
Symmetry and the Metaphysics of Physics

David John Baker
Department of Philosophy, University of Michigan

djbaker@umich.edu

June 22, 2010

Abstract

The widely held picture of dynamical symmetry as surplus structure in a physical
theory has many metaphysical applications. Here I focus on its relevance to the question
of which quantities in a theory represent fundamental natural properties.

1 Introduction

The proper role of physics as evidence for metaphysicians is the subject of much dispute (see

e.g. Maudlin (2007) and Ladyman and Ross (2007)). But there is one topic in metaphysics on

which almost all will agree that physics is most qualified to comment. We commonly think of

our universe as made up (at least partly) of some fundamental natural properties, quantities

which each take on one of a range of physically possible values. Typical examples include

mass, position, energy and electric charge, though it may be that these will be replaced as

fundamental quantities by something like the amplitude of the quantum wavefunction or the

configuration of superstrings. Although this conception of the world as made up of natural

quantities has been challenged, most famously by Goodman, it remains an important part

of most accepted systems of metaphysics.

It is therefore a very good question, according to these systems, what the fundamental

natural quantities actually are, and perhaps also what they might be in other physically

possible worlds. And it is normally thought that fundamental physics provides our best

means of answering this question.
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This means it is of paramount importance, metaphysically, to develop a method for ex-

tracting from a physical theory a description of the fundamental quantities according to that

theory. One promising method, which has received significant attention in the philosophy of

physics literature, appeals to the concept of symmetry. My threefold goal here is to introduce

this method, provide a prima facie argument in its favor, and discuss some cases in which

it seems to work rather well.1

The first step will be to make clear what symmetry signifies in physics. The word is used

in a few different ways, but I’ll be concerned here with dynamical symmetries. This concept

admits an intuitive as well as a formal definition; the intuitive definition is: symmetries of a

theory are transformations that preserve its laws.

We have a rough sense of what it means for a transformation to preserve an object – that

is, map it to itself. A square with four identical corners and four identical sides is preserved in

this way by 90-degree rotations, but not by 45-degree rotations, which map it to a diamond

instead of an identical square. We say that the 90-degree rotations leave the square invariant

by mapping it to a qualitatively identical geometric object. In a similar way, transformations

like real-world rotations can leave the laws of physics invariant. Newton’s theory accurately

predicts how long it will take my pencil to fall if I let go of it, and these predictions are

preserved even if the pencil and myself are both rotated by some angle in space. Since all

the predictions of Newtonian mechanics are preserved in this way by rotations, the group of

all rotations is a symmetry of Newtonian physics.2

The formal definition requires a bit of mathematical machinery. Complete physical the-

ories like Newtonian mechanics, relativity and quantum mechanics can be formulated in a

mathematical arena called a state space. We use that name because every element in state

space stands for a physically possible (instantaneous) state of the world according to our

theory. The experimental information we get from a theory comes in the form of predictions

about how states will change over time. We call this account of temporal change a theory’s

1The method I present here is one of many proposals, and it is perhaps less nuanced than most. I see its
simplicity as a virtue, but many others would call it oversimplified. For an opposing view of symmetries, see
Maudlin (2002, 1-7).

2By “group” I mean something more interesting than a family or set. A group G is a set with a distin-
guished “identity” element e and a “product” (two-place function) (·) such that e · g = g for all g ∈ G and
every g ∈ G has an “inverse” g−1 such that g−1 · g = e. The set of all rotations in three-dimensional space
clearly form a group (called SO(3)) if we define the product of two rotations as the result of performing one
rotation and then the other.
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dynamics ; mathematically, the dynamics is sometimes represented by time-indexed transfor-

mations U(t′) on state space that takes a state at time t = 0 to the state it will change into

at time t′. So a theory’s dynamics is a mapping from states to states. Transformations like

rotations are also given by mappings T from states to states. Symmetries are then given by

transformations that leave the dynamics (diachronic laws) unchanged. Mathematically, this

means they must commute with the dynamics, so that U(t′)T = TU(t′) for every symmetry

transformation T and every time t′. It will turn out that transformations like these meet

our intuitive condition of leaving the laws invariant.3

With the concept of symmetry in hand, we now move on to the question of why these

transformations should have any systematic metaphysical importance. In short, it will turn

out that states related by symmetries must share identical values of all fundamental quan-

tities.

2 Using symmetry to find fundamental quantities

What features distinguish fundamental quantities from non-fundamental ones? Most impor-

tantly, fundamental quantities are supposed to ground or explain objective similarity between

objects and states of affairs, in a way that non-fundamental properties cannot. For example,

two electrons are objectively similar because they are both negatively charged (and thus

agree on a fundamental quantity), but not because they are both mentioned in this article.

The relation of similarity grounded by fundamental quantities on this picture is supposed

to be objective – it’s up to Nature, not us, to determine which things are qualitatively similar.

One plausible necessary condition for objectivity is invariance under descriptive changes.

The relation of similarity between objects shouldn’t change depending on which language,

coordinate system, etc. I use to describe them.

A coordinate system (at least in familiar Euclidean geometry) is a piece of surplus struc-

ture. It’s something extra we add to the theory to aid us in describing coordinate-independent

facts. It has been suggested, for example by Belot (2001), that physical quantities which

vary under symmetry transformations are like coordinate systems in this way. In other

3Time-indexed dynamical transformations of this sort are not always well-defined. In general, this article
will follow most of the literature in ignoring and oversimplifying a very deep problem: given a physical theory,
how do we determine its symmetries? See Belot (in progress) for a sophisticated look at these problems.
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words, the symmetries of a physical theory are a guide to surplus structure in the theory’s

formalism. If this is correct, and if changes in surplus structure are generally (as in geome-

try) mere descriptive changes, it follows that physical situations related by symmetries must

be qualitatively identical. And if this is right, then physical quantities that change under

symmetry transformations (i.e., that are not invariant) must not be fundamental quantities.

Qualitatively identical objects or worlds cannot disagree about the fundamental quantities.

Why believe that symmetry transformations change only surplus structure? This question

is somewhat murky, and my answer will signify a good place for those who disagree with

my approach to get off the boat. It’s an answer I find compelling nonetheless. It rests on

the notion that the language of fundamental physics is complete in a particular sense: in a

satisfactory physical theory, the fundamental quantities are all dynamical difference-makers.

Difference-makers, that is, in the sense that differences in the fundamental quantities must

make some difference in how the state of a (physically possible) world evolves in time.

It would be bizarre if by fixing the values of all fundamental quantities, we could not

thereby fix (if not deterministically, at least probabilistically) how a physical world will

evolve in time. In my view, the converse seems equally plausible: if objects (or worlds) are

fundamentally different, fundamental physics should recognize and explain that fact. A the-

ory in which some fundamental quantities are completely epiphenomenal is, for that reason,

an unsatisfactory theory. A quantity is epiphenomenal, I take it, if it can be left out of a

complete dynamical explanation of the world’s evolution in time. It follows that quantities

with no bearing on the evolution of the world’s physical state must not be fundamental. Dy-

namical explanations can make do without these quantities, so their claim to fundamentality

is suspect.

The present approach may also be bolstered by an epistemological argument of the sort

offered by Healey (2006). Without addressing the metaphysical question of whether possibil-

ities related by symmetries could differ qualitatively, Healey argues that it is never justifiable

to accept a theory according to which they do differ. He bases this on a preference for the-

ories which are “uniquely realized,” which means that all of their theoretical terms can be

defined using the method proposed by Lewis (1970). Theories which are not uniquely real-

ized (“multiply realized” theories) require that we use demonstrations if we want to name

theoretical entities or properties with indistinguishable roles in the theory. For example, if

water and twater are distinct substances with indistinguishable roles in our theory, we will
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have to name them by pointing at particular pools of liquid, rather than defining one (per

Lewis’s method) as the unique realizer of the water role and the other as the unique realizer

of the twater role.

Lewis (1970, 146) claims that “A uniquely realized theory is, other things being equal,

certainly more satisfactory than a multiply realized theory,” and Healey adamantly agrees.

When it is possible to formulate a theory with terms whose reference is uniquely fixed by

their role in that theory, Healey thinks we should do so. To do otherwise would be to flout

Ockham’s dictum to seek out simpler theories; more importantly for Healey, it would be to

turn against the scientific realist tenet that the explanatory power of a theory is what gives us

reason to believe in its truth. A multiply realized theory is unsatisfactory because it includes

“elements purporting to represent real structures but that play no role in contributing to the

theory’s success,” since nothing about the theory’s success hinges on how these elements of

the theory are defined. To describe the world using a multiply realized theory requires that

we define its theoretical terms arbitrarily, in such a way that at least one other definition

would do just as well.

By treating possibilities related by symmetries as fundamentally identical, this arbitrari-

ness can be avoided. In this case, every fundamental quantity will possess a unique theoretical

role – otherwise it would be related by a symmetry to any other quantities with identical

roles. So the present approach can ensure that any theory of the qualitative facts is uniquely

realized – and thus epistemically preferable to the alternatives, by Healey’s lights.

Other arguments to this same conclusion, that qualitative features are invariant under

symmetries, have also been advanced. Roberts (2008) provides a convincing argument (really

an explanation of a well-known fact) that measurable quantities must be invariant. So if

one holds to a modest verificationism according to which qualitative features of the world

must be measurable in principle, the conclusion about symmetries follows. A similar point is

made by Ismael and van Fraassen (2003), who explicitly endorse such verificationism. I don’t

necessarily agree with this premise myself, but those who do should embrace my approach

to symmetries.
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3 Spacetime symmetries: Leibniz equivalence

The most straightforward – and fruitful – consequences of my preferred approach to sym-

metries can be found in the interpretation of spacetime theories. A symmetry-based under-

standing of these theories allows us to separate the question of whether space (or spacetime)

exists from related questions about the modal features of its parts (points and regions). One

of Leibniz’s most important theses about Newtonian mechanics is really a claim about the

modal properties of points, and it can be defended decisively if we treat the symmetries

of mechanics as surplus structure. This thesis of Leibniz equivalence can be formulated

analogously in relativistic theories of spacetime, and remains plausible there for the same

reasons.

A major point of contention between Leibniz and Clarke was the possibility of certain

counterfactual arrangements of matter in space. Clarke held that all of the spatial relations

between material objects might have been just as they actually are, but the positions of

these objects shifted uniformly with respect to space itself. We all might have been located

a foot to the left of where we actually are, and everything else been the same. Leibniz denied

this possibility.

Leibniz defends his view by appeal to the principle of sufficient reason (PSR). In an

important paper, Belot (2001) shows that the same work can be done by a somewhat re-

visionary version of PSR that treats qualitatively indiscernible worlds as identical. Belot’s

PSR can always be defended against purported counterexamples, he claims, if we insist (as

in the present approach) that symmetries reveal surplus structure.

In applying his PSR to Newtonian mechanics, Belot presents an important mathematical

structure that can be constructed for any physical system with symmetries: the reduced

state space. Recall that we defined a symmetry as a mapping on state space (the space of

“physically possible worlds” of a theory). The reduced state space is the space of equivalence

classes of worlds related by symmetries. In other words, it is exactly the structure we get if

we identify worlds related by symmetry transformations – qualitatively identical worlds, on

the present approach.

How does this work in Newtonian mechanics? As Belot explains, the state space Newton

used for his mechanics of N particles is 6N -dimensional: there are six degrees of freedom for

each particle, including its position and momentum in each of three dimensions in physical
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space. (Note that in this case each degree of freedom corresponds to a fundamental quantity.)

This state space includes many qualitatively identical states related to each other by global

translations or rotations of all the matter in space, or by global increases in the velocity of all

matter (which we call Galileian boosts). The set of all these transformations taken together

is the Galileian group, the symmetry group of Newtonian mechanics.

In constructing the reduced space of the Newtonian state space by identifying states

related by Galileian symmetry transformations, we effectively reduce the theory’s degrees of

freedom. For example, there are distinct states in Newton’s state space that differ only by

the position (in absolute space) of the universe’s center of mass. All these states are treated

as a single state in the reduced space. As a result, three degrees of freedom – the ones needed

to specify the position of the center of mass – are left out of the reduced space. In total, ten

degrees of freedom can be eliminated in this way, corresponding to the position and linear

motion of the center of mass and the rotational motion of the universe as a whole.

Thus while Newton believed his N -particle mechanics required 6N fundamental quan-

tities, 6N − 10 will do perfectly well. This revision will in turn require a picture of space

and time according to which quantities like the position and linear motion of the universe’s

center of mass are not needed to give a full description of a physical possibility. That sort of

picture is provided by so-called Galileian spacetime, in which acceleration, but not position

or velocity, is absolute.4 In this way, the present approach to symmetry points toward a

superior picture of space and time compatible with the success of Newton’s theory. The

key was to identify states that are related by spacetime symmetries as the same physical

possibility. The inference from spacetime symmetry to physical equivalence has sometimes

been called “Leibniz equivalence,” after his early arguments to similar conclusions.

The present approach can be applied similarly, and even more successfully, to our most

advanced spacetime theory: general relativity (GR). Unlike previous spacetime theories, GR

doesn’t occur against the fixed background of a single spacetime. Instead, many distinct

spacetimes (with distinct symmetries) are solutions of the same theory. The symmetries of

these individual spacetime solutions often provide interesting (although physically contin-

gent) information. But the interesting symmetries for purposes of the present approach are

4As Belot points out, we can even do without absolute acceleration if we count global variables for the
total angular momentum of the universe as fundamental quantities – although this further parsimony is not
entailed by the present approach to symmetry.
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the symmetries of GR as a whole: diffeomorphisms.

A diffeomorphism is simply a differentiable map taking all points in a spacetime to all

points in another (or the same) spacetime. In effect, a diffeomorphism is a re-labeling

or re-assignment of spacetime points which leaves unchanged spacetime’s matter content

and its metric structure (distance relations). For example, a diffeomorphism must leave

unchanged the distance between massive objects, but may alter which spacetime points those

objects occupy – in doing so it also alters the distance relations between the points. On the

present approach to symmetries, a physical spacetime should be given by a diffeomorphism

equivalence class of mathematical spacetimes. The diffeomorphism symmetry of GR thus

tells us that it makes no physical difference which points occupy which physical roles, so

long as the same physical roles and relations are instantiated.

What would it be like for the assignment of physical roles to points to be of metaphysical

significance? This would require, at a minimum, the existence of primitive facts about the

trans-world identity of points. For, if diffeomorphisms can relate different possibilities, it

must be possible for spacetime points to have their qualitative features reversed (or at least

for two different points to have the same qualitative features in two different worlds). This

might require a sort of haecceitism about spacetime points; at least it requires the existence

of apparently haecceitistic facts about points. It is natural, on the present approach, to

reject the possibility of such facts, since the symmetry of GR tells us that they do no work

in physical explanations. The principle of Leibniz equivalence thus extends straightforwardly

to GR.

What’s more, it permits the interpreter of GR to dodge an important problem the the-

ory raises for naive forms of substantivalism. This is the “hole argument” (see Earman and

Norton, 1987). If one does assume, contrary to the present approach, that there are distinct

physical possibilities related by diffeomorphisms, a strange sort of unobservable indetermin-

ism pops up in GR. This is because a diffeomorphism can sometimes leave a particular surface

of simultaneity (a state of the world “at a time”) unchanged while shuffling around what

happens at which point in the future of that surface. Since the shuffling changes nothing

invariant under GR’s symmetries, the indeterminism disappears on the present approach,

where only such invariants are physically real (Hoefer, 1996).

Besides being unobservable, the hole-argument indeterminism is spooky in that it offers

no probabilistic predictions about what will happen at which point. It simply entails that
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many diffeomorphism-related solutions (which the believer in Leibniz equivalence would

count as physically the same) are possible, without assigning likelihoods to any of them.

If this sort of chanceless, unobservable indeterminism strikes us (as I think it should) as a

theoretical problem for GR naively interpreted, the present approach to symmetries provides

a solution.

Some foundational confusion arises, however, in applying the present approach to narrow

down the fundamental physical quantities in GR. A natural requirement would seem to be

that the fundamental quantities remain constant along “gauge orbits,” curves in state space

that connect states related by diffeomorphisms. Quantities failing to meet this condition

would appear to be altered by symmetry transformations. But as Earman (2002) argues,

the list of quantities meeting this condition is very small, and includes no quantities that

take on different values at different times. Does this mean there is never temporal change in

any of GR’s fundamental quantities?

As Maudlin (2002) argues, this is an absurd result, since changing quantities like the

position of Mercury are the source of our evidence for GR in the first place. So Earman’s

argument must be an antinomy of sorts. Maudlin argues that this indicates a flaw in the

present approach to symmetries, but an alternative (although closely related) diagnosis by

Healey (2004) allows us to preserve the present approach while rejecting Earman’s conclusion.

As Healey points out, Earman’s assumptions about what counts as invariant under the

diffeomorphism symmetry of GR don’t hold up when the lesson of Leibniz equivalence is taken

into account. A paradigm example of an observable quantity in GR is the scalar curvature

of spacetime, R(x). This quantity changes along a gauge orbit because the mathematical

point x used to stand for a point p in physical spacetime can be altered by a diffeomorphism.

So while R’s value at p is left unchanged by the transformation, the formalism tells us

(misleadingly) that since R(x) is not unchanged, neither is the scalar curvature. This is the

misstep in Earman’s antinomy.

The present approach to symmetry has acquitted itself admirably in the philosophy of

space and time. It leads us to sensible and informative metaphysical conclusions while avoid-

ing the troubling implications of Earman’s antinomy and the hole argument’s indeterminism.

Moving on to other symmetries besides those of spacetime, we will find similar successes.
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4 Global internal symmetries and Humeanism

The symmetry transformations we just discussed act on a system by taking some spatiotem-

poral distribution of physical structures and rearranging it into a different distribution of

the same physical structures. There are also symmetries which involve only changes in the

values of the physical quantities. Since these transformations alter the value of the quantities

that constitute a physical structure, rather than changing anything spatially or temporally

external to it, we call them “internal symmetries.”

The most familiar example arises in introductory electrostatics. The electrostatic poten-

tial V (x) (measured in the unit of volts) is a quantity whose gradient at a point x determines

the electric field, and therefore the force, at x. Since adding a constant to V (x) (transforming

V (x)→ V (x)+c) does not change its gradient, such a transformation makes no difference to

the electrostatic force, and therefore no difference to the motion of charged particles. So any

such transformation leaves the dynamical law (Coulomb’s law) unchanged, and is therefore a

symmetry. We call it a “global” internal symmetry, since the transformation acts identically

on the value of V at every point (i.e., globally).

In another important example, the wavefunction ψ(x) which describes a system of par-

ticles in quantum mechanics is symmetric under a group of internal transformations called

phase transformations. ψ(x) is a complex-valued function on the 3N -dimensional space of

possible configurations forN particles. The likelihood of the particles’ locations falling within

a region R of this space on measurement is given by the integral of |ψ|2 over this region. The

square of a complex number is left unchanged if we multiply it by another complex number

of absolute value one. The complex numbers of absolute value one, each of form eiθ, θ ∈ R
form a group called U(1). Multiplying ψ(x) at every point by the same element of U(1) gives

a phase transformation, which leaves all probabilities (and relative phases) unchanged and

is therefore a symmetry of quantum mechanics.

Global internal symmetries of this sort present a challenge to a Humean combinatorial

metaphysics where the fundamental quantities are point-sized.5 This challenge arises in cases

where the symmetry transformations alter the numerical values of the fundamental point-

sized quantities – which should lead us to expect that the representation of these quantities

5According to such a view (e.g. David Lewis’s “Humean supervenience”), all features of worlds like the
one we live in supervene on the distribution of fundamental properties over points in spacetime.
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contains some surplus structure. In some cases (the quantum wavefunction is one such)

the surplus structure appears to include the representation of the quantities as localized at

points. After “modding out” the surplus, we are left with quantities less local or point-sized

than the ones we started with. Let’s look at the quantum example.

There are excellent reasons to be unsatisfied with a picture of quantum mechanics as

describing only probabilities for particles to show up somewhere when measured. What

counts as a measurement when all aspects of the world are presumably quantum? This is

the aptly-named measurement problem. One possible route to a solution is to suppose that

ψ(x) is a physical field on configuration space (see Albert, 1996).

This step in solving the measurement problem runs directly afoul of the present approach

to symmetries. The complex value of ψ(x) is altered by phase transformations, which are

symmetries of quantum theory. So therefore it cannot stand for a fundamental physical

quantity, but must instead represent surplus structure.

ψ(x) can’t be entirely surplus structure, since the values it takes at points fully deter-

mine a physical state and physical states must contain some qualitative information. So it

must be that the wavefunction consists partly of real physical information, and partly of

surplus structure. One way to get rid of the surplus is to suppose that |ψ(x)|2 is physi-

cally fundamental, and the breakdown of ψ into real and imaginary components is surplus.

Unfortunately, as Wallace (forthcoming, 52) points out, this leaves out information about

the relative phases of ψ’s components, which is of empirical import, since it determines the

degree of interference between these components.

Alternative candidates for fundamental quantities are given by other phase-invariant

quantities we can define in terms of ψ(x). One such is the density operator |ψ〉〈ψ|, an

operator on Hilbert space which contains all of the information about the state included in

the wavefunction. In a quantum theory defined on spacetime, like quantum field theory, one

can also construct a “local” density operator describing the state’s behavior in any region

of spacetime. Wallace and Timpson (forthcoming) have advanced an attractive view they

call “spacetime state realism,” according to which the density operators assigned to regions

stand for the fundamental quantities.

Due to the existence of entangled states, which exhibit instantaneous correlations between

distant parts of a physical system, the density operators which are fundamental in spacetime

state realism do not conform to Humean combinatorial metaphysics. The density operator
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of the region made up of regions A and B (their union) is not uniquely determined by the

operators assigned to A and B. In this way, a “spacetime state” universe is not built up of

localized parts that fully determine its large-scale features. Spacetime state realism, favored

by the present approach over the alternative wavefunction realist view, differs from that view

in part by denying what Lewis called Humean supervenience.

There may be alternative Humean ontologies for quantum theory which do respect phase

symmetry. For instance, Tumulka (2009) has proposed an ontology of instantaneous point-

sized “flashes” which are obviously invariant. But Tumulka’s ontology has so far been applied

to only a few toy quantum theories, whereas spacetime state realism applies to all of them

(since it uses only the pre-existing quantum formalism).

5 Gauge potentials and Aharonov-Bohm

When I transform the phase of a wavefunction ψ(x), I do so by multiplying it by the same

unit complex number at all points x. It is also possible for a similar theory to be symmetric

under internal transformations that differ from point to point (and even time to time).

This more complex type of symmetry is called a “local” internal symmetry, or local gauge

symmetry. Theories exhibiting it are called “gauge theories.”

Such theories make additional trouble for the Humean, if we hold to the present approach.

They also provide a case (like that of general relativity) in which the present approach dodges

serious problems of interpretation having to do with determinism. For in gauge theories,

ontologies which eschew the present approach to preserve a metaphysics of Humean point-

sized quantities face the problem of chanceless, unobservable indeterminism.

Although they may sound exotic, gauge theories are everywhere. The best-known exam-

ple is classical electrodynamics. In relativistic electrodynamics, the vector potential Ai(x)

is an often-used quantity. As a relativistic invariant, it is a four-dimensional vector; the

time component is the familiar electric potential V (x) (discussed above) while the space

components collectively form the magnetic potential. Since the value of V (x) is physically

unimportant, we would expect the same to be true of Ai(x)’s components, and indeed that

is correct. Physical predictions are fixed by the field tensor Fij(x) = ∂iAj(x)−∂jAi(x). This

quantity is left unchanged if we add the gradient of a scalar field to Ai(x), transforming

Ai(x) → Ai(x) + ∂iΛ(x). These are called (local) gauge transformations – local since they
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take on different values at different points x. Adding a gauge transformation to a vector

potential solution of Maxwell’s equations always gives us another solution.

Nothing prevents Λ(x) from taking on non-zero values in some parts of spacetime but

not others. In particular, in a given frame Λ(x) might be zero prior to t and non-zero after

t. This means that two solutions to Maxwell’s equations – two possibilities, according to

electrodynamics – can agree completely about the potential up until t while disagreeing

about its values thereafter. On any reasonable definition of determinism, this means that

Ai(x) does not evolve deterministically – its evolution is not even predicted probabilistically.

It is therefore a very poor choice of fundamental quantity for electromagnetism, which is

normally taken to be deterministic and whose observables evolve deterministically (except

in certain strange cases).

Cast in the extremely general “fiber bundle” formalism, this indeterminism is analogous

to the “hole problem” in general relativity we discussed earlier (see Healey, 2007). The

solution ought to be similar, i.e. a choice of potential should be similar to a choice of co-

ordinates, a conventional way of speaking about fundamental reality. One easy way to get

this result is just to stipulate that the field tensor Fij(x) is fundamental. (Since this quantity

isn’t changed by gauge transformations, we call it “gauge invariant.”) But such a posit is

undermined by a phenomenon called the Aharonov-Bohm effect.

In an Aharonov-Bohm experiment, a current is sent through a long (represented as infi-

nite) solenoid, or coiled electromagnet. The field Fij(x) remains zero outside the solenoid,

but the phase of complex waves passing by the solenoid is nonetheless altered. Since the

wavefunction ψ(x) of a quantum particle is a complex wave, and since its differences in phase

from other particles’ wavefunctions is observable, this leads to a measurable difference in the

behavior of quantum particles passing by solenoids despite the zero field in their vicinity.

If electromagnetic fields are the explanation for this behavior, they must act on quantum

particles at a distance – not a very elegant picture.

There are other gauge-invariant ontologies that can explain Aharonov-Bohm without ac-

tion at a distance, but as with spacetime state realism they are incompatible with a Humean

metaphysics. On one view, the fundamental quantities are so-called “holonomies,” which

are defined not at points but instead on closed loops in spacetime (Healey, 2007). Obviously

these are not local quantities in the sense preferred by Humean supervenience. On another

view, the fundamental quantities are gauge-invariant values of the so-called “connection,”
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which are (in Maudlin’s parlance) “hyper-local,” so that there is no determinate matter of

fact about whether distant spacetime points agree as to their value (Maudlin, 2007, 78-103).

Either way the present approach to symmetries, combined with the reasonable physicist’s

bias against discontinuous action at a distance, dictates a surprisingly revisionist ontology –

but one that preserves determinism against the specter of spooky unobservable indetermin-

ism.

6 Further questions

Considerations of space prevent me from posing, let alone addressing, all the interesting

problems in this area. To what extent do symmetries dictate the nature of forces? (Martin,

2002) How can they have empirical import? (Healey, 2009) Is the group a general enough

concept to represent all symmetries? (Guay and Hepburn, 2009) I leave the pursuit of these

problems to the interested reader.
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