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Abstract

It is common in the literature on electrodynamics and relativity the-
ory that the transformation rules for the basic electrodynamical quantities
are derived from the hypothesis that the relativity principle (RP) applies
for Maxwell’s electrodynamics. As it will turn out from our analysis, these
derivations raise several problems, and certain steps are logically question-
able. This is, however, not our main concern in this paper. Even if these
derivations were completely correct, they leave open the following ques-
tions: (1) Is (RP) a true law of nature for electrodynamical phenomena?
(2) Are, at least, the transformation rules of the fundamental electrody-
namical quantities, derived from (RP), true? (3) Is (RP) consistent with the
laws of electrodynamics in a single inertial frame of reference? (4) Are, at
least, the derived transformation rules consistent with the laws of electro-
dynamics in a single frame of reference? Obviously, (1) and (2) are empiri-
cal questions. In this paper, we will investigate problems (3) and (4).

First we will give a general mathematical formulation of (RP) and co-
variance. It will be shown that covariance is not only not sufficient for the
relativity principle, but it is not even necessary. In the second part, we will
deal with the operational definitions of the fundamental electrodynamical
quantities. As we will see, these semantic issues are not as trivial as one
might think. In the third part of the paper, applying what J. S. Bell calls
“Lorentzian pedagogy”—according to which the laws of physics in any
one reference frame account for all physical phenomena—we will show
that the transformation rules of the electrodynamical quantities are iden-
tical with the ones obtained by presuming the covariance of the coupled
Maxwell–Lorentz equations, and that the covariance is indeed satisfied.

As to problem (3), the situation is much more complex. As we will
see, the relativity principle is actually not a matter of the covariance of the
physical equations, but it is a matter of the details of the solutions of the
equations, which describe the behavior of moving objects. This raises con-
ceptual problems concerning the meaning of the notion “the same system
in a collective motion”. In case of electrodynamics, there seems no satisfac-
tory solution to this conceptual problem; thus, contrary to the widespread
views, the question we asked in the title has no obvious answer.
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1 Introduction

It is common in the literature on electrodynamics and relativity theory that the
transformation rules for the basic electrodynamical quantities are derived from
the assumption that the relativity principle applies for Maxwell’s electrody-
namics. As it will turn out from our analysis (the details are given in Remark 8
and 9), these derivations raise several problems, and in fact they are logically
questionable. This is, however, not our main concern in this paper. Even if
these derivations were completely correct, they leave open the following ques-
tions:

(Q1) Is the relativity principle a true law of nature for electrodynamical
phenomena?

(Q2) Are, at least, the transformation rules of the fundamental electro-
dynamical quantities, derived from the relativity principle, true?

In a typical text book formulation, the relativity principle is the assertion that
“All the laws of physics take the same form in any inertial frame of reference.”
In an earlier paper (Szabó 2004) we were concerned with the question of what
this principle actually asserts and concluded with the following more detailed
formulation:

(RP) The physical description of the behavior of a system co-moving as a
whole with an inertial frame K, expressed in terms of the results of
measurements obtainable by means of measuring equipments co-
moving with K, take the same form as the description of the similar
behavior of the same system when it is co-moving with another
inertial frame K′, expressed in terms of the measurements with the
same equipments when they are co-moving with K′.

We need to make it clear that (Q1) is a legitime question, in spite of the obvi-
ous fact that the relativity principle is a meta-law, that is a law about the laws
of nature. For, whether it is true or not is determined by the laws of nature;
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whether the laws of nature are true or not depends on how the things are in
the physical world. So, in spite of the formal differences, the epistemological
status of the relativity principle is ultimately the same as that of the ordinary
physical laws.

Apparently, to answer question (Q1), that is to verify whether the principle
holds for the laws describing electromagnetic phenomena, the following will
be needed:

(a) We must be able to tell when two electrodynamical systems are
the same except that they are moving, as a whole, relative to each
other—one system is co-moving with K, the other is co-moving
with K′.

(b) We must have proper descriptions of the behaviors of both sys-
tems, expressed in terms of two different sets of corresponding
variables—one belonging to K the other to K′.

(c) The relativity principle would be completely meaningless if we
mixed up different physical quantities, because, in terms of differ-
ent variables, one and the same physical law in one and the same
inertial frame of reference can be expressed in different forms. Con-
sequently, we must be able to tell which variable in K corresponds
to which variable in K′; that is, how the physical quantities defined
in the two different inertial frames are identified. Also, question
(Q2) by itself would be meaningless without such an identification.
The most obvious idea is that we identify those physical quantities
that have identical empirical definitions.

(d) The empirical definition of a physical quantity is based on standard
measuring equipments and standard operational procedures. How
do the observers in different reference frames share these standard
measuring equipments and operational procedures? Do they all
base their definitions on the same standard measuring equipments?
On the one hand, they must do something like that, otherwise any
comparison between their observations would be meaningless. On
the other hand, however, it is quite obvious that the principle is
understood in a different way. Consider how Einstein applies the
principle:

Let there be given a stationary rigid rod; and let its
length be l as measured by a measuring-rod which is
also stationary. We now imagine the axis of the rod ly-
ing along the axis of x of the stationary system of co-
ordinates, and that a uniform motion of parallel transla-
tion with velocity v along the axis of x in the direction of
increasing x is then imparted to the rod. We now inquire
as to the length of the moving rod, and imagine its length
to be ascertained by the following two operations:
(a) The observer moves together with the given

measuring-rod and the rod to be measured, and mea-
sures the length of the rod directly by superposing
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the measuring-rod, in just the same way as if all three
were at rest [italics added].

(b) By means of stationary clocks set up in the station-
ary system and synchronizing in accordance with
[the light-signal synchronization], the observer ascer-
tains at what points of the stationary system the two
ends of the rod to be measured are located at a def-
inite time. The distance between these two points,
measured by the measuring-rod already employed,
which in this case is at rest, is also a length which
may be designated “the length of the rod.”

In accordance with the principle of relativity the length
to be discovered by the operation (a)—we will call it “the
length of the rod in the moving system”—must be equal
to the length l of the stationary rod.

The length to be discovered by the operation (b) we
will call “the length of the (moving) rod in the stationary
system.” This we shall determine on the basis of our two
principles, and we shall find that it differs from l. (Ein-
stein 1905)

That is to say, if the standard measuring equipment defining a phys-
ical quantity ξ is, for example, at rest in K and, therefore, moving
in K′, then the observer in K′ does not define the corresponding ξ ′

as the physical quantity obtainable by means of the original stan-
dard equipment—being at rest in K and moving in K′—but rather
as the one obtainable by means of the same standard equipment in
another state of motion, namely when it is at rest in K′ and moving in
K. Thus, we must be able to tell when two measuring equipments
are the same, except that they are moving, as a whole, relative to
each other—one is at rest relative to K, the other is at rest relative
to K′. Similarly, we must be able to tell when two operational pro-
cedures performed by the two observers are the “same”; in spite of
the fact that the procedure performed in K′ obviously differs from
the one performed in K.

(e) Obviously, in order to compare these procedures we must know
what the procedures exactly are; that is, we must have precise op-
erational definitions of the quantities in question.

All these issues naturally arise if we want to verify empirically whether the rela-
tivity principle is a true law of nature for electrodynamical phenomena. For, an
empirical verification, no doubt, requires that the physicist knows which body
of observations corresponds to when statement (RP) is true, and which one
corresponds to when (RP) is false. Without entering here into the discussion of
verificationism in general, we have only two remarks to make.

First, our approach is entirely compatible with confirmation/semantic
holism. The position we are advocating here is essentially holistic. We accept it
as true that “our statements about the external world face the tribunal of sense
experience not individually but only as a corporate body” (Quine 1951). On
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the one hand this means that a theory, together with its semantics, as a whole
is falsified if any single sentence of its deductive closure is empirically falsified;
any part of the theory can be reconsidered—the basic deductive system, the ap-
plied mathematical tools, and the semantic rules of correspondence included.
On the other hand, contrary to what is often claimed, this kind of holism does
not imply that the sentences of a physical theory, at least partly, cannot be pro-
vided with empirical meaning by reducing them to a sense-datum language.
In our view, on the contrary, what semantic holism implies is that the empirical
definition of a physical term must not be regarded in isolation from the empir-
ical definitions of the other terms involved in the definition. For example, as
we will see, the empirical definitions of electrodynamical quantities cannot be
separated from the notion of mass; in fact, the definitions in the usual electro-
dynamics and mechanics textbooks, together, constitute an incoherent body of
definitions with circularities. This is perhaps a forgivable sin in the textbook
literature. But, in philosophy of physics, the recognition of these incoherencies
should not lead us to jettison the empirical content of an individual statement;
on the contrary, we have to reconstruct our theories on the basis of a sufficiently
large coherent body of empirical/operational definitions. In our understand-
ing, this is the real holistic approach—a super-holistic, if you like.

Second, in fact, our arguments in this paper will rely on the verificationist
theory of meaning in the following very weak sense: In physics, the meaning
of a term standing for a measurable quantity which is supposed to characterize
an objective feature of physical reality is determined by the empirical opera-
tions with which the value of the quantity in question can be ascertained. Such
a limited verificationism is widely accepted among physicists; almost all elec-
trodynamics textbooks start with some descriptions of how the basic quantities
like electric charge, electric and magnetic field strengths, etc. are empirically
interpreted. Our concern is that these empirical definitions do not satisfy the
standard of the above mentioned super-holistic coherence, and the solution of
the problem is not entirely trivial.

In any event, in this paper, the demand for precise operational definitions
of electrodynamical quantities emerges not from this epistemological context;
not from philosophical ideas about the relationship between physical theories,
sense-data, and the external reality; not from the context of questions (Q1) and
(Q2). The problem of operational definitions will be raised as a problem of
pure theoretical physics, in the context of the inner consistency of our theories.
The reason is that instead of the empirical questions (Q1) and (Q2) we will in
fact investigate the following two theoretical questions:

(Q3) Is the relativity principle consistent with the laws of electrodynam-
ics in a single inertial frame of reference?

(Q4) Are, at least, the derived transformation rules consistent with the
laws of electrodynamics in a single frame of reference?

The basic idea is what J. S. Bell (1987, p. 77) calls “Lorentzian pedagogy”, ac-
cording to which “the laws of physics in any one reference frame account for all
physical phenomena, including the observations of moving observers”. That
is to say, if our physical theories in any one reference frame provide a com-
plete enough account for our world, then all we will say about “operational”
definitions and about “empirical” facts—issues (a)–(e) included—must be rep-
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resented and accounted within the theory itself ; and the laws of physics—again,
in any one reference frame—must determine whether the relativity principle is
true or not.

Thus, accordingly, the paper will consists of the following major parts. First
of all we will give a general mathematical formulation of the relativity principle
and covariance. It will be shown that covariance is not only not sufficient for
the relativity principle, but it is not even necessary. In the second part, we
will clarify the semantic issues addressed in point (e). In the third part, we
will derive the transformation rules of the electrodynamical quantities, from
the operational definitions and from the laws of electrodynamics in one inertial
frame of reference—independently of the relativity principle; by which we will
answer our question (Q4). In this way—again, independently of the relativity
principle—we will show the covariance of the Maxwell–Lorentz equations.

As we will see, whether the relativity principle holds, as well as whether
it implies the covariance, hinges on the details of the solutions describing the
behavior of moving objects. This raises conceptual problems concerning the
meaning of the notion “the same system in a collective motion”. As it will be
discussed in the last section, in case of electrodynamics, there seems no satis-
factory solution to this conceptual problem; thus, contrary to the widespread
views, the question we asked in the title has no obvious answer.

***

Throughout it will be assumed that space and time coordinates are already
defined in all inertial frames of reference; that is, in an arbitrary inertial frame
K, space tags r (A) = (x (A) , y (A) , z (A)) ∈ R3 and a time tag t (A) ∈ R are
assigned to every event A—by means of some empirical operations.1 We also
assume that the assignment is mutually unambiguous, such that there is a one
to one correspondence between the space and time tags in arbitrary two iner-
tial frames of reference K and K′; that is, the tags (x′ (A) , y′ (A) , z′ (A) , t′ (A))
can be expressed by the tags (x (A) , y (A) , z (A) , t (A)), and vice versa. The
concrete form of this functional relation is an empirical question. In this pa-
per, we will take it for granted that this functional relation is the well-known
Lorentz transformation; and the calculations, particularly in section 6, will rest
heavily on this assumption. It must be emphasized however that we stipu-
late the Lorentz transformation of the kinematical quantities as an empirical
fact, without suggesting that the usual derivations of these transformation rules
from the relativity principle/constancy of the speed of light are unproblematic.
In fact, these derivations raise questions similar to (Q1)–(Q4), concerning the
kinematical quantities. In this paper, however, we focus our analysis only on
the electrodynamical quantities.

It must be also noted that the transformation of the kinematical quantities,
alone, does not determine the transformation of the electrodynamical quanti-
ties. As we will see, the latter is determined by the kinematical Lorentz trans-
formation in conjunction with the operational definitions of the electrodynam-
ical quantities and some empirical facts, in particular the relativistic version of
the Lorentz equation of motion.

1In fact, to give precise empirical definitions of the basic spatio-temporal quantities in physics
is not a trivial problem (Szabó 2009).
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Below we recall the most important formulas we will use. For the sake of
simplicity, we will assume the standard situation: the corresponding axises are
parallel and K′ is moving along the x-axis with velocity V = (V, 0, 0) relative
to K, and the two origins coincide at time 0.2

The connection between the space and time tags of an event A in K and K′

is the following:

x′ (A) =
x (A)−Vt (A)√

1− V2

c2

(1)

y′ (A) = y (A) (2)
z′ (A) = z (A) (3)

t′ (A) =
t (A)− V

c2 x (A)√
1− V2

c2

(4)

Let A be an event on the worldline of a particle. For the velocity of the particle
at A we have:

v′x (A) =
vx (A)−V

1− vx(A)V
c2

(5)

v′y (A) =
vy (A)

√
1− V2

c2

1− vx(A)V
c2

(6)

v′z (A) =
vz (A)

√
1− V2

c2

1− vx(A)V
c2

(7)

We shall use the inverse transformation in the following special case:

v′ (A) =
(
v′, 0, 0

)
7→ v (A) =

(
v′ + V
1 + v′V

c2

, 0, 0

)
(8)

v′ (A) =
(
0, 0, v′

)
7→ v (A) =

(
V, 0, v′

√
1− V2

c2

)
(9)

The transformation rule of acceleration is much more complex, but we need it
only for v′ (A) = (0, 0, 0):

a′x (A) =
ax (A)(

1− V2

c2

) 3
2

(10)

a′y (A) =
ay (A)

1− V2

c2

(11)

a′z (A) =
az (A)

1− V2

c2

(12)

2All “vectors” are meant to be in R3; boldface letters r, v, E . . . simply denote vector matrices.
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We will also need the y-component of acceleration in case of v′ (A) = (0, 0, v′):

a′y (A) =
ay (A)

1− V2

c2

(13)

2 Mathematics of the relativity principle

Let us try to unpack the verbal formulations of the relativity principle (RP)
in a more mathematical way. Consider some variables ξ1, ξ2, . . . ξn in K, op-
erationally defined by means of measuring equipments at rest in K. Let
ξ ′1, ξ ′2, . . . ξ ′n denote the corresponding variables in K′; that is, the physical quan-
tities obtainable by means of the same operations with the same equipments
when they are co-moving with K′. Since, for all i = 1, 2, . . . n, both ξi and ξ ′i are
measured by the same equipment—although in different physical conditions—
with the same pointer scale, it is plausible to assume that ξi, ξ ′i ∈ σi ⊆ R. We
introduce the following notation: Σ = ×n

i=1σi.
Assume that there is an injection T̃V : Σ � Σ, the so-called “transformation

rule”, (
ξ ′1, ξ ′2, . . . ξ ′n

)
= T̃V (ξ1, ξ2, . . . ξn) (14)

expressing the variables in K′ with the variables in K; in the sense that the
paired (ξ1, ξ2, . . . ξn) and

(
ξ ′1, ξ ′2, . . . ξ ′n

)
belong to the same physical thing; to

the same physical event, or to the same physical object in the same state, etc.
Therefore, DomT̃V and RanT̃V only contain the physically possible/realizable
n-tuples (ξ1, ξ2, . . . ξn) and

(
ξ ′1, ξ ′2, . . . ξ ′n

)
from Σ.

From a physical point of view, variables ξ1, ξ2, . . . ξn and ξ ′1, ξ ′2, . . . ξ ′n are
generally different physical quantities—as it will be clearly seen, for example,
in electrodynamics. Consequently, what is described by T̃V must not be re-
garded as either a passive (coordinate) or active transformation of the same
“space”, but rather as a map between two different “spaces”, expressing a con-
tingent relationship between different physical quantities. Mathematically, this
idea can be expressed by considering two different n-dimensional manifolds X
and X′, each covered by one global coordinate system, φ and φ′ respectively
(Fig. 1). The coordinate maps φ and φ′ play distinguished roles among the
possible coordinate maps of the two manifolds, by carrying physical meaning:
φ : X → Σ assigns to every point of X one of the possible n-tuples of values of
physical quantities ξ1, ξ2, . . . ξn ; and φ′ : X′ → Σ has similar physical meaning
with ξ ′1, ξ ′2, . . . ξ ′n.

We will also use the bijection PV : X → X′ that is uniquely determined by
the distinguished coordinate maps φ and φ′:

PV
de f
=
(
φ′
)−1 ◦ φ (15)

Let R
de f
= φ−1 (DomT̃V

)
⊆ X and R′

de f
= (φ′)−1 (

RanT̃V
)
⊆ X′. In coordinates

φ and φ′, T̃V defines a bijective map TV : R→ R′:

TV
de f
= φ′−1 ◦ T̃V ◦ φ (16)

It is of course difficult to give a formal description of a “behavior” of a
physical system in general. But we are probably not far from the truth if we
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Figure 1: The relativity principle

assume that a description of a particular behavior of a system in a given situ-
ation is a relation between the physical quantities. Let F be such a functional
relation between the physical quantities ξ1, ξ2, . . . ξn. In general, it can be given
as a subset of R. Consider the following subsets3 of X′, determined by F ⊂ R:

PV(F) ⊆ X′ which formally is the “primed F”, that is the “description” of
exactly the same form as F, but in the primed variables. Relation
PV(F) does not necessarily describe a true physical situation, as
it can be not realized in nature.

TV(F) ⊆ R′ which is the same description of the same physical situation as F,
but expressed in the primed variables.

In order to formulate the relativity principle we need one more concept. Let
the situation described by F be considered as the one in which the system, as
a whole, is co-moving with K. (In principle, arbitrary F allowed by the laws of
physics can be considered as describing a situation in which the system is co-
moving with K.) Let MV(F) ⊂ R be another relation of the same type, which is
supposed to describe the same system in the same situation, except that it is, as
a whole, in a collective motion with velocity V relative to K, that is, co-moving
with reference frame K′. As we will see later on, MV is a vague concept (see
also Szabó 2004). Moreover, one may not assume that every F ⊂ R describing
a situation in which the system is, as a whole, stipulated as co-moving with
K, has a counterpart MV(F) for arbitrary velocity V; because MV(F) must de-
scribe a real physical situation, admitted by the relevant physical laws.4

Now, applying these concepts, what (RP) states is the following:

TV (MV(F)) = PV(F) (17)

3We denote the map of type X → X′ and its direct image maps of type 2X → 2X′ and 22X → 22X′

or their restrictions by the same symbol.
4For example, let the system in question be consisting of a single particle, and let F be the

description of the particle’s behavior when it is moving with constant velocity w relative to K. And
let MV(F) be understood as the relation describing the motion of a similar particle with a constant
velocity w̃, such that the relative velocity of the two particles is w̃ −w = V. (All velocities are
relative to K.) Now, MV(F) represents a possible physical situation only if |w̃| < c.
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or equivalently,

PV(F) ⊂ R′ and MV(F) = T−1
V (PV(F)) (18)

for all F ⊂ R for which there exists a physically admissible MV(F).
Let us turn to the situation similar to electrodynamics, when the physical

system in question is described—in K—by a system of equations E ; the func-
tional relation F ⊂ R describing a particular behavior of the system is now
given as a solution of E . In general, E can be a set of algebraic equations,
ordinary and partial integro-differential equations, linear and nonlinear, what-
soever. Without specifying these details, we will identify a system of equations
with the set of its solutions; that is, as a set of subsets of R: E ⊂ 2R. We only
make a physical assumption about E : Let EV ⊆ E denote the subset of those
solutions F for which there exists a physically admissible counterpart MV(F).
We assume that MV(EV) ⊆ E ; that is to say, the solutions of E are capable to
describe all possible physical situations, in which the system in question is in
all physically possible states of motion.

Thus, in this case, the relativity principle can be formulated as a condition
for the solutions of E :

TV (MV(F)) = PV(F) for all F ∈ EV (19)

or, in the more often used equivalent 5 form,

PV(F) ⊂ R′ and MV(F) = T−1
V (PV(F)) for all F ∈ EV (20)

Now we have a strict mathematical formulation of the relativity principle
for a physical system described by a system of equations E . Remarkably, how-
ever, we still have not encountered the concept of “covariance” of equations
E . The reason is that the relativity principle and the covariance of equations
E are not equivalent—in contrast to what many believe. In fact, the logical
relationship between the two conditions is much more complex. To see this
relationship in more details, we previously need to clarify a few things.

Consider the following two sets: PV(E) = {PV(F)|F ∈ E} and TV(E) =
{TV(F)|F ∈ E}. Since a system of equations can be identified with its set of
solutions, PV(E) ⊂ 2X′ and TV(E) ⊂ 2R′ can be regarded as two systems of
equations for functional relations between ξ ′1, ξ ′2, . . . ξ ′n. In the primed vari-
ables, PV(E) has “the same form” as E . Nevertheless, it can be the case that
PV(E) does not express a true physical law, in the sense that its solutions do
not necessarily describe true physical situations. In contrast, TV(E) is nothing
but E expressed in variables ξ ′1, ξ ′2, . . . ξ ′n.

Now, covariance intuitively means that equations E “preserve their forms
against the transformation TV”. That is, in terms of the formalism we devel-
oped:

TV(E) = PV(E) (21)

or, equivalently,
PV(E) ⊂ 2R′ and E = T−1

V (PV(E)) (22)

5For example, the usual way in which we derive the electromagnetic field of a moving point
charge is that we take the Coulomb field in the primed variables and then apply an inverse Lorentz
transformation.
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Figure 2: The relativity principle only implies that TV ◦ MV(EV) = PV(EV).
Covariance of E would require that TV(E) = PV(E), which is generally not the
case, except if MV : EV → E is surjective

The first thing we have to make clear is that—even if we know or presume
that it holds—covariance (22) is obviously not sufficient for the relativity prin-
ciple (20). For, (22) only guarantees the invariance of the set of solutions, E ,
against T−1

V ◦ PV , but it says nothing about which solution of E corresponds to
which solution; while it is the very essence of the relativity principle that the
solution MV(F), describing the system in motion relative to K, corresponds to
solution T−1

V ◦ PV(F). 6

What makes the matter more complex is that covariance is not only not
sufficient for the relativity principle, but it is not even necessary (Fig. 2). The
relativity principle only implies that

TV(E) ⊇ TV

(
MV(EV)

)
= PV(EV)

(19) implies (21) only if we have some extra conditions; for example

EV = E (23)

MV (E) = E (24)

We will return to the problem of how little we can say about MV in general;
what we have to see here is that the relativity principle in itself does not imply
the covariance of the physical equations.

What is the situation in electrodynamics?

• As we will see later, the very concept of MV is problematic in electrody-
namics, and this fact will raise further difficulties. Consequently, there is
no guarantee that conditions (23)–(24) are satisfied.

• In any event, we will show the covariance of the Maxwell–Lorentz equa-
tions, independently of the relativity principle; in the sense that we will de-
termine the transformation of the electrodynamical quantities, indepen-
dently of the relativity principle—and without presuming the covariance,

6See the application of the principle in the derivation of electromagnetic field of a uniformly
moving point charge (footnote 5). What we use in the derivation is not the covariance of the
Maxwell–Lorentz equations, but statement (20), that is, what the relativity principle claims about
the solutions of the equations in details. (With respect to our conclusion at the end of section 8, we
must note here that in this particular case the relativity principle is indeed a meaningful statement.)
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of course—and will see that the equations are covariant against these
transformations.

• The covariance of the Maxwell–Lorentz equations, on the other hand, is
not sufficient; whether the relativity principle holds in electrodynamics
will remain a question we will discuss in section 8.

Let us finally consider the situation, similar to electrodynamics, when the so-
lutions of a system of equations E are specified by (initial and/or boundary
value) extra conditions. In our general formalism, an extra condition for E is
a system of equations ψ ⊂ 2X such that there exists exactly one solution [ψ]E
satisfying both E and ψ. That is, E ∩ ψ = {[ψ]E}, where {[ψ]E} is a singleton
set. Since E ⊂ 2R, without loss of generality we may assume that ψ ⊂ 2R.

Since PV and TV are injective, PV (ψ) and TV (ψ) are extra conditions for
equations PV (E) and TV (E) respectively, and we have

PV ([ψ]E ) = [PV (ψ)]PV(E) (25)

TV ([ψ]E ) = [TV (ψ)]TV(E) (26)

for all extra conditions ψ for E . Similarly, if PV(E), PV (ψ) ⊂ 2R′ then
T−1

V (PV (ψ)) is an extra condition for T−1
V (PV (E)), and[

T−1
V (PV (ψ))

]
T−1

V (PV(E))
= T−1

V

(
[PV(ψ)]PV(E)

)
(27)

Consider now a set of extra conditions C ⊂ 22R
. Assume that C is a

parametrizing set of extra conditions for E ; by which we mean that for all F ∈ E
there exists exactly one ψ ∈ C such that F = [ψ]E ; in other words,

ψ ∈ C 7→ [ψ]E ∈ E

is a bijection.
Let us introduce the following notation:

CV de f
=
{

ψ ∈ C| [ψ]E ∈ E
V
}

MV : EV ⊆ E → E was introduced as a map between solutions of E . Now,
as there is a one-to-one correspondence between the elements of C and E , it
generates a map MV : CV ⊆ C → C, such that

[MV(ψ)]E = MV ([ψ]E ) (28)

Thus, from (25) and (28), the relativity principle, that is (19), has the follow-
ing form:

TV ([MV(ψ)]E ) = [PV(ψ)]PV(E) for all ψ ∈ CV (29)

or, equivalently, (20) reads

[PV(ψ)]PV(E) ⊂ R′ and [MV(ψ)]E = T−1
V

(
[PV(ψ)]PV(E)

)
(30)

We will make use of the following theorem:
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Theorem 1. Assume that the system of equations E ⊂ 2R is covariant, that is, (21) is
satisfied. Then,

(i) for all ψ ∈ CV, TV (MV (ψ)) is an extra condition for the system of equations
PV (E), and, (29) is equivalent to the following condition:

[TV (MV(ψ))]PV(E) = [PV(ψ)]PV(E) (31)

(ii) for all ψ ∈ CV, PV (ψ) ⊂ 2R′ , T−1
V (PV (ψ)) is an extra condition for the system

of equations E and (30) is equivalent to the following condition:

[MV(ψ)]E =
[

T−1
V (PV (ψ))

]
E

(32)

Proof. (i) Obviously, TV (E) ∩ TV (MV (ψ)) exists and is a singleton; and, due
to (21), it is equal to PV (E) ∩ TV (MV (ψ)); therefore this latter is a singleton,
too. Applying (26) and (21), we have

TV ([MV(ψ)]E ) = [TV (MV (ψ))]TV(E) = [TV (MV (ψ))]PV(E)

therefore, (31) implies (30).
(ii) Similarly, due to PV (ψ) ⊂ 2R′ and (22), E ∩ T−1

V (PV (ψ)) exists and is
a singleton. Applying (27) and (22), we have

T−1
V

(
[PV(ψ)]PV(E)

)
=
[

T−1
V (PV (ψ))

]
T−1

V (PV(E))
=
[

T−1
V (PV (ψ))

]
E

that is, (32) implies (30).

Remark 1. As we see, MV plays a crucial role. Formally, one could say, the rel-
ativity principle is relative to a given definition of MV. Therefore, the physical
content of the relativity principle depends on how MV(F) is physically under-
stood. But, what does it mean to say that a physical system is the same and of
the same behavior as the one described by F, except that it is, as a whole, in a
collective motion with velocity V relative to K? Without answering this crucial
question the relativity principle is meaningless. On the other hand, the answer
is not at all obvious. The vagueness of MV leads to serious problems to which
we will return in section 8.

In fact, the same ambiguities are present in the definitions of quantities
ξ ′1, ξ ′2, . . . ξ ′n—and, therefore, in the meanings of TV and PV. For, ξ ′1, ξ ′2, . . . ξ ′n
are not simply arbitrary variables assigned to reference frame K′, in one-to-one
relations with ξ1, ξ2, . . . ξn, but the physical quantities obtainable by means of
the same operations with the same measuring equipments as in the operational
definitions of ξ1, ξ2, . . . ξn, except that everything is in a collective motion with
velocity V. Therefore, we should know what we mean by “the same measuring
equipment but in collective motion”. From this point of view, it does not mat-
ter whether the system in question is the object to be observed or a measuring
equipment involved in the observation.

One might claim that MV(F), describing the moving system, is equal to the
“Lorentz boosted solution” by definition:

MV(F)
de f
= T−1

V (PV(F)) (33)

13



At first sight this suggestion seems to resolve all troubles around MV. But a
little reflection will show that it is, in fact, untenable.

(a) In this case, (20) would read

T−1
V (PV(F)) = T−1

V (PV(F)) (34)

That is, the relativity principle would become a tautology; a state-
ment which is always true, independently of any contingent fact
of nature; independently of the actual behavior of moving physi-
cal objects; and independently of the actual empirical meanings of
physical quantities ξ ′1, ξ ′2, . . . ξ ′n. But, the relativity principle is sup-
posed to be a fundamental law of nature. Note that a tautology is
entirely different from a fundamental principle, even if the princi-
ple is used as a fundamental hypothesis or fundamental premise of
a theory, from which one derives further physical statements. For,
a fundamental premise, as expressing a contingent fact of nature,
is potentially falsifiable by testing its consequences; a tautology is
not.

(b) Even if accepted, (33) can provide physical meaning to MV(F) only
if we know the meanings of TV and PV, that is, if we know the em-
pirical meanings of the quantities denoted by ξ ′1, ξ ′2, . . . ξ ′n. But, the
physical meaning of ξ ′1, ξ ′2, . . . ξ ′n are obtained from the operational
definitions: they are the quantities obtained by “the same measure-
ments with the same equipments when they are, as a whole, co-
moving with K′ with velocity V relative to K”. Symbolically, we
need, priory, the concepts of MV(ξi-equipment at rest). And this
is a conceptual circularity: in order to have the concept of what
it is to be an MV(brick at rest) the (size)’ of which we would like
to ascertain, we need to have the concept of what it is to be an
MV(measuring rod at rest)—which is exactly the same conceptual
problem.

(c) One might claim that we do not need to specify the concepts of
MV(ξi-equipment at rest) in order to know the values of quantities
ξ ′1, ξ ′2, . . . ξ ′n we obtain by the measurements with the moving equip-
ments, given that we can know the transformation rule TV indepen-
dently of knowing the operational definitions of ξ ′1, ξ ′2, . . . ξ ′n. Typi-
cally, TV is thought to be derived from the assumption that the rel-
ativity principle (20) holds. If however MV is, by definition, equal
to T−1

V ◦ PV, then in place of (20) we have the tautology (34), which
does not determine TV.

(d) Therefore, unsurprisingly, it is not the relativity principle from
which transformation rule TV is routinely deduced, but the co-
variance (22). As we have seen, however, covariance is, in gen-
eral, neither sufficient nor necessary for the relativity principle.
Whether (20) implies (22) hinges on physical facts, namely, whether
MV (E) = E . But, if MV is taken to be T−1

V ◦ PV by definition, the
relativity principle becomes true—in the form of tautology (34)—
but does not imply covariance T−1

V ◦ PV(E) = E .

14



(e) Even if we assume that a transformation rule TV were derived from
some independent premises—from the independent assumption of
covariance, for example—how do we know that the TV we obtained
and the quantities of values TV(ξ1, ξ2, . . . ξn) are correct plugins for
the relativity principle? How could we verify that TV(ξ1, ξ2, . . . ξn)
are indeed the values measured by a moving observer applying
the same operations with the same measuring equipments, etc.?—
without having an independent concept of MV, at least for the mea-
suring equipments?

(f) One could argue that we do not need such a verification;
TV(ξ1, ξ2, . . . ξn) can be regarded as the empirical definition of the
primed quantities:

ξ ′1, ξ ′2, . . . ξ ′n
de f
= TV(ξ1, ξ2, . . . ξn) (35)

This is of course logically possible. The operational definition of the
primed quantities would say: ask the observer at rest in K to mea-
sure ξ1, ξ2, . . . ξn with the measuring equipments at rest in K, and
then perform the mathematical operation (35). In this way, how-
ever, even the transformation rules would become tautologies; they
would be true, no matter how the things are in the physical world.

Thus, we have to reject the view that MV(F), describing the moving system, is
by definition equal to the “Lorentz boosted solution” T−1

V (PV(F)). The defini-
tion of MV(F) is a matter of convention, to be sure; but, whether it is equal to
T−1

V (PV(F)) should be a matter of contingent facts of the world.

Remark 2. Finally, let us note a few important facts which can easily be seen
in the formalism we developed:

(a) The covariance of a set of equations E does not imply the covariance
of a subset of equations separately. It is because a smaller set of
equations corresponds to an E∗ ⊂ 2R such that E ⊂ E∗; and it does
not follow from (21) that TV(E∗) = PV(E∗).

(b) Similarly, the covariance of a set of equations E does not guarantee
the covariance of an arbitrary set of equations which is only satis-
factory to E ; for example, when the solutions of E are restricted by
some extra conditions. Because from (21) it does not follow that
TV(E∗) = PV(E∗) for an arbitrary E∗ ⊂ E .

(c) The same holds, of course, for the combination of cases (a) and (b);
for example, when we have a smaller set of equations E∗ ⊃ E to-
gether with some extra conditions ψ. For, (21) does not imply that
TV(E∗ ∩ ψ) = PV(E∗ ∩ ψ).

(d) However, covariance is guaranteed if a covariant set of equations is
restricted with a covariant set of extra conditions; because TV(E) =
PV(E) and TV(ψ) = PV(ψ) trivially imply that TV(E ∩ψ) = PV(E ∩
ψ).
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3 Operational definitions of electrodynamical
quantities in K

Now we turn to the operational definitions of the fundamental electrodynami-
cal quantities in a single reference frame K and to the basic observational facts
about these quantities.

The operational definition of a physical quantity requires the specification
of etalon physical objects and standard physical processes by means of which
the value of the quantity is ascertained. In case of electrodynamical quantities
the only “device” we need is a point-like test particle, and the standard mea-
suring procedures by which the kinematical properties of the test particle are
ascertained.

So, assume we have chosen an etalon test particle, and let retalon(t), vetalon(t),
aetalon(t) denote its position, velocity and acceleration at time t. It is assumed
that we are able to set the etalon test particle into motion with arbitrary velocity
vetalon < c at arbitrary location. We will need more “copies” of the etalon test
particle:

Definition (D0) A particle e is called test particle if for all r and t

ve (t)
∣∣∣∣
re(t)=r

= vetalon (t)
∣∣∣∣
retalon(t)=r

implies

ae (t)
∣∣∣∣
re(t)=r

= aetalon (t)
∣∣∣∣
retalon(t)=r

(The “restriction signs” will refer to physical situations; for example, |re(t)=r
indicates that the test particle e is at point r at time t.)

Note, that some of the definitions and statements below require the existence
of many test particles; which is, of course, a matter of empirical fact, and will
be provided by (E0) below.

First we define the electric and magnetic field strengths. The only measur-
ing device we need is a test particle being at rest relative to K.

Definition (D1) Electric field strength at point r and time t is defined as the
acceleration of an arbitrary test particle e, such that re(t) = r and ve(t) = 0:

E (r, t)
de f
= ae(t)|re(t)=r; ve(t)=0 (36)

Magnetic field strength is defined by means of how the acceleration ae of the
rest test particle changes with an infinitesimal perturbation of its state of rest,
that is, if an infinitesimally small velocity ve is imparted to the particle. Of
course, we cannot perform various small perturbations simultaneously on one
and the same rest test particle, therefore we perform the measurements on
many rest test particles with various small perturbations. Let δ ⊂ R3 be an
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arbitrary infinitesimal neighborhood of 0 ∈ R3. First we define the following
function:

Ur,t : δ ⊂ R3 → R3

Ur,t(v)
de f
= ae(t)|re(t)=r; ve(t)=v (37)

Definition (D2) Magnetic field strength at point r and time t is

B(r, t)
de f
=



∂Ur,t
y

∂vz

∣∣∣∣
v=0

∂Ur,t
z

∂vx

∣∣∣
v=0

∂Ur,t
x

∂vy

∣∣∣
v=0


(38)

Practically it means that one can determine the value of B(r, t), with arbitrary

precision, by means of measuring the accelerations of a few test particles of
velocity ve ∈ δ.

Next we introduce the concepts of source densities:

Definition (D3)

$ (r, t)
de f
= divE (r, t) (39)

j (r, t)
de f
= c2rotB (r, t)− ∂E (r, t)

∂t
(40)

are called active electric charge density and active electric current density, respec-
tively.

A simple consequence of the definitions is that a continuity equation holds for
$ and j:

Theorem 2.
∂$ (r, t)

∂t
+ divj (r, t) = 0 (41)

Remark 3. In our construction, the two Maxwell equations (39)–(40), are mere
definitions of the concepts of active electric charge density and active electric
current density. They do not contain information whatsoever about how “mat-
ter produces electromagnetic field”. And it is not because $ (r, t) and j (r, t)
are, of course, “unspecified distributions” in these “general laws”, but because
$ (r, t) and j (r, t) cannot be specified prior to or at least independently of the
field strengths E(r, t) and B(r, t). Again, because $ (r, t) and j (r, t) are just ab-
breviations, standing for the expressions on the right hand sides of (39)–(40).
In other words, any statement about the “charge distribution” will be a state-
ment about divE, and any statement about the “current distribution” will be a
statement about c2rotB− ∂E

∂t .
The minimal claim is that this is a possible coherent construction. Though

we must add: equations (39)–(40) could be seen as contingent physical laws
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about the relationship between the charge and current distributions and the
electromagnetic field, only if we had an independent empirical definition of
charge. However, we do not see how such a definition is possible, without
encountering circularities. (Also see Remark 4.)

The operational definitions of the field strengths and the source densities
are based on the kinematical properties of the test particles. The following
definition describes the concept of a charged point-like particle, in general.

Definition (D4) A particle b is called charged point-particle of specific passive
electric charge πb and of active electric charge αb if the following is true:

1. It satisfies the relativistic Lorentz equation,

ab(t)

πb

√
1− (vb(t))

2

c2

= E
(

rb (t) , t
)

− 1
c2 vb (t)

(
vb (t) ·E

(
rb (t) , t

))
+vb (t)× B

(
rb (t) , t

)
(42)

2. If it is the only particle whose worldline intersects a given space-time
region Ω, then for all (r, t) ∈ Ω the source densities are of the following
form:

$ (r, t) = αbδ
(

r− rb (t)
)

(43)

j (r, t) = αbδ
(

r− rb (t)
)

vb (t) (44)

where rb (t), vb (t) and ab (t) are the particle’s position, velocity and accelera-

tion. The ratio µb
de f
= αb

πb is called the electric inertial rest mass of the particle.

Remark 4. Of course, (42) is equivalent to the standard form of the Lorentz
equation:

d
dt

 1
π v (t)√
1− v(t)2

c2

 = E (r (t) , t) + v (t)× B (r (t) , t)

with π = q
m in the usual terminology, where q is the passive electric charge

and m is the inertial (rest) mass of the particle—that is why we call π spe-
cific passive electric charge. Nevertheless, it must be clear that for all charged
point-particles we introduced two independent, empirically meaningful and ex-
perimentally testable quantities: specific passive electric charge π and active
electric charge α. There is no universal law-like relationship between these
two quantities: the ratio between them varies from particle to particle. In the
traditional sense, this ratio is, however, nothing but the particle’s rest mass.
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We must emphasize that the concept of mass so obtained, as defined by only
means of electrodynamical quantities, is essentially related to electrodynam-
ics, that is to say, to electromagnetic interaction. There seems no way to give
a consistent and non-circular operational definition of inertial mass in general,
independently of the context of a particular type of physical interaction. With-
out entering here into the detailed discussion of the problem, we only mention
that, for example, Weyl’s commonly accepted definition (Jammer 2000, pp. 8–
10) and all similar definitions based on the conservation of momentum in par-
ticle collisions suffer from the following difficulty. There is no “collision” as a
purely “mechanical” process. During a collision the particles are moving in a
physical field—or fields—of interaction. Therefore: 1) the system of particles,
separately, cannot be regarded as a closed system; 2) the inertial properties of
the particles, in fact, reveal themselves in the interactions with the field. Thus,
the concepts of inertial rest mass belonging to different interactions differ from
each other; whether they are equal (proportional) to each other is a matter of
contingent fact of nature.

Remark 5. The choice of the etalon test particle is, of course, a matter of con-
vention, just as the definitions (D0)–(D4) themselves. It is important to note
that all these conventional factors play a constitutive role in the fundamental
concepts of electrodynamics (Reichenbach 1965). With these choices we not
only make semantic conventions determining the meanings of the terms, but
also make a decision about the body of concepts by means of which we grasp
physical reality. There are a few things, however, that must be pointed out:

(a) This kind of conventionality does not mean that the physical quan-
tities defined in (D0)–(D4) cannot describe objective features of phys-
ical reality. It only means that we make a decision which objec-
tive features of reality we are dealing with. With another body of
conventions we have another body of physical concepts/physical
quantities and another body of empirical facts.

(b) On the other hand, it does not mean either that our knowledge of
the physical world would not be objective but a product of our con-
ventions. If two theories obtained by starting with two different
bodies of conventions are complete enough accounts of the physical
phenomena, then they describe the same reality, expressed in terms
of different physical quantities. Let us spell out an example: Defi-
nition (40) is entirely conventional—no objective fact of the world
determines the formula on the right hand side. Therefore, we could
make another choice, say,

jΘ (r, t)
de f
= Θ2rotB (r, t)− ∂E (r, t)

∂t
(45)

with some Θ 6= c. At first sight, one might think that this choice will
alter the speed of electromagnetic waves. This is however not the
case. It will be an empirical fact about jΘ (r, t) that if a particle b is
the only one whose worldline intersects a given space-time region
Ω, then for all A ∈ Ω
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jΘ (r(A), t(A)) = αbδ
(

r(A)− rb (t)
)

vb (t)

+
(

Θ2 − c2
)
rotB(r(A), t(A)) (46)

Now, consider a region where there is no particle. Taking into ac-
count (46), we have (47)–(48) and

divE(r, t) = 0

Θ2rotB (r, t)− ∂E (r, t)
∂t

=
(

Θ2 − c2
)
rotB(r, t)

which lead to the usual wave equation with propagation speed c.
(Of course, in this particular example, one of the possible choices,
namely Θ = c, is distinguished by its simplicity. Note, however,
that simplicity is not an epistemologically unproblematic notion.)

4 Empirical facts of electrodynamics

Both “empirical” and “fact” are used in different senses. Statements (E0)–(E4)
below are universal generalizations, rather than statements of particular ob-
servations. Nevertheless we call them “empirical facts”, by which we simply
mean that they are truths which can be acquired by a posteriori means. Nor-
mally, they can be considered as laws obtained by inductive generalization;
statements the truths of which can be, in principle, confirmed empirically.

On the other hand, in the context of the consistency questions (Q3) and
(Q4), it is not important how these statements are empirically confirmed. (E0)–
(E4) can be regarded as axioms of the Maxwell–Lorentz theory in K. What is
important for us is that from these axioms, in conjunction with the theoretical
representations of the measurement operations, there follow assertions about
what the moving observer in K′ observes. Section 6 will be concerned with
these consequences.

(E0) There exist many enough test particles and we can settle them into all
required positions and velocities.

Consequently, (D1)–(D4) are sound definitions. From observations about E, B
and the charged point-particles, we have further empirical facts:

(E1) In all situations, the electric and magnetic field strengths satisfy the fol-
lowing two Maxwell equations:

divB (r, t) = 0 (47)

rotE (r, t) +
∂B (r, t)

∂t
= 0 (48)

(E2) Each particle is a charged point-particle, satisfying (D4) with some spe-
cific passive electric charge π and active electric charge α. This is also true
for the test particles, with—as follows from the definitions—specific passive
electric charge π = 1.
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(E3) If b1, b2,..., bn are the only particles whose worldlines intersect a given
space-time region Ω, then for all (r, t) ∈ Ω the source densities are:

$ (r, t) =
n

∑
i=1

αbi δ
(

r− rbi (t)
)

(49)

j (r, t) =
n

∑
i=1

αbi δ
(

r− rbi (t)
)

vbi (t) (50)

Putting facts (E1)–(E3) together, we have the coupled Maxwell–Lorentz equa-
tions:

divE (r, t) =
n

∑
i=1

αbi δ
(

r− rbi (t)
)

(51)

c2rotB (r, t)− ∂E (r, t)
∂t

=
n

∑
i=1

αbi δ
(

r− rbi (t)
)

vbi (t) (52)

divB (r, t) = 0 (53)

rotE (r, t) +
∂B (r, t)

∂t
= 0 (54)

abi (t)

πbi

√
1− vbi (t)2

c2

= E
(

rbi (t) , t
)
− 1

c2 vbi (t)
(

vbi (t) ·E
(

rbi (t) , t
))

+vbi (t)× B
(

rbi (t) , t
)

(i = 1, 2, . . . n) (55)

These are the fundamental equations of electrodynamics, describing an inter-
acting system of n particles and the electromagnetic field.

We mention only one important theorem which can be derived from empir-
ical fact (E3).

Theorem 3. Consider a spatial space-time region, that is a region Γ in a space-like
hypersurface H. Let b1, b2, . . . be the charged point-particles the wordlines of which
intersect Γ. Then the following holds for the “active charge of Γ”:

ˆ
Γ

$d3h = ∑
i

αbi (56)

where d3h denotes the induced volume measure on hypersurface H.

Proof. We omit the general proof here. (It needs only (49)–(50) and some
Minkowskian kinematics.) In the particular case of Γ ⊆ H = R3 × {t}, (56)
trivially follows from (49).

5 Operational definitions of electrodynamical
quantities in K′

So far we have only considered electrodynamics in a single frame of reference
K. Now we turn to the question of how a moving observer describes the same
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phenomena in K′. The observed phenomena are the same, but the measuring
equipments by means of which the phenomena are observed are not entirely
the same; instead of being at rest in K, they are co-moving with K′.

Accordingly, we will repeat the operational definitions (D0)–(D4) with the
following differences:

1. The “rest test particles” will be at rest relative to reference frame K′, that
is, in motion with velocity V relative to K.

2. The measuring equipments by means of which the kinematical quanti-
ties are ascertained—say, the measuring rods and clocks—will be at rest
relative to K′, that is, in motion with velocity V relative to K. In other
words, kinematical quantities t, r, v, a in definitions (D0)–(D4) will be re-
placed with—not expressed in terms of— t′, r′, v′, a′.

Definition (D0’) Particle e is called (test particle)’ if for all r′ and t′

v′e
(
t′
) ∣∣∣∣

r′e(t′)=r′
= v′etalon (t′) ∣∣∣∣

r′etalon(t′)=r′

implies

a′e
(
t′
) ∣∣∣∣

r′e(t′)=r′
= a′etalon (t′) ∣∣∣∣

r′etalon(t′)=r′

A (test particle)’ e moving with velocity V relative to K is at rest relative to K′,
that is, v′e = 0. Accordingly:

Definition (D1’) (Electric field strength)’ at point r′ and time t′ is defined as the
acceleration of an arbitrary (test particle)’ e, such that r′e(t) = r′ and v′e(t′) = 0:

E′
(
r′, t′

) de f
= a′e(t′)

∣∣
r′e(t′)=r′ ; v′e(t′)=0 (57)

Similarly, (magnetic field strength)’ is defined by means of how the acceleration
a′e of a rest (test particle)’—rest, of course, relative to K′—changes with a small
perturbation of its state of motion, that is, if an infinitesimally small velocity
v′e is imparted to the particle. Just as in (D2), let δ′ ⊂ R3 be an arbitrary
infinitesimal neighborhood of 0 ∈ R3. We define the following function:

U′r
′ ,t′ : δ′ ⊂ R3 → R3

U′r
′ ,t′(v′)

de f
= a′e(t′)

∣∣
r′e(t′)=r′ ; v′e(t′)=v′ (58)

Definition (D2’) (Magnetic field strength)’ at point r′ and time t′ is
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B′(r′, t′)
de f
=



∂U′r
′ ,t′

y
∂v′z

∣∣∣∣
v′=0

∂U′r
′ ,t′

z
∂v′x

∣∣∣∣
v′=0

∂U′r
′ ,t′

x
∂v′y

∣∣∣∣
v′=0


(59)

Definition (D3’)

$′
(
r′, t′

) de f
= divE′

(
r′, t′

)
(60)

j′
(
r′, t′

) de f
= c2rotB′

(
r′, t′

)
− ∂E′ (r′, t′)

∂t′
(61)

are called (active electric charge density)’ and (active electric current density)’, re-
spectively.

Of course, we have:

Theorem 4.
∂$′ (r′, t′)

∂t′
+ divj′

(
r′, t′

)
= 0 (62)

Definition (D4’) A particle is called (charged point-particle)’ of (specific passive
electric charge)’ π′b and of (active electric charge)’ α′b if the following is true:

1. It satisfies the relativistic Lorentz equation,

a′b(t′)

π′b

√
1− (v′b(t′))

2

c2

= E′
(

r′b
(
t′
)

, t′
)

− 1
c2 v′b

(
t′
) (

v′b
(
t′
)
·E′
(

r′b
(
t′
)

, t′
))

+v′b
(
t′
)
× B′

(
r′b
(
t′
)

, t′
)

(63)

2. If it is the only particle whose worldline intersects a given space-time re-
gion Ω, then for all (r′, t′) ∈ Ω the (source densities)’ are of the following
form:

$′
(
r′, t′

)
= α′bδ

(
r′ − r′b

(
t′
))

(64)

j′
(
r′, t′

)
= α′bδ

(
r′ − r′b

(
t′
))

v′b
(
t′
)

(65)

where r′b (t′), v′b (t′) and a′b (t′) is the particle’s position, velocity and acceler-

ation in K′. The ratio µ′b
de f
= α′b

π′b
is called the (electric inertial rest mass)’ of the

particle.

Remark 6. It is worthwhile to make a few remarks about some epistemological
issues:

23



(a) The physical quantities defined in (D1)–(D4) differ from the physical
quantities defined in (D1’)–(D4’), simply because the physical situ-
ation in which a test particle is at rest relative to K differs from the
one in which it is co-moving with K′ with velocity V relative to K;
and, as we know from the laws of electrodynamics in K, this difference
really matters.
Someone might object that if this is so then any two instances of the
same measurement must be regarded as measurements of different
physical quantities. For, if the difference in the test particle’s veloc-
ity is enough reason to say that the two operations determine two
different quantities, then, by the same token, two operations must
be regarded as different operations—and the corresponding quan-
tities as different physical quantities—if the test particle is at dif-
ferent points of space, or the operations simply happen at different
moments of time. And this consequence, the objection goes, seems
to be absurd: if it were true, then science would not be possible,
because we would not have the power to make law-like assertions
at all; therefore we must admit that empiricism fails to explain how
natural laws are possible, and, as many argue, science cannot do
without metaphysical pre-assumptions.
Our response to such an objections is the following. First, concern-
ing the general epistemological issue, we believe, nothing disas-
trous follows from admitting that two phenomena observed at dif-
ferent place or at different time are distinct. And if they are stated as
instances of the same phenomenon, this statement is not a logical or
metaphysical necessity—derived from some logical/metaphysical
pre-assumptions—but an ordinary scientific hypothesis obtained
by induction and confirmed or disconfirmed together with the
whole scientific theory. In fact, this is precisely the case with respect
to the definitions of the fundamental electrodynamical quantities.
For example, definition (D1) is in fact a family of definitions each
belonging to a particular situation individuated by the space-time
locus (r, t).
Second, in this paper, we must emphasize again, the question of
operational definitions of electrodynamical quantities first of all
emerges not from an epistemological context, but from the con-
text of the inner consistency of our theories, in answering questions
(Q3) and (Q4). In the next section, all the results of the measure-
ment operations defined in (D1’)–(D4’) will be predicted from the
laws of electrodynamics in K. And, electrodynamics itself says that
some differences in the conditions are relevant from the point of
view of the measured acceleration of the a test particle, some others
are not; some of the originally distinct quantities are contingently
equal, some others not.

(b) From a mathematical point of view, both (D0)–(D4) and (D0’)–(D4’)
are definitions. However, while the choice of the etalon test particle
and definitions (D0)–(D4) are entirely conventional, there is no addi-
tional conventionality in (D0’)–(D4’). The way in which we define
the electrodynamical quantities in inertial frame K′ automatically
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follows from (D0)–(D4) and from the question we would like to
answer, namely, whether the relativity principle holds for electro-
dynamics; since the principle is about “quantities obtained by the
same operational procedures with the same measuring equipments
when they are co-moving with K′”.

(c) In fact, one of the constituents of the concepts defined in K′ is not
determined by the operational definitions in K. Namely, the no-
tion of “the same operational procedures with the same measuring
equipments when they are co-moving with K′”, that is, the notion of
MV applied for the measuring operation and the measuring equip-
ments. This is however not an additional freedom of convention-
ality, but a simple vagueness in our physical theories in K. In any
event, in our case, the notion of the only moving measuring device,
that is, the notion of “a test particle at rest relative to K′” is quite
clear.

6 Observations of moving observer

Now we have another collection of operationally defined notions, E′, B′,$′, j′,
the concept of (charged point-particle)’ defined in the primed terms, and its
properties π′, α′ and µ′. Normally, one should investigate these quantities ex-
perimentally and collect new empirical facts about both the relationships be-
tween the primed quantities and about the relationships between the primed
quantities and the ones defined in (D1)–(D4). In contrast, we will continue our
analysis in another way; following the “Lorentzian pedagogy”, we will deter-
mine from the laws of physics in K what an observer co-moving with K′ should
observe. In fact, with this method, we will answer our question (Q4), whether
the textbook transformation rules, derived from the relativity principle, are
compatible with the laws of electrodynamics in a single frame of reference. We
will also see whether the the basic equations (51)–(55) are covariant against
these transformations.

Throughout the theorems below, it is important that when we compare, for
example, E (r, t) with E′(r′, t′), we compare the values of the fields in one and the
same space-time point, that is, we compare E (r(A), t(A)) with E′ (r′(A), t′(A)).
For the sake of brevity, however, we omit the indication of this fact.

The first theorem trivially follows from the fact that the Lorentz transfor-
mations of the kinematical quantities are one-to-one:

Theorem 5. A particle is a (test particle)’ if and only if it is a test particle.

Consequently, we have many enough (test particles)’ for definitions (D1’)–
(D4’); and each is a charged point-particle satisfying the Lorentz equation (42)
with specific passive electric charge π = 1.
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Theorem 6.

E′x = Ex (66)

E′y =
Ey −VBz√

1− V2

c2

(67)

E′z =
Ez + VBy√

1− V2

c2

(68)

Proof. When the (test particle)’ is at rest relative to K′, it is moving with velocity
ve = (V, 0, 0) relative to K. From (42) (with π = 1) we have

ae
x =

(
1− V2

c2

) 3
2

Ex (69)

ae
y =

√
1− V2

c2

(
Ey −VBz

)
(70)

ae
z =

√
1− V2

c2

(
Ez + VBy

)
(71)

Applying (10)–(12), we can calculate the acceleration a′e in K′, and, accordingly,
we find

E′x = a′ex =
ae

x(
1− V2

c2

) 3
2
= Ex

E′y = a′ey =
ae

y

1− V2

c2

=
Ey −VBz√

1− V2

c2

E′z = a′ez =
ae

z

1− V2

c2

=
Ez + VBy√

1− V2

c2

Theorem 7.

B′x = Bx (72)

B′y =
By +

V
c2 Ez√

1− V2

c2

(73)

B′z =
Bz − V

c2 Ey√
1− V2

c2

(74)

Proof. Consider for instance B′x. By definition,

B′x =
∂U′r

′ ,t′
y

∂v′z

∣∣∣∣∣
v′=0

(75)
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According to (58), the value of U′r
′ ,t′

y (v′) is equal to

a′ey
∣∣∣
r′e(t′)=r′ ; v′e(t′)=v′

that is, the y-component of the acceleration of a (test particle)’ e in a situation
in which r′e(t′) = r′ and v′e(t′) = v′. Accordingly, in order to determine the
partial derivative (75) we have to determine

d
dw

∣∣∣∣
w=0

(
a′ey
∣∣∣
r′e(t′)=r′ ; v′e(t′)=(0,0,w)

)
Now, according to (9), condition v′e = (0, 0, w) corresponds to

ve =

(
V, 0, w

√
1− V2

c2

)

Substituting this velocity into (42), we have:

ae
y =

√√√√
1−

V2 + w2
(

1− V2

c2

)
c2

(
Ey + w

√
1− V2

c2 Bx −VBz

)
(76)

Applying (13), one finds:

a′ey =
ae

y

1− V2

c2

=

√
1−

V2+w2
(

1− V2
c2

)
c2

1− V2

c2

(
Ey + w

√
1− V2

c2 Bx −VBz

)

=

√√√√1− w2

c2

1− V2

c2

(
Ey + w

√
1− V2

c2 Bx −VBz

)
(77)

Differentiating with respect to w at w = 0, we obtain

B′x = Bx

The other components can be obtained in the same way.

Theorem 8.

$′ =
$− V

c2 jx√
1− V2

c2

(78)

j′x =
jx −V$√

1− V2

c2

(79)

j′y = jy (80)

j′z = jz (81)

Proof. Substituting E′ and B′ with (66)–(68) and (72)–(74), r and t with the in-
verse of (1)–(4), then differentiating the composite function and taking into
account (39)–(40), we get (78)–(81).
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Theorem 9. A particle b is charged point-particle of specific passive electric charge πb

and of active electric charge αb if and only if it is a (charged point-particle)’ of (specific
passive electric charge)’ π′b and of (active electric charge)’ α′b, such that π′b = πb

and α′b = αb.

Proof. First we will prove (63). For the sake of simplicity, we will verify this in
case of v′b = (0, 0, w). We can use (76):

ab
y = πb

√√√√
1−

V2 + w2
(

1− V2

c2

)
c2

(
Ey + w

√
1− V2

c2 Bx −VBz

)

From (13), (67), (72), and (74) we have

a′by = πb

√
1− w2

c2

(
E′y + wB′x

)
=

πb

√
1−

(
v′b
)2

c2

(
E′ − 1

c2 v′b
(

v′b·E′
)
+ v′b × B′

)
y

∣∣∣∣∣
v′b=(0,0,w)

Similarly,

a′bx = πb

√
1− w2

c2

(
E′x − wB′y

)
=

πb

√
1−

(
v′b
)2

c2

(
E′ − 1

c2 v′b
(

v′b·E′
)
+ v′b × B′

)
x

∣∣∣∣∣
v′b=(0,0,w)

a′bz = πb
(

1− w2

c2

) 3
2

E′z

=

πb

√
1−

(
v′b
)2

c2

(
E′ − 1

c2 v′b
(

v′b·E′
)
+ v′b × B′

)
z

∣∣∣∣∣
v′b=(0,0,w)

That is, (63) is satisfied, indeed.
In the second part, we will show that (64)–(65) are nothing but (43)–(44)

expressed in terms of r′, t′, $′ and j′, with α
′b = αb.

It will be demonstrated for a particle of trajectory r′b (t′) = (wt′, 0, 0). Ap-
plying (8), (43)–(44) have the following forms:

$ (r, t) = αbδ

(
x− w + V

1 + wV
c2

t

)
δ (y) δ (z)

j (r, t) = αbδ

(
x− w + V

1 + wV
c2

t

)
δ (y) δ (z)


w+V

1+ wV
c2

0
0


r, t, $ and j can be expressed with the primed quantities by applying the inverse
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of (1)–(4) and (78)–(81):

$′ (r′, t′) + V
c2 j′x (r′, t′)√

1− V2

c2

= αbδ

 x′ + Vt′√
1− V2

c2

− w + V
1 + wV

c2

t′ + V
c2 x′√

1− V2

c2

 δ
(
y′
)

δ
(
z′
)

j′x (r′, t′) + V$′ (r′, t′)√
1− V2

c2

= αbδ

 x′ + Vt′√
1− V2

c2

− w + V
1 + wV

c2

t′ + V
c2 x′√

1− V2

c2


× δ

(
y′
)

δ
(
z′
) w + V

1 + wV
c2

j′y
(
r′, t′

)
= 0

j′z
(
r′, t′

)
= 0

One can solve this system of equations for $′ and j′x:

$′
(
r′, t′

)
= αbδ

(
x′ − wt′

)
δ
(
y′
)

δ
(
z′
)

(82)

j′
(
r′, t′

)
= αbδ

(
x′ − wt′

)
δ
(
y′
)

δ
(
z′
) w

0
0

 (83)

Theorem 10.

divB′
(
r′, t′

)
= 0 (84)

rotE′
(
r′, t′

)
+

∂B′ (r′, t′)
∂t′

= 0 (85)

Proof. Expressing (47)–(48) in terms of r′, t′, E′ and B′ by means of (1)–(4), (66)–
(68) and (72)–(74), we have

divB′ − V
c2

(
rotE′ +

∂B′

∂t′

)
x

= 0(
rotE′ +

∂B′

∂t′

)
x
−VdivB′ = 0(

rotE′ +
∂B′

∂t′

)
y

= 0(
rotE′ +

∂B′

∂t′

)
z

= 0

which is equivalent to (84)–(85), indeed.

Theorem 11. If b1, b2,..., bn are the only particles whose worldlines intersect a given
space-time region Ω′, then for all (r′, t′) ∈ Ω′ the (source densities)’ are:

$′
(
r′, t′

)
=

n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

(86)

j′
(
r′, t′

)
=

n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

v′bi
(
t′
)

(87)
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Proof. Due to Theorem 9, each (charged point-particle)’ is a charged point-
particle with α

′b = αb. Therefore, we only need to prove that equations (86)–
(87) amount to (49)–(50) expressed in the primed variables. On the left hand
side of (49)–(50), $ and j can be expressed by means of the inverse of (78)–(81);
on the right hand side, we take α

′b = αb, and apply the inverse of (1)–(4), just
as in the derivation of (82)–(83). From the above, we obtain:

$′
(
r′, t′

)
+

V
c2 j′x

(
r′, t′

)
=

n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

+
V
c2

n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

v′bi
x
(
t′
)

j′x
(
r′, t′

)
+ V$′

(
r′, t′

)
=

n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

v′bi
x
(
t′
)

+V
n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

j′y
(
r′, t′

)
=

n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

v′bi
y
(
t′
)

j′z
(
r′, t′

)
=

n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

v′bi
z
(
t′
)

Solving these linear equations for $′ and j′ we obtain (86)–(87).

Combining the results we obtained in Theorems 9–11, we have

divE′
(
r′, t′

)
=

n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

(88)

c2rotB′
(
r′, t′

)
− ∂E′ (r′, t′)

∂t′
=

n

∑
i=1

αbi δ
(

r′ − r′bi
(
t′
))

v′bi
(
t′
)

(89)

divB′
(
r′, t′

)
= 0 (90)

rotE′
(
r′, t′

)
+

∂B′ (r′, t′)
∂t′

= 0 (91)

a′bi (t′)

πbi

√
1− v′bi (t′)2

c2

= E′
(

r′bi
(
t′
)

, t′
)

− 1
c2 v′bi

(
t′
) (

v′bi
(
t′
)
·E′
(

r′bi
(
t′
)

, t′
))

+v′bi
(
t′
)
× B′

(
r′bi
(
t′
)

, t′
)

(i = 1, 2, . . . n) (92)
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7 Are the textbook transformation rules consistent
with the laws of electrodynamics in a single
frame of reference?

Now, everything is at hand to declare that the textbook transformation rules
for electrodynamical quantities, routinely derived from the presumed covari-
ance of the Maxwell equations, are in fact true, at least in the sense that they
are derivable from the laws of electrodynamics in a single frame of reference,
including—it must be emphasized—the precise operational definitions of the
quantities in question. For, Theorems 6 and 7 show the well-known transfor-
mation rules for the field variables. What Theorem 8 asserts is nothing but
the well-known transformation rule for charge density and current density. Fi-
nally, Theorem 9 shows that a particle’s electric specific passive charge, active
charge and electric rest mass are invariant scalars.

At this point, having ascertained the transformation rules, we can de-
clare that equations (88)–(92) are nothing but TV(E), where E stands for
the equations (51)–(55). At the same time, (88)–(92) are manifestly equal to
PV(E). Therefore, we proved that the Maxwell–Lorentz equations are covari-
ant against the transformations of the kinematical and electrodynamical quan-
tities. In fact, we proved more:

• The Lorentz equation of motion (55) is covariant separately.

• The four Maxwell equations (51)–(54) constitute a covariant set of equa-
tions, separately from (55).

• (51)–(52) constitute a covariant set of equations, separately.

• (53)–(54) constitute a covariant set of equations, separately.

As we pointed out in Remark 2, none of these statements follows automatically
from the fact that (51)–(55) is a covariant system of equations.

Remark 7. The fact that the proper calculation of the transformation rules for
the field strengths and for the source densities leads to the familiar textbook
transformation rules hinges on the relativistic version of the Lorentz equation,

in particular, on the “relativistic mass-formula”. Without factor

√
1− (vb)

2

c2 in
(55), the proper transformation rules were different and the Maxwell equations
were not covariant—against the proper transformations.

Remark 8. This is not the place to review the various versions of the text-
book derivation of the transformation rules for electrodynamical quantities,
nevertheless, a few remarks seem necessary. Among those with which we are
acquainted, there are basically two major branches, and both are problematic.
The first version follows Einstein’s 1905 paper:

(1a) The transformation rules of electric and magnetic field strengths
are derived from the presumption of the covariance of the homoge-
neous (with no sources) Maxwell equations.

(1b) The transformation rules of source densities are derived from the
transformations of the field variables.
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(1c) From the transformation rules of charge and current densities, it is
derived that electric charge is an invariant scalar.

The second version is this:

(2a) The transformation rules of the charge and current densities are de-
rived from some additional assumptions; typically from one of the
followings:

(2a1) the invariance of electric charge (Jackson 1999, pp. 553–
558)

(2a2) the current density is of form $u(r, t), where u(r, t) is a
velocity field (Tolman 1934, p. 85; Møller 1955, p. 140).

(2b) The transformation of the field strengths are derived from the trans-
formation of $ and j and from the presumption of the covariance of
the inhomogeneous Maxwell equations.

Unfortunately, with the only exception of (1b), none of the above steps is com-
pletely correct. Without entering into the details, let us mention that (2a1) and
(2a2) both involve some further empirical information about the world, which
does not follow from the simple assumption of covariance. Even in case of
(1a) we must have the tacit assumption that zero charge and current densities
go to zero charge and current densities during the transformation—otherwise
the covariance of the homogeneous Maxwell equations would not follow from
the assumed covariance of the Maxwell equations. (See points (b) and (d) in
Remark 2.)

One encounters the next major difficulty in both (1a) and (2b): neither the
homogeneous nor the inhomogeneous Maxwell equations determine the trans-
formation rules of the field variables uniquely; E′ and B′ are only determined
by E and B up to an arbitrary solution of the homogeneous equations.

Finally, let us mention a conceptual confusion that seems to be routinely
overlooked in (1c), (2a1) and (2a2). There is no such thing as a simple relation
between the scalar invariance of charge and the transformation of charge and
current densities, as is usually claimed. For example, it is meaningless to say
that

Q = $∆W = Q′ = $′∆W ′

where ∆W denotes a volume element, and

∆W ′ =
∆W√
1− V2

c2

Whose charge is Q, which remains invariant? Whose volume is ∆W and in
what sense is that volume Lorentz contracted? In another form, in (2a2), whose
velocity is u(r, t)?

Remark 9. In the previous remark we pointed out typical problems in the
derivations of the transformation rules from the covariance of the equations.
There is however a more fundamental problem: How do we arrive at the co-
variance itself? Obviously, it would be a completely mistaken idea to regard
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covariance as a “known/verifiable property of the equations”, because we can-
not verify that the equations are covariant against the transformations of elec-
trodynamical quantities, prior to us knowing the transformations themselves
against which the equations must be covariant. Therefore, the usual claim is
that the covariance of the equations of electrodynamics against the transforma-
tions of electrodynamical quantities—whatever these transformations are—is
implied by the assumption that the relativity principle holds. Now, the problem
is that this implication is, as we have seen in section 2, not true. Covariance
follows from the relativity principle only if MV is surjective; which is a ques-
tionable assumption, and, as far as we know, it has never been shown. Thus,
disregarding the minor flaws mentioned in Remark 8, in the absence of the
proof of this implication, one is not entitled to say that either the covariance of
the Maxwell–Lorentz equations or the transformation rules of electrodynami-
cal quantities are derived from the principle of relativity.

In contrast, we have calculated the transformation rules from the proper
operational definitions of the basic electrodynamical quantities, and have
shown that the Maxwell–Lorentz equations are indeed covariant against these
transformations—independently of the principle of relativity. In fact, the ques-
tion whether the principle of relativity holds for electrodynamics has been left
open.

8 Is the relativity principle consistent with the laws
of electrodynamics in a single frame of reference?

One might think, we simply have to verify whether the solutions of equa-
tions (51)–(55) satisfy condition (19) in section 2. However, we still have some
vagueness in the relativity principle; namely, the vagueness of MV(F). For,
when can we say that a solution describes the same behavior of the same sys-
tem, except that it is in an additional collective motion at velocity V? While
there is unambiguous meaning of MV(F) in the Galileo covariant classical
mechanics, one can show simple situations in relativistic physics, in which a
solution of the equations describing the system in question doubtlessly cor-
responds to the concept of MV(F) relative to another solution F, but still
MV(F) 6= T−1

V (PV(F)) (Szabó 2004). Unfortunately, the concept of MV(F)
is especially problematic in case of a coupled particles + electromagnetic field
system, as the following considerations will demonstrate.

As is known, a solution of the coupled Maxwell–Lorentz equations is
uniquely determined by a set of Cauchy data along a t = t0 Cauchy surface.
The Cauchy data are the values of the particles’ positions and velocities, and
the values of the electric and magnetic field strengths along the Cauchy surface.
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The corresponding extra conditions are of the following form:

ψ



rb1 (t0) = rb1
0

vb1 (t0) = vb1
0

...

rbn (t0) = rbn
0

vbn (t0) = vbn
0

E(r, t0) = E0(r)
B(r, t0) = B0(r)

(93)

Due to the fact that there is a one-to-one correspondence between the Cauchy
data along the t = t0 Cauchy surface and the solutions of the equations, extra
conditions of the form (93) constitute a parametrizing set of extra conditions
for the Maxwell–Lorentz equations, defined in section 2.

We have proved, independently of the relativity principle, that the
Maxwell–Lorentz equations are covariant; therefore, we can apply Theorem 1.
That is, the relativity principle for electrodynamics is equivalent to

[TV (MV(ψ))]PV(E) = [PV(ψ)]PV(E) (94)

for all ψ ∈ CV, where E stands for the Maxwell–Lorentz equations, C denotes
the parametrizing set of extra conditions of the form (93), EV ⊆ E denotes the
set of solutions for which MV ([ψ]E ) is physically admissible. So, the question
is: what can we say about condition (94) from the laws of electrodynamics? In
order to answer this question, we should be able to tell what MV(ψ) exactly
means in electrodynamics. Thus, the basic question we have to answer, in
order to answer question (Q3) in the Introduction, is the following:

(Q5) What does it exactly mean that a coupled particles + field system
is in such a state at time t0, that is, the Cauchy date along the t =
t0 surface are such, that the corresponding time evolution of the
system is the same as the one belonging to ψ, except that the whole
system is in an additional collective motion with velocity V?

If there were an answer to this question it would trivially imply the answer to
the following more modest question:

(Q6) What does it exactly mean that a coupled particles + field system
is in such a state at time t0 that the corresponding time evolution
of the system is the same as the one belonging to ψ, except that the
whole system is in an additional collective motion with velocity V,
at least in an infinitesimally small time-window (t0 − ε, t0 + ε)?

However, as we will see below, even this latter question has no reasonable
answer. For, it is perhaps easy to tell when the particles are initiated in this
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way. For example,

MV (ψ)



rb1 (t0) = rb1
0

vb1 (t0) = vb1
0 + V

...

rbn (t0) = rbn
0

vbn (t0) = vbn
0 + V

?
?

(95)

can be a reasonable definition, if each particle remains in a physically admissi-
ble state of motion, that is,

∣∣∣vbi (t0) + V
∣∣∣ < c. But, we also have to tell when the

electromagnetic field is initiated with an additional velocity V relative to K.
It might be thought that it is enough to set into motion the particles, and

we do not need to “set into motion” the field; because we can govern only the
sources of the field but not the field itself; and because there are supposedly
no “wandering waves” in nature, which are traversing across the universe but
did not arise originally from moving charges (see Jánossy 1971, p. 171). This
can be true from some particular aspect of electrodynamics. However:

• We cannot govern the particles better than the field, at least not within the
theory we are concerned with, described by the Maxwell–Lorentz equa-
tions; any constraint on the motion of the particles would come from
outside of the Maxwell–Lorentz theory (see footnote 8).

• In any event, the field configurations E(r, t0) and B(r, t0) are parts of the
Cauchy data, therefore one cannot avoid to specify them in order to spec-
ify a unique solution of the equations.

Another thought might be that the moving electromagnetic field is the Lorentz

boosted one, by definition; that is, [MV(ψ)]E
de f
=
[

T−1
V (PV (ψ))

]
E

. Recall, how-
ever, that this idea has been already discussed in Remark 1; and it must be
rejected if the relativity principle qualifies as a contingent statement about our
physical world, rather than a vacuous tautology.

Thus,

(Q7) What rational meaning can be attached to the words “the electro-
magnetic field is in (an additional) collective motion with velocity V”?

If this question is meaningful at all, if it is meaningful to talk about an “addi-
tional and/or collective motion” of the field, then it must be meaningful to talk
about the original and not necessarily collective instantaneous motion of the
local parts of the field. That is, we must have a clear answer to the following
primary question:

(Q8) What rational meaning can be attached to the words “the electro-
magnetic field at point r and time t is in motion with some local and
instant velocity v(r, t)”?
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Figure 3: The stationary field of a uniformly moving point charge is in collec-
tive motion together with the point charge

To sum up: the relativity principle is meaningful for electrodynamics only if
we have a clear answer to question (Q5), which implies that we must have an
answer to question (Q6), consequently to (Q7) and finally to (Q8). So let us
make the first step towards providing meaning to the relativity principle in
electrodynamics, by trying to answer the most primary question (Q8).

We can rely on what seems to be commonly accepted: Whatever is the an-
swer to question (Q5), according to the application of the relativity principle in
the derivation of electromagnetic field of a uniformly moving point charge, the
system of the moving charged particle + its electromagnetic field qualifies as the
system of the charged particle + its field in collective motion (Fig. 3). If so, one
might think, we can read off the general answer to question (Q7): the electro-
magnetic field in collective motion with the point charge of velocity V can be
characterized by the following condition:7

E(r, t) = E(r−Vδt, t− δt) (96)
B(r, t) = B(r−Vδt, t− δt) (97)

that is,

−∂E(r, t)
∂t

= DE(r, t)V (98)

−∂B(r, t)
∂t

= DB(r, t)V (99)

7It must be pointed out that velocity V conceptually differs from the speed of light c. Basically,
c is a constant of nature in the Maxwell–Lorentz equations, which can emerge in the solutions of
the equations; and, in some cases, it can be interpreted as the velocity of propagation of changes
in the electromagnetic field. For example, in our case, the stationary field of a uniformly moving
point charge, in collective motion with velocity V, can be constructed from the superposition of
retarded potentials, in which the retardation is calculated with velocity c; nevertheless, the two
velocities are different concepts. A good analogy would be a Lorentz contracted moving rod: V is
the velocity of the rod, which differs from the speed of sound in the rod.
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where DE(r, t) and DB(r, t) denote the spatial derivative operators (Jacobians
for variables x, y and z); that is, in components:

−∂Ex(r, t)
∂t

=
∂Ex(r, t)

∂x
Vx +

∂Ex(r, t)
∂y

Vy +
∂Ex(r, t)

∂z
Vz (100)

−
∂Ey(r, t)

∂t
=

∂Ey(r, t)
∂x

Vx +
∂Ey(r, t)

∂y
Vy +

∂Ey(r, t)
∂z

Vz (101)

...

−∂Bz(r, t)
∂t

=
∂Bz(r, t)

∂x
Vx +

∂Bz(r, t)
∂y

Vy +
∂Bz(r, t)

∂z
Vz (102)

Of course, if conditions (98)–(99) hold for all (r, t) then the general solution
of the partial differential equations (98)–(99) has the following form:

E(r, t) = E0(r−Vt) (103)
B(r, t) = B0(r−Vt) (104)

with some time-independent E0(r) and B0(r). In other words, the field must
be a stationary one, that is, a translation of a static field with velocity V. This
is correct in the case of a single moving point charge, provided that E0(r) and
B0(r) are the electric and magnetic parts of the “flattened” Coulomb field at
time t0.8 But, (103)–(104) is certainly not the case in general; the field is not
necessarily stationary.

So, this example does not help to find a general answer to question (Q7), but
it may help to find the answer to question (Q8). For, from (96)–(97), it is quite
natural to say that the electromagnetic field at point r and time t is moving
with local and instant velocity v(r, t) if and only if

E(r, t) = E (r− v(r, t)δt, t− δt) (106)
B(r, t) = B (r− v(r, t)δt, t− δt) (107)

8Here we can observe that we need, indeed, to “set into motion” the electromagnetic field too:
if

ψ


r (t0) = r0

v (t0) = 0

E(r, t0) = EC
0 (r, t0)

B(r, t0) = 0

(105)

is the initial state of the rest system, where EC
0 (r, t0) stands for the Coulomb field, then

MV(ψ)


r (t0) = r0

v (t0) = V

E(r, t0) = EFC
0 (r, t0)

B(r, t0) = BFC
0 (r, t0)

where EFC
0 (r, t0) and BFC

0 (r, t0) stand for the well-known “flattened” fields (that is the electric and
magnetic fields of the moving charge at time t0). Within the framework of the Maxwell–Lorentz
theory we cannot describe how the system has been brought into such a state; or we cannot pre-
scribe, by hand, a constraint for the particle to be at rest or to move along a given trajectory—as is
the case in many practical applications. The Coulomb field, for example, there appears among the
solutions of the Maxwell–Lorentz equations as the one determined by the initial condition (105);
and it is a fact about this solution that the particle remains at rest and the field remains the static
Coulomb field.
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are satisfied locally, in an infinitesimally small space and time region at (r, t),
for infinitesimally small δt. In other words, the equations (98)–(99) must be
satisfied locally at point (r, t) with a local and instant velocity v(r, t):

−∂E(r, t)
∂t

= DE(r, t)v(r, t) (108)

−∂B(r, t)
∂t

= DB(r, t)v(r, t) (109)

Now, if the relativity principle, as it is believed, applies for all physically
admissible situations, that is for all solutions from EV, then it must be mean-
ingful for all solutions in EV; consequently, the concept of “electromagnetic
field moving with velocity v(r, t) at point r and time t” must be meaningful,
in other words, there must exist a local instant velocity field v(r, t) satisfying
(108)–(109), for all possible solutions of the Maxwell–Lorentz equations, be-
longing to EV. That is, substituting an arbitrary solution of (51)–(55), belong-
ing to EV, into (108)–(109), the overdetermined system of equations must have
a solution for v(r, t).

Since we do not know exactly what MV is, it is hardly possible to say any-
thing definite about the content of EV. Nevertheless, it seems quite plausible
to assume that int

(
EV) 6= Ø—in the topology induced by the topology on

the manifold of the basic quantities. Otherwise the relativity principle could
apply only for some “isolated” solutions of the Maxwell–Lorentz equations;
but, it would become inapplicable by an infinitesimally small variation of the
solution. In this case, however, one encounters the following difficulty:

Theorem 12. There exist a solution of the coupled Maxwell–Lorentz equations (51)–
(55) which belongs to EV but for which there cannot exist a local instant velocity field
v(r, t) satisfying (108)–(109).

Proof. The proof is almost trivial for a locus (r, t) where there is a charged point
particle. However, in order to avoid the eventual difficulties concerning the
physical interpretation, we are providing a proof for a point (r∗, t∗) where there
is assumed no source at all.

Consider a solution
(

rb1 (t) , . . . rbn (t) , E(r, t), B(r, t)
)

of the coupled

Maxwell–Lorentz equations (51)–(55), which belongs to int
(
EV) and which

satisfies (108)–(109). At point (r∗, t∗), the following equations hold:

−∂E(r∗, t∗)
∂t

= DE(r∗, t∗)v(r∗, t∗) (110)

−∂B(r∗, t∗)
∂t

= DB(r∗, t∗)v(r∗, t∗) (111)

∂E(r∗, t∗)
∂t

= c2rotB(r∗, t∗) (112)

−∂B(r∗, t∗)
∂t

= rotE(r∗, t∗) (113)

divE(r∗, t∗) = 0 (114)
divB(r∗, t∗) = 0 (115)

Without loss of generality we can assume—at point r∗ and time t∗—that oper-
ators DE(r∗, t∗) and DB(r∗, t∗) are invertible and vz(r∗, t∗) 6= 0.
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Now, consider a 3× 3 matrix J such that

J =


∂Ex(r∗ ,t∗)

∂x Jxy Jxz
∂Ey(r∗ ,t∗)

∂x
∂Ey(r∗ ,t∗)

∂y
∂Ey(r∗ ,t∗)

∂z
∂Ez(r∗ ,t∗)

∂x
∂Ez(r∗ ,t∗)

∂y
∂Ez(r∗ ,t∗)

∂z

 (116)

with

Jxy =
∂Ex(r∗, t∗)

∂y
+ λ (117)

Jxz =
∂Ex(r∗, t∗)

∂z
− λ

vy(r∗, t∗)
vz(r∗, t∗)

(118)

by virtue of which

Jxyvy(r∗, t∗) + Jxzvz(r∗, t∗) =
∂Ex(r∗, t∗)

∂y
vy(r∗, t∗)

+
∂Ex(r∗, t∗)

∂z
vz(r∗, t∗)

Therefore, Jv(r∗, t∗) = DE(r∗, t∗)v(r∗, t∗). There always exists a vector field
E#

λ(r) such that its Jacobian matrix at point r∗ is equal to J. Obviously, from
(114) and (116), divE#

λ(r∗) = 0. Therefore, there exists a solution of the
Maxwell–Lorentz equations, such that the electric and magnetic fields Eλ(r, t)
and Bλ(r, t) satisfy the following conditions:9

Eλ(r, t∗) = E#
λ(r)

Bλ(r, t∗) = B(r, t∗)

At (r∗, t∗), such a solution obviously satisfies the following equations:

∂Eλ(r∗, t∗)
∂t

= c2rotB(r∗, t∗) (119)

−∂Bλ(r∗, t∗)
∂t

= rotE#
λ(r∗) (120)

therefore
∂Eλ(r∗, t∗)

∂t
=

∂E(r∗, t∗)
∂t

(121)

As a little reflection shows, if DE#
λ(r∗), that is J, happened to be not invert-

ible, then one can choose a smaller λ such that DE#
λ(r∗) becomes invertible (due

to the fact that DE(r∗, t∗) is invertible), and, at the same time,

rotE#
λ(r∗) 6= rotE(r∗, t∗) (122)

Consequently, from (121) , (118) and (110) we have

−∂Eλ(r∗, t∗)
∂t

= DEλ(r∗, t∗)v(r∗, t∗) = DE#
λ(r∗)v(r∗, t∗)

9E#
λ(r) and Bλ(r, t∗) can be regarded as the initial configurations at time t∗; we do not need to

specify a particular choice of initial values for the sources.
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and v(r∗, t∗) is uniquely determined by this equation. On the other hand, from
(120) and (122) we have

−∂Bλ(r∗, t∗)
∂t

6= DBλ(r∗, t∗)v(r∗, t∗) = DB(r∗, t∗)v(r∗, t∗)

because DB(r∗, t∗) is invertible, too. That is, for Eλ(r, t) and Bλ(r, t) there is no
local and instant velocity at point r∗ and time t∗. At the same time, λ can be
arbitrary small, and

lim
λ→0

Eλ(r, t) = E(r, t)

lim
λ→0

Bλ(r, t) = B(r, t)

Therefore solution
(

rb1
λ (t) , . . . rbn

λ (t) , Eλ(r, t), Bλ(r, t)
)

can fall into an arbi-

trary small neighborhood of
(

rb1 (t) , . . . rbn (t) , E(r, t), B(r, t)
)

in int
(
EV), con-

sequently it belongs to EV.

Thus, the meaning of the concept of “electromagnetic field moving with
velocity v(r, t) at point r and time t”, that we obtained by generalizing the
example of the stationary field of a uniformly moving charge, is untenable.
Perhaps there is no other available rational meaning of this concept. In any
event, lacking a better suggestion, we must conclude that the question whether
the relativity principle generally holds in electrodynamics remains not only
unanswered, but even ununderstood.
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