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tAlthough the 
on
ept of lo
alization in non-relativisti
 quantum me
hani
s is mathemat-i
ally well-de�ned there is no obvious and unambiguous way to generalize it to relativisti
quantum theory. After a brief review of lo
alization in quantumme
hani
s the Newton-Wignerlo
alization s
heme is introdu
ed and it is shown by the example of a massive spinless systemhow it leads to a position operator with seemingly unphysi
al properties. This motivated thedevelopment of several theorems whi
h 
laim to rule out the existen
e of lo
alizable parti
les.A parti
ularly important one of them is presented and its validity dis
ussed. In the last se
tionhowever it is shown that if lo
alization is 
onsidered with respe
t to spa
elike hyperplanes,the properties of the Newton-Wigner position operators are not ne
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tionBy the end of the nineteenth 
entury many s
ientists believed the universe to be totally determin-isti
, i.e. that the state of the universe at one instant would entirely de�ne its future and pastevolution. This point of view was primarily motivated by the progress in 
lassi
al me
hani
s andthe dis
overy of Maxwell's equations. These a
hievements made it tempting to model the universeas a 
olle
tion of massive bodies whi
h evolve under gravitational and ele
tromagneti
 for
es, the
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former determined by the masses of the bodies and the later by �elds obeying Maxwell's equations.Knowledge of the initial position and momentum of all bodies and their masses as well as the initial�eld 
on�guration would then be su�
ient to 
al
ulate the future development of the universe.But already during the nineteenth 
entury several observations were made whi
h indi
ated thatthis 
an not be the whole story. As an example one may think of the photoele
tri
 e�e
t, namelythe emission of ele
trons from matter under an in
ident ele
tromagneti
 �eld. Although this e�e
t
an be explained without quantization of the ele
tromagneti
 �eld [1, p. 11℄ it was histori
allyimportant for substantiating the idea of photons. But it was mainly early twentieth 
enturyobservations of small-s
ale phenomena whi
h required a new theory, viz. quantum me
hani
s. Thenotion of a parti
le with a well-de�ned position and momentum had to be repla
ed by a wave-fun
tion |ψ〉 whi
h obeys S
hrödinger's equation (setting ~ = 1; 
f. the appendix for notational
onventions)
i
d

dt
|ψ〉 = H |ψ〉 (1)and therefore evolves deterministi
ally. But the square of the wave-fun
tion merely gives theprobability density to �nd the parti
le in a 
ertain position or state of motion. And 
learly thisprobabilisti
 des
ription torpedoes the idea that the universe 
ould be deterministi
. Moreoverin quantum me
hani
s position and momentum have lost their fundamental status as dynami
alvariables. Nevertheless they are still observables whi
h are measured in the laboratory and thereforeneed to be represented in the theory. In the 
ase of the position observable this is a

omplishedby asso
iating with it a hermitian operator X with a purely 
ontinuous spe
trum σc(X) = R3whose (improper) eigenfun
tions form an orthonormal basis {|~x〉 : ~x ∈ R3} of the state spa
e ofthe system, i.e.

〈~x|~x′〉 = δ(3)(~x− ~x′),

∫

d3x |~x〉 〈~x| = 1. (2)The a
tion of this position operator on an arbitrary wave-fun
tion in position spa
e lying in thedomain of X is then de�ned by
〈~x|X |ψ〉 := ~x 〈~x|ψ〉 . (3)Similarly other observables su
h as momentum and angular momentum are represented by asso
i-ating with them hermitian operators P and L respe
tively.What happens with the wave-fun
tion if su
h an observable, say the position, is being mea-sured? Before the measurement the position spa
e wave-fun
tion 〈~x|ψ〉 allows us to predi
t theprobabilities of obtaining the various possible out
omes. However, on
e having measured the statein a 
ertain volume V ⊂ R3 the wave-fun
tion immediately after the measurement needs to have
ompa
t support in this volume, and thus has to have 
ollapsed to a di�erent wave-fun
tion givenby the measurement postulate
〈~x|ψ′〉 =

〈~x|PV |ψ〉
√

〈ψ|PV |ψ〉
, (4)where PV is the proje
tion operator onto the eigenspa
e asso
iated with the volume V , i.e.

PV =

∫

V

d3x |~x〉 〈~x| . (5)A further remarkable di�eren
e between 
lassi
al me
hani
s and quantum me
hani
s are the
anoni
al 
ommutation relations between the 
omponents of the position and momentum operators
[X i, Pj ] = iδi

j, [X i, Xj ] = 0, [Pi, Pj ] = 0. (6)2



whi
h are needed to a

ount for the observation that 
ertain observables take on only a dis
retenumber of values; e.g. the energy of an ele
tron in a hydrogen atom and its angular momentumare both quantized. Heisenberg has shown that these 
ommutation relations lead to an un
ertaintyprin
iple for the position and momentum operators
〈X〉 〈P 〉 & 1, (7)where 〈X〉 and 〈P 〉 denote the standard deviation of position and momentum respe
tively. As a
onsequen
e it is impossible to know both position and momentum of a parti
le at the same timeto an arbitrary pre
ision whi
h abolishes on
e and for all the spe
ial role these two observableshave had in 
lassi
al me
hani
s.At this point it has to be mentioned that quantum me
hani
s 
an te
hni
ally be divided intoa well-de�ned mathemati
al framework and an interpretation whi
h 
onne
ts the mathemati
alformulation with the experiment. The interpretation of quantum me
hani
s given above is partof what is known as the Copenhagen interpretation. Although it is nowadays the most widely-a

epted interpretation of quantum me
hani
s, other interpretations have been developed, notleast be
ause the measurement postulate (4) with its predi
ted wave-fun
tion 
ollapse remains
ontroversial. But the important point is that within the mathemati
al framework of quantumme
hani
s the 
on
ept of position is well-de�ned and unambiguous, although its 
onsequen
es areadmittedly not very intuitive for us ma
ros
opi
 beings.At the beginning of the twentieth 
entury a se
ond major revolution in physi
s took pla
e: thebirth of the theory of relativity. However, quantum me
hani
s as des
ribed above is not 
ompatiblewith relativity, mainly be
ause the S
hrödinger equation (1) is not relativisti
ally invariant. Con-sequently there were several attempts to 
ombine 
on
epts from relativity with quantum me
hani
sout of whi
h relativisti
 quantum me
hani
s and quantum �eld theory grew, the later one pushedforward by the need to �nd a quantum theory for the ele
tromagneti
 �eld. But unfortunately itwas exa
tly the 
on
ept of lo
alization whi
h proved very di�
ult to 
arry over to a relativisti
quantum theory; a 
on
ept so heavily and su

essfully used in experimental physi
s.In 1949 Newton and Wigner tried to ta
kle this problem systemati
ally by writing down thepostulates whi
h in their eyes were ne
essary and su�
ient to 
hara
terize lo
alization. On theone hand their postulates turned out to be very 
ompelling in the sense that they give rise to aunique position operator for every massive system of arbitrary spin and for every massless systemof either spin 0 or 1

2 . On the other hand the eigenstates of these position operators have strangeand unpleasant properties, i.e. they propagate superluminally and are only lo
alized for spe
ialinertial observers. Whilst the former property raised 
on
ern that these states 
ould be used tosignal superluminally and thus generate a
ausal behaviour, the later property interferes with theprin
iple of relativity whi
h requires the physi
al laws to be equivalent in all inertial frames. Butthis would 
ertainly not be the 
ase if the wave-fun
tion des
ribing a parti
le 
ould have 
ompa
tsupport in one inertial frame but extend to in�nity in another. Moreover the Newton-Wignerpostulates do not lead to any position operator for massless systems with spin 1 or higher andthereby miss su
h important parti
les as the photon.Out of all these 
on
erns two fundamentally di�erent points of view developed.
• The di�
ulties 
an be 
onsidered as eviden
e that stri
t lo
alization does not exist, andparti
les are a pure illusion.
• Despite their strange properties, the Newton-Wigner position operators and their eigenstatesmake physi
al sense.In fa
t there have also been attempts to downplay the issues by 
laiming that the whole problemis 
on�ned to systems with a �xed number of parti
les, but following Fleming and Butter�eld it3



needs to be emphasized that this is not true: the aforementioned strange properties are equallypresent in a theory of variable parti
le numbers su
h as quantum �eld theory [2, p. 110�111℄.The stru
ture of this essay is as follows. At the beginning it is shown that the superluminalpropagation of the position operator eigenstates is already present in non-relativisti
 quantumme
hani
s, but not the delo
alization under 
ertain spa
etime symmetry transformations. Subse-quently the lo
alization 
on
ept due to Newton andWigner is introdu
ed and the strange propertiesof the eigenstates of their position operator are expli
itly demonstrated in the example of a massivespinless parti
le. Thereafter a theorem is presented whi
h supports the point of view that parti
lesare a pure illusion. Finally, the 
on
ept of hyperplane-dependent lo
alization is des
ribed whi
hshows that, against all the odds, lo
alizable parti
les are not ne
essarily unphysi
al.2 Lo
alization in non-relativisti
 Quantum Me
hani
sIn se
tion 1 the position operator for a parti
le was introdu
ed by its a
tion on the wave-fun
tionof the parti
le in position spa
e representation. For later 
onvenien
e it is worth re
alling its a
tionin momentum spa
e representation, viz.
〈~p|X |ψ〉 =

∫

d3x 〈~p|~x〉 〈~x| ~X|ψ〉 =

∫

d3xe−i~p·~x~xψ(~x)

= i∇~p

∫

d3xe−i~p·~xψ(~x) = i∇~pψ(~p). (8)The probability amplitude for a free parti
le initially lo
ated at ~x0 to propagate to ~x within a time
t is

〈~x|e−iH0t|~x0〉 =

∫

d3p

(2π)3
e−it~p2/2mei~p·(~x−~x0), (9)whi
h after substitution of ~q := ~p−m(~x− ~x0)/t be
omes

=

∫

d3q

(2π)3
e−it~q2/2meim(~x−~x0)

2/2t =
( m

2πit

)3/2

eim(~x−~x0)
2/2t, (10)an os
illating wave, spread out over all spa
e [3, p. 1989℄. Be
ause it does not vanish for arbitraryseparations |~x− ~x0| the parti
le 
an propagate superluminally.In the following it is shown that a lo
alized wave-fun
tion remains lo
alized under the a
tionof the Galilean group whi
h is the largest symmetry group of non-relativisti
 quantum me
hani
sleaving s
ales invariant. As mentioned above this behaviour 
an not be taken for granted anymorein the Newton-Wigner s
heme, and so it may well be worth verifying expli
itly that it is truein this 
ase. For this purpose 
onsider two Galilean inertial frames O and O ′ equipped with
oordinates (t, ~x) and (t′, ~x′) respe
tively. Assume a parti
le lo
alized in O at position ~x0, i.e.with a wave-fun
tion in position spa
e 〈~x|~x0〉 = δ(3)(~x − ~x0). It is obvious that the lo
alizationof the wave-fun
tion is not a�e
ted by spatial rotations nor by spa
etime translations. Under aGalilean boost

t→ t′ = t, ~x→ ~x′ = ~x− ~vt. (11)the wave-fun
tion transforms into
〈~x′|~x′0〉 =

∫

d3p

(2π)3
ei~p·~x′ 〈~p+m~v|~x0〉 =

∫

d3p

(2π)3
ei~p·(~x−~vt−~x0)e−im~v·~x0

= e−im~v·~x0δ(3)(~x− ~vt− ~x0). (12)4



Up to a phase this is the same wave-fun
tion as before. Be
ause every wave-fun
tion 
an beexpanded in terms of δ-fun
tions the lo
alization regime of an arbitrary wave-fun
tion is indeeduna�e
ted by a Galilean transformation [4, p. 104℄. It is now time to introdu
e Newton andWigner's attempt to re
on
ile lo
alization with the spe
ial theory of relativity.3 Newton-Wigner Lo
alizationThe requirements Newton and Wigner 
onsidered as ne
essary for a system to be lo
alized aresummarized in the following postulates.Newton-Wigner postulates [5, p. 401℄, [6, p. 1093℄Let S denote the set of lo
alized states at the origin of a spa
etime 
oordinate system with thefollowing properties(a) S is linear, i.e. a |ψ〉 + b |ϕ〉 ∈ S for all |ψ〉 , |ϕ〉 ∈ S and for all a, b ∈ C.(b) 〈ψ|T~a|ψ〉 = 0 for all |ψ〉 ∈ S and for all ~a 6= 0 where T~a is the translation operator de�ned by
T~a | ~x0〉 := | ~x0 + ~a〉.(
) S is invariant under rotations R ∈ O(3) and time re�e
tions.(d) The states |ψ〉 ∈ S obey a mathemati
al regularity 
ondition whi
h essentially eliminatesdis
ontinuous fun
tions from S.These postulates alone 
annot entirely determine the lo
alized states as they do not 
ontain anyinformation about the internal stru
ture of the system. Consequently a requirement on the statespa
e of the system needs to be imposed, namely that it be the 
arrier spa
e of a single irredu
ibleand unitary representation of the Poin
aré group [2, p. 114℄, [7, p. 524�525℄. The state spa
e ofa system 
ontaining an arbitrary number of parti
les 
an always be de
omposed into su
h 
arrierspa
es and the physi
al system asso
iated with a 
arrier spa
e is 
alled an elementary system. Anelementary parti
le is then de�ned to be an elementary system whose states 
annot be 
onne
tedby physi
al intera
tions to the states of other systems. As an example the neutron is not anelementary parti
le be
ause it 
an be 
onne
ted to the proton by β-de
ay. From these de�nitionsit follows that an elementary system is a more general 
on
ept than an elementary parti
le sin
e,for example, the ground state 1s of a hydrogen atom forms an elementary system [5, p. 400℄ butnot an elementary parti
le as it 
an be 
onne
ted to other states of the hydrogen atom by photonabsorption.3.1 Newton-Wigner States and their PropertiesIn the following the Newton-Wigner operator for a massive spin zero system is introdu
ed and itsmost important properties are dis
ussed. Massive spin zero systems are des
ribed by the Klein-Gordon equation

(∂2 +m2)φ(x) = 0. (13)Writing φ(x) as a Fourier de
omposition one obtains the Klein-Gordon equation in momentumspa
e
(

∂2
t + ω2

~p

)

φ(t, ~p) = 0, (14)5



where ω2
~p := ~p2 +m2. The set of positive energy solutions is de�ned as U+ := {φ(t, ~p) : ω~p ≥ 0}and a Lorentz-invariant inner produ
t on this set is given by

〈ϕ|ψ〉 =

∫

d3p

(2π)3
1

2ω~p
ϕ(~p)∗ψ(~p), ϕ, ψ ∈ U+. (15)The reason for restri
tion to positive energy solutions is that the negative energy solutions haveeigenvalues whi
h are unbounded from below. Therefore an arbitrary amount of energy 
ould beextra
ted from the system by lowering its energy state further and further. This problem is resolvedin quantum �eld theory by reinterpreting the negative energy solutions as positive energy statesof an antiparti
le. But by making this restri
tion to positive energy solutions the 
onsequen
es ofthe Newton-Wigner lo
alization derived below will then be present also in a quantum �eld theory.The fa
tor of 1/2ω~p in the de�nition of the inner produ
t (15) is ne
essary to make the integra-tion measure Lorentz-invariant. At the same time it prevents the non-relativisti
 position operator

(8) from being used be
ause this one is not hermitian with respe
t to the Lorentz-invariant innerprodu
t
〈Xψ|ϕ〉 =

∫

d3p

(2π)3
1

2ω~p
[−i∇~pψ

∗(~p)]ϕ(~p)

=

∫

d3p

(2π)3
ψ∗(~p)i∇~p

[

ϕ(~p)

2
√

~p2 +m2

]

=

∫

d3p

(2π)3
1

2ω~p
ψ∗(~p)i

[

∇~p − ~p

~p2 +m2

]

ϕ(~p), (16)and does therefore not 
orrespond to an observable. From the above 
al
ulation however it is nothard to see how it 
an be turned into a hermitian operator with respe
t to the Lorentz-invariantinner produ
t, namely by setting
Xnw := i

(

∇~p − ~p

2ω2
~p

)

. (17)This is indeed the position operator Newton and Wigner derived from their postulates. The
ommutation relations of its 
omponents then follow from (6)
[X i

nw, pj] =

[

i
∂

∂pi
, pj

]

− i

[

pi

2ω2
~p

, pj

]

= iδi
j (18)

[X i
nw, X

j
nw] = −

[

∂

∂pi
,
∂

∂pj

]

+

[

∂

∂pi
,
pj

2ω2
~p

]

+

[

pi

2ω2
~p

,
∂

∂pj

]

−
[

pi

2ω2
~p

,
pj

2ω2
~p

]

= 0, (19)where in the last line the third term 
an
els the se
ond and the other two terms vanish individually.A general eigenstate of the Newton-Wigner position operator in momentum spa
e at position ~x0and time t = 0 is
〈~p|~x0〉 =

√

2ω~pe
−i~p· ~x0 , (20)whi
h 
an be veri�ed by a
ting with the Newton-Wigner position operator (17) on this state

〈~p|Xnw|~x0〉 = i

(

∇~p − ~p

2ω2
~p

)

√

2ω~pe
−i~p·~x0 = ~x0

√

2ω~pe
−i~p·~x0 = ~x0 〈~p|~x0〉 . (21)6
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Figure 1: Qualitative form of the Newton-Wigner eigenfun
tion in position spa
e (22) as a fun
tion ofradial distan
e. Be
ause this fun
tion is not square integrable it is not normalizable and the square ofthe amplitude 
annot be interpreted as a probability density. Hen
e the tail as r → ∞ does not have aphysi
al meaning.The wave-fun
tion in position spa
e is obtained from (20) by using the inverse Fourier-transform
〈~x| ~x0〉 =

∫

d3p

(2π)3
1

2ω~p
〈~x|~p〉 〈~p| ~x0〉 =

∫

d3p

(2π)3
ei~p·(~x− ~x0)

√

2ω~p

= const

(

m

|~x− ~x0|

)5/4

K5/4

( |~x− ~x0|
λ0

)

, (22)where λ0 = 1/m is the Compton wave length and Kν(z) is the modi�ed Bessel fun
tion of these
ond kind [5, p. 402℄, [8, p. A253℄. The qualitative form of this wave-fun
tion is plotted in Fig.1. At �rst glan
e it seems as if (22) would not represent a lo
alized parti
le be
ause it does nothave 
ompa
t support. However, the fun
tion is not square integrable and therefore 
an not beinterpreted as a probability density. It is rather the fa
t that the Newton-Wigner eigenstates satisfythe above postulate (b) whi
h justi�es their interpretation as des
ribing lo
alized states. Indeed,
〈~x0|~x0 + ~a〉 =

∫

d3p

(2π)3
1

2ω~p
〈~x0|~p〉 〈~p|T~a|~x0〉

=

∫

d3p

(2π)3
1

2ω~p
e−i~p·~a 〈~x0|~p〉 〈~p|~x0〉 = δ(3)(~a) = 0 ∀ ~a 6= 0, (23)where T~a is the translation operator. Nevertheless it would be 
onvenient to have an orthonormalbasis of the state spa
e whi
h allows the de�nition of a position dependent probability density fora state |ψ〉 in this state spa
e. Fortunately the Newton-Wigner eigenstates |~x0〉 form exa
tly su
ha basis.Proof Orthonormality follows from

〈~x0|~x′0〉 =

∫

d3p

(2π)3
1

2ω~p
〈~x0|~p〉 〈~p|~x′0〉 =

∫

d3p

(2π)3
ei~p·(~x0−~x′

0
) = δ(3)(~x0 − ~x′0)7



and 
losure from
∫

d3x0 |~x0〉 〈~x0|ψ〉 =

∫

d3p

(2π)3
d3p′

(2π)3
d3x0

2ω~p 2ω~p′

|~p〉 〈~p|~x0〉 〈~x0|~p′〉 〈~p′|ψ〉

=

∫

d3p

(2π)3
d3p′

(2π)3
1

2ω~p 2ω~p′

(2π)3δ(3)(~p− ~p′)
√

2ω~p

√

2ω~p′ |~p〉 〈~p′|ψ〉

=

∫

d3p

(2π)3
1

2ω~p
|~p〉 〈~p|ψ〉 = 1 |ψ〉 . �Using the 
ompleteness every normalized state |ψ〉 
an then be expanded as [9, p. 64℄

1 = 〈ψ|ψ〉 =

∫

d3x0 〈ψ|~x0〉 〈~x0|ψ〉 =

∫

d3x0|ψ(~x0)|2 (24)whi
h allows to interpret |ψ(~x0)|2 as a probability density.3.1.1 Superluminal PropagationHow does a Newton-Wigner state evolve in time? Consider a Newton-Wigner state initially lo
al-ized at ~x′0. The probability amplitude for this state to propagate within a time t to ~x0 is then [10,p. 14℄
〈~x0|e−ip0t|~x′0〉 =

∫

d3p

(2π)3
e−it

√
~p2+m2

ei~p·(~x0−~x′

0
). (25)Rewriting the above integral in spheri
al 
oordinates using p := |~p|

1

(2π)3

∫ ∞

p=0

dpp2

∫ 2π

ϕ=0

dϕ

∫ π

ϑ=0

dϑ sinϑe−it
√

p2+m2

eip|~x0−~x′

0
| cos ϑ. (26)Substituting f := cosϑ and 
arrying out the integration over df and dϕ gives

1

(2π)2i

1

|~x0 − ~x′0|

∫ ∞

0

dppe−it
√

p2+m2

(

eip|~x0−~x′

0
| − e−ip|~x0−~x′

0
|
)

. (27)Using the symmetries of the integrand, the region of integration 
an be extended to the entire realaxis
1

(2π)2i

1

| ~x0 − ~x′0|

∫ ∞

−∞

dppeiΦ(p) (28)where Φ(p) := −t
√

p2 +m2 +p|~x0−~x′0|. Well outside the light 
one |~x0−~x′0| ≫ t this integral 
anbe approximated using the method of stationary phase [10, p. 14℄. In the following the abbreviation
|~x| := |~x0 − ~x′0| is used. The phase Φ has a stationary point at pS = im|~x|/

√

|~x|2 − t2 where ittakes on the value Φ(pS) = im
√

|~x|2 − t2. The se
ond derivative of Φ with respe
t to p is
d2Φ

dp2
= − t

√

p2 +m2

(

1 − p2

p2 +m2

)

, (29)and
∣

∣

∣

∣

d2Φ(p)

dp2

∣

∣

∣

∣

2

p=pS

=
|~x|2 − t2

m2

[

1 − |~x|2
t2

]2

> 0. (30)8



Hen
e the matrix element well outside the light 
one is apart from a phase approximated by [11,p. 307℄
〈~x0|e−ip0t|~x′0〉 ≃

1
√

(2π)2
mt

√

|~x|2 − t2

√

2πm

(|~x|2 − t2)3/2
e−m

√
|~x|2−t2 , (31)where |~x| := |~x0 − ~x′0|. The propagation amplitude is therefore dominated by a term of the form

〈~x0|e−ip0t|~x′0〉 ∝ e−m
√

|~x0−~x′

0
|2−t2 . (32)Although damped by an exponential term proportional to the mass m of the system, the amplitudeis non vanishing and superluminal propagation is therefore possible.3.1.2 Delo
alization under Lorentz BoostsLet O and O ′ be two inertial frames with asso
iated Newton-Wigner eigenbases |~x0〉 and |~x′0〉 ofthe state spa
e of the system. For simpli
ity assume an eigenstate lo
alized at the origin of Odenoted by |~xo

0〉. A

ording to equation (20) its momentum spa
e representation at time t = 0 is
〈~p|~xo

0〉 =
√

2ω~p. (33)Furthermore assume O ′ is moving along the x-axis of O with relative velo
ity v, thus the twoinertial frames are related by a Lorentz boost
Λ =









γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1









. (34)The 
orresponding transformation indu
ed on the state spa
e of the system is implemented bya unitary representation U [Λ] of the Lorentz group. Be
ause (34) is a pure Lorentz boost thisrepresentation is entirely determined in terms of the in�nitesimal boost generators ~K
U [Λ] = e−i ~K·~v. (35)The boosted state in the momentum spa
e representation then be
omes [10, p. 23℄, [12, p. 65℄

〈~p|~xo,B
0 〉 = 〈~p|e−i ~K·~v|~xo

0〉 = 〈Λ~p|~xo
0〉 =

√

2ωΛ~p (36)where ωΛ~p = (Λp)0 = γ(ω~p − vp1) as 
an be 
he
ked by a
ting with (34) on the momentum p.Thus, in terms of the Newton-Wigner eigenbasis |~x′0〉 of O ′ the boosted state is
〈~x′0|~xo,B

0 〉 =

∫

d3p

(2π)3
1

2ω~p
〈~x′0|~p〉 〈~p|U [Λ]|~xo

0〉 =

∫

d3p

(2π)3

√

ωΛ~p

ω~p
ei~x′

0
·~p

=

∫

d3p

(2π)3

√

√

√

√γ

(

1 − vp1
√

~p2 +m2

)

ei~x′

0
·~p. (37)The Paley-Wiener-S
hwartz theorem [13, 
h. 7℄ states that the Fourier transform of a 
ompa
tlysupported tempered distribution on Rn is an entire fun
tion on Cn, i.e. a fun
tion whi
h is analyti
at all �nite points of Cn. The spa
e of tempered distributions S ∗ is de�ned as the 
ontinuous9



dual of the S
hwartz spa
e S and the state spa
e spanned by the Newton-Wigner basis of O ′ is
H = L2(R3, d3x′0). Together S ,H and S ∗ form what is known as a Gelfand triple [14, p. 383℄

S ⊂ L2(R3, d3~x′0) ⊂ S
∗. (38)But the integrand in (37) is not an entire fun
tion sin
e the square root 
an not be analyti
ally
ontinued to all 
omplex values and it follows by Paley-Wiener-S
hwartz that the integral is ingeneral non-vanishing for arbitrary ~x0, i.e. the Newton-Wigner state is 
ompletely delo
alized in

O ′.Therefore the Newton-Winger eigenstates, although arising from seemingly reasonable postu-lates in a unique way, have the aforementioned strange properties; they1. propagate superluminally and2. are delo
alized by Lorentz boosts.This has attra
ted 
riti
ism in di�erent forms whi
h 
an roughly be divided into two 
ategories.On the one hand the strange properties 
an be taken as eviden
e that a 
on
ept of stri
tlylo
alizable parti
les is not adequate to des
ribe a relativisti
 quantum theory and although thenotion of parti
les is su

essfully used in the ma
ros
opi
 or non-relativisti
 limit, on a fundamentallevel parti
les are nothing but illusion.On the other hand several obje
tions were raised against the postulates nurtured by the hopethat a suitable modi�
ation of them would make the strange properties vanish. For exampleNewton and Wigner are treating lo
alization only in the limit of perfe
tly lo
alized states sin
ethey assume that every non-zero spatial displa
ement of a lo
alized state renders it orthogonal tothe original state; 
f. postulate (b) and equation (23). But 
on�ning a physi
al parti
le to anin�nitesimal spatial region would require an in�nite amount of energy and it 
ould well be that thestrange properties of the lo
alized states are merely a manifestation of this unphysi
al assumption.A

ordingly modi�ed postulates might then resolve the problems. Another obje
tion brought upwas that Newton and Wigner only 
onsider lo
alization on instantaneous hyperplanes [2, p. 114℄,[15, p. 237℄. Whereas the former obje
tion ended in smoke after Wightman 
arried out the analysisfor partially lo
alized states and found himself 
onfronted with the same strange properties, thelatter proved more promising; the generalization of the Newton-Wigner lo
alization to arbitraryhyperplanes resolves the problem that initially lo
alized states are delo
alized under Lorentz boostsand will be topi
 of the last se
tion. Before that, a theorem is introdu
ed whi
h supports the pointof view of all those who deny the existen
e of lo
alizable parti
les.4 Parti
les � a pure Illusion?In more re
ent years several theorems have been proven whi
h seem to rule out the existen
e oflo
alizable parti
les in a relativisti
 quantum theory. But obviously the statement of ea
h su
htheorem depends 
ru
ially on its assumptions and it is almost impossible to remove all doubts thatthey might be unjusti�ed. In this se
tion the fo
us is laid on Malament's theorem whose soundnesshas been dis
ussed extensively in the literature [16, p. 5�7℄. In order to introdu
e this theoremand later the 
on
ept of hyperplane-dependent lo
alization, some remarks about hyperplanes arerequired.4.1 Spa
etime stru
ture and HyperplanesConsider an inertial frame equipped with Minkowski 
oordinates x = (t, ~x).10



τ1

τ2

τ3

~x

x0

(a) Foliation of spa
etime into instantaneous hyper-planes obtained by setting η = (1, 0, 0, 0). Ea
h hy-perplane is then determined by the equation x0 = τ . ~x

x0

~x′

x′0

(b) Given an arbitrary hyperplane in O there alwaysexists an inertial frame O′ in whi
h this hyperplane isinstantaneous.Figure 2: Minkowski diagrams illustrating two remarks made in the text.Def. A spa
elike hyperplane is de�ned to be the set of points
Σ(η,τ) := {x | η · x = τ with η2 = 1 and η0 ≥ 1} (39)From this de�nition it immediately follows that(i) every ordered pair (η, τ) de�nes a unique hyperplane and(ii) any two distin
t points on the hyperplane (η, τ) are separated by a spa
elike interval.Proof (i) Assume (η, τ) 6= (η′, τ ′) de�ne the same hyperplane, i.e. Σ(η,τ) = Σ(η′,τ ′). Consider

x1 := τη ∈ Σ(η,τ) and x′1 := τ ′η′ ∈ Σ(η′,τ ′). But by assumption they have to be elements ofboth hyperplanes and 
onsequently η · η′ = τ ′/τ = τ/τ ′. This implies τ ′ = −τ sin
e τ and τ ′ areassumed to be distin
t. However, x2 = (τ/η0, 0, 0, 0) ∈ Σ(η,τ) has to be an element of Σ(η′,τ ′) aswell and thus τη′0 = τ ′η0 = −τη0 in 
ontradi
tion with the requirement that both η′0, η0 ≥ 1. Asimilar argumentation works for the 
ases η 6= η′, τ = τ ′ and η = η′, τ 6= τ ′.(ii) Assume x, x′ are two distin
t points on Σ(η,τ), hen
e η · (x− x′) = 0. But this is equivalent to
η0(x0 − x′0) = ηi(xi − x′i). From η0 ≥ 1 and η · η = 1 it follows ηiηi < (ηo)2. Hen
e (x0 − x′0) <
(xi − x′i).Every �xed η thus de�nes a foliation S of spa
etime into spa
elike hyperplanes parametrized by
τ . For the spe
ial 
ase η = (1,~0) the spa
etime of O is foliated into instantaneous hyperplanes.Su
h a foliation is shown in Fig. 3a.Moreover for every spa
elike hyperplane Σ(η,τ) there exists an inertial frame in whi
h thishyperplane is instantaneous. In order to show this 
onsider an arbitrary Lorentz boost 
onne
tingtwo inertial frames

Λ(θ,~a) =

(

cosh θ sinh θ~aT

sinh θ~a I3 + (cosh θ − 1)~a~aT

)

, (40)where ~a determines the dire
tion of the relative velo
ity of the inertial frames and tanh θ = |~v| itsmagnitude. A boost therefore has a total of four degrees of freedom θ,~a whi
h 
an be 
hosen su
hthat η → η′ = (1,~0) under Λ, 
f. Fig. 3b. It is now possible to introdu
e Malament's theorem.11



4.2 Malament's TheoremLet M be an a�ne spa
etime manifold equipped with a foliation S into spa
elike hyperplanes Σ and
H the state spa
e of the quantum system under 
onsideration. Assume the following stru
ture:(i) For all bounded subsets ∆ ⊂ Σ ∈ S there exists a map h : ∆ 7→ P∆, where P∆ is a proje
tionoperator on H .(ii) Let G be the translation group of M and d a homomorphism from G into the unitary repre-sentations U(g ∈ G) su
h that 〈ψ|U(g)|ψ〉 → 1 as g → 0 for all |ψ〉 ∈ H with 〈ψ|ψ〉 = 1.Then (H , h, d) de�nes a lo
alization system on M [16, p. 3℄.One 
an interpret 〈ψ|P∆|ψ〉 as the probability amplitude of �nding the state |ψ〉 within theregion ∆ ⊆ Σ. Assume the lo
alization system has the following properties.Malament's postulates [16, p. 3�5℄, [17, p. 3�4℄(a) The energy of all states |ψ〉 ∈ H is bounded from below, i.e. ∃ E0 su
h that 〈ψ|H |ψ〉 ≥ E0for all |ψ〉 in the domain of the Hamiltonian H of the system.(b) A state 
an not be found in two disjoint spatial regions of the same hyperplane: ∆1 ∩ ∆2 =

∅ ⇒ P∆1
P∆2

= 0.(
) Proje
tion operators asso
iated with two spa
elike separated regions ∆ and ∆′ do not in�uen
ethe statisti
s of ea
h other: [P∆, P∆′ ] = 0.(d) The statisti
s of the proje
tion operators are invariant under spa
etime translations: P∆+~a =
U(~a)P∆U

†(~a), where ~a ∈ G and ∆ + ~a denotes the set obtained by translating every point in
∆ by the ve
tor ~a.It is 
ertainly worth seeing how these postulates 
ompare to the Newton-Wigner postulates. The�rst postulate simply assures that only a �nite amount of energy 
an be extra
ted from the parti
le.The same assumption has been made for the Newton-Wigner lo
alization of a massive spin zerosystem by the restri
tion to the positive energy solutions of the Klein Gordon equation and isgenerally 
ontained impli
itly in the Newton-Wigner lo
alization s
heme. The three remainingpostulates however di�er substantially from the Newton-Wigner postulates. They are valid for allpossible lo
alized states and not only for perfe
tly lo
alized ones and lo
alization is 
onsidered onarbitrary hyperplanes and not only on instantaneous ones. Moreover the third postulate imposesan expli
it requirement on 
ausality. However, it followsThm. Malament [17, p. 6℄ A lo
alization system satisfying Malament's postulates also satis�es

P∆ = 0 for all bounded subsets ∆ and for all times.Consequently a state 
an never be dete
ted within a bounded region of spa
e and a

eptan
e ofMalament's postulates would lead to a world without lo
alizable parti
les. This is reason enoughto �nd good arguments against them and indeed there is room for 
riti
ism.One obje
tion is that Malament's theorem only applies to a �at spa
etime and its statement
ould therefore be an artefa
t of the Minkowskian spa
etime. Although Halvorson and Cliftonhave proven a theorem [16, p. 13℄ whi
h entails Malament's theorem and only relies on a globallyhyperboli
 spa
etime it is not entirely a

epted that the present universe is globally hyperboli
 [18,p. 9℄ and there remains the possibility that a suitably 
urved spa
etime 
ould save the 
on
ept oflo
alizable parti
les. But this would not be 
ompletely satisfa
tory sin
e no 
on
ept of lo
alizableparti
les would exist in a �at spa
etime and it would be better to �nd another way to prove12



Malament wrong. For example one 
ould argue that the solution of the measurement problemmight in
orporate an abolition of unitary dynami
s [19, p. 170℄ and thereby invalidate postulate(d). However, Halvorson and Clifton [16, p. 7℄ point out that... it would be quite another thing to provide a model [with non unitary dynami
s℄ ...whi
h is also 
apable of reprodu
ing the well-
on�rmed quantum interferen
e e�e
ts atthe mi
ro-level. Until we have su
h a model, pinning our hopes for lo
alizable parti
leson a failure of unitary dynami
s is little more than wishful thinking.Various other obje
tions have been raised. Some of them turned out to be unfounded, but manyremain 
ontroversial and without de�nite answers.In addition to Malament's theorem there are several other theorems whi
h 
laim to rule outthe existen
e of lo
alizable parti
les. Some among them seem quite powerful in the sense that theyonly rely on a very limited number of assumptions, but 
ertainly none of them is free of all doubts.In fa
t many of the obje
tions against a world without lo
alizable parti
les are fueled by a verypromising theory developed by Fleming, Butter�eld et al. whose basi
 ideas are presented in thenext se
tion.5 Hyperplane-dependent Lo
alizationThis se
tion relies heavily on [2, esp. se
. 9�11℄. Newton-Wigner lo
alization as introdu
ed aboveis always with respe
t to an instantaneous hyperplane x0 = t. Due to the superluminal propagation(32) a Newton-Wigner state lo
alized at time t is not lo
alized anymore at any later time. Bearingin mind the above dis
ussion of hyperplanes the delo
alization of su
h a state under a Lorentzboost does no longer 
ome as a surprise sin
e a Newton-Wigner state lo
alized in the x0 = 0hyperplane of observer O is in general not lo
alized in the x′0 = 0 hyperplane of observer O ′. Butby restri
tion of lo
alization to a 
ertain hyperplane these issues are immediately resolved as allobservers � no matter what their state of motion � 
an always refer to this spe
i�
 hyperplane.Whether a state is lo
alized with respe
t to this hyperplane or not is then well-de�ned.Consider two parametrizations (η, τ) and (η′, τ ′) of a given hyperplane in the 
oordinate systemsof inertial observers O and O ′ whi
h are 
onne
ted by a Poin
aré transformation (Λ, a) su
h that
η′ = Λη and τ ′ = τ + a ·Λη. In the Heisenberg pi
ture a position operator (e.g. the 
enter of spinor the 
enter of energy position operator) then has the two di�erent parametrizationsXµ(η, τ) and
Xµ(η′, τ ′) whi
h for 
onsisten
y need to be related by a Poin
aré transformation

〈ψ′|Xµ(η′, τ ′)|ψ′〉 = Λµ
ν 〈ψ|Xµ(η, τ)|ψ〉 + aµ 〈ψ|ψ〉 ∀ |ψ〉 (41)where |ψ′〉 is obtained by a
ting with the unitary representation of the Poin
aré group U(Λ, a) on

|ψ〉. The hyperplane-dependent version of the Newton-Wigner position operator Xµ(η, τ) for amassive spinless system, whi
h in this spe
ial 
ase 
oin
ides with the 
enter of energy operator [2,p. 149℄, is given in terms of the symmetri
 produ
t by
1

2
(XµH +HXµ)(η, τ) :=

∫

d4xδ(ηx− τ)xµθνρ(x)ηνηρ, (42)where θνρ is the stress-energy-momentum tensor and
H(η, τ) := Pµηµ :=

∫

d4xδ(ηx − τ)θνρ(x)ηρ. (43)is the hyperplane-dependent energy. The δ-fun
tion ensures that the integration takes pla
e onlyon the hyperplane. The spatial 
omponents of this operator on an instantaneous hyperplane are
X iP 0 =

∫

d3xxiθ00(τ, ~x), (44)13



where the fa
tor of 1/P 0 is the total energy and serves as a normalization fa
tor. The θ00-
omponent of the stress-energy-momentum tensor 
orresponds to the energy density and is weightedwith the position on the instantaneous hyperplane. Thus X i indeed 
orresponds to the 
enter ofenergy. It needs to be added that there always exists an inertial frame in whi
h the 
enter of energyposition operator takes the form (44).If the system under 
onsideration 
arries spin the hyperplane-dependent 
enter of energy oper-ator di�ers from the hyperplane-dependent Newton-Wigner position operator whi
h then measuresthe 
enter of spin. Certainly other lo
alizable properties require other operators. In 
ontrast tothe Newton-Wigner 
ase, it 
an then happen that the 
omponents of su
h an operator Xµ(η, τ)do not 
ommute. Lo
alization is then only possible with respe
t to a 
hosen 
omponent of theposition operator, i.e. within a subset ∆ × R2 of the hyperplane Σ(η,τ).5.1 Lorentz Boosts and Delo
alizationIt is now time to see how the problem of delo
alization under Lorentz boosts is naturally resolvedin the formalism of hyperplane-dependent lo
alization. Consider the interse
tion of two distin
thyperplanes whi
h de�nes a two-dimensional subset of spa
etime and asso
iate with ea
h of thesehyperplanes a position operator. The sets of eigenve
tors of these position operators lying in theinterse
tion are then given by
η′ ·X(η, τ) |α, τ ′; η, τ〉 = τ ′ |α, τ ′; η, τ〉 ,
η ·X(η′, τ ′) |α, τ ; η′, τ ′〉 = τ |α, τ ; η′, τ ′〉 , (45)where α denotes the additional parameters needed to uniquely de�ne the state. But there is no
ommon set of eigenstates sin
e the 
omponents of operators asso
iated with di�erent hyperplanesin general do not 
ommute. Therefore it is possible to have a state |ψ〉 su
h that
〈α, τ ′; η, τ |ψ〉 = 0 but 〈α, τ ; η′, τ ′|ψ〉 6= 0, (46)i.e. on Σ(η′,τ ′) the state |ψ〉 
an be found within the interse
tion, but on Σ(η,τ) it 
annot be foundwithin the same interse
tion. In fa
t this property o

urs for any hyperplane-dependent positionoperator and is not spe
i�
 for the Newton-Wigner 
ase. Consequently lo
alization always needsto be 
onsidered with respe
t to a 
ertain hyperplane whose spe
i�
ation requires three additionalparameters and Butter�eld and Fleming 
on
lude that[...℄ quantum lo
alization [thus℄ takes pla
e in a seven-dimensional manifold, ratherthan in four dimensional Minkowski spa
etime [2, p. 131℄.One of the strange properties of the 
onventional Newton-Wigner lo
alization 
on
ept, namelythe subje
tivity of lo
alization is therefore nothing but a manifestation of the three unspe
i�eddegrees of freedom and is no longer worrying on
e one has introdu
ed the hyperplane-dependentformulation.5.2 Superluminal Propagation and CausalityUnfortunately the superluminal propagation of the Newton-Wigner states still persists, but it 
anbe divided into two 
ategories. On the one hand for an open system the superluminal propagationof 
ertain position operators is not surprising. As an example one may 
onsider a perfe
t va
uumtube 
ontaining a single massive and spinless parti
le at one end of the tube. The 
enter of energyof the 
ontent of the tube therefore 
oin
ides with the position of this parti
le. But inje
tion ofadditional parti
les at the other end of the tube 
an easily 
ause the 
enter of energy to movesuperluminally. 14
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∆
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(b)Figure 3: Superluminal propagation of Newton-Wigner state with respe
t to instantaneous hyperplanes.The probability density outside the forward light
one diminishes with in
reasing spa
elike separation andthe probability to �nd the state inside the light
one rapidly tends towards 1.On the other hand superluminal propagation o

urs also in 
losed systems and is in fa
t ageneral feature of hyperplane-dependent position operators. To 
hara
terize the superluminalpropagation let |α, x; η, τ 〉 be a basis of eigenfun
tions of the hyperplane-dependent Newton-Wignerposition operator and imagine a wave-fun
tion 〈α, x; η, τ |ψ〉 expressed in this basis with 
ompa
tsupport on Σ(η,τ). Although this wave-fun
tion spreads out instantaneously
• the probability density outside the forward light
one diminishes with in
reasing spa
elikeseparation and
• the integrated probability density inside the forward light
one rapidly tends toward unitywith in
reasing time, see Fig. 3.However, the physi
ally relevant question is whether this superluminal propagation 
an be usedto signal superluminally and hen
e to 
reate 
ausal anomalies. To date there is no proof that su
hanomalies are avoided in the hyperplane-dependent formulation, but in the following an argumentdue to Fleming [20, p. 123�124℄ is presented whi
h may allay these fears. Fleming 
onsiders thesetup shown in Fig. 4 whi
h at �rst sight serves to abuse the superluminal propagation of a Newton-Wigner state so as to generate a 
ontradi
tion. Initially, two remarks need to be made.(i) Both 
on�nement and dete
tion of a parti
le are always with respe
t to a 
ertain hyperplanewhi
h here for simpli
ity is assumed to be the instantaneous hyperplane in the 
orrespondingreferen
e frame.(ii) In the framework of hyperplane-dependent lo
alization the state redu
tion due to a measure-ment o

urs only on hyperplanes in the future of the state redu
ing region.On the one hand the state released in (A) is not 
on�ned to any hyperplane and 
an be measuredby the dete
tor (B) with a non-vanishing probability, thus being relo
alized. But from (ii) itfollows that the e�e
t of this relo
alization only manifests itself on hyperplanes lying in the futureof (B). The instantaneous hyperplane on whi
h the dete
tor (C) is sensitive is not among themand therefore the me
hanism whi
h prevents the box from being opened 
annot be triggered. Onthe other hand the 
on�nement of the parti
le in the box is only with respe
t to the instantaneous15
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Figure 4: A box 
ontaining a lo
alized Newton-Wigner state at time t = 0 is opened (A). Due to thesuperluminal propagation the state 
an possibly be measured by a spa
elike related dete
tion measurement(B). Assume that when this happens, the state 
ollapses to another Newton-Wigner state whi
h 
an thensuperluminally propagate to a dete
tion apparatus (C) in the past of (A). If this apparatus dete
ts thestate it triggers a me
hanism whi
h prevents the box from being opened in the future. But then thereleased Newton-Wigner state prevents itself from being released � a 
ontradi
tion [20, p. 123℄.hyperplane in the inertial frame of the box and there is nothing whi
h hinders the state to propagateon other hyperplanes. The state 
an then propagate on the hyperplane on whi
h (B) is sensitiveand by doing so prior to the box opening event (A) it is possible to trigger the box lo
kingme
hanism before (A). However, this is not a 
ontradi
tion be
ause the triggering does not o

uras a 
onsequen
e of the box being opened, but rather is the result of an earlier propagation of thestate on a hyperplane on whi
h the state has never been 
on�ned.6 Con
lusionAlthough it is not obvious how to introdu
e the 
on
ept of lo
alization in relativisti
 quantumtheory the hyperplane-dependent formulation is a very promising attempt whi
h indi
ates thatsuperluminal propagation does not inevitably lead to 
ausal loops: though there is no proof forthat and further investigation is needed. But 
ertainly hyperplane-dependent lo
alization showsthat it would be premature to appeal to Malament's theorem, so as to rule out lo
alizable parti
les.A AppendixA.1 ConventionsVe
tors in three dimensional spa
e are denoted by an arrow (~x, ~p, . . . ) whereas 4-ve
tors are writtenwithout (x, p, . . . ). All 
al
ulations are 
arried out in natural units (~ = c = 1) and the signatureof the metri
 tensor of �at spa
e-time is 
hosen to be (+,−,−,−). The Fourier-transform f̃(k) in
n dimensions is de�ned as

f̃(k) :=

∫

dnx f(x)e−ik·x (47)16



and its inverse as
f(x) :=

∫

dnk

(2π)n
f̃(k)eik·x. (48)For wave-fun
tions and operator-�elds the 
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