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Abstract

In this note, I briefly review Lyre’s (2008) analysis and interpreta-
tion of the Higgs mechanism. Contrary to Lyre, I maintain that, on the
proper understanding of the term, the Higgs mechanism refers to a phys-
ical process in the course of which gauge bosons acquire a mass. Since
also Lyre’s worries about imaginary masses can be dismissed, a realistic
interpretation of the Higgs mechanism seems viable.
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1 Scalar electrodynamics

For the present purposes of reviewing Lyre’s analysis1 concerning the ontology
of the Higgs mechanism, I will not go into the details of the complete model
of spontaneous symmetry breaking of the electroweak interaction. The sim-
pler model of the electrodynamics of charged spinless particles also exhibits the
relevant features. I, like Lyre for the main part of his analysis, will therefore
restrict myself to this model. For the following exposition of this model, I use
the lecture notes by Wiese (2004) as my basis.

1Lyre 2008.
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The simplest version of the model is one in which the particles are free.
The model contains a complex scalar field Φ = Φ1 + iΦ2, Φ1,Φ2 ∈ R and the
dynamics of this field and its quanta are described by the Lagrangian

L =
1
2
∂µΦ∗∂µΦ− V (Φ), (1)

where

V (Φ) =
m2

2
|Φ|2. (2)

From the Lagrangian of this most simple of systems we can derive the corre-
sponding Euler-Lagrange equations

∂µ
δL

δ(∂µΦi)
− δL
δΦi

= 0 i = 1, 2, (3)

which coincide, in this case, with the familiar Klein–Gordon equations for two
free, spinless, charged fields with quanta of mass m:

∂µ∂
µΦi +m2Φi = 0. (4)

In the next complex version of the model, the scalar particles interact directly
among themselves. The interaction is described by a power of 4 in the field’s
absolute value which is added to the potential V such that it now reads

V (Φ) =
m2

2
|Φ|2 +

λ

4!
|Φ|4, (5)

where λ parametrizes the strength of the interaction and the factor 4! is intro-
duced for convenience in the perturbative solution of the dynamical equations
of the system.

For such models to be interpretable physically, the potential V must be
bounded from below. Otherwise the energy spectrum would also not be bounded
from below and, accordingly, there would be no ground state of the system,
which clearly cannot be the case for any real system. For the purely quadratic
potential of equation (2) there is thus no other choice than m2 > 0. For the
potential describing the self-interaction of the field Φ (see equation (5)), however,
m2 < 0 is possible also.

2 Spontaneous breakdown of a global symmetry

For m2 > 0, the model is globally symmetric with respect to U(1) transfor-
mations Φ′ = eiqφΦ, where φ ∈ R is the parameter of the transformation and
the factor q is introduced for more convenient identification of the charge of
the particles. With m2 > 0 and the potential of equation (5), the Lagrangian
of equation (1) describes a system of particles of approximately the mass m.
The mass of the particles is in this version of the model not exactly equal to
m because of the interactions among the particles. This reminds us that the
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coefficient of the quadratic term in the Lagrangian is equal to (half) the mass of
the particles only as long as the potential is approximately quadratic (like equa-
tion (2) or, more generally, like the potential of a harmonic oscillator). Only
then do the Euler-Lagrange equations approximately coincide with the Klein–
Gordon equation, on which our identification of the coefficient with the mass of
the particle was based.

For m2 < 0, the global U(1) symmetry of the model is spontaneously broken.
This means that the symmetry of the Lagrangian is still intact but the field
configuration which leads to a minimal value of V is not invariant under the
U(1) transformations any longer. Before, in the case of m2 > 0, the field
configuration with minimal V was simply Φ = 0. Now, with m2 < 0, there is no
unique configuration which minimizes V . A whole class of field configurations,

Φ =

√
−6m2

λ
eiχ, (6)

yield a minimum value for V . χ is the real parameter which characterizes a

particular member of the class. For convenience, I will abbreviate
√
− 6m2

λ by
v such that the minimal configurations read veiχ.

In order to estimate the masses of the quanta of the interacting fields, we
have to be able to equate approximately the actual potential of equation (5) by
the potential of equation (2), which is more readily interpretable in terms of a
Klein–Gordon equation as discussed before. Therefore, we have to perform a
series expansion of the Lagrangian around the point of minimal value of V . We
obtain this expansion by substituting v + σ + iπ for Φ, where σ and π are two
real fields of which we only consider infinitesimal excitations. In terms of the
newly introduced σ and π fields the Lagrangian takes the form

L =
1
2
∂µσ∂

µσ +
1
2
∂µπ∂

µπ − 1
2

(−2m2)σ2 + . . . , (7)

where I left out higher order terms in the fields. This form of the Lagrangian,
valid for small absolute values of σ and π, allows us to read-off the approximate
masses of the quanta of this system of self-interacting fields: zero for the quanta
of the π field,

√
−2m2 for the quanta of the σ field.2 In the complete electroweak

model, the quanta of the π field would correspond to the Goldstone bosons and
the quanta of the σ field to the Higgs boson.

We now also see that Lyre’s worries, his “third observation”,3 about the
imaginary mass that would result from the identification of the coefficient of
|Φ|2 as the square of the particles’ mass is unjustified. The identification can
only be made if the potential V is approximately quadratic.

2Remember m2 < 0. Therefore, −2m2 > 0 and
√
−2m2 positive and real.

3Lyre 2008, p. 126.
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3 Spontaneous breakdown of a local symmetry

For reasons not to be discussed here, one prefers models which exhibit even a
local symmetry, instead of a merely global one. In order to promote the global
U(1) symmetry, discussed above, to a local symmetry, one has to introduce a
gauge field and a covariant derivative. The gauge field will eventually describe
an interaction between the fields whereas, in the case of the global symmetry,
the interaction between the particles was direct and immediate.

The Lagrangian that describes a locally symmetric model of spinless charged
particles which interact through a gauge field is

L =
1
2

(DµΦ)∗DµΦ− V (Φ)− 1
4
FµνF

µν , (8)

where Dµ = ∂µ − iqAµ is the covariant derivative, Aµ the gauge field, q the
strength of the coupling of the scalar field to the gauge field (in other words:
the charge of the scalar field) and Fµν = ∂µAν − ∂νAµ the field strength tensor
associated with the gauge field. The combination − 1

4FµνF
µν describes the

kinetic energy of the gauge field. For the purposes of our simplified model of
the electroweak interactions, Aµ is the electromagnetic field and its quanta the
photons. V (Φ) reads, as in the case of global symmetry, m2

2 |Φ|
2 + λ

4! |Φ|
4.

As in the case of global symmetry, the Lagrangian describes either the sym-
metric phase (if m2 > 0) or the broken phase (if m2 < 0). In the symmetric
phase, the field configuration which minimizes V is again just Φ = 0. The
masses are approximately given by the coefficients of the quadratic terms in
the Lagrangian. There are two fields, Φ1 and Φ2, which both have quanta of
mass m2. Because there is no quadratic term of the gauge field, its quanta (the
photons) are massless.

In the broken phase, i. e. when m2 < 0, we have to do again the series
expansion around one of the field configurations which minimize V , i. e. around
veiχ for some χ ∈ R, see equation (6). Apart from higher order terms, we obtain,
as was the case with the spontaneous breakdown of the global symmetry, a
quadratic term in σ. Its coefficient gives us the approximate mass of the quanta
of the sigma field,

√
−2m2, see equation (7). The terms of the Lagrangian

involving derivatives, however, does now not only yield, a derivative of σ and
π like in equation (8) but, apart from higher order terms, also a term which is
quadratic in the gauge field, 1

2q
2v2AµA

µ, and a term which is a product of the
gauge field and the derivative of the π field, 1√

2
qvAµ∂

µπ. The former is readily
interpreted as a term describing a photon of mass qv. The latter term does not
lend itself to such an interpretation nor is there any quadratic term in π that
would do so.

Therefore, to determine whether there are other quanta, massive or not,
apart from the quanta of the σ and the gauge field Aµ, we have to bring the
Lagrangian in a more appropriate though equivalent form. This is achieved by
taking advantage of the principle which states that physical states which are
related by a gauge symmetry transformation are empirically indistinguishable.
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global local

symmetric mσ = mπ = m mπ = mσ = m, mγ = 0

↓∗

broken mσ =
√

2|m|, mπ = 0 mσ =
√

2|m|, mγ = qv

Table 1: Approximate masses of the quanta which exist in the symmetric or
broken model of interacting spinless charged particles, in the case of global or
local symmetry. “mγ” denotes the masses of the quanta of the gauge field, the
photons. The transition, denoted by the starred arrow, from the symmetric to
the broken phase, in the case of the local symmetry, is the Higgs mechanism.

This is the case for the members of the class of field configurations which min-
imize V , see equation (6). They are now related by the gauge transformation
Φ(x)′ = eiqφ(x)Φ(x). Before, they were only related by the global symmetry
transformation Φ′ = eiqφΦ, where the parameter φ does not depend on the
space-time coordinate x.

Because of this freedom to choose the gauge, the real field, σ, suffices to
describe the small excitations of the complex field Φ around the configuration
which minimizes V . There is, actually, no π field needed at all. In slightly more
technical terms, this means that we can choose a unitary gauge in which the
Φ, appropriate for the series expansion around the minimal configuration, reads
just Φ = v + σ. Apart from higher order terms, there now only remain readily
interpretable terms in the Lagrangian:

L =
1
2
∂µσ∂

µσ − 1
2

(−2m2)σ2 +
1
2
q2v2AµA

µ − 1
4
FµνF

µν + . . . (9)

In this form, we see that the Lagrangian describes massive quanta of the σ field
and massive quanta of the gauge field. This is indicated by the quadratic terms
in these fields; the other terms describe the kinetic energy of the fields. Contrary
to the case of the spontaneous breakdown of the global symmetry, we see that
here, in the case of local symmetry, we have a massive photon but no Goldstone
boson (the quanta of the π field). Compared to the locally symmetric phase, the
difference is that we have a massive, instead of massless, photon and no quanta
of the π field at all, see table 1.

4 The Higgs mechanism

A closer inspection of table 1 reveals that the number of physical degrees of
freedom is unaffected by the spontaneous breakdown of the symmetry, either
local or global. In the case of the global symmetry, the number of degrees of
freedom is two, before and after the spontaneous breakdown of the symmetry,
because each scalar particle has one degree of freedom, irrespective of its mass.
In the case of local symmetry, it might seem, at first sight, that one degree
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of freedom is somehow lost in the course of the spontaneous breakdown of the
symmetry, because in the symmetric phase there is a quantum of the π field
while in the broken phase there is none. However, the number of degrees of
freedom of the gauge field depends on whether it is massive or not. In the
symmetric phase, the photons are massless and thus have two physical degrees
of freedom only. In the broken phase, the photon has a mass and thus has three
physical degrees of freedom.

The Higgs mechanism is the transition from the symmetric to the broken
phase in the case of a local symmetry, see table 1.4 This is the transition from
a state in which there are two massive scalar fields, σ and π, and a massless
gauge field, Aµ, to a state in which there is only one scalar field, σ, with massive
quanta, and a massive gauge field. The Goldstone boson, the massless quanta
of π, which appears in the broken phase of a global symmetry, does not appear
in the broken phase of a local symmetry. In a metaphorical manner of speaking,
one therefore often says that the Goldstone boson, which would appear if the
symmetry were global, is “eaten” by the photon which thus becomes massive.5

At the same time, this metaphor of eating might be responsible for the con-
fusion behind Lyre’s claim that the Higgs mechanism is nothing but a reshuffling
of degrees of freedom and as such cannot possibly refer to a physical process.
Such a claim can only be maintained if one means by “Higgs mechanism” the
transition from the system described by the Lagrangian of equation (8) to the
Lagrangian of equation (9). However, this is clearly not a transition between two
physically distinct systems, as Lyre correctly points out, but a mere transition
from one description of the system to another equivalent description. One might
be tempted to apply the eating metaphor to this transition, too, because in the
first description the π field appears in one of the terms of the Lagrangian while
in the second description it does not. However, it is the same physical system,
without π quanta, that is described in both cases. The only difference between
the two cases is that one form of the description (equation (9)) clearly shows
that, in fact, there are no π quanta, while the other form of the description
(equation (8)) is less directly interpretable.

The Higgs mechanism has, therefore, the same ontological status like any
other mechanism of spontaneous symmetry breaking, which we observe, for in-
stance, in ferromagnets or superconductors. Lyre’s analysis concerns the tran-
sition between two equivalent descriptions of the same physical system which
should and, in fact, usually is not called the Higgs mechanism. The proper

4For some purposes, this statement may be over-simplified. The relation mγ = qv (see
table 1) shows how the mass of the gauge boson depends on the strength of the coupling q
of the scalar field to the gauge field. The second row of table 1 shows how, in the broken
phase, the introduction of a gauge field and the requirement of a local symmetry, instead of
only a global one, leads to the disappearance of the (massless) Goldstone boson π. These
observations are emphasized in Higgs (1964) and Anderson (1963), for instance. Accordingly,
in a more complete characterization, the Higgs mechanism should be seen in the combination
of the two processes of coupling the scalar field to the gauge field (going from left to right in
the second row of table 1) and the transition from the symmetric to the broken phase of a
local symmetry (going from top to bottom in the second column of table 1).

5To my knowledge, the metaphor goes back to Coleman (1985, p. 123).
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understanding of the term is that of a transition from a symmetric phase of a
physical system to an asymmetric (or broken) phase. In the course of this tran-
sition one type of massive charged spinless particle disappears and the gauge
field, the quanta of which are massless in the symmetric phase, becomes mas-
sive. According to most, or at least some, of today’s cosmological theories,6

such a process has happened during the cooling of the early universe and is, as
such, as real as it can get.

Adrian Wüthrich
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