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Abstract

Although the concept of localization in non-relativistic quantum mechanics is mathemat-
ically well-defined there is no obvious and unambiguous way to generalize it to relativistic
quantum theory. After a brief review of localization in quantum mechanics the Newton-Wigner
localization scheme is introduced and it is shown by the example of a massive spinless system
how it leads to a position operator with seemingly unphysical properties. This motivated the
development of several theorems which claim to rule out the existence of localizable particles.
A particularly important one of them is presented and its validity discussed. In the last section
however it is shown that if localization is considered with respect to spacelike hyperplanes,
the properties of the Newton-Wigner position operators are not necessarily unphysical and
localizable particles can exist.
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1 Introduction

By the end of the nineteenth century many scientists believed the universe to be totally determin-
istic, i.e. that the state of the universe at one instant would entirely define its future and past
evolution. This point of view was primarily motivated by the progress in classical mechanics and
the discovery of Maxwell’s equations. These achievements made it tempting to model the universe
as a collection of massive bodies which evolve under gravitational and electromagnetic forces, the
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former determined by the masses of the bodies and the later by fields obeying Maxwell’s equations.
Knowledge of the initial position and momentum of all bodies and their masses as well as the initial
field configuration would then be sufficient to calculate the future development of the universe.

But already during the nineteenth century several observations were made which indicated that
this can not be the whole story. As an example one may think of the photoelectric effect, namely
the emission of electrons from matter under an incident electromagnetic field. Although this effect
can be explained without quantization of the electromagnetic field [1, p. 11] it was historically
important for substantiating the idea of photons. But it was mainly early twentieth century
observations of small-scale phenomena which required a new theory, viz. quantum mechanics. The
notion of a particle with a well-defined position and momentum had to be replaced by a wave-
function [¢) which obeys Schrodinger’s equation (setting i = 1; cf. the appendix for notational
conventions)
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and therefore evolves deterministically. But the square of the wave-function merely gives the
probability density to find the particle in a certain position or state of motion. And clearly this
probabilistic description torpedoes the idea that the universe could be deterministic. Moreover
in quantum mechanics position and momentum have lost their fundamental status as dynamical
variables. Nevertheless they are still observables which are measured in the laboratory and therefore
need to be represented in the theory. In the case of the position observable this is accomplished
by associating with it a hermitian operator X with a purely continuous spectrum o.(X) = R3
whose (improper) eigenfunctions form an orthonormal basis {|Z) : Z € R3} of the state space of
the system, i.e.

(FF) = 697 — &), /d% 1) (7] = 1. @)

The action of this position operator on an arbitrary wave-function in position space lying in the
domain of X is then defined by

(@ X[) == T (Z|Y) - (3)

Similarly other observables such as momentum and angular momentum are represented by associ-
ating with them hermitian operators P and L respectively.

What happens with the wave-function if such an observable, say the position, is being mea-
sured? Before the measurement the position space wave-function (Z|¢) allows us to predict the
probabilities of obtaining the various possible outcomes. However, once having measured the state
in a certain volume V C R? the wave-function immediately after the measurement needs to have
compact support in this volume, and thus has to have collapsed to a different wave-function given
by the measurement postulate
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where Py is the projection operator onto the eigenspace associated with the volume V| i.e.

PV:/Vd%m (. (5)
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A further remarkable difference between classical mechanics and quantum mechanics are the
canonical commutation relations between the components of the position and momentum operators

[X*, Pj] = idt, [X°, X7] =0, [P;, P;] = 0. (6)



which are needed to account for the observation that certain observables take on only a discrete
number of values; e.g. the energy of an electron in a hydrogen atom and its angular momentum
are both quantized. Heisenberg has shown that these commutation relations lead to an uncertainty
principle for the position and momentum operators

(X)(P) 21, (7)

where (X) and (P) denote the standard deviation of position and momentum respectively. As a
consequence it is impossible to know both position and momentum of a particle at the same time
to an arbitrary precision which abolishes once and for all the special role these two observables
have had in classical mechanics.

At this point it has to be mentioned that quantum mechanics can technically be divided into
a well-defined mathematical framework and an interpretation which connects the mathematical
formulation with the experiment. The interpretation of quantum mechanics given above is part
of what is known as the Copenhagen interpretation. Although it is nowadays the most widely-
accepted interpretation of quantum mechanics, other interpretations have been developed, not
least because the measurement postulate (4) with its predicted wave-function collapse remains
controversial. But the important point is that within the mathematical framework of quantum
mechanics the concept of position is well-defined and unambiguous, although its consequences are
admittedly not very intuitive for us macroscopic beings.

At the beginning of the twentieth century a second major revolution in physics took place: the
birth of the theory of relativity. However, quantum mechanics as described above is not compatible
with relativity, mainly because the Schrodinger equation (1) is not relativistically invariant. Con-
sequently there were several attempts to combine concepts from relativity with quantum mechanics
out of which relativistic quantum mechanics and quantum field theory grew, the later one pushed
forward by the need to find a quantum theory for the electromagnetic field. But unfortunately it
was exactly the concept of localization which proved very difficult to carry over to a relativistic
quantum theory; a concept so heavily and successfully used in experimental physics.

In 1949 Newton and Wigner tried to tackle this problem systematically by writing down the
postulates which in their eyes were necessary and sufficient to characterize localization. On the
one hand their postulates turned out to be very compelling in the sense that they give rise to a
unique position operator for every massive system of arbitrary spin and for every massless system
of either spin 0 or % On the other hand the eigenstates of these position operators have strange
and unpleasant properties, i.e. they propagate superluminally and are only localized for special
inertial observers. Whilst the former property raised concern that these states could be used to
signal superluminally and thus generate acausal behaviour, the later property interferes with the
principle of relativity which requires the physical laws to be equivalent in all inertial frames. But
this would certainly not be the case if the wave-function describing a particle could have compact
support in one inertial frame but extend to infinity in another. Moreover the Newton-Wigner
postulates do not lead to any position operator for massless systems with spin 1 or higher and
thereby miss such important particles as the photon.

Out of all these concerns two fundamentally different points of view developed.

e The difficulties can be considered as evidence that strict localization does not exist, and
particles are a pure illusion.

e Despite their strange properties, the Newton-Wigner position operators and their eigenstates
make physical sense.

In fact there have also been attempts to downplay the issues by claiming that the whole problem
is confined to systems with a fixed number of particles, but following Fleming and Butterfield it
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needs to be emphasized that this is not true: the aforementioned strange properties are equally
present in a theory of variable particle numbers such as quantum field theory [2, p. 110-111].

The structure of this essay is as follows. At the beginning it is shown that the superluminal
propagation of the position operator eigenstates is already present in non-relativistic quantum
mechanics, but not the delocalization under certain spacetime symmetry transformations. Subse-
quently the localization concept due to Newton and Wigner is introduced and the strange properties
of the eigenstates of their position operator are explicitly demonstrated in the example of a massive
spinless particle. Thereafter a theorem is presented which supports the point of view that particles
are a pure illusion. Finally, the concept of hyperplane-dependent localization is described which
shows that, against all the odds, localizable particles are not necessarily unphysical.

2 Localization in non-relativistic Quantum Mechanics
In section 1 the position operator for a particle was introduced by its action on the wave-function

of the particle in position space representation. For later convenience it is worth recalling its action
in momentum space representation, viz.
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The probability amplitude for a free particle initially located at ¥y to propagate to & within a time
tis
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which after substitution of §:= p'— m(Z — Zy)/t becomes
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an oscillating wave, spread out over all space [3, p. 1989]. Because it does not vanish for arbitrary
separations |¥ — Zy| the particle can propagate superluminally.

In the following it is shown that a localized wave-function remains localized under the action
of the Galilean group which is the largest symmetry group of non-relativistic quantum mechanics
leaving scales invariant. As mentioned above this behaviour can not be taken for granted anymore
in the Newton-Wigner scheme, and so it may well be worth verifying explicitly that it is true
in this case. For this purpose consider two Galilean inertial frames ¢ and &’ equipped with
coordinates (t,#) and (¢, %) respectively. Assume a particle localized in & at position Zy, i.e.
with a wave-function in position space (Z|Zy) = 6 (& — ). It is obvious that the localization
of the wave-function is not affected by spatial rotations nor by spacetime translations. Under a
Galilean boost

t—t =t T =7t (11)

the wave-function transforms into
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Up to a phase this is the same wave-function as before. Because every wave-function can be
expanded in terms of §-functions the localization regime of an arbitrary wave-function is indeed
unaffected by a Galilean transformation [4, p. 104]. It is now time to introduce Newton and
Wigner’s attempt to reconcile localization with the special theory of relativity.

3 Newton-Wigner Localization

The requirements Newton and Wigner considered as necessary for a system to be localized are
summarized in the following postulates.

Newton-Wigner postulates [5, p. 401], [6, p. 1093]
Let 8 denote the set of localized states at the origin of a spacetime coordinate system with the
following properties

(a) 8 is linear, i.e. aly)) +blp) € 8 for all 1), |¢) € § and for all a,b € C.

(b) (¥|Tz|p) = 0 for all |¢) € § and for all @ # 0 where Ty is the translation operator defined by
Tz |20) = |20 + @).

(c) 8 is invariant under rotations R € O(3) and time reflections.

(d) The states [1)) € 8 obey a mathematical regularity condition which essentially eliminates
discontinuous functions from §.

These postulates alone cannot entirely determine the localized states as they do not contain any
information about the internal structure of the system. Consequently a requirement on the state
space of the system needs to be imposed, namely that it be the carrier space of a single irreducible
and unitary representation of the Poincaré group [2, p. 114], [7, p. 524-525]. The state space of
a system containing an arbitrary number of particles can always be decomposed into such carrier
spaces and the physical system associated with a carrier space is called an elementary system. An
elementary particle is then defined to be an elementary system whose states cannot be connected
by physical interactions to the states of other systems. As an example the neutron is not an
elementary particle because it can be connected to the proton by [-decay. From these definitions
it follows that an elementary system is a more general concept than an elementary particle since,
for example, the ground state 1s of a hydrogen atom forms an elementary system [5, p. 400] but
not an elementary particle as it can be connected to other states of the hydrogen atom by photon
absorption.

3.1 Newton-Wigner States and their Properties

In the following the Newton-Wigner operator for a massive spin zero system is introduced and its
most important properties are discussed. Massive spin zero systems are described by the Klein-
Gordon equation

(0% + m?)¢(x) = 0. (13)

Writing ¢(x) as a Fourier decomposition one obtains the Klein-Gordon equation in momentum
space

(07 + wp) o(t,9) = 0, (14)



where w? := p” + m?. The set of positive energy solutions is defined as Uy := {4(t,p) : wy > 0}
and a Lorentz-invariant inner product on this set is given by

d? 1
o) = [ g PPN, pv el (15)
The reason for restriction to positive energy solutions is that the negative energy solutions have
eigenvalues which are unbounded from below. Therefore an arbitrary amount of energy could be
extracted from the system by lowering its energy state further and further. This problem is resolved
in quantum field theory by reinterpreting the negative energy solutions as positive energy states
of an antiparticle. But by making this restriction to positive energy solutions the consequences of
the Newton-Wigner localization derived below will then be present also in a quantum field theory.

The factor of 1/2wy in the definition of the inner product (15) is necessary to make the integra-
tion measure Lorentz-invariant. At the same time it prevents the non-relativistic position operator
(8) from being used because this one is not hermitian with respect to the Lorentz-invariant inner
product
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and does therefore not correspond to an observable. From the above calculation however it is not
hard to see how it can be turned into a hermitian operator with respect to the Lorentz-invariant

inner product, namely by setting
, i
Xpw =1 Vy— . 17
t ( P 20}%) ( )

This is indeed the position operator Newton and Wigner derived from their postulates. The
commutation relations of its components then follow from (6)

i .0 | g
v 2

) . o 0 0 pj pi 0 pi pj
I:X’;LLU))Xi’L'UJ]:_ |:_a_:| + a 49 92 + 5 2'a | T |9 279 2 :05 (19)
dp;” Opj Op; 2w§ 2w§ p; 2w§ 2w§
where in the last line the third term cancels the second and the other two terms vanish individually.

A general eigenstate of the Newton-Wigner position operator in momentum space at position &y
and time ¢t =0 is

(plZo) = \/2wpe™ T, (20)

which can be verified by acting with the Newton-Wigner position operator (17) on this state

(P1 X |Zo) =i (v,; — 2%;) V2wre T TE = ) S2wze T = F4 (7). (21)
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Localized Newton—-Wigner State in Position Space

\

\
N

Radial Distance r [L]

@m®™ Kg,,(r) [arb. units]

Figure 1: Qualitative form of the Newton-Wigner eigenfunction in position space (22) as a function of
radial distance. Because this function is not square integrable it is not normalizable and the square of
the amplitude cannot be interpreted as a probability density. Hence the tail as » — oo does not have a

physical meaning.

The wave-function in position space is obtained from (20) by using the inverse Fourier-transform

Bp P E=0)

3
%) = [ g 0 ) = [ i

— const [ — "4 5/4]( & — @] (22)
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where Ay = 1/m is the Compton wave length and K,(z) is the modified Bessel function of the
second kind [5, p. 402], [8, p. A253]|. The qualitative form of this wave-function is plotted in Fig.
1. At first glance it seems as if (22) would not represent a localized particle because it does not
have compact support. However, the function is not square integrable and therefore can not be
interpreted as a probability density. It is rather the fact that the Newton-Wigner eigenstates satisfy
the above postulate (b) which justifies their interpretation as describing localized states. Indeed,

3
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’p 1 —ipd = Bz a
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where Ty is the translation operator. Nevertheless it would be convenient to have an orthonormal
basis of the state space which allows the definition of a position dependent probability density for
a state [¢) in this state space. Fortunately the Newton-Wigner eigenstates |Zo) form exactly such

a basis.

Proof Orthonormality follows from
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and closure from

3 3./ 3{E
oo oty = [ ks s S o) ol 1)

= [ s G~ ) B B 1) 714)
(2m)3 (27)3 2wy 2wz AL

- [t =1, O

Using the completeness every normalized state [¢) can then be expanded as [9, p. 64]

1= (i) = / @Bz (0|0) (Folt) = / ol (@) (24)
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which allows to interpret |1 (Z)|* as a probability density.

3.1.1 Superluminal Propagation

How does a Newton-Wigner state evolve in time? Consider a Newton-Wigner state initially local-
ized at Z{,. The probability amplitude for this state to propagate within a time ¢ to Zy is then |10,
p. 14]

. a3 , i
Bole i) = [ g VIR, (25)
71'

Rewriting the above integral in spherical coordinates using p := |p]
1 ) 2 T ) L »
53 / dpp® / dep d sin 9e = VPP HM? oiplFo=Tg| cos ¥ (26)
(27)% Jp=o ©=0 9=0

Substituting f := cos and carrying out the integration over df and dy gives

1 7/ dppe™? it/ p2+m? (wlwo Tyl _ o—ipldo— wol) (27)
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Using the symmetries of the integrand, the region of integration can be extended to the entire real
axis

7 / dppe’®®) (28)

( Ixo

where ®(p) := —t+/p? + m? +p|Zo — T,|. Well outside the light cone |Zy — Z| > ¢ this integral can
be appr0x1mated using the method of stationary phase [10, p. 14]. In the following the abbreviation
|7| := |#¥y — 2| is used. The phase ® has a stationary point at ps = im|Z|/+/|Z|?> — t? where it
takes on the value ®(pg) = im+/|Z|? — t2. The second derivative of ® with respect to p is

d? t p?
=\l (29)
dp \/p2 + m?2 p? +m?

and
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Hence the matrix element well outside the light cone is apart from a phase approximated by [11,
p. 307]

: 1 mt 2mm 2_42
= —ipot |2\ ~u e MV IZ —t
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where |Z| := |Zo — Zj|. The propagation amplitude is therefore dominated by a term of the form

fo*i” 2_¢2
0

(Tole™""|7p) oce™™ (32)

Although damped by an exponential term proportional to the mass m of the system, the amplitude
is non vanishing and superluminal propagation is therefore possible.
3.1.2 Delocalization under Lorentz Boosts

Let ¢ and ¢’ be two inertial frames with associated Newton-Wigner eigenbases |Zy) and |Z[,) of
the state space of the system. For simplicity assume an eigenstate localized at the origin of &
denoted by |Z8). According to equation (20) its momentum space representation at time ¢ = 0 is

(#175) = /2. (33)

Furthermore assume ¢’ is moving along the z-axis of ¢ with relative velocity v, thus the two
inertial frames are related by a Lorentz boost

v —vy 0 0

| —vv v 00
A= 0 0 10 (34)

0 0 01

The corresponding transformation induced on the state space of the system is implemented by
a unitary representation U[A] of the Lorentz group. Because (34) is a pure Lorentz boost this

representation is entirely determined in terms of the infinitesimal boost generators K
UA] = e K7, (35)
The boosted state in the momentum space representation then becomes [10, p. 23], [12, p. 65]
(A7) = (Ple 7 7) = (ARIES) = /2wnp (36)

where wpy = (Ap)? = y(wy — vp1) as can be checked by acting with (34) on the momentum p.
Thus, in terms of the Newton-Wigner eigenbasis |Z()) of ¢’ the boosted state is

3 3 WOA7 =t =
@157) = [ g ol (U = [ ks [

d*p up1 iZ -5
_/_(%)3 5 <1_ | (37)

The Paley-Wiener-Schwartz theorem [13, ch. 7] states that the Fourier transform of a compactly
supported tempered distribution on R is an entire function on C", i.e. a function which is analytic
at all finite points of C". The space of tempered distributions .#* is defined as the continuous
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dual of the Schwartz space . and the state space spanned by the Newton-Wigner basis of 0" is
H = L*(R3,d3x}). Together ./, # and .%* form what is known as a Gelfand triple [14, p. 383]

S C LA(R?, d*%),) ¢ 7*. (38)

But the integrand in (37) is not an entire function since the square root can not be analytically
continued to all complex values and it follows by Paley-Wiener-Schwartz that the integral is in
general non-vanishing for arbitrary 'y, i.e. the Newton-Wigner state is completely delocalized in
o',

Therefore the Newton-Winger eigenstates, although arising from seemingly reasonable postu-
lates in a unique way, have the aforementioned strange properties; they

1. propagate superluminally and
2. are delocalized by Lorentz boosts.

This has attracted criticism in different forms which can roughly be divided into two categories.

On the one hand the strange properties can be taken as evidence that a concept of strictly
localizable particles is not adequate to describe a relativistic quantum theory and although the
notion of particles is successfully used in the macroscopic or non-relativistic limit, on a fundamental
level particles are nothing but illusion.

On the other hand several objections were raised against the postulates nurtured by the hope
that a suitable modification of them would make the strange properties vanish. For example
Newton and Wigner are treating localization only in the limit of perfectly localized states since
they assume that every non-zero spatial displacement of a localized state renders it orthogonal to
the original state; cf. postulate (b) and equation (23). But confining a physical particle to an
infinitesimal spatial region would require an infinite amount of energy and it could well be that the
strange properties of the localized states are merely a manifestation of this unphysical assumption.
Accordingly modified postulates might then resolve the problems. Another objection brought up
was that Newton and Wigner only consider localization on instantaneous hyperplanes [2, p. 114],
[15, p. 237]. Whereas the former objection ended in smoke after Wightman carried out the analysis
for partially localized states and found himself confronted with the same strange properties, the
latter proved more promising; the generalization of the Newton-Wigner localization to arbitrary
hyperplanes resolves the problem that initially localized states are delocalized under Lorentz boosts
and will be topic of the last section. Before that, a theorem is introduced which supports the point
of view of all those who deny the existence of localizable particles.

4 Particles — a pure Illusion?

In more recent years several theorems have been proven which seem to rule out the existence of
localizable particles in a relativistic quantum theory. But obviously the statement of each such
theorem depends crucially on its assumptions and it is almost impossible to remove all doubts that
they might be unjustified. In this section the focus is laid on Malament’s theorem whose soundness
has been discussed extensively in the literature [16, p. 5—7]. In order to introduce this theorem
and later the concept of hyperplane-dependent localization, some remarks about hyperplanes are
required.

4.1 Spacetime structure and Hyperplanes

—

Consider an inertial frame equipped with Minkowski coordinates = = (¢, Z)
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(a) Foliation of spacetime into instantaneous hyper- (b) Given an arbitrary hyperplane in & there always
planes obtained by setting n = (1,0,0,0). Each hy- exists an inertial frame ¢’ in which this hyperplane is
perplane is then determined by the equation zg = 7. instantaneous.
Figure 2: Minkowski diagrams illustrating two remarks made in the text.
Def. A spacelike hyperplane is defined to be the set of points
Y ={z|n =7 withn*=1and n’ > 1} (39)

From this definition it immediately follows that
(i) every ordered pair (1), 7) defines a unique hyperplane and

(ii) any two distinct points on the hyperplane (1, 7) are separated by a spacelike interval.

Proof (i) Assume (n,7) # (n',7’) define the same hyperplane, i.e. ¥, ;) = ¥, ;. Consider
xy = TN € X, and ) := 70’ € ¥, ;. But by assumption they have to be elements of

both hyperplanes and consequently n -7’ = 7'/7 = 7/7’. This implies 7/ = —7 since 7 and 7’ are
assumed to be distinct. However, 2o = (7/1°,0,0,0) € X, ;) has to be an element of X,/ ./ as
well and thus 77° = 7/n° = —71° in contradiction with the requirement that both 7°,7° > 1. A

similar argumentation works for the cases n # 7', 7 =7 and n=1n',7 # 7.

(ii) Assume z, 2" are two distinct points on X, -y, hence 7+ (2 — 2’) = 0. But this is equivalent to
7 (zo — ) = n'(x; — 2}). From n° > 1 and n-n = 1 it follows n'n; < (n°)?. Hence (z¢ — z() <
(2 — ).

Every fixed n thus defines a foliation & of spacetime into spacelike hyperplanes parametrized by
7. For the special case n = (1, 6) the spacetime of & is foliated into instantaneous hyperplanes.
Such a foliation is shown in Fig. 3a.

Moreover for every spacelike hyperplane X, ;) there exists an inertial frame in which this
hyperplane is instantaneous. In order to show this consider an arbitrary Lorentz boost connecting
two inertial frames

. 7
cosh @ sinh 6 @ ) ’ (40)

AW, @) = ( sinhf@a I3+ (coshf —1)aa’
where @ determines the direction of the relative velocity of the inertial frames and tanh 6 = |0] its

magnitude. A boost therefore has a total of four degrees of freedom 6, @ which can be chosen such
that n — ' = (1,0) under A, cf. Fig. 3b. It is now possible to introduce Malament’s theorem.
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4.2 Malament’s Theorem

Let M be an affine spacetime manifold equipped with a foliation & into spacelike hyperplanes ¥ and
J the state space of the quantum system under consideration. Assume the following structure:

(i) For all bounded subsets A C ¥ € & there exists a map h : A — P, where Pa is a projection
operator on 7.

(ii) Let G be the translation group of M and d a homomorphism from G into the unitary repre-
sentations U(g € G) such that (|U(g)|y) — 1 as g — 0 for all |[¢) € 7 with (¥[y) = 1.

Then (4, h,d) defines a localization system on M [16, p. 3.

One can interpret (10| Palt) as the probability amplitude of finding the state |¢)) within the
region A C 3. Assume the localization system has the following properties.

Malament’s postulates [16, p. 3-5], [17, p. 3-4]

(a) The energy of all states |¢)) € S is bounded from below, i.e. 3 Ey such that (Y|H|¢) > Ey
for all |¢) in the domain of the Hamiltonian H of the system.

(b) A state can not be found in two disjoint spatial regions of the same hyperplane: A; N Ay =
() = Pa, Pa, = 0.

(c) Projection operators associated with two spacelike separated regions A and A’ do not influence
the statistics of each other: [Pa, Pa/] = 0.

(d) The statistics of the projection operators are invariant under spacetime translations: Pa.gz =
U(@)PaU' (@), where @ € G and A + @ denotes the set obtained by translating every point in
A by the vector a.

It is certainly worth seeing how these postulates compare to the Newton-Wigner postulates. The
first postulate simply assures that only a finite amount of energy can be extracted from the particle.
The same assumption has been made for the Newton-Wigner localization of a massive spin zero
system by the restriction to the positive energy solutions of the Klein Gordon equation and is
generally contained implicitly in the Newton-Wigner localization scheme. The three remaining
postulates however differ substantially from the Newton-Wigner postulates. They are valid for all
possible localized states and not only for perfectly localized ones and localization is considered on
arbitrary hyperplanes and not only on instantaneous ones. Moreover the third postulate imposes
an explicit requirement on causality. However, it follows

Thm. Malament [17, p. 6] A localization system satisfying Malament’s postulates also satisfies
Pa = 0 for all bounded subsets A and for all times.

Consequently a state can never be detected within a bounded region of space and acceptance of
Malament’s postulates would lead to a world without localizable particles. This is reason enough
to find good arguments against them and indeed there is room for criticism.

One objection is that Malament’s theorem only applies to a flat spacetime and its statement
could therefore be an artefact of the Minkowskian spacetime. Although Halvorson and Clifton
have proven a theorem [16, p. 13] which entails Malament’s theorem and only relies on a globally
hyperbolic spacetime it is not entirely accepted that the present universe is globally hyperbolic [18,
p. 9] and there remains the possibility that a suitably curved spacetime could save the concept of
localizable particles. But this would not be completely satisfactory since no concept of localizable
particles would exist in a flat spacetime and it would be better to find another way to prove
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Malament wrong. For example one could argue that the solution of the measurement problem
might incorporate an abolition of unitary dynamics [19, p. 170] and thereby invalidate postulate
(d). However, Halvorson and Clifton [16, p. 7] point out that

. it would be quite another thing to provide a model [with non unitary dynamics] ...
which is also capable of reproducing the well-confirmed quantum interference effects at
the micro-level. Until we have such a model, pinning our hopes for localizable particles
on a failure of unitary dynamics is little more than wishful thinking.

Various other objections have been raised. Some of them turned out to be unfounded, but many
remain controversial and without definite answers.

In addition to Malament’s theorem there are several other theorems which claim to rule out
the existence of localizable particles. Some among them seem quite powerful in the sense that they
only rely on a very limited number of assumptions, but certainly none of them is free of all doubts.
In fact many of the objections against a world without localizable particles are fueled by a very
promising theory developed by Fleming, Butterfield et al. whose basic ideas are presented in the
next section.

5 Hyperplane-dependent Localization

This section relies heavily on [2, esp. sec. 9-11]. Newton-Wigner localization as introduced above
is always with respect to an instantaneous hyperplane 2° = ¢. Due to the superluminal propagation
(32) a Newton-Wigner state localized at time ¢ is not localized anymore at any later time. Bearing
in mind the above discussion of hyperplanes the delocalization of such a state under a Lorentz
boost does no longer come as a surprise since a Newton-Wigner state localized in the 20 = 0
hyperplane of observer ¢ is in general not localized in the 2’ = 0 hyperplane of observer ¢’. But
by restriction of localization to a certain hyperplane these issues are immediately resolved as all
observers — no matter what their state of motion — can always refer to this specific hyperplane.
Whether a state is localized with respect to this hyperplane or not is then well-defined.

Consider two parametrizations (1, 7) and (', 7’) of a given hyperplane in the coordinate systems
of inertial observers ¢ and ¢’ which are connected by a Poincaré transformation (A, a) such that
n = An and 7 = 7+ a - An. In the Heisenberg picture a position operator (e.g. the center of spin
or the center of energy position operator) then has the two different parametrizations X*(n, 7) and
XH(n',7") which for consistency need to be related by a Poincaré transformation

@'XH0', 7O = AL @IXH (0, 7)) + a (Ply) V) (41)

where |1} is obtained by acting with the unitary representation of the Poincaré group U(A,a) on
|1)). The hyperplane-dependent version of the Newton-Wigner position operator X*(n,7) for a
massive spinless system, which in this special case coincides with the center of energy operator [2,
p. 149], is given in terms of the symmetric product by

1 v
SO H 4 HXN07) = [ dbad(ne - 710 (@, (42)
where 07 is the stress-energy-momentum tensor and
H(n,1) = Ptn, = /d4x5(nx —71)0"°(x)n,. (43)

is the hyperplane-dependent energy. The J-function ensures that the integration takes place only
on the hyperplane. The spatial components of this operator on an instantaneous hyperplane are

XipY = / d3xz'9% (1, 7), (44)
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where the factor of 1/PY is the total energy and serves as a normalization factor. The §°°-
component of the stress-energy-momentum tensor corresponds to the energy density and is weighted
with the position on the instantaneous hyperplane. Thus X* indeed corresponds to the center of
energy. It needs to be added that there always exists an inertial frame in which the center of energy
position operator takes the form (44).

If the system under consideration carries spin the hyperplane-dependent center of energy oper-
ator differs from the hyperplane-dependent Newton-Wigner position operator which then measures
the center of spin. Certainly other localizable properties require other operators. In contrast to
the Newton-Wigner case, it can then happen that the components of such an operator X*(n, 1)
do not commute. Localization is then only possible with respect to a chosen component of the
position operator, i.e. within a subset A x R? of the hyperplane Y-

5.1 Lorentz Boosts and Delocalization

It is now time to see how the problem of delocalization under Lorentz boosts is naturally resolved
in the formalism of hyperplane-dependent localization. Consider the intersection of two distinct
hyperplanes which defines a two-dimensional subset of spacetime and associate with each of these
hyperplanes a position operator. The sets of eigenvectors of these position operators lying in the
intersection are then given by

/

n-Xn,1)la,7in,T)=1" 0,7, T),
n- X', m) e, 7y =71, T, (45)

where « denotes the additional parameters needed to uniquely define the state. But there is no
common set of eigenstates since the components of operators associated with different hyperplanes
in general do not commute. Therefore it is possible to have a state |¢) such that

(a, 7"sm,7|Y) =0 but (o, 737, 7'|Y) # 0, (46)

i.e. on ¥, ;) the state [1) can be found within the intersection, but on ¥, -y it cannot be found
within the same intersection. In fact this property occurs for any hyperplane-dependent position
operator and is not specific for the Newton-Wigner case. Consequently localization always needs
to be considered with respect to a certain hyperplane whose specification requires three additional
parameters and Butterfield and Fleming conclude that

[...] quantum localization [thus] takes place in a seven-dimensional manifold, rather
than in four dimensional Minkowski spacetime [2, p. 131].

One of the strange properties of the conventional Newton-Wigner localization concept, namely
the subjectivity of localization is therefore nothing but a manifestation of the three unspecified
degrees of freedom and is no longer worrying once one has introduced the hyperplane-dependent
formulation.

5.2 Superluminal Propagation and Causality

Unfortunately the superluminal propagation of the Newton-Wigner states still persists, but it can
be divided into two categories. On the one hand for an open system the superluminal propagation
of certain position operators is not surprising. As an example one may consider a perfect vacuum
tube containing a single massive and spinless particle at one end of the tube. The center of energy
of the content of the tube therefore coincides with the position of this particle. But injection of
additional particles at the other end of the tube can easily cause the center of energy to move
superluminally.
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Figure 3: Superluminal propagation of Newton-Wigner state with respect to instantaneous hyperplanes.
The probability density outside the forward lightcone diminishes with increasing spacelike separation and
the probability to find the state inside the lightcone rapidly tends towards 1.

On the other hand superluminal propagation occurs also in closed systems and is in fact a
general feature of hyperplane-dependent position operators. To characterize the superluminal
propagation let |, z;n, ) be a basis of eigenfunctions of the hyperplane-dependent Newton-Wigner
position operator and imagine a wave-function («, x;n, 7|t)) expressed in this basis with compact
support on ¥, ». Although this wave-function spreads out instantaneously

e the probability density outside the forward lightcone diminishes with increasing spacelike
separation and

e the integrated probability density inside the forward lightcone rapidly tends toward unity
with increasing time, see Fig. 3.

However, the physically relevant question is whether this superluminal propagation can be used
to signal superluminally and hence to create causal anomalies. To date there is no proof that such
anomalies are avoided in the hyperplane-dependent formulation, but in the following an argument
due to Fleming [20, p. 123—-124] is presented which may allay these fears. Fleming considers the
setup shown in Fig. 4 which at first sight serves to abuse the superluminal propagation of a Newton-
Wigner state so as to generate a contradiction. Initially, two remarks need to be made.

(i) Both confinement and detection of a particle are always with respect to a certain hyperplane
which here for simplicity is assumed to be the instantaneous hyperplane in the corresponding
reference frame.

(ii) In the framework of hyperplane-dependent localization the state reduction due to a measure-
ment occurs only on hyperplanes in the future of the state reducing region.

On the one hand the state released in (A) is not confined to any hyperplane and can be measured
by the detector (B) with a non-vanishing probability, thus being relocalized. But from (ii) it
follows that the effect of this relocalization only manifests itself on hyperplanes lying in the future
of (B). The instantaneous hyperplane on which the detector (C) is sensitive is not among them
and therefore the mechanism which prevents the box from being opened cannot be triggered. On
the other hand the confinement of the particle in the box is only with respect to the instantaneous
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Figure 4: A box containing a localized Newton-Wigner state at time ¢ = 0 is opened (A). Due to the
superluminal propagation the state can possibly be measured by a spacelike related detection measurement
(B). Assume that when this happens, the state collapses to another Newton-Wigner state which can then
superluminally propagate to a detection apparatus (C) in the past of (A). If this apparatus detects the
state it triggers a mechanism which prevents the box from being opened in the future. But then the
released Newton-Wigner state prevents itself from being released — a contradiction [20, p. 123].

hyperplane in the inertial frame of the box and there is nothing which hinders the state to propagate
on other hyperplanes. The state can then propagate on the hyperplane on which (B) is sensitive
and by doing so prior to the box opening event (A) it is possible to trigger the box locking
mechanism before (A). However, this is not a contradiction because the triggering does not occur
as a consequence of the box being opened, but rather is the result of an earlier propagation of the
state on a hyperplane on which the state has never been confined.

6 Conclusion

Although it is not obvious how to introduce the concept of localization in relativistic quantum
theory the hyperplane-dependent formulation is a very promising attempt which indicates that
superluminal propagation does not inevitably lead to causal loops: though there is no proof for
that and further investigation is needed. But certainly hyperplane-dependent localization shows
that it would be premature to appeal to Malament’s theorem, so as to rule out localizable particles.

A Appendix

A.1 Conventions

Vectors in three dimensional space are denoted by an arrow (&, , . . . ) whereas 4-vectors are written
without (x,p,...). All calculations are carried out in natural units (7 = ¢ = 1) and the signature
of the metric tensor of flat space-time is chosen to be (+, —, —, —). The Fourier-transform f(k) in
n dimensions is defined as

f(hk) = / " f(z)e (47)
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and its inverse as

fa) = / TEfikyes. (48)

For wave-functions and operator-fields the convention ¢(p) := ¢(p) is used.
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