in the case of the Lebesgue measure) of 

different regions of phase space. 

 

The second approach consequently focuses on dynamics. Boltzmann’s original 

ergodic theorem is an attempt at a dynamic explanation (roughly the ergodic theorem 

states that the dynamics of the state is such that any trajectory sooner or later visits every 

point in ΓE. In other words regardless of the initial microstate a system will eventually 

take every other microstate compatible with the macroscopic constraints.) 16 There are 

however well known problems with Boltzmann’s original ergodic theorem, and improved 

ergodic explanations of the approach to equilibrium have also been criticised. 17 This 

solution seems to be rejected by those who advocate the typicality explanation in any 

case. Another reading of the second (dynamical) approach regards chaotic dynamics as 

the key to the explanation of the approach to equilibrium. Frigg in turn distinguishes two 

                                                 
15 A measure usually defined over the semi-closed intervals of the real line (see Halmos, 1974, pp. 65ff.) 
16 Sklar (1993, pp. 159-160).  
17 For a thorough critique see Earman and Rédei (1996). 
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versions of a chaotic explanation. The first is based upon the sensitive dependence on 

initial conditions characteristic of chaotic behaviour, and only requires chaos locally in a 

particular subset of the phase space. Sensitivity to initial conditions has been argued to 

ground a typicality explanation of equilibrium, in the sense that the trajectories that will 

exhibit random walk behaviour are ‘typical’. More specifically, the region of the phase 

space that contains the initial states of trajectories that exhibit this type of random walk 

behaviour has a Lebesgue measure arbitrarily close to 1. Frigg refers to this condition as 

the Typicality Past Hypothesis (TPH) but rejects the idea that all those trajectories that 

satisfy this condition actually carry typical initial conditions into the equilibrium region. 

He claims that there is an important set of such trajectories belonging to KAM systems 

that do not do so. So this typicality explanation also seems to fail for reasons not 

dissimilar to the ergodic explanation. The second version of the dynamical explanation is 

more promising according to Frigg. This focuses on the notion of global chaos, where the 

entire phase space exhibits chaotic features and not just isolated subsets of the phase 

space. Frigg discusses several ways of trying to make the notion of global chaos more 

precise and ground the explanation of the approach to equilibrium. The most promising 

are still prey to some of the objections that were raised against ergodic approach. 

 

Frigg discusses yet a third approach, due to Lebowitz and Goldstein, which 

focuses on the internal structure of the micro regions ΓMi rather than the entire phase 

space. The important feature, according to Frigg, is the property of each state in ΓMi of 

being “entropy-increasing”. This is a relational property of states and dynamical 

trajectories: a state is entropy increasing if it lies on a trajectory that takes lower entropy 

states into higher entropy states. A system is then defined as “globally entropy 

increasing” roughly if every subset of its phase space is densely populated by such 

entropy increasing states. One would then hope that global entropy increasing systems 

are all necessarily equilibrium approaching. However this is unfortunately not the case, 

and any attempt to work out a fit between these two notions still requires us to make 

assumptions regarding the typicality of entropy increasing states within the phase space 

regions in accordance to the standard Lebesgue measure.  
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Frigg’s conclusion is that any proper explanation of the approach to equilibrium 

will require a dynamical explanation; merely grounding it upon the typicality of the 

corresponding states within the phase space won’t ever be sufficient. It does not matter 

whether entropy increasing states are typical in this sense – what matters is rather the 

details of the dynamical laws that evolve low entropy into higher entropy states. Without 

a reference to the dynamical transformation of the states, such explanations appear empty 

or vacuous. (See section 6 for a discussion of the dynamics of propensity states). 

 

 

 

 

2. CAUSES 

 

The second part contains essays by Federico Laudisa on the nature of causation in 

modern physics, Joseph Berkovitz on the more specific issue of backwards in time 

causality in quantum mechanics, Miklós Rédei and Balasz Gyenis on the causal 

completeness of probabilistic models, and a joint paper of mine with Iñaki San Pedro on 

causal inference in the context of EPR experiments. 

 

 

From Metaphysics to Physics 

 

In chapter 5, Federico Laudisa takes up the issue of causation in quantum 

mechanics, particularly in connection with the EPR correlations. Laudisa first rejects the 

idea that causality is anathema to quantum mechanics in general. He then endorses a form 

of causal pluralism that leads him to the view that many questions regarding causality in 

quantum mechanics may receive different answers in different frameworks, or depending 

on interpretation. (In fact he later makes it known that he subscribes to a stronger claim 

which I have defended vis a vis the EPR experiment, namely: that such issues have no 

determinate answers independently of the details of the models of the correlations 

provided within each interpretation). The rest of the paper is a review of the main 
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difficulties that emerge in the attempt to provide causal accounts, mainly with reference 

to the EPR correlations within some of the different models and interpretations of 

quantum mechanics. In particular Laudisa focuses on the GRW and Bohm’s theories.  

 

One feature of Laudisa’s analysis is his assumption that performing a 

measurement and obtaining an outcome is essentially the same event. The causal 

connections that he has in mind are between measurement-and-outcome events. (It is 

arguable that this rules out a propensity interpretation of the quantum state, something 

that I shall discuss in due course). Laudisa thinks that the superluminal nature of any 

putative connection in this case yields a ‘weak’ form of causality, which seems to violate 

intuitions regarding the necessary temporal priority of causes. Hence after reviewing 

some of the literature that disputes that there is necessarily a conflict between a causal 

reading of the EPR correlations and special relativity, Laudisa raises the question: is it 

possible to provide a causal understanding of the connection that does not require 

backwards in time causation? The key to a proper analysis, according to Laudisa, lies in a 

better ontological account of the theory in the first place. 

 

This leads Laudisa to address two different interpretations, the GRW theory 

(section 4) and Bohmian mechanics (section 5). The GRW interpretation is well known 

for its postulate of spontaneous collapses of the wavefunction. These spontaneous 

localisation events occur sufficiently often for the detection of macroscopic 

superpositions not to be possible in practice. One outstanding problem with the account is 

related to its relativistic extension since the localisation events seem to privilege a 

particular hypersurface and might select a frame. Laudisa distinguishes two different 

proposals for its ontology, the ‘matter density’ and the ‘flash’ ontology. 18 The former 

assumes that a continuous field on 3-dimensional space represents the matter density in 

each point of space at each instant. The latter by contrast assumes a discrete ontology, in 

which matter is made up of discrete points (‘flashes’) in spacetime such that to each of 

these flashes there correspond one of the spontaneous collapses of the wavefunction. One 

advantage of the flash ontology is that it has been shown to be Lorentz-invariant, while 

                                                 
18 See Tumulka (2007) for the distinction and a development of the ‘flash’ ontology. 
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prescribing the relevant probability distributions for all observables. This avoids any 

conflict between GRW and the temporal priority of causes over effects thesis. 

 

Laudisa then considers the non-relativistic alternative to select a preferred 

foliation of spacetime. He finds that while this assumption is unjustified for orthodox 

quantum mechanics, it is unavoidable in the case of Bohmian mechanics. In this context, 

as is well known, whatever mutual causal influence there is between the quantum 

potential or wavefunction in configuration space and the particles inhabiting 3-

dimensional space, is both simultaneous and epistemically inaccessible in the sense that 

only the consequences of the causal interaction (the positions of the particles) are 

detectable by measurement apparati, but not the causal interaction itself. (Again, it is 

worth noting that a propensity interpretation of the state in orthodox quantum mechanics 

would share this feature). 

 

 

Causal Loops in Retro-Causal Models 

 

In chapter 6, Joseph Berkovitz carefully considers a number of retro-causal 

models of the Einstein-Podolsky-Rosen correlations. These are models that postulate the 

existence of causes acting backwards in time. A traditional objection against such causes 

in general states that they may generate loops in time which give rise to inconsistent 

effects. In the simplest case, suppose e causes c, but that c precedes e and is moreover an 

inhibitor of e, i.e. c is a cause of ¬e. Now suppose the causing is deterministic in both 

instances: it then follows that e if and only if ¬e. The most straightforward way to avoid 

such inconsistency would be a total ban on retrocausality. But there might be other less 

sanguine ways to keep such inconsistencies at bay, similar to those often used to keep at 

bay the inconsistencies generated by ‘bilking’. 19 Berkovitz focuses on the particular 

                                                 
19 In the case of the famous ‘bilking’ argument (Black, 1956), the assumption is simply that an event c is 
the positive cause of an event e that lies in its past. The issue is then how to prevent the bilking of c after e 
has occurred. For if we prevent c from happening after e has already occurred, then this would generate the 
inconsistency that both ‘c is the cause of e’ and ‘c is not the cause of e’ are simultaneously true. Much will 
depend on whether ‘bilking’ is actually physically possible in the particular circumstances that give rise to 
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conditions that obtain in an EPR experiment, with an eye to investigating ways in which 

causal loops maybe evaded even if the postulated causal structure contains causes that act 

back in time in at least some frames of reference. In the end Berkovitz’s assessment is 

sober: even where such models may be postulated and do not entail inconsistency, there 

are problems regarding their predictive or explanatory power; and the problems are 

sufficiently severe to make the models dubious or at least unnecessary.  

 

Berkovitz applies retrocausality to a specific experimental setting that he calls 

experiment X. This is an EPR experiment where the right hand side measurement takes 

place before the left hand side setting in the laboratory rest frame. Let us denote by l, r 

the settings on the left and right hand sides; and by L and R the measurement outcome 

events on the left and right hand sides respectively. Suppose further that the right hand 

side outcome, R, is a deterministic cause of the left hand side setting l. Since we have 

assumed that R occurs before l in the rest frame of the laboratory, the causal connection 

between R and l is hence forwards in time in that frame. However, in a retrocausal model 

we additionally require either that i) l retro-causes the complete state at the source, or ii) 

both R and L jointly cause the complete state at the source.  

 

We may then go on to appropriately distinguish two different kinds of retrocausal 

models: deterministic and indeterministic. In agreement with the standard understanding 

of these terms, a deterministic cause invariably brings about its effects in the appropriate 

circumstances. An indeterministic cause by contrast, determines the probabilities of its 

effects between zero and one – so it brings about its effects but only with certain 

probabilities. For instance in a typical retrocausal model of experiment X, the 

measurement setting on the left, l, may be a partial but deterministic cause of the 

complete state at the source, which in turn is a partial but indeterministic cause of the 

outcome events. (This seems to be what Berkovitz has in mind with his ‘DS model’). By 

contrast, if the setting l only prescribes the probabilities for the complete state at the 

source, the model is indeterministic. In either case, there is a causal influence from 

                                                                                                                                                 
c and e. Similarly for the type of inconsistency that causal loops may generate: much will hinge on the 
particular circumstances that bring about the EPR correlations. 
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settings or outcomes back towards the complete state at the source at the time of 

emission. 

 

More specifically retrocausal models are typically assumed to violate the 

condition known as λ-independence, or ‘hidden autonomy’: 20 

 

ρ (λ / ψ & l & r) = ρ (λ / ψ) 

 

where λ is the complete (hidden variable) state of the pair at the source, ψ is the quantum 

mechanical state, and l and r are the settings of the measurement apparatuses on the left 

and right side of the experiment respectively. In other words, in these models the hidden 

state at the source is statistically dependent upon the quantum state and the left and right 

settings. However, recall that in a typical EPR experiment the setting events take place in 

the rest frame of the laboratory after the emission event at the source and thus after the 

hidden state is determined. If the statistical dependence expressed by λ-independence 

reflected direct causal influence it would follow that posterior events causally influence 

antecedent ones. 21  

 

Berkovitz carefully analyses different kinds of retrocausal models of experiment 

X and concludes that these models entail the existence of causal loops. The issue is then 

how to interpret such loops and their consequences, and in particular whether they imply 

inconsistent predictions. Berkovitz concludes that the causal loops within some 

deterministic models entail inconsistent predictions, while those entailed by 

indeterministic models are unable to determine the distributions over complete states or 

measurement outcomes (unless supplemented with the appropriate statistical rules). 22 So 

                                                 
20 ‘Hidden autonomy’ is Van Fraassen’s (1982) terminology. 
21 But does statistical dependence reflect causal dependencies? Arguably the relationship is more complex 
and subtle. First, it is well known that statistical dependencies may mask hidden factors or hidden common 
causes. And second, the relation of conditional probability P (x / y) need not indicate that the conditioned 
upon event y is a direct cause of the event x. This requires a further assumption (see section 6 in this essay). 
I will follow Berkovitz here and assume for the sake of argument that causal dependencies can be read off 
statistical relations. In the second part of the introduction, I argue that conditional probabilities are not 
generally a reasonable way to read propensities. 
22 Throughout his paper Berkovitz assumes a single-case propensity interpretation of probabilities. But he 
shows that analogous results stand if the probabilities are understood as frequencies.  
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in the deterministic case, retrocausality possesses the potential to generate contradictions, 

while in the indeterministic case it is unable to generate any meaningful predictions at all. 

Either way these are important arguments against retrocausal models of the EPR 

correlations in general. 

 

 

Causal Completeness of Probability Theories 

 

In chapter 7 Balasz Gyenis and Miklós Rédei provide a review and reassessment of 

recent work regarding the notion of causal completeness for probability spaces. They 

provide very precise formal definitions of some of the most important terms in this 

literature. For instance, they define the concept of generalised Reichenbachian common 

cause (in section 3) and the notion of causal completeness that follows from it (section 4). 

They then review some of the main results on causal completeness derived within the so-

called ‘Budapest school’. 23  

 

The basic formal notion is that of a general probability measure space (£, Φ), where £ 

is an orthocomplemented lattice and Φ is a generalized probability measure or state, a σ-

additive map Φ: £ → [0, 1] where Φ (0) = 0 and Φ (1) = 1. (Roughly: the elements of the 

lattice {A, B}, or variables, correspond to one-dimensional observables while the 

measure Φ defines the probabilities over the values of these variables ascribed by a 

quantum mechanical state). We may then define a correlation as follows: CorrΦ (A, B) is 

the measure of correlation between compatible variables A and B in the state Φ. 

 

A generalised version of Reichenbach’s criterion of the common cause 24 may then 

be formally characterised as follows: 25
 

 

Ck is a Reichenbachian common cause of the correlation CorrΦ (AI, BJ) > 0 between 

AI and BJ if Φ (Ck) ≠ 0 for all k ε K and the following conditions hold: 

                                                 
23 The name ‘Budapest school’ was introduced by Jeremy Butterfield (2007, p. 807). 
24 For the distinction between the ‘criterion’ and the ‘postulate’ of common cause see Suárez (2007b).   
25 See Gyenis and Rédei’s Definition 3.1. 
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1. CorrΦ (AI, Ck) > 0.  

2. CorrΦ (Bj, Ck) > 0. 

3. CorrΦ (AI, BJ / Ck) = 0 for all k ε K. 

 

Gyenis and Rédei then show that these conditions reduce to the usual 

Reichenbach characterisation of common causes in the limiting case of two-valued 

variables. The intuitive idea is indeed the same, namely screening off: conditionalising 

upon the common cause renders its effects statistically independent. (The first two 

conditions assert that the common cause is statistically relevant to each effect taken 

separately). 

 

The question of causal completeness of probability spaces is then in a nutshell the 

following: given any correlated variables AI, BJ ε £, can we expand the probability space 

(£,Φ) so as to find a common cause variable CK, satisfying the relations above, which is 

included in the space? Gyenis and Rédei formalise the notion of causal completeness as 

follows: A probability space (£,Φ) is causally complete with respect to a causal 

independence relation R and correlation function CorrΦ if for any two compatible 

variables AI, BJ in £ there exists a generalized Reichenbachian common cause CK of size 

K ≥ 2 in £ of the correlation. 26 The causal independence relation R minimally requires 

logical independence – but it must impose additional conditions. 27  

 

Under these conditions Gyenis and Rédei review a number of important results on 

causal completeness; the most important seems to be “proposition 8”, which states that 

‘every atomless general probability space is causally event-complete’. This means that 

there are statistical theories that are causally complete: i.e. they contain the 

Reichenbachian common causes of their correlations. Gyenis and Rédei point out that it 

                                                 
26 See Gyenis and Rédei’s definition 4.1. A common cause variable CK has size 2 if it has two values. For 
instance an indicator function (on-off) can be represented as a size two variable (C, ¬ C). 
27 Gyenis and Rédei leave open what this further conditions may be, which seems wise since their aim is to 
describe formal models applicable to any physical set ups. In causal modelling one would of course like to 
know more about this relation, and in particular the physical conditions that must obtain for A, B to be 
causally independent in the prescribed sense.  
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follows from this result that one may not refute Reichenbach’s common cause principle 

by appealing to the thought that statistical theories are generally causally incomplete. 28 

 

 

Robustness and the Markov Condition 

 

Chapter 8 is my own discussion (jointly with Iñaki San Pedro) of the relationship 

between the robustness condition once defended by Michael Redhead for the quantum 

correlations and the Causal Markov condition (CMC) that has been much discussed 

recently in the causal inference literature. We argue for a tight connection between these 

two conditions, namely: robustness follows from the CMC together with a number of 

additional assumptions. First we take Richard Healey’s (1992) distinction between two 

forms of robustness, each appropriate for the assumption of total or partial causes. 

(Healey reserves the term “robustness” for the first condition only, while using “internal 

robustness” for the second condition.) We then show that each notion of robustness 

follows from CMC and the assumption of either total or partial causes under the only 

further assumption that there exists one independent disturbing cause acting on the 

putative cause of the cause-effect link (in other words, that a form of intervention is 

possible). This entails that from the standpoint of an interventionist account of causality 

there is no real difference between applying robustness or the CMC. And the latter 

condition is more general since it does not require interventions (or disturbing causes). So 

it may be safely assumed in all future discussions regarding the status of causality in 

quantum mechanics. The robustness literature is thus shown to be superseded, and we 

recommend philosophers of science and causal methodologists alike to focus on the 

status of the CMC in quantum mechanics instead. 

 

This argument so far supports the programme of the causal Markov condition 

theorists, such as Jim Woodward and Dan Hausman. However, in the second half of the 

chapter we go on to disagree with Hausman (1999) and Hausman and Woodward (1999) 

                                                 
28 The reasoning is convincing but one wonders to what extent the arguments against Reichenbach’s 
Principle depend on the claim of (formal) incompleteness. For discussion see San Pedro (2007, chapter 3).  
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over the status of causation in quantum mechanics. It has traditionally been supposed that 

quantum mechanics provides a striking refutation of the principle of common cause and 

other standard methods of causal inference. This would arguably compromise the validity 

of CMC – at least in indeterministic contexts. Hausman and Woodward have claimed that 

the CMC is not false in quantum mechanics, but rather inapplicable. That is, they 

maintain that the conditions that would allow us to apply CMC are not met in this setting, 

and it is impossible to tell whether CMC obtains or is violated. We argue that on the 

contrary there is in principle no reason why the CMC cannot be applied. What’s more the 

application of CMC does not support the traditional judgement regarding causation in 

quantum mechanics. On the contrary our assessment is that whether or not CMC is 

violated depends very sensitively upon both the detailed statistics modelled, and the 

interpretation of quantum mechanics applied. As an example we discuss the status of 

causality in EPR in the context of the model of Bohmian mechanics. Steel (2005) has 

argued that in this context the CMC fails; we argue that to the contrary it arguably 

obtains, provided enough attention is paid to the details of the model itself. More 

generally, our paper is a call to apply the CMC to quantum mechanics in order to figure 

out causal structures, but to do so judiciously – and this, we claim, requires a healthy 

dose of methodological pragmatism. Philosophers ought to start by looking at the diverse 

range of models available first within a number of different interpretations and then draw 

their judgements on the basis of a consideration of their details.  

 

 

 

 

3. PROPENSITIES 

 

The third and final part of the book contains three essays on propensities, mainly 

in the quantum domain. Mauro Dorato reassesses the role of dispositions in quantum 

mechanics, Nicholas Maxwell reviews the latest stage of his ‘propensiton’ theory, and Ian 

Thompson provides a philosophical analysis of nested dispositions in physics. 
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Dispositions in the Ontology of Quantum Mechanics 

 

In chapter 9 Mauro Dorato considers the role of dispositions in quantum 

mechanics. In particular the most substantial part of the paper defends a role for 

dispositions within the so called Ghirardi-Rimini-Weber (GRW) interpretation. Dorato 

defends the view that the probabilities for collapse ascribed by these theories can be 

given an objective reading – in particular, they are interpretable as propensities. He 

suggests two different ways for doing this. First, he aims to show that dispositional 

readings of the spontaneous collapses postulated by these theories are not only possible 

but natural. Second, he argues against alternative non-dispositional interpretations of 

collapse probabilities, particularly the Lewis-style best system analysis account.  

 

On the first issue, Dorato argues that dispositions are natural on both the original 

mass density localisation proposals of Ghirardi-Rimini-Weber (1986) and the most recent 

proposal attributed to Tumulka (2006), the so-called ‘flash ontology’ proposal. (The 

supposed advantage of the latter is the existence of a relativistic extension). Secondly, 

Dorato argues against Frigg and Hoefer’s (2007) attempt to read quantum probabilities in 

the GRW interpretation in a Humean way, in accordance with the best system analysis. 

Dorato’s main claim seems to be that the quantum probabilities are conditional 

probabilities and therefore relations between sets of events or properties at the quantum 

level. A Humean reading of such probabilities would then incur a fallacy of omission – 

since it fails to explain what such conditional probabilities are conditional upon. 

(Dorato’s claim is controversial and heavily dependent upon the interpretation of 

conditional probability; the claim however has a more solid basis if grounded on 

transition as opposed to merely conditional probabilities – and I argue in this introduction 

that quantum probabilities should be understood as transition probabilities).  

 

In the final section of the paper Dorato argues against my own selective 

propensity interpretation (Suárez 2004; 2007a), which he appropriately links to some 

aspects of Bohr’s response to the measurement problem. As I understand it Dorato is 
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charging the selective propensity interpretation with a possible fallacy in its description 

of the actualisation of dispositional properties. Such actualisations may or not be physical 

processes. If they are physical processes, then the selective propensity account is 

incomplete since it does not describe them. (Note that it follows from this that all collapse 

interpretations, including GRW on Dorato’s own dispositional reading, are also 

incomplete). If on the other hand such actualisations are not physical processes then the 

application of propensities remains mysterious (and its explanatory power is 

compromised): we are back to the old ‘dormitive virtue’ objection to dispositions in 

general.  

 

Dorato’s objections are intricate and interesting but in my view they ultimately 

fail to hit their target. The selective propensity account indeed remains silent on the 

physical processes that underlie the actualisation of propensities. It takes the standard 

propensity view that dispositions are displayed in probability distributions, each in its 

proper context of application. 29 But it does not aim to explain the mechanisms – if any – 

that connect dispositions and probabilities. Such mechanisms would appeal either to 

categorical properties in which case dispositions are ultimately reduced, or to further 

dispositional properties. Either option seems viable from a dispositionalist point of view, 

but neither seems called for since the very existence of such a mechanism seems a 

remnant from categorical property-speech. Consequently I also disagree with the need to 

provide a categorical basis for the dispositions which Dorato and I do agree are 

applicable to Bohmian mechanics (We agree on the applicability of dispositions, but the 

agreement seems to end there – I take such dispositions may well be ultimately 

irreducible while Dorato thinks they must be reducible to the only categorical property 

available in Bohmian mechanics, i.e. position).30 The general explanatory question that 

                                                 
29 Mellor (1971). 
30 I introduce irreducible dispositions into Bohmian mechanics in Suárez (2007, section 7.2). However, I 
was not the first person to suggest such a reading. Pagonis and Clifton (1995) are an antecedent (although 
to my mind they mistakenly understand dispositions relationally, and identify them with aspects of 
Bohmian contextuality). An attempt closer to my own ideas is due to Martin Thomson-Jones (Thomson-
Jones, unpublished). We both defend irreducible dispositions with probabilistic manifestations for Bohmian 
mechanics but unlike Thomson-Jones I restrict the applicability claim to the causal or maximal 
interpretation. Thomson-Jones’ unpublished manuscript is dated after the submission date of the final 
version of my paper. However, I was in the audience both in Bristol (2000) and Barcelona (2003) where 
preliminary versions of Thomson-Jones’ paper were presented. Although I don’t recall the details of these 
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Dorato wants to ask: “by virtue of what mechanisms does a propensity generate a 

distribution?” has in my view no genuinely dispositionalist answer. 

 

 

The Propensiton Theory Revisited 

 

Chapter 10 contains Nicholas Maxwell’s latest defence of his ‘propensiton’ 

version of quantum theory, which he has been developing for more than three decades 

now (see Maxwell, 1972 for the earliest defence). Maxwell argues that the propensition 

quantum theory (PQT) has testable consequences that could in principle distinguish it 

empirically from the orthodox quantum theory (OQT). So the PQT is not merely an 

interpretation of quantum theory: it is an alternative theory in its own right. Its main 

merit, according to Maxwell, is to combine indeterminism – understood as the idea that 

there are essentially stochastic or probabilistic processes out there in the world which 

generate certain outcomes with certain probabilities – and realism – the view that at the 

quantum level nature too is determinate: properties have values all the time independent 

of whether or not subjected to measurement.  

 

Maxwell is right that indeterminism and realism are not necessarily in 

contradiction. Some of the extant alternative interpretations of quantum mechanics – such 

as the Ghirardi-Rimini-Weber (GRW) collapse interpretation, and the Quantum State 

Diffusion (QSD) theory – are already living proof. 31 And Maxwell is right to claim that 

his propensiton theory (PQT) was formulated before these theories came onto the market. 

The PQT is distinct from either of these more established alternatives on several counts. 

The most important difference is that Maxwell postulates the existence of distinct entities 

- propensitons - which live in physical 3-d space and whose states are described by the 

quantum wavefunction. It is the physical interaction between such entities that ‘fires’ the 

spontaneous collapse of the wavefunction.  

                                                                                                                                                 
talks I am sure I was influenced by them, as well as many friendly chats with Martin over the years – for 
which I am very grateful. 
31 It is not surprising that such theories have already received interpretations in terms of dispositions – see 
Frigg and Hoefer (2007) and Suárez (2007, section 7.1). 
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The theory has several virtues, not the least of which is to have anticipated 

collapse interpretations, and Maxwell canvasses and studies them well. Like any other 

version or interpretation of quantum theory the propensiton theory also has its own 

difficulties. They are related to Maxwell’s essentialism about laws combined with the 

claim that the nature of the entities fundamentally depends upon the laws that govern 

their behaviour. In tandem these two assumptions entail that the shape of the propensitons 

is given by their geometrical counterpart in the dynamical evolution of the 

wavefunction.32 Indeed Maxwell’s physical picture takes it that a couple of propensitons 

(‘expanding spheres’) at some point clash, and immediately contract at that point. But 

this view faces a plethora of problems and difficulties, all connected with the literal 

geometric interpretation. First, there is the problem of how to interpret the contraction of 

the spheres; and in particular whether this process obeys energy momentum conservation; 

second there is the problem of how to interpret Maxwell’s claims that the contraction 

processes result from inelastic scattering that creates new particles – particularly in light 

of the fact that some measurements on the face of it create no new particles – such as 

destructive measurements.  

 

 

Derivative Dispositions 

 

In the last chapter of the book Ian Thompson faces up to a fundamental question 

for dispositionalism, namely the nested exercise of dispositions in physics. The 

manifestation properties for dispositions need not be categorical. Rather dispositions will 

often be manifested in further dispositional properties. Thompson cites potential energy 

force and force as characteristically nested dispositions. (Potential energy force is the 

disposition to generate a force, while force is the disposition to accelerate a mass). These 

are, in his terminology, derivative dispositions. It is interesting to apply the idea to the 

dynamical evolution of quantum systems (section 4.3). Suppose a system in an initial 

state Ψ (t0) is evolved by a Hamiltonian H to a new state Ψ (t1). Thompson suggests that 

                                                 
32 See Thompson (1988) for a similar assessment. 
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the Hamiltonian be a disposition to evolve the state, while the states be themselves 

dispositional properties, namely propensities to produce measurement outcomes with the 

various probabilities p λ = | < µλ | ψ (t) > | 2. The Hamiltonian represents a ‘dynamical’ or 

diachronic disposition that generates further ‘static’ or synchronic dispositional 

properties, or propensities, on measurement. 33 We may then refer to the latter as 

derivative dispositions.  

 

The full range of derivative dispositions generates a ‘grid’ of dispositions that we 

may refer to as a multiple generative level. Thompson introduces a number of additional 

distinctions and terminology to supplement this idea. The terminology is essentially 

causal because Thompson assumes that the action of primary dispositions over the 

inferior levels down the grid is causal in nature. (Thus he would say the Hamiltonian 

disposition causes the successive sets of static propensities). The thesis that dispositions 

and their manifestations are causally related is not new. 34 It suggests that there is a 

particular time or instant at which the disposition fires to generate its manifestation. And 

this introduces questions regarding the nature of the ‘firing’ event, and whether it is 

grounded upon further dispositional properties. We do not enter these difficulties here. 

The point Thompson’s essay makes admirably is the more basic one that the 

manifestation properties of dispositions may be dispositional too.  

 

 

 

 

4. TRANSITION VERSUS CONDITIONAL PROBABILITIES 

 

 

                                                 
33 The idea strongly recalls the distinction between dynamical and value states within the modal 
interpretation of quantum mechanics. See Van Fraassen (1991, chapter 9). 
34 Nor is it uncontroversial. Lewis (1997, pp. 149ff.) introduced the idea of causal bases for dispositions. 
Bird (forthcoming) discusses objections to the idea that stimulus conditions cause dispositions to manifest 
themselves. For the purposes of this introduction I have ignored stimuli and concentrated on the disposition 
– manifestation relation itself (e.g. in the discussion in sections 5-6).  
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Most of the authors in this volume discuss, often approvingly, the idea that the properties 

dealt with in fundamental physics and, particularly in quantum mechanics, may be 

essentially dispositional, or propensities. Objective physical propensities or chances are 

sometimes represented as forwards in time conditional probabilities. In this section, I 

provide a brief argument that the best representation is instead by means of transition 

probabilities, and that both representations are distinct.  

 

 

Transition probability: Take One 

 

Consider the equation for a forwards transition probability discussed in section 

one: 

 

Pj+1/j (S (tj+1) / S(tj)) = Pj&(j+1)  (S (tj+1) & S(tj)) / Pj (S (tj))   (FTP) 

 

This equation does not express a well-defined conditional probability. The 

probability functions are different in each side of the equality since the time sub-indexes 

are different. Rather the formula enables us to calculate the probability for a physical 

transition from the state S(tj) to the state S (tj+1) by working out the probability of the 

earlier state at the time of its occurrence and then the joint probability of both states at the 

conjunction of both distinct times. Let me discuss more precisely the meaning of this 

expression shortly. For now let us just note that the expression of a transition probability 

crucially differs from the similar expression for the conditional probability of successive 

states at time tj: 

 

Pj (S (tj+1) / S(tj)) = Pj (S (tj+1) & S(tj)) / Pj (S (tj))    (CPj) 

 

It also differs from the conditional probability of such states but calculated at the 

later time tj+1: 
35 

                                                 
35 On the assumption of a fixed past and an open future (CPj+1) does not express anything informative since 
Pj+1 (S (tj)) = 1 and Pj+1 (S (tj+1) / S(tj)) = Pj+1 (S (tj+1)) for any states S (tj), S (tj+1). But Bacciagaluppi is 
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Pj+1 (S (tj+1) / S(tj)) = Pj+1 (S (tj+1) & S(tj)) / Pj+1 (S (tj))   (CPj+1) 

 

Thus, a transition probability is at least prima facie distinct from the 

corresponding conditional probability regardless of the time that it is calculated at. The 

formal difference between the expressions reflects a deep physical distinction. 

 

Transition Probability: Take Two 

 

As a matter of fact (FTP) does not express a conditional probability at all since a 

transition probability is neither conceptually identical nor reducible to a conditional 

probability. We would be better advised to write transition probabilities down as follows: 

 

Pj » j+1 (S(tj) » S (tj+1)) = Pj&(j+1)  (S (tj+1) & S(tj)) / Pj (S (tj))   (TP) 

 

A new symbol ‘»’ has been introduced to represent the actual physical transition 

from state S(tj) at tj to state S(tj+1) at tj+1. The symbol characterises what is distinct about a 

transition, namely the actual dynamical change or transformation, of the state. 

Consequently one must distinguish carefully the probability of a state to state transition 

from the conditional probability of one of the states conditional on the other. P (S(tj) » 

S(tj+1)) expresses the probability of a transition, while P (S(tj+1) / S(tj)) expresses the 

probability of the later state conditional on the earlier one. Conditional probability does 

not require nor entail a dynamical process that physically transforms the prior into the 

present state; it simply expresses statistical dependencies between different states 

regardless of what goes on ‘in between’. (Conditional probability is compatible with such 

a process – the point is that it neither requires it nor does it ascribe it a probability). In 

other words (TP) and (CPj) are not equivalent in the fundamental sense that they do not 

express the probability of the same event. (TP) expresses the probability of a dynamical 

                                                                                                                                                 
interested in the meaning that these expressions, and the corresponding concepts, may have in the absence 
of any assumptions regarding becoming or any other asymmetry in time. So he is right in considering them 
as distinct possibilities. The only reason I ignore (CPj+1) in what follows is that all the considerations in the 
text above against reading (CPj) as a transition probability apply just as well to it. 
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change of state and it presupposes that such events exist and moreover that they may be 

meaningfully represented in the sigma field that constitutes the domain of the probability 

function. (CPj) by contrast expresses a conditional probability of the state at a certain 

time given the state at another time, and it is perfectly legitimately well defined on a 

sigma field where only states are represented. It does not require changes or physical 

transitions from one state to another to be represented in the domain of the probability 

function; in fact it does not require such changes or transitions to be events at all.  

 

The advantage of starting out with (TP) as a definition of transition probability is 

that it becomes immediately clear that a good amount of substantial argument would be 

needed to show that transition probabilities conceptually reduce to conditional 

probabilities of either the (CPj) or (CPj+1) types. 36 In particular, the argument required is 

not simply formal, but would imply a difficult to justify restriction of the sigma fields 

over which these functions are defined.  

 

 

Transitions are not conditionalisation processes 

 

Transition probabilities (TP) are also distinct from Bayesian conditionalisation 

events, which are often taken to express the rule for rational change of subjective degree 

of beliefs: 

 

Pj+1 (S (tj+1) ) = Pj (S (tj+1) / S(tj)) = Pj (S (tj+1) & S(tj)) / Pj (S (tj))   (Cond) 

 

Conditionalisation is often invoked by Bayesians as a mechanism for the updating 

of rational degrees of belief in theories, laws, or other general hypotheses. It is rather 

unclear what it could possibly mean in the context of state-transitions. It could start to 

make sense if we could speak of a learning process whereby some agent first learns that 

                                                 
36 A different further question is whether these probabilities (in particular (TP) and (CPj), whenever they 
are both well defined) should coincide numerically for the initial and final states of any state transition. A 
study of the conditions under which they coincide is beyond the reach of this essay – but it seems to me to 
be an interesting and promising research project.  
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state S(tj) occurs, and then wants to update her estimate of the probability of S (tj+1) in 

light of this new knowledge. However, the corresponding change in degrees of belief 

would take place at time tj+1, the time at which the state changes to become the new state 

S (tj+1). So by the time we are supposed to update, the new state already has objective 

probability one. Why would anyone want to use conditionalisation in order to update her 

degree of belief in a state that has already occurred? Why, more generally, conditionalise 

on the basis of information that is already old? Whatever (Cond) means it is certainly 

formally distinct from the expression of a transition probability (TP) – the latter neither 

requires nor entails any updating rule for the probabilities at any given time. 37 

 

 

Biased and unbiased samples  

 

 The key to transition probability is the expansion of the sigma field of a 

probability function in order to include a representation of physical transitions or state-

changes. An interesting question is whether this compromises the notion that an unbiased 

data sample must be in equilibrium since we know that samples out of equilibrium may 

generate qualitative time asymmetries between forwards and backwards transition 

frequencies (c.f. the discussion of Bacciagaluppi’s argument in section 1). There is reason 

to think that it does if there is reason to think that physical transitions or changes of state 

necessarily take place forwards in time. If so, the only events that are additionally 

represented in the sigma field of a transition probability are physical changes of state 

forwards (S(tj) » S (tj+1)), but not physical changes of state backwards (S(tj+1) » S (tj)). As 

a result the data samples can at best contain the former type of events but not the latter. 

Not surprisingly, forwards transition frequencies over these data samples will appear to 

be time invariant but not so backwards transition frequencies. 38 In the view defended in 

this essay propensities are represented by forward looking transition probabilities. So in 

this view it is automatic that forwards transition frequencies measure the relative 

outcomes of genuine dynamical changes, while backwards transition frequencies are 

                                                 
37 For a different argument to a similar anti-Bayesian conclusion see Guerra (2009, chapter 8). 
38 See Arntzenius (1995, esp. section 2) for a detailed example and discussion. 
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merely relative ratios of states calculated by means of the forwards transition 

probabilities and initial conditions. 39 

 

I conclude that the ontological primacy of forwards over backwards transition 

probabilities can only be denied if either i) genuine physical changes of state occur 

backwards as well as forward in time, or ii) no genuine physical changes of states occur 

ever at all. The former option entails denying that propensities, or objective transition 

probabilities, are time oriented. The latter option entails denying that such things as 

propensities, or transition probabilities, exist at all – in either direction in time. Both 

entail a major shift in our ordinary ontology. 

 

 

 

 

5. PROPENSITY AS PROBABILITY  

  

Transition probabilities are thus probabilities of genuinely physical changes of 

state. They somehow reflect the tendencies or propensities that systems possess to exert 

such changes. How should we represent them? I will adopt the view that quantum 

propensities are displayed in probability distributions, namely the usual transition 

probabilities provided by Born’s rule. In this section, I elaborate on the notion of 

propensity that underlies their discussion, in particular with reference to some of the key 

texts and positions in the more general literature. I first distinguish the notion of 

propensity discussed in the book from the more widely known propensity interpretation 

of probability. I then discuss some historical precedents for the sort of view that I discuss 

                                                 
39 Penrose (1989, pp. 355-359) defends an apparently similar view regarding the quantum mechanical 
algorithm for computing transition probabilities (the Born rule) in general. He claims that the algorithm can 
err if applied to compute backwards state-transitions: “The rules […] cannot be used for such reversed-time 
questions” (ibid, p. 359). The representation of transition probabilities proposed here makes it clear why 
this should be the case.   
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here. Finally, I address the principal objection against the propensity interpretation in 

recent years, namely “Humphrey’s paradox”. 40  

 

 

Long-run versus Single Case Propensities 

 

The philosophy of probability literature appropriately distinguishes two types of 

propensity interpretations: long run and single case. 41 The difference between these two 

types lies in the object that is identified as the propensity. Long run interpretations of 

propensity identify propensity with the dispositional property of a chance set up to 

generate frequencies in sequences of outcome trials, while single case interpretations 

identify it with the tendency to generate a particular outcome in a given trial. There are at 

least two long run interpretations: those which accept infinite virtual sequences and those 

which accept only long yet finite sequences. All long run interpretations have the 

following in common: a chance set up (an arrangement of distinct parts capable of 

generating a sequence of stochastic outcomes of some trial) may possess a propensity for 

some type of outcome if and only if the limiting frequency of such a trial outcome is well 

defined in each (long but finite, or virtual and infinite) sequence. Hence long run 

propensity interpretations agree with frequency interpretations in requiring sequences for 

the ascription of probabilities. The difference is that a long run propensity interpretation 

will not focus on the properties of the sequences (frequencies) but rather on the properties 

of chance set ups that generate those sequences. In other words, a long run propensity 

interpretation does not identify probability with frequency, but with the tendency to 

generate the frequency instead. 

 

Similarly, a single case propensity interpretation will not identify probability with 

any trial outcome but with whatever dispositional property generates a particular trial 

                                                 
40 The view of propensities that I shall be defending here is very much my own (see Suárez, 2004, 2007a), 
and none of the contributors in the book has explicitly committed to it. However I believe that this view, or 
a similar one, is required for the coherence of many pronouncements made in the book, particularly in the 
third part. If so, we may take this or a similar view to be implicit in the book, and its defence in this section 
to provide support for it.  
41 Gillies (2000a, pp. 124-126); Fetzer (1981, chapter 5). 
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outcome. So a probability in this case is a tendency that is exerted in every trial; no 

frequency in any finite – however long – sequence of such trials may fail to agree with 

the particular probability. The only frequencies that, on a single case propensity 

interpretation, need to agree with the probabilities are those pertaining to the virtual 

infinite sequences that would be generated if it were possible to repeat the same 

experiment an infinite number of times. Yet, unlike the long run propensity 

interpretation, the single case interpretation does not identify propensity with the 

tendency to generate any frequency, whether finite or infinite. Rather, it associates 

propensity with the tendency to generate each particular outcome in the sequence. 42  

 

When authors in the book discuss propensities they almost invariably have in 

mind a single-case interpretation. There are, however, a number of interesting differences 

among different single case interpretations and it is worth to review them quickly. 43 

Gillies divides propensity interpretations into two types depending on what is regarded as 

an appropriate chance set up – i.e. the set of conditions that must obtain at a given time 

for the appropriate tendencies to be instantiated. Humphreys by contrast divides single 

case propensity interpretations into three additional types differing in their account of 

dynamics for propensities – i.e. their time evolution over a period and their effect on 

different events at successive stages.  

 

Let me consider Gillies’ taxonomy first, which divides all propensity 

interpretations into repeated conditions and state of the universe interpretations. The 

chance set up may be a simple enough arrangement that could be specified by means of 

just a few free variables or parameters. (The toss of a coin is an example). If so, a chance 

set up is defined by just a few conditions that are repeatable and hence allows for the 

same sort of trial to be repeatedly carried out. A single case interpretation of this sort 

implicitly requires all propensities to be conditional on such a set of repeatable 

conditions. Alternatively, a chance set up may include the complete hypersurface 

                                                 
42 Long run propensities as tendencies to generate long but finite sequences are defended by Popper (1959), 
and as tendencies to generate long but finite sequences by Gillies (2000a, Ch. 7). Single case propensities 
are defended by Fetzer (1981, Ch. 5) and Miller (1994). 
43 I essentially follow the exposition in Gillies (2000a) and Humphreys (2004) and introduce further 
considerations along the way.  
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corresponding to a particular time t. If so, a chance set up is defined by the whole state of 

the universe at t. This type of single case interpretation too requires all propensities to be 

conditional – albeit conditional on a complete hypersurface. 44 In either view, there are no 

absolute propensities Pr (At) for any event or proposition A at any time t. Any seemingly 

absolute propensity is really a conditional propensity, Pr (At / St’) with t’ < t, where S is 

either the full state of the universe at t’ , or the particular set of conditions required by an 

appropriate chance set up at t’ .  

 

On the assumption that all propensities are conditional, Paul Humphreys provides 

a different taxonomy based on the dynamical evolution of conditional propensities. 45 A 

coproduction interpretation assumes that the conditional propensity is fixed once and for 

all at the initial time t whether by a particular set of relevant conditions at t or by the t 

hypersurface or time slice. Thus all propensities carry an implicit time index which need 

not coincide with the time index of either conditioned or conditioning event. For example 

Prt (At’’  / St’) is the propensity at t for A at t’’  given S at t’ . Under the natural assumption 

that t < t’ < t’’ a coproduction interpretation assumes that the conditional propensity of 

At’’  given St’  is already fixed at the original time t given the background conditions at that 

time. A temporal evolution interpretation by contrast assumes that propensities evolve 

continuously in time so the propensity of At’’  at t need not be identical to that at t’ . The 

conditional propensity of At’’  given St’ must then be evaluated at t’ : Prt’ (At’’  / St’) as the 

temporal update of the original propensity Prt (At’’  / St’). Finally, a renormalisation 

interpretation assumes that updating is necessary even though there is no continuous 

temporal evolution of the propensity. (The difference between the renormalisation and 

the temporal evolution interpretations is that the former does not presuppose continuous 

evolution so updating in intermediate stages is not required. In the temporal evolution 

                                                 
44 The different interpretations are then classified as follows: Fetzer (1981) defends a single case repeated 
conditions interpretation, while Miller (1984) defends a single case state of the universe interpretation. 
Gillies (2000a, pp. 130-36) argues that these interpretations succumb to Humphrey’s paradox, and defends 
instead a long run repeated conditions interpretation.  
45 Humphreys (2004). 
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interpretation, by contrast, an updating at t’’  of a propensity first defined at t necessarily 

requires an intermediate updating at t’ ). 46 

 

The two taxonomies are orthogonal and, in principle, any of the 15 combinations 

is logically possible. Humphreys and Gillies in effect argue that as long as applied to 

single case propensities all fifteen of them are ruled out by Humphrey’s paradox. In what 

follows I review the notorious paradox. For now I just note that all propensity 

interpretations so far analysed have one thing in common: they presuppose that there are 

no genuine absolute propensities and that all propensities are implicitly or explicitly 

conditional. Later on I shall argue that there is nothing in the dynamical interpretations 

per se that implies that this should be the case; and that there are alternative ways of 

understanding both relevant conditions and state of the universe interpretations.  

 

 

Humphrey’s Paradox 

 

‘Humphrey’s Paradox’ (HP) was first described by Wesley Salmon (1979, pp. 213-4) 

and James Fetzer (1981, p. 283) who was also responsible for naming it. Most 

commentators describe it not so much as a ‘paradox’ as a powerful argument against the 

propensity interpretation of probability. 47 The key idea underlying this argument is 

roughly that propensities partake of the asymmetry of causation in a way that 

probabilities do not. But if propensities are causally asymmetric and probabilities are not, 

then they can not be the same kind of thing. Hence a wholesale propensity interpretation 

of (the classical – Kolmogorov - calculus of) probability is out of the question. 

 

Let me use a simple everyday example to try to make the rough idea a bit more 

precise. Some of my friends have remarked on my propensity to travel to North America 

in the spring. On the basis of the relative frequency in the last ten years, we may estimate 

                                                 
46 Humphreys actually lists a fourth case, the causal interpretation (Humphreys, 2004, p. 673). However, 
the causal interpretation is not really on a par with the other three since it is not per se a dynamical 
interpretation of the evolution of propensities. In fact it does not seem to exclude any of the other three 
dynamical interpretations, being rather compatible with any of them. 
47 Fetzer (1981, pp. 283-286); Gillies (2000a) and (2000b); McCurdy (1996); Miller (1994); Milne (1986). 
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the probability corresponding to this propensity roughly at P (NA / S) = 0.9 (where NA is 

my travelling to North America, and S stands for the – northern hemisphere – spring). 

We can then apply Bayes theorem in order to find out the value of the inverse probability 

of spring conditional on my travelling to North America: P (S / NA) = P (NA / S) x P (S) 

/ P (NA). Dividing the year in four seasons and applying some estimates for the priors, 

we obtain P (S / NA) = 0.56. Let us suppose that there is a set of causal facts {F} 

underlying my friends’ propensity adscription along the lines of the intended implication, 

namely that {F} are features unique to the spring season that attract me to North 

America, and cause me to travel there. We can suppose that {F} includes (in addition to 

facts regarding the seasonal weather in spring in both continents) some facts about my 

psychology, habits and values, my work schedule, my family and financial situation, etc. 

Whatever these causal facts {F} are, they fail to underpin similarly any propensity 

corresponding to the inverse probability. For whatever it is that causes me to travel does 

not also cause spring. In these terms, the inverse probability P (S / NA) does not seem to 

have any possible causal underpinning. The relevant causal facts relate to the 

conditioning event S, while the effects of interest relate to the conditioned event NA. But 

the inverse probability has inverted conditioned and conditioning events. And it is 

implausible to suppose that there are other facts {F’} about North America – or about my 

travelling there – that cause or bring about spring with a 0.56 chance. (Certainly those 

very causal facts which underlie my propensity to travel there in the spring do not 

probabilistically cause it to be spring when I travel; so {F’} ≠ {F}; and it is hard to see 

what other facts could be cited). 48 

 

On the basis of examples like this, many commentators have asserted that 

Humphreys’ Paradox shows that very many well defined conditional probabilities are not 

propensities. This seems to rule out the propensity interpretation of probability in general 

since there is nothing about P (S / NA) that makes it in any way suspect as a well defined 

probability (certainly not as long as P (NA / S) is well defined too). Notice that there are 

two assumptions underlying this use of the example. The first (Assumption 1) is that the 

                                                 
48 For the convenience of the story, I am assuming that the relata of causation are facts along the lines of 
Mellor (1995). But the argument does not hinge on this assumption.   
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propensity interpretation applies to conditional probabilities. 49 The second (Assumption 

2) is that a propensity interpretation applies only when the conditioning event is a cause 

or partial cause of the conditioned event. This assumption trades on a supposedly intimate 

link between propensity and causation whereby the former inherits the asymmetry 

characteristic of the latter.  

 

Paul Humphrey’s own version of HP is not explicitly built on either of these two 

assumptions. But the assumptions are brought in implicitly. This is perhaps clearest in the 

discussion of the notorious example involving the transmission and reflection of a photon 

from a half-silvered mirror. 50 A source emits photons spontaneously; a few of these 

photons reach the mirror; among these a few are actually transmitted.  Now let us 

consider the propensity for a single photon to be emitted at the source at time t1; to hit the 

mirror at time t2; and to be transmitted at time t3. And let us consider the complete state 

of the source and mirror at time t1; i.e. after the emission of the photon at the source. 

Humphreys invites us to consider the following assignment of propensities at time t1: 

 

i) Prt1 (Tt3 / It2 Bt1) = p > 0 

ii)  1 > Prt1 (It2 / Bt1) = q > 0 

iii)  Prt1 (Tt3 / ¬ It2 Bt1) = 0 

 

where Bt1 represent the background conditions at t1; It2 the incidence of the photon 

upon the mirror at time t2; and Tt3 the transmission event of the photon. According to 

Humphreys these three propensity ascriptions are entailed by the physical and 

experimental circumstances. They do not follow from the formal features of the calculus 

of probability because the arguments in the propensity functions designate physical 

events and do not necessarily pick out subsets of a measure theoretic outcome space. 51 

Indeed once the formal framework for the representation is chosen the content of 

                                                 
49 This need not rule out absolute propensities, although some commentators – notably Gillies (2000a, pp. 
131-132) – go further to claim that all propensities are implicitly if not explicitly conditional. In this view a 
propensity interpretation of probability is always of (and only of) conditional probability.  
50 Humphreys (1985, p. 561). 
51 I have adopted Humphreys’ suggested terminology and refer to propensities as Pr (-) and probability 
functions as either Prob (-) or simply P (-).  
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ascriptions i), ii) and iii) is not formal but empirical. However, it does not follow from the 

physical and experimental circumstances that the propensities involved are conditional 

nor does it follow that they must be formally represented in a way akin to conditional 

probabilities. This is a point that I shall take on later – and demonstrates that Assumption 

1 is built into the discussion of the example.  

 

Humphreys invites us next to consider the following principle of conditional 

independence for propensities: 52  

 

Conditional Independence (CI): Prt1 (It2 / Tt3 Bt1) = Prt1 (It2 / ¬ Tt3 Bt1) = Prt1 (It2 / Bt1). 

 

Together with the ascription of propensities above, this principle contradicts the 

(Kolgomorov) axioms of classical probability. The contradiction with the fourth axiom, 

in the form of Bayes Theorem for conditional probability is particularly easy to show. 53 

So, at least one among these assumptions must go. Some responses to HP have focused 

on trying to show that principle CI is false when applied to this particular example. 54 But 

in retort Humphreys produced yet another example that conclusively obeys CI. 55 Other 

authors endorsed the HP argument as a definitive reason to abandon the propensity 

interpretation altogether. 56 Humphreys himself concluded that the axioms of classical 

probability can not represent propensities accurately. But instead of abandoning 

propensities, he recommends abandoning the classical (Kolmogorov) calculus of 

probability as a representation of chance or objective probability. 

 

 

Conditional Propensities 

 

                                                 
52 Humphreys (1985, p. 561; 2004, p. 669). 
53 Humphreys (1985, p. 562).   
54 McCurdy (1996). 
55 See Humphreys (2004). My objections below to CI are very different in nature and cannot be answered 
by means of new examples.   
56 Milne (1986). 
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The CI principle and its use in the derivation of Humphreys’ Paradox require 

some careful analysis. Strictly speaking CI merely states that the propensity of the photon 

impinging on the mirror at t2 is independent of the (later) event of transmission at t3, and 

depends only on the background conditions at t1. But Humphreys seems to think that the 

actual principle of conditional independence is more general, and CI as formally 

expressed above is merely a consequence of such a general principle. For he writes that 

the CI principle ‘claims that any event that is in the future of It2 leaves the propensity of 

It2 unchanged. […] This principle reflects the idea that there exists a non-zero propensity 

at t1 for It2 to occur, and that this propensity value is unaffected by anything that occurs 

later than It2.’ (Humphreys, 2004, p. 670).  

 

Thus conditional independence in general, unlike CI in particular, applies to any 

event later than t2, and not just to Tt3 in particular. So the expression above is not a 

definition of conditional independence in general, but rather the application of 

conditional independence to the particular example. The main intuition is presumably that 

the propensities of the photon at ti can be altered only by events at times t < ti. But the 

only reason to suppose this is the temporally asymmetric nature of the “altering” relation 

– so Assumption 2 is involved after all. More generally the intuition seems to be that a 

system’s propensities at {x, y, z, t} can only be altered by events in {x, y, z, t}’s past light 

cone. If so, CI presupposes the view that propensities are time asymmetric in just the way 

causation is asymmetric in relativity theory under the ‘causal’ interpretation: no cause can 

lie outside the past light cone of its effects. So, a version of Assumption 2 is again built 

into the application of a general principle of conditional independence to the photon 

example.  

 

How plausible is this relativistic version of Assumption 2? There are many good 

arguments against the ‘causal’ interpretation of special relativity. 57 And even in a non-

                                                 
57 See Maudlin (1995), particularly chapter 5. 
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relativistic setting, Assumption 2 is inconclusive since backwards in time causation in a 

fixed frame has not been decisively ruled out. 58 

 

Humphreys claims that CI holds in the co-production interpretation of 

propensities, 59 presumably because in this interpretation all propensities are fixed at the 

initial time t1. But if this grounds independence at all, it is the very general claim that all 

propensities at time later than t1 (including therefore but not only the propensity for Tt3) 

are independent of the propensity for It2. This claim goes well beyond the general 

conditional independence that we have considered so far – which included only events in 

the future of t2. The co-production interpretation on its own grounds CI but it also 

grounds other similar independence conditions that we would not want to have to assert 

in this case. The only apparent way to extract precisely CI out of the co-production 

interpretation is by adding Assumption 2 or a similar causal principle. The co-production 

interpretation, in conjunction with Assumption 2, then entails that It2 is conditionally 

independent with respect to those events outside of its proper past light cone. In particular 

it follows that It2 is conditionally independent of Tt3, as stated in CI. So, CI requires 

Assumption 2 after all, even in the co-production interpretation. 60 

 

Humphreys argues against the co-production interpretation anyway, on the basis 

that it is not a genuine single case propensity interpretation. He claims that it does not 

classify conditional propensities as real conditional chances in an ontological sense, but 

only in the measure theoretic sense. 61 I suppose that he must have in mind the view that 

at time t1 all of the probabilities are fixed for all the propensities afterwards. So barring 

                                                 
58 In fact many of the arguments against backwards in time causation turn out to depend on the fine grained 
space-time structure of the putatively refuting examples. Others, such as the bilking argument, attend to 
agency only, but seem inconclusive. See Black (1956) and Dummett (1964) for two classic sources and 
discussion. 
59 See for instance the table in Humphreys (2004, p. 677). 
60 We may wonder about the status of conditional independence in other interpretations of propensities. CI 
holds in the temporal evolution interpretation – since the propensity of It2 is updated at time t2. So Prt2 (It2 / 
Tt3 Bt1) = Prt2 (It2 / ¬ Tt3 Bt1) = Prt2 (It2 / Bt1) = 1 or 0. But it fails in the renormalisation interpretation since 
Prt3 (It2 / Tt3 Bt1) ≠ Prt3 (It2 / ¬ Tt3 Bt1) in general. However, Humphreys (2004, p. 673) finds that a similar 
principle holds in the renormalisation interpretation, namely the fixity principle. (The fixity principle states 
that: Prt1 (It2 / Tt3) = 0 or 1, which holds in the renormalisation interpretation since Prt3 (It2 / Tt3) = 0 or 1). In 
all cases, I contend, Assumption 2 is implicit in the derivation of CI.  
61 Humphreys (2004 p. 675) 
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the very ascription conditions at time t1 and events prior to this, all other events are 

included in the outcome space and must be represented in the sigma field that defines the 

probability function.  

 

But if this is a reason to reject the co-production interpretation, it is also a reason 

more generally to reject the representation of propensities as conditional probabilities. Let 

us accept like Humphreys that a ‘conditional propensity’ is a sui generis ontological 

relation between two events (or event types) a and b. This relation is entirely independent 

of any formal representation in measure theory (given the typical underdetermination of 

mathematics by physics it is in fact natural to suppose that the same propensities may be 

represented by means of very many different measure functions). Why are we then 

obliged to represent them by means of the standard representation for conditional 

probabilities? Why are we obliged to provide a measure theoretic representation at all? 

 

 

 

 

6. PROPENSITY AS DISPOSITIONAL PROPERTY  

 

As long as propensity is understood as an interpretation of probability, we have 

no choice. Probability is routinely represented in measure theoretic terms, and there are 

even some good representation theorems. 62 But why suppose that propensity interprets 

probability? 63 Once the idea has been given up that propensity is a particular kind of 

probability, or an interpretation of the term ‘probability’, it becomes possible to suppose 

that the relation between these two terms is something different; for example, something 

akin to theoretical explanation.  

 

 

                                                 
62 As good as they come – typically not up to uniqueness. In particular, and rather to the point, the fourth 
Kolmogorov axiom is sometimes disputed – see, e.g. Hajek (2003). 
63 Why suppose that objective probability, or chance, requires any interpretation at all? After all many 
theoretical concepts bring their own interpretation and / or require no interpretation at all. Elliott Sober for 
one has recently argued for a no-theory theory of probability in Sober (2005). 
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Propensities Display Probabilities 

 

Propensities and objective probabilities are distinct notions and it is the job of a 

propensity theory to establish how they are conceptually related. The two theories that 

have fundamentally taken this insight to heart are due to Hugh Mellor (1971) and James 

Fetzer (1988). Their view is that propensities are dispositional properties that are 

displayed in probability distributions but may not be identified with them. Instead of 

providing semantics for probabilities in the model-theoretic sense, propensities may be 

said to explain probabilities since they explain how a certain distribution rather than 

another one comes about in specific circumstances. But if we accept this understanding of 

propensities as dispositional properties, there seems to be no reason why the relations 

between such properties need be represented as conditional probabilities. Consider first 

the relation between the possession and manifestation conditions of a propensity, such as 

those involved in the fragility (F) of a glass and its breaking (B). Supposedly this is a 

deterministic disposition under certain conditions C; we may assume that it displays the 

conditional probability P (B / F & C) = 1. Every fragile glass that is hit under specific 

conditions (certain strength, etc) will break. But why represent this propensity as a 

conditional probability? Under different conditions D, the same propensity gets displayed 

in a probability of breakage less than one: P (B / F & D) = x ≤ 1. So, in general, it makes 

sense to formally distinguish propensities from the probability distributions that display 

them.  

 

There are at least three alternatives to the conditional probability representation. 

First, we may represent the displays of propensities always as absolute probabilities in the 

restricted probability outcome space. Thus, instead of writing P (B / F & C) and P (B / F 

& D) we may always write P F&C (B) and P F&D (B), defining these probability functions 

on the smaller space. Since the functions are different, their values may correspondingly 

differ too. The advantage of this representation is that every probabilistic display of a 

propensity ascription is then relative to a set of circumstances or manifestation 

conditions. The disadvantage is that it does not allow us to ascribe probabilities to the 
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propensities themselves since {F, F’ etc.} are not represented in the sigma field that 

defines the probability. 

 

An alternative is to come up with a distinct representing symbol for what is, after 

all, a distinct relation. There are at least two different ways of doing this. We may first 

consider transitions of state, and put to use the notation that we devised to this effect in 

the previous section. Thus, F »c B denotes the transition from the dispositional ‘state’ F to 

the manifestation ‘state’ B under circumstances c. In the case of propensities the 

manifestation property is itself a probability distribution, and we may write F »c P (Bi) = 

pi where Bi are the different possible values of the manifestation property B. In this 

representation the outcome space is includes both property possession and property 

manifestation events as part of the propensity and manifestation ‘states’. So, we can 

define probability distributions over propensities, manifestation properties, and their 

transitions. I shall for the most part employ this notation in my discussion below. 

 

Yet, note that another alternative would allow us to represent the relations among 

different propensities, whereby the possession of some propensity may causally affect 

another set of propensities. This is obvious in the case of logical entailment among 

properties, which may be modelled as deterministic causation. (A typical macroscopic 

case is colour under a dispositionalist reading; so for instance being white ipso facto 

entails being coloured, etc). But in addition there may be genuine ‘productive’ causation 

among dispositional properties. 64 Both may be understood under a very general causal 

relation and represented by some appropriate symbol such as “֓ ”. 65 We may then write 

‘A causes B’ as “A ֓  B”. We saw in section 3 that there is a debate in the literature 

about whether propensities cause their manifestations. If it is the case that the 

manifestation relation is causal, then we can write Pc (F ֓  Bi) = pi instead of F »c P (Bi) 

= pi without loss of generality. However, in line with my previous discussion I shall not 

assume that the manifestation relation is itself a causal relation, but shall instead employ 

                                                 
64 For the distinction between ‘productive’ and ‘dependence’ or counterfactual causality, see Hall (2004). 
65 The symbol employed by Cartwright (1983, chapter 3) for this relation. 
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the ‘neutral’ notational system for transitions of state in general. From now propensities 

and their probabilistic distributions shall be denoted as F » P (Bi) = pi where I shall drop 

the c subscript for convenience. 

 

 

Absolute Propensities 

 

We are now able to represent changes of propensity state as follows. Suppose that 

S1 is the full state of the system expressing all its properties, whether dispositional or not, 

at time t1 and S2 is the full state at time t2. Then S1 » P (S2) = p expresses the fact that the 

transition probability for a change of state S1 into S2 is p. This notation makes it 

unnecessary to represent a transition probability as a conditional probability P (S2 / S1) = 

p. As we saw in section 4 the conditional probability notation for transition probability is 

not only unnecessary but undesirable.  

 

There are a number of advantages to this new notional system for propensities. 

Let me just comment on two of them since they relate to issues that were already 

mentioned in this essay. First, I address the distinction between different long run 

propensity theories that were reviewed in section 4. Second, I address some difficulties 

related to the principle of indifference that were briefly mentioned in the summary of 

Bangu’s paper in section 1. 

 

Firstly, in section 5 Gillies distinction between repeated conditions and state of 

the universe interpretations was reviewed. Let us continue to refer to the propensity as F. 

In the standard propensity interpretation of probability this propensity is identified with 

the corresponding conditional probability: F = Prt (Ai / St’) = pi where the {Ai} are the 

values of a given quantity to be measured at time t, the {pi} represent their probabilities, 

and St’ is either the (hypersurface) state of the universe at t’ or the set of repeated 

conditions at t’ (with t’ < t).  However, in the account defended here, these long run 

propensities must be reformulated as dispositional properties that display absolute 

probabilities. In accordance with our notation, we must write F »St’ Pt (Ai) = pi when 
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under the circumstances S at t’, the propensity A manifests itself as a probability 

distribution over the values of A at t. We leave open whether St’  represents the state of 

the universe at t’ or the set of repeated conditions at t’. In either case propensities are 

dispositional properties that ensue – or evolve into – probability distributions. The 

conditional probability representation is altogether unnecessary.  

 

Secondly, in the discussion of Bangu’s chapter in the first section, a source of 

difficulties associated with the principle of indifference was mentioned. In particular, I 

voiced the concern that the principle may invite an illegitimate inference from a merely 

epistemic fact about our knowledge (or lack thereof) to an objective fact about the 

physical world – and in particular about its dispositional properties. I can make the claim 

more precise now. Under a conditional propensity account such as Humphreys, the 

principle of indifference leads from facts about our lack of knowledge regarding the 

outcome of a particular experiment to an incorrect ascription of objective properties in 

the world. For instance, under total lack of knowledge regarding the outcomes of an 

experiment A performed under repeated conditions S we would be advised by 

indifference to ascribe equal probability to all such outcomes and the corresponding 

propensity would be given by Pr (Ai / S) = pi, with Σ pi = 1 and pi = pj for any i, j. It 

seems clear that no knowledge (or lack thereof) of any finite sequence can justify such an 

ascription of a propensity. So, under this construal of propensities, the principle of 

indifference leads to an incorrect ascription of objective facts about the physical world, 

namely its propensities. 66   

 

Now, interestingly, the problem disappears as soon as a dispositional account of 

propensities is embraced, with a concomitant representation in terms of the notation that 

we have developed. We must then write F »S P (Ai) = pi for the manifestation of F as A 

under circumstances c. It is then perfectly possible to apply the principle of indifference 

in order to fix the values of pi in the absence of any knowledge regarding the outcomes. 

We obtain that Σ pi = 1 and pi = pj for any i, j, as in the previous case. However, we now 

                                                 
66 The problem is most acute for long run propensity theories. Gillies (2000a) attempts to solve the problem 
by appealing to the notion of a falsifying rule for statistical hypothesis. But this is a controversial solution 
as discussed in the summary and discussion of chapter 2.  
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make no statement whatever regarding the propensity F that underlies this distribution. 

The principle of indifference applies only to the probability distribution that displays F 

but not F itself. Thus, we no longer commit the fallacy of going from lack of knowledge 

to objective facts. 67 

 

 

 

Humphreys’ Paradox Revisited 

 

Let us now bring the discussion to bear on Humphreys’ Paradox. We are discussing 

the view that propensities are dispositional properties that are manifested as probability 

distributions under the appropriate circumstances. Suppose that under circumstances c 

propensity F is displayed as the probability distribution P over the values of some 

manifestation property B. I have argued that this is appropriately expressed as F »c P (Bi).  

One of the relata of the manifestation relation is a probability distribution – in agreement 

with the thought that propensities manifest themselves in probability distributions.  

 

It should be obvious that symmetry fails on this representation. It does not follow 

from F »c P (Bi) that B »c P (Fi); it does not even follow that B has any manifestation 

properties at all! 68 The ‘inverse’ manifestation relation is not generally well defined. 

Moreover, Bayes Theorem has no application in these cases since all the probabilities are 

absolute and not conditional. So even restricting ourselves to the probability distributions 

that display the propensities, the ‘inverse’ probabilities need not be well defined either.  

 

                                                 
67 There is an interesting question here for the ‘causal’ notation alternative mentioned earlier. In that case 

we would write P (F ֓  Ai) = pi with Σ pi = 1, and pi = pj for any i, j. Here the application of the principle of 
indifference would lead us to infer objective facts. However, these facts do not regard the distribution of 
propensities but refer exclusively to the causal efficacy of propensities in generating distributions. It is an 
open question to what extent such an inference is prohibited by the sort of arguments routinely employed 
against the principle of indifference. Bertrand style paradoxes, for instance, are prima facie inapplicable 
given the apparent absence of any causal relations in those geometrical examples. This is an interesting 
topic for further work. 
68 Note that failure of symmetry is the case in the ‘causal’ notation too. Thus it does not follow from Pc (F 

֓ B) that Pc (B ֓  F).  It does not, in fact, follow that F has any causes at all, never mind that B is one of 
them.  
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One possible objection is that there is always an equivalent representation in terms of 

conditional probabilities. However, I do not think that a conditional probability 

representation of the above manifestation and, more specifically, causal relations is 

possible without significant loss of meaning. As we already saw in section 4, transition 

probability, which is possibly the most favourable case for the equivalence claim, is best 

understood as a change of propensity state and not as the outcome of conditioning. 

 

In this account, the reasoning underlying Humphreys Paradox goes wrong at the very 

start. The representation of photon state transitions as ‘conditional propensities’ (i.e. 

conditional probabilities) is incorrect. Instead, these processes should be represented 

properly as involving probabilities for manifestation or causal relations between 

propensities. It is the photon incidence upon the mirror that manifests itself in its 

transmission (or partially causes it together with the background conditions at t1). The 

incidence of the photon is a manifestation of its ejection or at least partially caused by it. 

Etc. The first three conditions should then be re-expressed accordingly: 

 

i) It2 Bt1 » Pt1 (Tt3) = p > 0. 

ii)  Bt1 » Pt1 (It2) = q, where 1 > q > 0. 

iii)  ¬ It2 Bt1 » Pt1 (Tt3) = 0. 

 

These equations represent the probabilities displayed by propensities and their 

relations. Since these probabilities are absolute, Bayes Theorem has no significant 

application. It is impossible to derive from these conditions a violation of Bayes Theorem 

whether in conjunction with a conditional independence principle such as CI – or any 

other of the principles discussed such as the zero influence or the fixity principle. 69 

 

 

                                                 
69 The same conclusion follows in accordance to the ‘causal’ notation. Humphreys conditions would be 

formalised as follows: i) Pt1 (It2 Bt1 ֓ Tt3) = p; ii) 1 > Pt1 (Bt1 ֓  It2) = q > 0; iii) Pt1 (¬ It2 Bt1 ֓ Tt3) = 0. 
Since Bayes Theorem has no application, no contradiction can ensue. 
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7. CAUSAL AND DISPOSITIONAL PRESUPPOSITIONS IN PHYSICS  

 

 

The overall outlook of the book is decidedly in favour of dynamical, causal, or 

dispositional presuppositions underlying the practice of probabilistic modeling in science. 

The authors find that probabilistic modeling often carries an implicit or explicit 

commitment to such notions. When it does not implicitly or explicitly carry such a 

commitment, it often needs to be supplemented with some inferential rules that can be 

grounded only upon such notions. Thus, transition probabilities express dynamical 

processes; the selection of probabilistic hypotheses often requires information regarding 

the physical properties of the systems described; and the explanation of equilibrium in 

statistical mechanics requires essential reference to the dynamical character of statistical 

laws. Causal hypotheses and causal reasoning are required to understand statistical 

inference in quantum correlation phenomena; such causal hypotheses may imply some 

temporal orientation on pain of causal paradoxes or loops. On the other hand, a proper 

analysis of these questions requires philosophers to come to grips and apply the latest 

techniques in the field of causal inference, including the latest versions of the principle of 

common cause and the causal Markov condition. Finally, quantum systems are likely 

endowed with dispositional properties that get displayed under the appropriate 

circumstances as the characteristic probability distributions provided by Born’s rule. 

 

In this introduction I argued that these diverse presuppositions are interlinked in 

many different interesting ways. For instance, transition probabilities must be understood 

as the probabilities of dynamical changes of state, and often express a system’s 

dispositional properties. The manifestation of propensities may be understood as a kind 

of causal relation between the possession conditions and the manifestation outcomes. 

Statistical inference from frequencies to probabilities in quantum mechanics often 

requires causal hypotheses which are extremely sensitive to the particular interpretation 

of quantum mechanics employed in deriving those models. Etc. Every single one of those 
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connections opens up a host of interesting philosophical problems and issues. The book 

demonstrates that work in the foundations of physics calls for deep and sustained 

philosophical reflection on such issues.  
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