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1 Introduction

It is still a controversial issue whether Reichenbach’s Principle of the Com-
mon Cause (RPCC) is a sound method for causal inference. In fact, the
status of the principle has been a subject of intense philosophical debate.
An extensive literature has been thus generated both with arguments in
favor and against the adequacy of the principle.

A remarkable argument against the principle, first proposed by Elliott
Sober (Sober, 1987, 2001), consists on a counterexample which involves cor-
relations between bread prices in Britain and sea levels in Venice. The
following quote somehow summarises the spirit of the example:

∗Universidad Complutense de Madrid. (inaki.sanpedro@filos.ucm.es).
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Introduction

Because both quantities have increased steadily with time, it
is true that higher than average sea levels tend to be associ-
ated with higher than average bread prices. [. . . ] we do not feel
driven to explain this correlation by postulating a common cause.
Rather, we regard VSL and BBP as both increasing for endoge-
nous reasons. [. . . ] Here, postulating a common cause is simply
not very plausible, given the rest of what we believe.(Sober, 1987,
2001)

There have been different attempts to deal with examples of the kind of
Sober’s ‘Venetian sea levels and British bread prices’ —two of which I shall
review in what follow. It seems striking though that none of these make
use of recent development regarding the formal structure of the probability
spaces where the relevant events are defined, the corresponding correlations
among these and the common causes that might be involved in a potentially
adequate causal explanation of such correlations. In particular, Hofer-Szabó
et al. have shown formally that screening-off events exist for any correlation:

[. . . ] every classical probability space (S, µ) is common cause
completable with respect to any finite set of correlations [. . . ]
given any finte set of correlations in a classical event structure,
one can always say that the correlations are due to some common
causes, possibly ‘hidden’ ones, i.e. ones that are not part of the
initial set S of events.(Hofer-Szabó et al., 1999)

Both quotations above seem to contain opposite claims and appear then
to convey two quite incompatible views. The aim of this paper is to put into
perspective criticisms to RPCC of the kind of Sober’s ‘Venetian sea levels
and British bread prices’ in the light of such recent formal results. In other
words, I shall make use of the so-called extendability and completability
theorems to reassess whether examples such as Sober’s still constitute a
thread to RPCC.

The structure of the paper is as follows: Section 2 provides a very brief
review of the main ideas of Reichenbach’s Principle Common Cause (RPCC)
along with the main issues regarding its significance and philosophical status.
The ideas of correlation and Reichenbachian common cause will be central
here. Section 3 introduces the ideas of extendability and common cause
completability. In Section 4 I review the mains of Sober’s argument against
RPCC and discuss on what grounds it may be taken as a potential thread to
the principle. Two recent reactions to Sober’s example are reviewed here as
well in Section 5. In Sections 6 and 7 I suggest two alternative solutions to
save RPCC from criticism of the kind of Sober’s, along with some concluding
remarks.
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Reichenbachian Common Causes

2 Reichenbachian Common Causes

The idea of common cause goes back to Reichenbach and has its origins at
the observation of apparently unrelated events that nonetheless take place
simultaneously with a certain regularity:1

If an improbable coincidence has occurred, there must exist a
common cause.

Reicehnbach’s original proposal may be formalised so that the concept
of common cause can be analysed in detail within the framework of classical
probability theory.2 The notion of correlation is central, for it is assumed
to capture the Reichenbach’s intuitions about improbable coincidences. Let
us then define correlation as follows:3

Definition 1. Let (S, p) be a classical probability measure space with Boolean
algebra S representing the set of random events and with the probability mea-
sure p defined on S. If A, B ∈ S are such that

p(A ∧B)− p(A) · p(B) > 0, (1)

then the events A and B are said to be (positively) correlated, and we write
Corrp(A,B).

Within this formal framework a Reichenbachian common cause4 is then
defined as:

Definition 2 (Reichenbachian Common Cause). An event C is said to be a
Reichenbachian common cause if the following independent conditions hold:

p(A ∧B|C) = p(A|C) · p(B|C) (2)

p(A ∧B|¬C) = p(A|¬C) · p(B|¬C) (3)

p(A|C) > p(A|¬C) (4)

p(B|C) > p(B|¬C), (5)

where p(A|B) = p(A ∧ B)/p(B) denotes the probability of A conditional on
B and it is assumed that none of the probabilities p(X) (X = A,B,C,¬C)
is equal to zero.

1Cf. (Reichenbach, 1956, p. 157). The simultaneity requirement is crucial for Reichen-
bach to rule out direct causal explanations and thus suggest the existence of a common
cause.

2I follow here the work by Hofer-Szabó et al. in late 1990’s and early 2000. See (Hofer-
Szabó et al., 1999, 2000a,b) and (Rédei, 2002) for the main results of the program.

3This definition is of positive correlation. A completely symmetrical definition may be
given for negative correlations. Distinguishing between positive and negative correlations
will not be important in what follows and positive correlations will thus be assumed.

4The term Reichenbachian is useful if we are to distinguish this particular type of
common causes from other events which could in principle be considered to be common
cause as well but do not fulfil this definition.
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Reichenbachian Common Causes

With both the notions of correlation and Reichenbachian common cause
above at hand Reichenbach’s Principle of the Common Cause (RPCC) may
be restated as follows:

Definition 3 (RPCC). For any two (positively) correlated event types A
and B (Corrp(A,B) > 0), if A is not a cause of B and neither B is a cause
of A, there exists a Reichenbachian common cause C of A and B, i.e. there
exist an event C such that conditions (2)-(5) hold.

The definition above consists of two distinct and independent claims.
The first is a claim at the ontological level, regarding the existence of com-
mon causes, and the other at the methodological level which provides a
concrete characterisation of the postulated common causes (through equa-
tions (2)-(5)).

A proper distinction of these two claims is crucial for the assessment of
the status of RPCC. In particular, since each of the two claims in RPCC
is logically independent of the other, arguments aimed at criticising the
characterisation of common causes through expressions (2)-(5) may very
well leave untouched the existential claim about common causes. In fact,
while it is part of the received view that equations (2)-(5) do not constitute
neither a necessary nor a sufficient condition for common causes, there have
been prominent defenders of the existence of common causes.5 On the other
hand, arguments devised to deny the very existence of common causes may
be completely compatible with the claim that common causes, whenever
they exist, are to satisfy equations (2)-(5).

Despite the controversies, endorsing RPCC may be motivated by at least
two reasons. First, note that for Reichenbach the role of the principle as a
whole, and of the screening-off condition in particular, is mainly explanatory.
Reichenbach explicitly points out that the four statistical relations explain
the correlations between A and B in two senses. First, he notes that the four
relations entail that A an B are (positively) correlated, i.e. Corr(A,B) >
0. On the other hand, a common cause C satisfying these four relations
explains the correlation by rendering A and B statistically independent.6

The explanatory power of screening-off common causes may thus be taken
as a good reason to support the adequacy of RPCC for the inference of
causal relations from probabilistic facts, even if it can be patently shown no
to hold as a necessary nor as a sufficient condition for causation.

Second, recent results show that, at least formally, it is always possible to
provide a Reichenbachian common cause for any given correlation.7 These

5Salmon (1984) and Cartwright (1987) are perhaps the most influential proposals for
the generalisations of Reichenbach’s original criterion for common causes.

6Cf. (Reichenbach, 1956, p. 159).
7While this is not true in general for any sort of Reichenbachian common cause, it

holds for the particular type of common cause we are interested here. See (Hofer-Szabó
et al., 1999, 2000b,a) for details.
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results build on the intuition that any probability space S containing a set of
correlations and which does not include (Reichenbachian) common causes
of these, may be extended in such a way that the new probability space
S ′ does include (Reichenbachian) common causes for each of the original
correlations. These intuitions are formalised in so-called extendability and
common cause completability theorems.

3 Common Cause Completability

It is not difficult to find examples of probability spaces containing correlated
events which do not feature however any event which satisfies the definition
of Reichenbachian common cause. We shall call such probability spaces
Reichenbachian common cause incomplete spaces.8

One seems to have two alternatives when dealing with Reichenbachian
common cause incomplete probability spaces. Either we go for a weakening
of the common cause criterion —this is for instance the case in both Salmon’s
‘interactive forks’ and Cartwright’s generalisation of the fork criterion—,
or we may simply embark on the search for screening-off common causes,
hoping that such events exist but have remained somehow ‘hidden’ to us all
along. Here I shall only pay attention to the second alternative.

So how should we face this search? Note first that we need to be searching
new events (i.e. the Reichenbachian common causes) which are not contained
in the original (incomplete) probability space (S, p). Intuitively, we need
some notion of extension than could be applied to our probability space.
This is formally achieved as follows:9

Definition 4 (Extension). The probability space (S ′, p′) is called an exten-
sion of (S, p) if there exist a Boolean algebra embedding h of S into S ′ such
that p(X) = p′(h(X)), for all X ∈ S.

Extendability allows then for the enlargement of the original probability
space so that new events are included. In a second step, we should be able
to set up a procedure to enlarge our common cause incomplete probability
space such that the new extended probability space contains common causes
for the original correlations.10 This intuition is formalised through the idea
of Reichenbachian common cause completability:

8Reichenbachian common cause incomplete probability spaces are quite usually found
when describing usual experimental data. Indeed, most examples aimed to rule out
screening-off as a necessary condition for common causes exploit such incompleteness.
Further more formal examples of such common cause incomplete spaces are provided
in (Hofer-Szabó et al., 2000a).

9Cf. (Hofer-Szabó et al., 2000a).
10Indeed, Definition 4 ensures that the extension operation be consistent with the old

event structure (S, p). In particular, correlations stay invariant under the extension op-
eration, that is Corr(A,B) ≡ Corrp(A,B) ≡ Corrp′(A,B). Without going into details,
such consistency is achieved by defining the embedding h such that the initial probabilities
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Venetian Sea Levels and British Bread Prices

Definition 5 (RCC Completability). Let Corr(Ai, Bi) > 0 (i = 1, 2, . . . , n)
be a set of correlations in (S, p) such that none of them possess a common
cause in (S, p). The probability space (S, p) is called Reichenbachian com-
mon cause completable with respect to the set Corr(Ai, Bi) if there exists
an extension (S ′, p′) of (S, p) such that Corr(Ai, Bi) has a Reichenbachian
common cause Ci in (S ′, p′) for every i = 1, 2, . . . , n.

Completability is hence the key for successfully searching Reichenbachian
common causes. The question is now whether any incomplete probability
space (S, p) can be extended such that it is (Reichenbachian) common cause
completable. We may ask, in other words, when is a probability space (S, p)
Reichenbachian common cause completable?

Hofer-Szabó et al. answer this question with the following proposition:11

Proposition 1. Every classical probability space (S, p) is common cause
completable with respect to any finite set of correlated events.

The proposition shows, in other words, that given a Reichenbachian
common cause incomplete probability space an extension (S ′, p′) may always
be performed such that it contains (Reichenbachian) common causes for all
the original correlations.

Common cause completability hence constitutes a very powerful tool if
we are to provide common cause explanations of generic correlations. It
nevertheless faces its own problems, especially when it comes to the physical
interpretation of either the enlarged probability space S ′ or the new common
causes contained in it. In particular, it seems a fair criticism to the whole
program to claim that common cause completability is a merely a formal
device, which is likely to lack physical meaning in many (perhaps too many)
cases. I shall retake the issue later on and just point out for now that such
criticisms may be avoided.12 At any rate, the notion of completability as
it stands seems to provide further methodological grounds for RPCC to be
applicable.

4 Venetian Sea Levels and British Bread Prices

Examples such as Sober’s ‘Venetian Sea Levels and British Bread Prices’
(VSL & BBP) are devised to refute Reichenbach’s Common Cause Principle
(RCCP) by criticising the metaphysical content of it. Sober however draws

and correlations are maintained under the new probability measure p′. See (Hofer-Szabó
et al., 2000a) for details.

11Cf. (Hofer-Szabó et al., 1999, p. 384).
12I point the reader to (San Pedro and Suárez, 2009) for a recent assessment of the

significance of common cause completability, the possible criticisms to it and possible
strategies to avoid them.
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Venetian Sea Levels and British Bread Prices

some methodological consequences from the existence of such correlations —
e.g. between sea levels in Venice and bread prices in Britain— which cannot
be accounted for in terms of common causes. This, he argues, favors the use
of the Likelihood Principle instead of RPCC. Although the intuitions behind
Sober’s argument are in my view quite strong, the conclusions seem to clash
with the results I just reviewed concerning common cause completability.
I shall thus try to clarify where the incompatibility lies and what are the
possible alternative ways to take. Let us first start with the details Sober’s
example itself.

It is the case that the sea level in Venice (VSL) and the cost of bread in
Britain (BBP) have been (monotonically) increasing during a given period
of time. Table 1 displays such trends in the values of Venetian sea levels
and British bread prices in accordance with Sober’s actual example. From
the data displayed, we are told that ‘higher than average values’ of Venetian
sea levels and those of British bread prices are correlated:13

As I claimed initially, higher than average bread prices are cor-
related with higher than average sea levels.

Let us denote the event ‘the Venetian sea level in year i is higher than
average’ by the expression ‘VSLi > 〈VSL〉’. (Similarly for bread prices in
Britain.)

What Sober seems to have in mind when claiming that ‘absolute values’
of VSL and BBP are correlated is the following. On the one hand, the
probability of observing a ‘higher than average’ Venetian sea level in year i
can be seen (directly from the data displayed in Table 1) to be

p (VSLi > 〈VLS〉) = 1/2.

Similarly, for British bread prices one has that

p (BBPi > 〈BBP〉) = 1/2.

On the other hand, one may also calculate the joint probability of both:

p [(VSLi > 〈VSL〉) ∧ (BBPi > 〈BBP〉)] = 1/2.

These three probabilities entail that:

p [(VSLi > 〈VSL〉) ∧ (BBPi > 〈BBP〉)]

−p (VSLi > 〈VLS〉) · p (BBPi > 〈BBP〉) > 0. (6)

13Cf. (Sober, 2001, p. 334). The appeal to ‘higher than average values’ rather than
just ‘values’ is mainly motivated by some critiques to an earlier version of the counterex-
ample (Sober, 1987). We do not need to review such arguments here since they will not
play any important role in the foregoing discussion. The important point is that Sober’s
later formulation of the counterexample —involving ‘higher than average values’— stands.
Sober also refers to ‘higher than average values’ as ‘absolute values’ and I shall use these
two expressions indistinctly.
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Venetian Sea Levels and British Bread Prices

Year (i) 1 2 3 4 5 6 7 8 〈Year〉 = 4.5

VSL 22 23 24 25 28 29 30 31 〈VSL〉 = 26.5
BBP 4 5 6 10 14 15 19 20 〈BBP〉 = 11.625

Table 1: Sober’s Venetian sea levels and British bread prices data (Sober,
2001, p. 334).

Thus, the argument goes on, ‘higher than average values’ of Venetian
sea levels and British bread prices are in fact (positively) correlated.

The question is then how this correlation is to be explained away. Sober
points out that there are three possible ways to go:14

(i) To postulate the existence of an unobserved common cause.

(ii) To claim that the data sample is unrepresentative.

(iii) To claim that the data arises from a mixing of populations with dif-
ferent causal structures and correspondingly different probability dis-
tributions.

Considering these three options in turn shows, according to Sober, that
RPCC fails. The argument is as follows. First, Sober dismisses option (ii)
by pointing out that the correlations in his example do not come out of an
unrepresentative sample since data could be spread over a larger period of
time and the correlations would still be there —I completely agree with this
and I will also dismiss option (ii) altogether. Second, option (i) is false in
the example ex hypothesis. Consequently, Sober takes option (iii) to provide
the right (causal) explanation of the correlation. This therefore constitutes
a failure of RPCC.

5 Is VSL & BBP a Genuine Counterexample?

But does Sober’s VSL & BBP really constitute a genuine counterexample to
RPCC? In order to answer this particular question we need to address two
further questions, I think. First, we need to know whether the VSL & BBP
correlation is indeed genuine (as defined formally in Section 2). Second, in
case it is so, we need to ask whether the VSL & BBP correlation really

14These three possible explanations had been already suggested by Meek and Glymour
after Yule (1926). See also (Sober, 2001, p. 332) and references therein.
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Is VSL & BBP a Genuine Counterexample?

cannot be explained away in terms of a common cause. In other words, if
the counterexample is to stand, we need to make sure that no common cause
at all may be provided for the correlation. I will tackle these two questions
in turn

Kevin Hoover and Daniel Steel have both recently tried to diffuse Sober’s
example at some level, each with quite different arguments and thus reaching
different conclusions. The main issue these two reactions differ in is in fact
the answer to our first question, i.e. whether the VSL & BBP correlations
are indeed genuine correlations or mere associations of the sample.

As we have seen, the probabilities of ‘higher than average values’ of
Venetian sea levels and British bread prices display what seems to be a
probabilistic dependence —by means of expression (6) on page 7. However,
if we are to conclude that ‘higher than average values’ of sea levels and bread
prices are correlated, we need first make sure that the probabilities involved
refer to the same and only probability space.15 In other words we need to
check that ‘absolute values’ of sea levels and bread prices are events of the
very same probability space.

But nothing in the data set tells us the probability measure should be
the same. In fact, the probabilities for each quantity are derived quite
independently (from the relative frequencies of the corresponding measured
sea levels and bread prices over a time span). Strictly speaking we should
perhaps have initially written them as p1(VSLi > 〈VSL〉) and p2(BBPi >
〈BBP〉), i.e. as referring to two different probability measures p1 and p2.
Similarly for the joint probability we should perhaps have written it relative
to yet another probability measure p3 [(VSLi > 〈VSL〉) ∧ (BBPi > 〈BBP〉)].
With these assumptions, relation (6) becomes then:

p3 [(VSLi > 〈VSL〉) ∧ (BBPi > 〈BBP〉)]

−p1(VSLi > 〈VSL〉) · p2(BBPi > 〈BBP〉) > 0. (7)

Thus, the question whether the expression above reflects a correlation
between sea levels and bread prices may be now restated in terms of these
three different probability measures. That is, are p1, p2 and p3 in fact one
and the same probability measure?

These remarks are somehow related to Hoover’s16 arguments in reaction
to the VSL & BBP case. Hoover distinguishes correlations from mere as-
sociations of the sample. Very succinctly, while associations are a property
of the sample, correlations are a property of the probabilistic space used to
model it. Hoover assumes that it is only correlations that can reveal ‘real’
properties of the system. In our case then, if the probability measures p1, p2

and p3 would be different, expression (7) could only be said to reflect some

15Note that this is explicitly required in the formal definition of correlation (Defini-
tion 1).

16Cf. (Hoover, 2003).
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Is VSL & BBP a Genuine Counterexample?

degree of association between sea levels and bread prices, but not a corre-
lation. In order for it to represent a correlation a consistent probabilistic
model —with a single probabilistic measure, that is— must be constructed
such that the example’s data may be embedded in it. This is not the case
in the case at hand, in Hoover’s view. He thus concludes that the VSL &
BBP scenario does not constitute a counterexample to the RPCC.

Hoover’s case might find support in Sober himself. For, as it is claimed in
the original argument, each data series belongs to different causal structures
—this was option (iii) in Sober’s argument. Which can then be seen to
justify the claim that the two probability spaces need to be different. But is
it right to claim that the ‘Venice-Britain’ scenario cannot really be described
in a whole single probability space such that the corresponding values or sea
levels and bread prices are correlated? In other words, why could it not be
the case that data in Table 1 give rise to correlations? I think that this is
indeed an option. In particular, while I share Hoover’s view regarding the
difference between mere associations and genuine correlations, I do not see
why the data in Table 1 may not be embedded, or modelled if we like, in a
single probability space.

In fact, an argument along these lines is provided by Steel17. Steel’s
model takes advantage of a well known mathematical result so-called the
‘mixing theorem’. In brief, the ‘mixing theorem’ provides us with informa-
tion about the behaviour of the probability distribution resulting from the
mixing of the distributions from two populations, each of which with proba-
bilistically independent variables. The theorem tells us, in particular, under
what conditions the variables of such ‘mixed’ probability distribution are
probabilistically independent. The theorem then shows that a probability
distribution may display dependencies just because it is the result of the
mixing of two other probability distributions. Steel claims this is the case
in Sober’s ‘Venice-Britain’ example, and constructs a model from two initial
sets of data (of both VSL and BBP), each corresponding to different (dis-
tant) time spans. If the probability distributions from these two populations
are mixed, the resulting distribution displays probabilistic dependencies in
just the manner suggested by Sober.18

Summing up, I see no convincing reason why correlations such as those
in the ‘Venice-Britain’ example would not be genuine. Sober’s kind of ex-
amples may then very well be counterexamples to RPCC. Once the question
as to whether VSL & BBP are (genuinely) correlated has been positively
answered, we shall turn to our second question. Is it really the case that
no common cause explanation can be given of the correlation between sea
levels in Venice and bread prices in Britain?

When answering this question, we seem to have three possible outcome

17Cf. (Steel, 2003).
18See (Steel, 2003) and references therein for further details.
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Screening-off Events Exist

scenarios. First, we may find out that no common cause whatsoever may
be provided that explains the correlation. In that case VSL & BBP kind of
example would, as claimed by Sober, constitute a genuine counterexample
to RPCC. Alternatively, we might find out, by making use of the common
cause completability results, that it is indeed possible to provide a common
cause explanation of the correlation. Finally, Sober’s criticism could also be
avoided if we could show the question to be non-applicable. For instance,
even if we take the VSL & BBP correlation to be genuine we might want to
argue that it needs no causal explanation after all, perhaps due to the fact
that it does not reflect any feature of the system itself. Clearly, the first
option only seems to make sense once the other two have been ruled out.
Let us then consider the two last options in turn.

6 Screening-off Events Exist

Recall that, by common cause completability, an appropriate extension of
a common cause incomplete probability space guarantees that there exist a
screening-off event. For what it has been said up to now, there is no reason
why common cause completability should not also work in our case at hand.
A quite obvious such extension would include ‘time events’.

Suppose for instance our new model, i.e. our extension, contains events
of the type ‘Yi > 〈Year〉’, which we may call, following Sober’s terminology,
‘higher than average time values’, ‘higher than average values of years’, or
‘absolute values of years’, never mind how strange this may sound. We may
then assign probabilities to such events in exactly the same way as we did
for ‘higher than average’ values of sea levels and bread prices, that is by
referring to their relative frequencies. (Only, we need to make sure that the
probability measure is the same for all three values.) Thus, we might write,
again from the data on Table 1,

p (Yi > 〈Year〉) = 1/2.

If we now take conditional probabilities we obtain, also looking at the
data in Table 1,

p (VSLi > 〈VSL〉 | Yi > 〈Year〉) = 1, (8)

p (BBPi > 〈BBP〉 | Yi > 〈Year〉) = 1. (9)

It is also easy to check that

p [(VSLi > 〈VSL〉) ∧ (BBPi > 〈BBP〉) | Yi > 〈Year〉] = 1. (10)

It becomes now clear that as soon as we consider the event ‘Yi > 〈Year〉’
the correlation will vanish. This is because the dependence of the original

11



Purely Formal Correlations

series washes out conditional on ‘Yi > 〈Year〉’. In particular if we define a
new probability measure pY = p(· | Yi > 〈Year〉), the above equations yield

pY [(VSLi > 〈VSL〉) ∧ (BBPi > 〈BBP〉)]

− pY (VSLi > 〈VSL〉) · pY (BBPi > 〈BBP〉) = 0. (11)

This example is of course specific for the case at hand, and the ‘trick’
has been quite the obvious one, since I transformed both the original non-
stationary data series into stationary ones by finding the probability space
in which all probabilities are one. In this case the probability space with
such ‘nice’ properties is particularly easy (and obvious) to find since the time
dependence of both sea levels and bread prices’ higher than average values
is exactly the same. However obvious and specific this example might be, I
hope it illustrates sufficiently how a screening-off event may be provided.

This is not quite a causal explanation yet, since the event ‘Yi > 〈Year〉’
does not seem capable of a causal interpretation in an obvious or straight-
forward way. The question is more specifically whether we can make sense
of events ‘Yi > 〈Year〉’ as (common) causes. I must admit that I do not
have an answer to this question. For, in what relevant sense is time a causal
factor in the VSL & BBP example? Indeed, I find it hard to understand
‘Yi > 〈Year〉’ as a cause event.

Of course, such problematic issues will be present whenever a time de-
pendent event is to be interpreted as a cause but the point of the example
above it to show that it there is actually good methodological ground to
suggest that screening-off common causes may be provided for any given
correlation, included those in the ‘Venice-Britain’ example. Again, it is true
that we might face problems of interpretation once a screening-off event has
been identified after a particular extension. But perhaps further conceptual
innovations may at some stage provide an adequate framework so as to be
able to interpret such time dependent events as (common) causes. On the
other hand, it should be noted that the extension of a common cause incom-
plete probability space is not unique. Thus, even in the case the problems of
interpretation proved too severe, common cause completability, it seems to
me, still leaves the door open for other, perhaps more easily interpretable,
screening-off events to be provided by extending (and completing) in other
different ways the original probability space.

7 Purely Formal Correlations

The problems with the interpretation of some screening-off events may sug-
gest that the physical significance of both such screening-off events and the
corresponding correlations we are trying to explain is at least dubious.

Indeed, going back to our case at hand, a more thorough analysis of
the ‘absolute year values’ events suggests that the VSL & BBP correlation

12



Purely Formal Correlations

arises solely due to the shared time dependence of the systems evolutions.
Put it the other way around, we may ask, more specifically, what does the
correlation between sea levels and bread prices really say, if anything at all,
about the level of the sea in Venice and the price of the bread in Britain?

A closer look to the kind of events we are dealing with, i.e. ‘higher than
average values’, reveals that these are defined relative to the average of the
corresponding quantity over a certain period of time. Also, note that the
values carry a label that identifies a specific instance of time. It is thus clear
that the correlated events in the ‘Venice-Britain’ example have some sort of
time dependence.

Time dependent data are also commonly known as non-stationary data.
It is also well known that non-stationary data display dependencies that do
not always reflect the system’s inner structure. For instance, Steel19 points
out that it is a consequence of the so-called ‘mixing theorem’ of probability
theory that two sets of non-stationary data display probabilistic dependen-
cies even if each of them refers to a completely different historical period.20

Also as a consequence of the ‘mixing theorem’, if the probabilistic depen-
dence of two data series is due to them being non-stationary the correlation
will vanish as soon as we describe the data in a probabilistic model in which
one of them is no longer non-stationary. This is in fact what happens with
Sober’s Venetian sea levels and British bread prices, as we have seen in the
model-example above.

What the above suggests thus is that sea levels and bread prices in
the VSL & BBL case are only correlated in virtue of telling us something
about time. This in turn suggests that correlations that arise due to the
non-stationary properties of the data do not provide any information what-
soever about the underlying (physical) structure of the system, if there is
any system we can speak of. To the contrary, they seem to be a case of what
we can call purely formal correlations, i.e. correlations that arise solely as
a product of formally modeling experimental data. These considerations
are very much along the lines of the argument in Steel (2003). Steel con-
cludes that, although RPCC cannot be applied to non-stationary data series
it constitutes a genuine counterexample is genuine. For there is a genuine
correlation which is not to be explained in terms of a common cause.

Steel’s conclusion however, does not seem to me it fits with the spirit
of the Reichenbach’s original ideas on common causes. For, although, as
I said Reichenbach’s notion of ‘improbable coincidence’ is to be captured
by the idea of correlation, I take it that not all correlations can be said to
reflect ‘improbable coincidences’. In particular, purely formal correlations
—an example of which are those in the ‘Venice-Britain’ scenario— do not
seem to be ‘improbable’ in any sense. Quite the contrary, the structure

19Cf. (Steel, 2003).
20See (Steel, 2003) for further details and references.
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of the model formally entails such coincidences at any rate. In this view
thus, correlations that arise purely formally from the model structure are
not required an explanation of any kind, be it causal or not, and Sober’s
example therefore would not constitute a genuine counterexample to RPCC
either.
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