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Introduction – Smoking and Non-smoking Guns: Sometimes it may seem obvious that a 

lateral gene transfer (LGT) event has occurred.  For example, consider the fact that a multi-gene 

phylogenetic analysis of Rafflesiacaea, a family of flowering plants that includes Rafflesia 

arnoldii, which has the largest flower in the world, places it within the order Malpighiales, a 

diverse order containing such plants as willow trees and poinsettias.  However, analysis of its 

Mitochondrial gene nad1B-C places it within the grape family Vitaceae in the order Vitales, a 

distantly related taxon (Davis and Wurdack 2004).  This discordance is easily explained when 

we note that Rafflesiacaea is an endophytic parasite and the nad1B-C gene analysis places it near 

its host Tetrastigma.  The obvious conclusion to draw is that there was an LGT event transferring 

mtDNA from host to parasite.   

 

Other cases are not so easy.  In 1939, Kubo first identified hemoglobin genes in soybean plants 

(Kubo 1939).  At the time, and for the next 40 years, the only other remotely similar genes 

known were hemoglobin and myoglobin genes found in vertebrates and a few invertebrates.  So 

how did this happen?  There are only three possible stories.   

 

In the first, the hemoglobin gene family arose at least twice independently and the 

leghemoglobins (those in the legumes) and animal hemoglobin genes are not actually 

homologues.  Call this the convergent evolution story.  It may seem obvious that this story 

should not be taken seriously – after all, the probability against convergent evolution on this 
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scale is staggering.  It may seem that hemoglobin genes are so complex that the similarities 

between the genes in the two groups couldn’t be a coincidence.  However, the right reply is that 

however improbable, the coincidence is not literally impossible; that is, the characters could be 

similar – even identical – just because each evolved independently of each other in exactly the 

same way.  To dismiss this possibility we need to consider the probability of the similarity under 

other hypotheses. 

 

If convergent evolution did not happen in this case, then the hemoglobin family arose only once 

in evolutionary history.  One way this is possible is that it arose in the distant past prior to the 

common ancestor of plants and animals.  Then the vast majority of lineages lost their 

hemoglobin genes – or perhaps they simply mutated to the point where there no longer are 

recognizable copies in the other genomes.  With two closely related taxa, it might make sense to 

explain their similarity by postulating losses in adjacent branches.  However, in very distantly 

related taxa, the loss hypothesis becomes far less plausible, because so many independent losses 

would be required.  But again, this scenario is improbable, not impossible.  

 

The third possibility is LGT; the trait originated just once and subsequently passed from 

ancestors to descendants, but it also jumped across these vertical branches, passing from a donor 

to a recipient who was not a descendant of the donor.  One way this might happen is for a virus 

to serve as a vector, by taking a bite out of a donor genome and then inserting it into the genome 

of a recipient. 
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Given that there are only three possibilities and that in some cases, two of them are 

extraordinarily improbable, it may seem obvious that LGT is the only plausible alternative left 

standing.  This is why LGT is a live hypothesis and possible transfer scenarios were invented and 

investigated in the hope of better understanding the history of hemoglobin (Jeffreys 1982).  But 

starting in the 1980s, hemoglobin genes began to be found in non-legume plants (Appleby et al. 

1983).  Today, we know of hundreds of hemoglobin genes in bacteria, archaea, plants, fungi, and 

animals (Vinogradov etal. 2006).  This makes the single ancestry story with gene loss far more 

plausible than it was before since there are more positive instances and fewer gene losses to 

explain.    

 

While the evidence does not seem all that strong in favor of the LGT explanation today, the more 

important point is that there will be cases that are not obvious.  In the hemoglobin example, our 

evidence concerning the distribution of the gene across various taxa changed.  But even fixing 

that, we are left with some uncertainty.  In some of these cases, the true explanation will be far 

from clear.  For example, the trait might not be that complex – perhaps it is a chunk of DNA 

twenty base pairs long that exists only on two branches that are separated by three branches in 

between.  We could explain this as an instance of parallel evolution that is improbable, but not 

outrageously so.  Similarly, it could be a case of gene loss – improbable, but not extraordinarily 

so.  Surely we should examine this situation by considering all three possible explanations.  

 

The general point is clear – as with any question about evolutionary history, the key is to look at 

the evidence and see where it leads.  Sometimes there will be clear cases, but we want to go 
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beyond the clear cases and have a general principle that allows us to assess the evidence for (or 

against) a historical event and to say how strong or weak it is.   

 

Terminology:  We use “tree” to refer to a rooted graph in which branches split but never join as 

one moves from past to present; each node has at most one parent and at most two descendants.  

By “network” we mean a tree with reticulations added.  In a network, branches join as well as 

split.  In a tree, branches always connect a descendant back to one of its ancestors.  These are 

vertical branches.  In a network, some branches are like this, but others connect a node to a 

nonancestor.  These are lateral branches.  We can formally define a phylogenetic network as a 

rooted, directed, acyclic graph, leaf-labeled by a set of taxa, coupled with a set of temporal 

constraints to ensure that the lateral branches connect nodes that could exist at the same time 

(Moret et al., 2004). 

 

Parsimony and LGT:  Maximum parsimony (MP) is one of the most popular methods for 

phylogenetic tree reconstruction.  According to MP, the best phylogenetic tree is the one that 

minimizes the number of changes required along the branches.  Philosophical justifications for 

MP have varied, but it has often been justified by appeal to some general methodological 

principle said to be related to parsimony such as explanatory power or falsifiability (Wiley 1981, 

Farris 1983, Kluge 2005).  Here, a parsimonious tree is better because it requires fewer changes 

and this is said to increase the explanatory power of the tree. 

 

A natural first step to developing methods for inferring phylogenetic networks is to try to 

generalize the method of maximum parsimony to cover networks.  Hein (1990, 1993) extended 
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parsimony to cover the case of recombination and Nakhleh et al. (2005) further generalized this 

and developed computer algorithms for implementing the methods.  The general idea is still the 

same – the parsimony score of a network is the number of changes required along the vertical 

branches.  However, the use of parsimony for phylogenetic networks has a serious problem.  If 

phylogenetic hypotheses are evaluated only by counting the number of homoplasies they require, 

which is ordinally equivalent to the total number of changes, then the most parsimonious tree, if 

it requires any homoplasies at all, can be bettered by adding LGT events, thus reducing the 

number of homoplasies to zero.  The same can be done for all the other possible trees.  The result 

isn’t a single phylogenetic hypothesis, but a set of these, each requiring zero homoplasies.  The 

most complicated network with lateral branches connecting every vertical branch to every other 

will always be among the hypotheses tied for first place.  But it is natural to think that networks 

with more lateral branches are more complex and less “parsimonious” than networks with fewer. 

This is why the idea that we should minimize lateral braches has also been linked to Ockham’s 

Razor (Nakhleh et al. 2003, Than et al. 2008).  General parsimony principles seem to justify 

minimizing evolutionary changes along vertical branches and minimizing lateral transfer events, 

but these two goals are in direct conflict.   

 

One possible response is to find the best tree for each gene and then construct the smallest 

network that contains all of these best trees.  This assumes that homoplasies and lateral transfers 

both reduce the plausibility of a genealogy, but that the former does so far more than the latter.  

This is an assumption that requires justification. 
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A second solution is to set a bound for how many lateral events can be postulated and then find 

the most parsimonious network among those with at most that many lateral branches (Nakhleh et 

al. 2005, Jin et al. 2007).  But how should the appropriate bound be chosen? We don’t want to 

set a bound before examining the data.  Nakhleh et al. and Jin et al. determine their bounds based 

on the idea that adding lateral branches to a network is subject to diminishing returns.  Suppose 

we start with the most parsimonious tree and then add lateral branches one by one, in a certain 

order.  First we add the lateral branch that most reduces the number of homoplasies that need to 

be postulated, then, using our newly formed network as a base, we search again for the branch 

that will reduce the score the most, and so on.  At a certain point, further additions will bring 

zero improvement, but before then, an addition may be judged to improve parsimony too little to 

be justified.  How might one choose a threshold that determines when an addition is not worth 

the candle? 

 

Nakhleh, Jin, and colleagues attempt to determine the appropriate threshold empirically by 

continually adding lateral branches and tracking how much the addition of each branch reduces 

the parsimony score.  Then, by examining the shape of the curve created by plotting the 

maximum parsimony score achieved under each addition of a lateral branch, they attempt to 

estimate which additions capture real transfer events and which merely capture noise.  The idea 

is that we know a priori that the graph we obtain when we chart the number of branches added 

versus the reduction in parsimony score will be a diminishing returns graph.  This is a trivial 

consequence of the order in which we introduce additional lateral branches.  But what shape will 

that diminishing returns graph take?  Will there be a sudden and large dropoff between two 

consecutive branches?  Or will the graph exhibit a steady reduction in the number of 
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homoplasies?  Their idea is that adding branches which represent real events will lead to a 

significant reduction, but adding branches that represent noise will not.  Therefore, the first time 

there fails to be a significant change between two consecutive branch additions is where we infer 

the true cutoff to be.   

 

While this is an attempt to look at the data to infer the number of transfer events rather than 

assuming a priori what it should be, this method has its drawbacks.  Regardless of how many 

transfer events really occurred, some branches that model transfer events that didn’t really 

happen will be able to reduce the number of required homoplasies significantly while others 

won’t.  So there is the danger of postulating fictitious transfer events with this method.  In 

addition, some real transfer events may not substantially reduce the number of homoplasies 

required.  A transfer event between two closely related branches may not reduce the number of 

required homoplasies very much – in fact, it may not even reduce the number at all.  It is unclear 

how this procedure can control for the number of type-1 and type-2 errors.   

 

Another way to attempt to solve this threshold problem is to simulate data following a network 

pattern.  Here, for some fictitious data set, we know the right answer concerning how many 

transfer events there were and where and when they occurred (because the example under 

analysis is something we invented).  Then we simply apply different methods to the data and 

compare how the methods performed.  In this case, we can calculate what the appropriate 
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threshold should be by noting how many times homoplasies should be avoided by postulating 

lateral branches so that one gets as close as possible to the target of the true network.1   

 

This can provide some justification for thinking that certain thresholds are better than others, but 

it still has a significant problem.  Each time we simulate the data, we use a specific model of how 

traits evolve on a network.  For example, we might simply build in the fact that on any particular 

branch in a set time period, there is a 1% chance of a transfer event occurring that copies the 

state of one gene on a branch to a site on another branch.  On this model, a certain picture 

emerges of what thresholds will be appropriate.   But on another model of transfer that treats 

transfer events as more or less probable or simply models them in a different way (perhaps one 

in which there is a correlation between transfer events), it may turn out that a different threshold 

is better.  However, recall that the goal is to use simulations to justify a single threshold for a 

given data set, where the data set and the phylogeny are not examples we invented but are from 

nature.  The problem here is typical of all simulation studies.  Simulations simply assume a 

model for the process generating the data and there is no assurance as to how commonly nature 

follows the chosen model. 

 

In addition to the problem of finding an appropriate threshold, the particular algorithms 

developed by Nakhleh, Jin, and colleagues have the problem that they might never even consider 

the optimal network.  This is because they are “greedy” algorithms – that is, they attempt to find 

the global optimum by repeatedly making locally optimal changes.  In general, there is no reason 

                                                        
1 It may not be possible to recover the true network.  The data might be structured so that a false lateral branch will 
reduce the parsimony score more than one or more of the real lateral branches.  In this case, no matter what the 
threshold, parsimony cannot recover the true network. 
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to think that the best network with n+1 lateral branches can be reached from the best network 

with n branches.  Nakhleh et al. (2005) do use a few empirical checks such as adding branches in 

a different order and in the cases they looked at, this made no difference.  But this will not 

always work.  It is easy to see that this algorithm is not guaranteed to find the best network.  The 

most obvious problem for this approach is that this is a fixed tree method – that is, they start with 

a single tree and never adjust this tree as they add branches.  Contrary to the claim of Jin et al. 

(2007), in most cases the underlying tree is unknown.  This is particularly true in the cases we 

are considering where there is a significant chance of LGT obscuring the underlying vertical 

relationships.  The best supported tree assuming that there is no transfer at all may not be the 

vertical component of the best overall network.  Rather than using a tree-method to infer the 

underlying tree and then a network method to infer the lateral events, it would be better to use a 

single method to infer the total history, including both its vertical and lateral aspects. 

 

We should not be too critical, though.  Nakhleh et al. do define the parsimony score of a network 

independent of what the particular underlying tree is and it is only for computational 

convenience that they use a fixed tree method.  Switching to a less computationally tractable 

method such as a simple exhaustive search of all possible networks would solve the problems 

associated with the greediness of their particular algorithm, but it is important to realize that this 

would not solve their threshold problems.   

 

The methods developed by Nakhleh, Jin, and colleagues to develop appropriate thresholds are 

problematic.  In fact, the authors themselves later called these methods “ad hoc” (Park et al. 

submitted).  Park et al. (submitted) utilizes the same methods and so also faces the problem of 
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finding appropriate thresholds but in addition to examining the slope of the diminishing returns 

curve, they also compare individual lateral branches to randomly added branches and determine 

p-values for each branch and use a bootstrapping procedure to attempt to check the reliability of 

particular lateral branches.  While this is a step forward, given the problems just described for 

deciding how the penalty for homoplasy compares with the penalty for postulating LGT events, 

we think another approach merits exploration, one in which model selection ideas are used. 

 

A simple example:  We hope that some of the relevant features of conceptualizing how LGT 

should be brought into the framework of phylogenetic inference are captured by the simple 

problem depicted in the accompanying figure.  The tip taxa and their aligned sequences of binary 

characters are as shown.  The tree given in the figure (which might be very well supported due to 

characters not show) treats the 1 at the 4th site in A and C as a homoplasy.  If an LGT event is 

postulated between E and F, two new nodes inserted on the vertical branches leading to A and to 

C, no homoplasy is needed.  
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We wish to compare two hypotheses:  TREE (which declines to postulate any LGT events) and 

NET (which says that an event of this sort that links E to F is possible). 

 

The first thing to do when thinking within a model selection framework is to conceive of models 

as propositions that contain adjustable parameters whose values can be estimated by finding their 

maximum likelihood values.  Maximum likelihood methods for phylogenetic networks with 

lateral transfer in mind were first developed by Jin et al. (2006).  Here we describe some of the 

foundational reasoning involved in developing such methods in a way that makes clear the 

variety of models possible. 
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Part of our formula for scoring a network will be its likelihood.  That is, we have to know 

PrM(Data|Network) – the probability of the tip data given the network on some particular 

network model.  Rather than consider the sequences that attach to all the tip taxa, we will 

simplify the discussion by considering just the sequences attaching to A and C.  These are the 

data. The same principles can then be extended to calculate the likelihood of the entire network.  

As is customary, we take TREE to assert that the characteristics of A and C are independent of 

each other, conditional on the sequence attaching to their most recent common ancestor G.  NET 

denies this.  In particular, NET asserts that there are two possible influences on the state of F; F’s 

sequence can be affected by the sequence found in its most recent common ancestor G and also 

by the sequence found in its non-ancestor E.   

 

One option is to assume that an LGT event linking E to F would guarantee that F=1 at the 4th site 

in the sequence.  But this is unnecessarily restrictive; the lateral branches that we need to think 

about in connection with LGT should not be thought of in this way.   To see this, consider what it 

means to draw a vertical branch from an ancestor to a descendant.  This does not entail that the 

character states of the ancestor will, with probability 1, also be found in the descendant.  The 

vertical branch leaves open what probability model we should apply to character evolution in 

that branch.  And there are many choices.  We should conceptualize LGT in the same way.  

When we draw a lateral branch from E to F, this leaves open what the probability is that F=1 at 

the fourth site in the sequence, given that E=1 at that site.  We need to consider probability 

models of LGT, and there are many.   
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We therefore will distinguish LGT branches from LGT events.  The NET hypothesis postulates 

an LGT branch linking E to F.  Whether all, or any, or none of the character states of F are due to 

LGT events coming from E is a further question.  TREE is a special case of NET, in that TREE 

says that all such events have a probability of zero.  NET has adjustable parameters that describe 

what might happen on the LGT branch it postulates. Since TREE is a special case of NET, if we 

evaluate NET and TREE only by their likelihoods, then we are in the same pickle, described 

above, into which parsimony also lands; TREE can’t have a higher likelihood than NET, when 

each is fitted to the data.  Incidentally, distance-based methods such as extensions of weighted-

least-squares methods face the same overfitting problem (Markarenkov and Legendre 2004).  In 

the case of parsimony and distance methods, this means using an ad hoc stopping rule that 

dictates when lateral branches should be added.  In the case of likelihood methods, as we shall 

see, there is a well-grounded theory that solves the problem of overfitting.   

 

With respect to the ancestor/descendant branches postulated by TREE, there is a familiar set of 

options for modeling character evolution.  They arise from the different answers one might give 

to these three questions (Sober 2008): 

• Must the different changes that can occur at a given site in a given branch have the same 

probability? 

• Must a given kind of change have the same probability at all sites on a branch?  

• Must a given kind of change at a given site have the same probability on different 

branches? 
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The Jukes/Cantor model says yes to all three questions (Jukes and Cantor 1969).  Other, more 

complex models say no to some.  For example, the Tuffley/Steel no-common-mechanism model 

says yes to the first, but no to the second and third (Tuffley and Steel 1997). 

 

How should we think about the branch that NET introduces, which links F to its non-ancestor E?  

There are various options to consider.  Models for lateral branches will have different adjustable 

parameters from the ones that are possible for vertical branches.  In addition to questions about 

lateral branches that are parallel to those described above concerning vertical branches such as 

whether to treat different lateral branches identically, different models for LGT are possible, 

depending in part on how the following questions are answered 

• If there is a lateral branch from one vertical branch to another, when does that lateral 

branch occur? 

• If a virus vector draws a sample from the donor’s genome on a given branch at some 

time, some of which then gets transferred to a recipient, how large a sample will the 

vector deposit? 

We think of LGT events as transferring material from donor to recipient virtually 

instantaneously, so lateral branches, unlike vertical branches, have no temporal duration.  And 

the idea that the material transferred from host to recipient by LGT is a sample from the host’s 

whole genome is very unlike the processes that are usually discussed for vertical branches.  

 

Whatever the details are that go into a given model for LGT, it is important to see that any 

network model must allow that there are nodes whose states might be influenced by its ancestor 

and also by a non-ancestor.  In our figure, the state of F at a site might be due to the state of E, or 
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it might be due to the state of G.  How might these two possible sources be brought together in a 

single model?  Just as an example, let’s consider a model that lumps all the sites on a branch 

together.  We’ll use a Jukes/Cantor model for the vertical branch from G to F and a model for the 

lateral branch E to F that says that all sites in E have the same probability of being transferred to 

F.  We'll call this probability θ.  The model of these two possible influences on the state of F is 

additive, as shown in the following table.  

 

 An additive model for NET.  Cell entries represent probabilities of the form 
Pr(F=1│M=i & E=j). 
                   E=1                  E=0 
M=1   θ + (1-θ)P11 (1-θ) P11 
M=0 θ + (1-θ)P01 (1-θ) P01 

 

The values in the table follow directly from the idea that there are two possible sources for the 

character state in F and they are mutually exclusive.  To calculate the probability that F will be in 

state 1, first imagine that at both M and E, the character is in state 1.  Then, with probability θ, 

the state at F is a result of a transfer event in which case F will definitely be in state 1 since that 

is the state at E.  If there is no transfer event (this failure having a probability of 1- θ) the 

probability that the character will be in state 1 at F is just P11, which is the probability that the 

character would go from state 1 at G to state 1 at F by ordinary vertical transmission.  Since these 

are mutually exclusive and exhaustive possibilities, we simply sum their individual probabilities 

to get the total probability that F is in state 1.   

 

Now suppose that the character is in state 0 at E.  In this case, there is only one way to have the 

character in state 1 at F, since if there were a transfer event, the character at F would be in the 
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same state it is in at E, namely state 0.  So the only way to get F=1 when E=0 is by way of 

vertical transmission, and the probability of this is (1-θ)P11.  We hope this makes clear why cells 

in the first column of the Figure have two addends, while those in the second have only one.   

 

The additivity of this model is not an artifact of our using a simple model like Jukes/Cantor.  It is 

simply a consequence of the fact that the state of F has two possible sources; it must come from a 

lateral transfer event or it must come directly from its ancestor G, and it can’t come from both.  

Notice that what TREE says about the character states of F can be obtained from this model for 

NET by setting θ =0.   

 

It is easy to describe a more complex model that is also additive.  For example, one might use the 

Kimura 2-parameter model (Kimura 1980) for vertical branches, in which different kinds of 

changes (transitions and transversions) are assigned different parameters.  And one might 

contemplate a model for lateral branches in which the relevance of adjacency in a site is 

recognized (just as they are in models of recombination); sites that are close to each other in a 

sequence have higher probabilities of being transferred together, whereas more distant sites are 

more independent.  And just as there are models for vertical branches that allow for different 

branches having different rates of evolution, so there can be models for lateral branches that do 

the same thing. 

 

If TREE can be equipped with various process models, and the same is true of NET, how shall 

we proceed?  One idea would be to try to isolate the most plausible model for each and then 

compare these two best cases.  We envisage a different procedure.  We should consider a variety 
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of different models for NET.  For each of these NET models, we can obtain a model for TREE 

by setting various parameters equal to zero.  Different trees can be obtained from different 

networks by stripping away all lateral branches.  We then should apply a model selection 

criterion to evaluate these models. 

 

  NET TREE 

N3 T3 

N2 T2 

      More complex 

                          

           Simpler 

          

    Process Models               

N1 T1 

 

When we look across a row, the TREE model will be simpler than the NET model, in the sense 

of containing fewer adjustable parameters.  On the other hand, the NET model in a row will fit 

the data better.  How do we weight these two considerations?  One popular approach to model 

selection is the Akaike Information Criterion (AIC) (Akaike 1973, 1974).   The AIC score of a 

model is 2k – 2 ln{Pr[data|L(M)]} where k refers to the number of adjustable parameters in the 

model and L(M) refers to the likeliest member of the model M.  The AIC score of a model is an 

unbiased estimate of the expected log likelihood of a model with respect to the underlying 

process that generated the data; this is the content of Akaike’s (1973, 1974) theorem.  In contrast, 

the maximum likelihood of a model is a biased estimate of this average – the more parameters in 

the model, the worse the bias.  Akaike showed that we can correct this bias in an exact way,2 by 

imposing a penalty on a model for its complexity.   Forster and Sober (1994) describe AIC as 

                                                        
2To derive the AIC, a few background assumptions are needed.  For example, there are certain regularity conditions 
that have to hold for the likelihood function to be asymptotically normal and there has to be enough data to ensure 
that the likelihood function will approximate its asymptotic properties.  See Forster and Sober (1994) and Burnham 
and Anderson (2002) for more details. 
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aiming to estimate a model’s predictive accuracy; it provides an estimate of how well the model 

will predict new data when it is fitted to old. 

 

AIC is already widely used in phylogenetic inference partly due to its inclusion in the popular 

software Modeltest (Posada and Crandall 1998, Posada and Buckley 2004).  AIC can tell us 

which of the models in a given row is better.  We also can use AIC to make comparisons 

between NET and TREE models in different rows.  It is true that a sufficiently complex NET 

model can fit the data perfectly.  But that does not mean that it is the best model.  AIC permits a 

comparison among all these models.  It is in this respect superior to the likelihood ratio test, 

which can be used to compare nested models only.  A likelihood ratio test can be applied to 

models in the same row, and to some of the items in the same column, but not to other pairs. 

 

Cladistic parsimony versus model selection parsimony.  Cladistic parsimony scores 

phylogenies by counting homoplasies.  Another sort of minimization criterion would be to score 

phylogenies by counting homoplasies and lateral branches as well, with some weight assigned to 

how much the one matters compared with the other.  Model selection involves parsimony 

considerations, but one is not counting homoplasies or lateral branches at all.  Rather, what one 

counts are parameters.  And furthermore, parsimony, in this sense, is only one consideration, not 

the whole show, according to model selection criteria.  Fit-to-data (i.e., likelihood) matters as 

well, with AIC describing the appropriate trade-off between parsimony and fit-to-data.   

 

Cladistic parsimony counts the homoplasies required by a phylogenetic tree whereas model 

selection parsimony counts the parameters in a model.  The first of these has been investigated 
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from the point of view of likelihood with the goal being to determine under what circumstances 

the parsimony ordering of a set of tree hypotheses coincides with their ordering in terms of 

likelihood. Felsenstein (1973) and Tuffley and Steel (1997) have each identified assumptions 

about the evolutionary process that guarantee that cladistic parsimony and likelihood will be 

ordinally equivalent, and it is now widely recognized that there also are assumptions in which the 

two orderings will disagree.  See Sober (2004, 2008) for discussion.  Given that cladistic 

parsimony sometimes can be viewed as a reflection of likelihood, it is interesting that Akaike's 

theorem establishes that both likelihood and number of adjustable parameters are relevant to 

estimating the predictive accuracy of a model; in this sense AIC can be seen as a procedure that 

takes account of both kinds of parsimony – that which reflects likelihood and that which reflects 

the number of adjustable parameters. 

 

Other sources of reticulation:  Our approach to LGT also applies to any other cases of 

reticulation such as recombination and the problem of inferring hybridization events.  The 

genetic material that is transferred in an LGT event would not be passed on without 

recombination and methods that are useful for detecting one can be used for detecting the other 

(Chan et al. 2009).  There are more significant physical differences between LGT and 

hybridization.  In the former, there is a donor and a recipient; in the latter, there is a melding of 

two objects to form a third (as in sexual reproduction).  But from a mathematical point of view, 

these differences disappear.   In a tree (in the sense we defined), every offspring node has just 

one parent (its most recent ancestral node).  To introduce the possibility of hybridization into a 

tree model, you allow that some offspring may have two parents. This complicates the model, 
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but allows it to fit the data better.  The point of contact between hybridization and LGT is that 

TREE is a special case of HYBRID, just as TREE is a special case of NET. 

 

While our approach is designed to accommodate actual reticulate evolution, it will also infer 

reticulation when faced with a variety of processes such as certain combinations of gene 

duplication and loss and lineage sorting.  Distinguishing among these different underlying 

processes is a difficult task that we do not attempt to address here.  What we hope to have 

provided in this paper is a useful way of looking at a certain class of problems in phylogenetic 

inference.  By thinking about different possible models of lateral gene transfer and utilizing tools 

from model selection theory such as AIC, phylogeneticists can recover reticulation in a more 

theoretically grounded way and further, can recover the underlying vertical history at the same 

time. 
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