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Introduction

Where does the realist stand when it comes to quantum field theory (QFT)? The answer obviously depends on what she takes to be the elements of her ontology.  The kind of ‘object oriented’ stance typically adopted elsewhere (Psillos 1999) faces well-known problems in spelling out what these elements are in this context. Fraser argues that they cannot be particles (Fraser 2008), where by ‘particle’ here she specifies entities that are countable and satisfy a relativistic energy condition but, crucially, do not have to be localizable. One could perhaps defend something akin to an object oriented stance by pursuing an interpretation of quanta subject to the underlying formal framework of quasi-set theory (see French and Krause 2006, Ch. 9). The quanta would then regarded as non-individuals
, with a quasi-cardinal assigned to their aggregates, without there being a (classically) correlative ordinal – so in one sense they are not countable but we could still regard the aggregate in an object-like manner. 

Of course, as is well-known, Haag’s theorem raises certain difficulties once interactions are brought into the picture (Fraser op. cit.). It establishes that quantum field theories incorporating interactions cannot be represented in the same Hilbert space as the theory of free fields (a conclusion that follows from the formal results we shall be considering here). Hence an interacting field cannot be represented in terms of the superposition of free particles.  One possibility then might be to pursue Bain’s ‘asymptotic particle’ approach (Bain 2000), in which particles emerge as free ‘in the limit’. It is important to note that rather than trying to extend the particle concept from the ‘free’ context to that of interactions – which is what Haag’s theorem blocks – Bain begins with the interaction picture and tries to construct a (limiting) notion of particle on that basis. The obvious objection is that asymptotic freedom yields too ‘thin’ a notion to satisfy the realist: with the number occupation operator only being defined in the asymptotic limit, countability is again a problem. 
These arguments against a particle interpretation of QFT may not be decisive but they certainly push the realist to place her ontological commitments elsewhere. A natural alternative would be a field based metaphysics. However, Baker has recently claimed that similar arguments to those that undermine the particle picture can also be turned against fields (Baker 2009) and thus this option also becomes problematic
. In particular he notes that the most popular way of fleshing out the metaphysics involves wavefunctionals defined on Hilbert space. However, the latter is equivalent to the Fock space in which states are represented as particle configurations. It then turns out that the same formal results that lead to the problem with particle number also generate a similar problem with regard to field configurations. And again, just as no Fock space supporting the particle interpretation can be defined in the case of interactions, so no wavefunctional space can be defined in this case either. As in the particle case, there may be a way of sustaining some kind of field interpretation
 but, again, the realist might feel it best to look for a further alternative ontology.

Thus she might turn to one of the various forms of structural realism on offer and take her ontological commitments to rest with some notion of underlying structure. Indeed, certain of these forms have already been put forward in this context (see, for example, Cao 2003; French and Ladyman 2003; Saunders 2003). I shall focus here on so-called ‘ontic’ structural realism which posits that the world itself should be understood in structural terms, with putative objects regarded as ontologically derivative or eliminated altogether. The structure itself can be conceptualized in terms of the relevant laws and symmetry principles associated with the given theory (Ladyman 1998; French and Ladyman op. cit.; Ladyman and Ross 2007; French and Ladyman forthcoming). The latter have long been viewed as ‘higher rules and principles’ imposed on the former. How these principles and laws inter-relate is an interesting issue (see Cei and French forthcoming) but in general terms the structure of the world can be thought of as a ‘web of relations’ – as represented by the relevant laws etc. – ‘tied together’, as it were, by the higher order symmetry principles
. In particular, these yield our standard physics-based division into natural kinds – a point to which I shall return below – with the distinction between fermions and bosons, for example, understood as resulting from the action of the permutation group, the properties of mass and spin understood in terms of the relevant irreducible representation of the Poincaré group and so on. In general, the symmetries represent the invariants in terms of which the ‘nodes’ in this structure can be described and it is the latter that come to acquire the metaphysics of ‘objecthood’. Of course, as far as the ontic structural realist is concerned, the latter notion is to be understood as derivative at best, with structure as the fundamental ontological category. This stance then divides into eliminativist and non-eliminativist forms, with the former insisting that there are no objects, strictly speaking (in the sense that putative objects are entirely and metaphysically reducible to structure in some sense), and the latter adopting a ‘thin’ ontology of objects, whereby their identity is determined contextually, via the relations they enter into (for further details, see French and Ladyman forthcoming). Despite their (slight) differences, both forms place significant ontological emphasis on the group-theoretic invariants described in terms of the relevant symmetry principles (see also French forthcominga).  

Returning to QFT, Baker (op. cit.) suggests the adoption of a form of ‘algebraic’ interpretation and although he himself is not sympathetic towards structural realism, this might be seen as consonant with a ‘QFT-friendly’ form of that position
. However, the structural realist has to face a fundamental problem: how to accommodate the unitarily inequivalent representations that arise in QFT, described as ‘[p]erhaps the single most important problem in the foundations of QFT’ (ibid., p. 592). This will be the central focus of my paper.

As Ruetsche has put it, these representations are ‘[a] characteristic, and provocative, feature of quantum field theory (QFT)’ (2003, p. 1329). As she then goes on to note, if we assume that unitary equivalence is a necessary condition for the physical equivalence of Hilbert space quantizations, (see the discussion in Baker op. cit., section 4.3; Baker (forthcoming) challenges this assumption, as we shall see) then we seem to have a problem when it comes to adopting any kind of realist stance towards QFT: assuming that the realist will take some equivalence class of representations as corresponding to reality, she will be faced with a set of non-isomorphic choices. 
As Howard observes (forthcoming), this seems particularly damaging for the structural realist, for the following reason. We recall that in his original presentation of ‘ontic structural realism’ Ladyman (1998) gave as an example the equivalence between matrix and wave mechanics, with both understood in terms of functionals on Hilbert space. Features of the latter are then taken to represent relevant aspects of the structure of the world. In this case, where we have systems with finite degrees of freedom, the Stone-von Neumann theorem ensures equivalence of representations. In the case of systems with infinite degrees of freedom, such as those covered by QFT, the theorem fails. Thus, in the absence of isomorphism in the case of these representations of QFT, the structural realist appears to be in difficulty. As Howard emphasises, ‘…it’s not just that there happen to be a variety of alternative ontological pictures among which theory is impotent to choose. No, in this case there exist, of necessity, a variety of structurally inequivalent representations of physical reality.’ (forthcoming). The problem then is that, on the one hand, the structural realist cannot respond in the same way as she did with the wave and matrix mechanics representations; but on the other, it is not clear that any grounds for choosing one inequivalent representation over another can be justified in structuralist terms. How might the structural realist respond to this dilemma?

Here I shall explore two broad options. The first involves adopting Wallace’s ‘naïve Lagrangian’ or ‘conventional’ stance towards the content of QFT and dismissing the generation of inequivalent representations as either a mathematical artefact or as non-pathological. The second takes up Reutsche’s ‘Swiss Army Knife’ approach and takes the relevant structure as spanning a range of possibilities. Both options present interesting implications for structural realism and in the course of their presentation I shall also consider related issues to do with underdetermination, the significance of spontaneous symmetry breaking and how we should understand superselection rules in the context of quantum statistics. Finally, I shall suggest a way in which these options might be combined.


Before I begin this exploration, let me briefly recall the origin of the problem.

The Generation of Inequivalent Representations (for details see Haag 1992; Halvorson and Mueger 2006 §7, Ruetsche 2003)
One of the fundamental issues here is that of determining the content of QFT. The representational role of mathematical description is then crucial, of course. In this context the issue becomes particularly acute, since, as briefly indicated above, standard renderings of that content in terms of either particles or fields are particularly problematic. Algebraic QFT seems then to provide a natural home for a structuralist rendering as under this formulation the theory is fundamentally described mathematically in terms of a net of (observable) algebras, where an algebra of (bounded) operators on Hilbert space is associated with open regions of space-time, and the algebra is generated by ‘smeared out’ fields with test functions having their support in the relevant region (Haag op. cit., p. 104)
. The role of the fields on this conception is only to provide a ‘coordinatization’ of the net (ibid.). 


According to the ‘algebraic chauvinist’ (Ruetsche op. cit., p. 1334), all the physical content of the theory is encoded in that net, with the representations of the algebra seen as having diminished or, more strongly, no ontological significance. Furthermore, by the Gelfand-Neimark-Segal theorem, all the Hilbert spaces we need are ‘hidden inside’ the algebra (Halvorson and Müger op. cit., p. 38). However, this may appear not to yield all the features of QFT that we want, such as the connection between spin and statistics (ibid.). Hence one might shift to another form of chauvinism – ‘Hilbert space chauvinism’ (Ruetsche op. cit., p. 1330) – that identifies physically relevant observables with the set of bounded operators on a particular Hilbert space. The problem then is how to justify that choice of Hilbert space in the face of the existence of inequivalent representations.


As I’ve said, these arise when the number of degrees of freedom of the system becomes infinite. In non-relativistic quantum mechanics, when that number is finite, the canonical commutation relations that hold between the position and momentum operators fix (under certain ‘natural’ requirements) the representation of these operators in Hilbert space, up to unitary equivalence (Haag op. cit., p. 2). In QFT (and in the thermodynamic limit of statistical mechanics; see Ruetsche 2003), this does not hold and one obtains a ‘host’ of inequivalent representations of these relations (Haag op. cit. and pp. 56-57). This feature of the theory has a number of profound consequences (including Haag’s Theorem which undermines the particle interpretation as noted above; ibid. p. 57) but its significance for our discussion here lies in the fact that the algebraic structure does not fix the Hilbert space representation. 


This appears to create a serious problem for the Hilbert space chauvinist, whereas her algebraic counterpart will greet this feature ‘with a yawn’ (Ruetsche op. cit., p. 1334).
 Which stance should the structural realist take? With its emphasis on the ontological significance of symmetry as represented group-theoretically, structural realism has been taken to downplay the importance of the relevant representations
 and as I have already indicated, it might appear to naturally side with the algebraic chauvinist. However, as we shall consider below, this may yield a conception of structure that is physically too ‘thin’ to sustain a form of realism. Insisting that the group, or rather the group algebra, and a particular representation should be taken as a (structurally understood) package – and thus that the structuralist should ally herself with the Hilbert space chauvinist – is also problematic, since any basis for selecting this representation over any other (should that even make physical sense) will likely be dismissed as non-structural. 


Alternatively, the structural realist may simply reject the very ground of the problem and insist that the appropriate characterisation of QFT is not achieved algebraically. I shall consider this possibility first, before returning to the issue of inequivalent representations and indicating how the structural realist might accommodate them.
Option 1: Adopt ‘conventional’ QFT

Wallace (2006) has defended the view that the form of QFT that the mainstream physics community works with, namely Lagrangian, or as he now calls it, ‘conventional’ (or even ‘cut-off’) QFT (see Wallace forthcoming), is a perfectly respectable physical theory suitable for foundational analysis. In particular, as he points out, it is within this framework that the Standard Model is formulated. Here one begins with a classical field, expresses it in Lagrangian form and then quantizes it (for details, see Wallace 2006).  However, as is well known, when interactions are incorporated, integration over arbitrarily short length scales is required, yielding the infamous infinities. As Wallace notes, the now standard move is to take the cue from condensed matter physics and introduce a cut-off length, resolving the problem with the infinities. This is where opinions differ as to whether we then have a well-defined theory or not. Advocates of Algebraic QFT (AQFT) typically argue that we do not, and that the search must continue for a theory that is well defined at all length scales. Wallace, however, argues that we can still give a reasonably clean conceptual description of conventional QFT, even while regarding it as the lower-energy limit of a theory that has yet to be discovered. As he notes, the relationship here is somewhat different from that between, for example, classical mechanics and non-relativistic quantum mechanics, but nevertheless, he insists, a ‘discretised’ form of QFT can be seen as analogous to classical mechanics in this respect. This is an important point to which I shall return, since it reveals a significant difference in attitude from that adopted by advocates of the AQFT programme. 

A further important argument advanced by Wallace is that, given the cut-off, the existence of inequivalent representations poses no problem since they can be dismissed, depending on their type, as either a mathematical artefact or physically real, but non-pathological. Since these inequivalent representations only arise in the case of systems with infinite degrees of freedom, there are two ways in which they can arise: when we go to short distances and high energies, or when we go to long distances. In the former case the inequivalences occur because of the existence of degrees of freedom at arbitrarily short length scales, but given the cut off at these length scales, from this perspective, the occurrence of inequivalent representations is simply a mathematical artefact.


In the ‘long-distance’ case, the inequivalences arise because of the imposition of different boundary conditions imposed on the relevant wave-functionals at infinity (see Wallace 2006, pp. 57-58 for examples). However, Wallace has argued, the inaccessibility of the representations is analogous to that of the long-distance structure of the universe given measurements confined to a local spatial region, from a classical perspective. In other words, the inequivalent representations encode inaccessible information but this is rendered ‘respectable’ by the fact that ‘…we are always analysing a theory in a finite region — and idealizing the system beyond that region in whatever manner is convenient — so different choices of representation should not affect our conclusions.’ (ibid., p. 59)


Thus, inequivalent representations pose no problem since either they are eliminated by taking the relevant cut-off, or they can be dismissed as arising from our confinement to a finite region of the universe. 


Now, is this a reasonable option for the structural realist to take? Certainly Wallace’s general approach to theories meshes nicely with a structuralist perspective. As he says, ‘the sort of information which we are interested in getting from physical theories is structural information.’ (ibid. p. 74). The need, as he puts it, to understand theories in such terms is particularly pressing in this case because, assuming the standard approach to renormalisation, ‘…QFT only makes sense if we include in it some vestigial aspects of the very theory which we expect to replace it.’ (p. 75) Thus, as noted above, conventional QFTs must be understood as merely approximations to the structure of some deeper, currently unknown theory. Of course, this stance towards QFT is not unusual in the history of physics. Rueger, for example, has noted its adoption in the early development of the theory, when the central question was  '[w]hich traits of a quantum theoretical formalism, valid at low and moderately high energies, would remain unchanged if the high energy behavior of the formalism were, more or less radically, to be modified?’ (Rueger 1990, p. 209). Thus Heisenberg, for example, sought to separate those concepts which could not be applied in the future theory from those which would most likely remain unaffected by the problems encountered at high energies (ibid.). Nor is such a stance confined to structural realists of course. Nevertheless, it meshes well with the approach to inter-theoretic reduction that Wallace has both adopted and identified explicitly as closely related to that of structural realism (op. cit.). 


So, if the structural realist were to adopt this understanding of QFT, she could respond to Howard’s challenge by following Wallace’s dismissal of inequivalent representations above. However, despite Wallace’s (early) insistence that conventional QFT is not in conflict with AQFT, and indeed, may be seen as complementary to it (a conciliatory stand that he has since abandoned; see Wallace forthcoming), it is this understanding that Fraser, as a defender of AQFT has rejected. Given that AQFT might seem to be the ‘natural’ programme for the structural realist to adopt, it is worth exploring her objections.

Response: AQFT, Inequivalence and Underdetermination

Fraser sees ‘conventioinal’ QFT and AQFT as lying at opposite ends of a spectrum of interpretations that underpin a form of underdetermination of theory by empirical evidence (2009; forthcoming)
. Moreover, she maintains, the underdetermination can be broken in favour of AQFT
. Interestingly, the grounds for this claim reveal a different stance towards approximately true theories and theoretical progress in general, than Wallace’s outlined above. 


The fundamental basis of Fraser’s disagreement here has to do with the resolution of the inconsistency that arises from Haag’s theorem which, as already noted, acts as a ‘no go’ theorem for the interaction picture of QFT. She expresses this in terms of an inconsistency as follows:

‘Let F be the statement that the system described is free. By Haag’s theorem, {T} ⇒ F. But, the interaction picture was introduced for the purpose of treating interacting systems; thus, by assumption, the system described by the interaction picture is not free. This sets up a reductio ad absurdum: {T}&~F ⇒ F&~F. Thus, Haag’s theorem informs us that the source of the problem with the interaction picture is that it is inconsistent. Furthermore, Haag’s theorem establishes that this is an entirely generic problem; the theorem does not hinge on any assumptions about the specific form taken by the interaction.’ (ibid., p. 547)
As Fraser notes, there are various ways one can respond to this inconsistency within the QFT framework. Thus, by reducing the number of degrees of freedom from infinite to finite, ‘cut-off’ interpretations, such as that canvassed by Wallace, block the applicability of the theorem. The AQFT approach, on the other hand, seeks to modify or reject one of the core assumptions of the interaction picture in the hope of obtaining a consistent set of axioms. Fraser characterises these as ‘pragmatic’ and ‘principle’ approaches respectively. As she notes (citing da Costa and French’s work on inconsistency in science; see da Costa and French 2003), the history of science presents various examples of theories that were inconsistent and for which a pragmatic approach was taken. However, she insists that in the case of QFT there is a compelling reason to demand a consistent formulation, namely that since QFT is by definition the theory that unifies quantum mechanics and special relativity, ‘…the project of formulating quantum field theory cannot be considered successful until either a consistent theory that incorporates both relativistic and quantum principles has been obtained or a convincing argument has been made that such a theory is not possible.’ (ibid., p. 550) Thus the pragmatic approach is deemed to be inadequate since it leaves unanswered the question whether QFT is possible. 


Hence, according to Fraser, only AQFT offers an appropriate response to the inconsistency. However, it must be emphasised that the so-called ‘pragmatic’ approach does not imply that, as she puts it, one treats only the symptoms of the disease of inconsistency and does not seek a cure. In the examples that are standardly given from the history of science, efforts were made to resolve the inconsistency and obtain a consistent successor theory. This is clearly seen in the case of Bohr’s theory of the atom, or the old quantum theory in general (Vickers forthcoming). Thus her ‘compelling reason’ to prefer AQFT is beside the point, since one can be an advocate of the pragmatic approach and defend a form of the ‘cut-off’ interpretation, say, but only as a provisional, or preliminary stage towards a ‘deeper’ consistent theory. Indeed that seems to be Wallace’s position. This sort of pragmatic approach should not be characterised as inadequate for leaving unanswered the question whether QFT is possible because it may be tied to a very different conception of what QFT will ultimately be, or will accept that QFT – as understood from the ‘principle’ perspective – is not in fact possible and that we should move more or less immediately to some form of quantum gravity. 


Indeed, it is not as if the AQFT programme has conclusively demonstrated that a consistent QFT is possible, since as Wallace notes, there is as yet no realistic interacting model of the relevant axioms. Fraser suggests that this concern can be alleviated by acknowledging that AQFT is a programme which has yet to be completed (op. cit., p. 557)
. However, this weakens the ‘compelling reason’ to favour AQFT, since both it and those interpretations deemed to be pragmatic now seem to adopt the same stance with regard to the inconsistency: accept it, or rather the associated theory, as a staging post towards a consistent successor. 
Relatedly, Fraser rejects the partial structures approach to inconsistency (for more details see da Costa and French 2003), which she associates with the pragmatic approach, and in terms of which inconsistent theories may be regarded as partially true, on the grounds that AQFT is to be preferred because it may be ‘wholly true’ whereas ‘pragmatic’ interpretations, such as the ‘conventional’ version, may only be partially true (fn. 22, pp. 553-554). However, the partial structures approach and the attendant notion of partial truth is intended to apply to all our current theories, whether viewed as ‘principle’ or ‘pragmatic’, since until we have reasons to suppose that we have reached the ‘final’ theory, they may be all be replaced by successors. This is obviously true even in the case of AQFT since it does not take account of gravity and hence we know already that it will come to be replaced (assuming a unifying tendency in physics). Thus even AQFT should be regarded as partially true and indeed we know now that it cannot be wholly true (at least not in the sense of true of gravitational phenomena as well; if it is maintained that it may be regarded as wholly true within its appropriate domain, then that still amounts to a form of partial truth; see da Costa and French op. cit., Ch. 4). 
This is a significant issue in this context, not least because if the structural realist is going to adopt Wallace’s approach, some (more or less formal) framework needs to be provided in terms of which the relevant inter-relationships between theories can be represented and which also has some connection to an appropriately realist understanding of approximate or partial truth. Ladyman originally adopted the partial structures approach in his (1998) for these sorts of reasons but of course that does not preclude some other framework being deployed for this purpose. Even if one were to follow Fraser in adopting the AQFT line, similar reasons would apply, not least because, as we have just seen, she too must view QFT, in axiomatised form, as a step on the road towards a more inclusive successor. Furthermore, there is a danger, within structural realism, of allowing these sorts of considerations regarding inter-theory relationships to ‘pull away’ from those that concern ontology and the structuralist understanding, or reduction, of the relevant objects (see French 2006).

One way of avoiding that danger is be clear on what is representing what and at what level. Thus Brading and Landry make a useful distinction between the presentation of the entities in question via the relevant structure that our theories make available and the representation of such entities by those theories (Brading and Landry 2006). Here the entities, namely fields, can be taken as presented by the relevant algebra, and the structural realist hopes (contra Howard) that she can then read appropriate ontological significance into that presentation. The role of this structure within the theory, as well as the inter-relationship with predecessor and putative successor theories can then itself be represented via the partial structures approach, which – due primarily to the set-theoretic formalism in which it is couched – offers an appropriate representational framework for the philosopher of science (see French forthcominga). Having said that, the focus of this paper is on the above presentational aspect and the crucial concern whether any such presentation amenable to structural realism is even possible.
This brings us to the differences between Fraser and Wallace with regard to what counts as an ‘interpretation’, in the context of what the realist’s commitments should be. For Fraser, giving an interpretation means giving an answer to the question: “if QFT were true, what would reality be like?” She contrasts this with Wallace’s stance, which replaces this question with “given that QFT is approximately true, what is reality (approximately) like?”
 This obviously goes to the heart of what we think we are doing when we interpret a theory or, more bluntly, ‘read off’ our realist commitments from the relevant formalism. Now, Fraser’s broadly modal approach is compatible with a constructive empiricist stance, according to which different interpretations should be regarded as different ways the world could be. On such a view, one can certainly entertain Fraser’s question since constructive empiricism allows that theories might well be true but insists that we cannot know this. Of course, this does not preclude casting the question in realist terms. The issue then is how one should understand the limited scope of the theory: as an unsuccessful attempt to describe the world in its entirety, or as an attempt to describe the world in some limited or circumscribed respect
. Fraser takes Wallace to be adopting the former understanding, whereas she argues for the latter. Thus within the domain of relativistic phenomena without gravity, QFT can be regarded as if it were true and we can consider what the world would be like on that basis. Likewise, we might take Newtonian mechanics to be true within a limited domain and this is certainly a useful way of presenting things when it comes to the inter-relationships with quantum theory. Interesting issues then arise as to how the realist might understand this domain specific sense of truth – one option might be to adopt a form of pragmatic truth, for example (see da Costa and French 2003). However, it is not my intention to explore these issues here – except to note that although due consideration would need to be given to the notion of ‘domain’ (see Shapere 1977)
 and inter-theory relationships in this context, this way of understanding the scope of theories does not appear to rule out a structural realist position.

On the other hand, Wallace’s approach might be seen as being more in step with the underlying assumption of many current forms of realism that takes our theories to be approximately true of the world rather than wholly true of a limited domain. From the former perspective, the question then is how best to understand the ‘picture’ of the world presented by the theory on that basis. This picture will of course shift as science progresses and given that one of the motivations for structural realism is to respond to the Pessimistic Meta-Induction and theory change in general, Wallace’s line again meshes with this view
. 
As far as Fraser is concerned, however, Wallace gets it the wrong way around in adopting Lagrangian or conventional QFT and then looking for the deeper successor theory on which this form of QFT can be grounded. How, she asks, are we to determine the content of this successor theory? Obviously we should use QFT as our starting point, but such a move should involve the assertion of a certain approximate continuity at the theoretical level, not merely at that of the relevant empirical structures. Granted this point, pinning down the theoretical content of QFT is crucial for determining this deeper level successor, but that content, she insists, is better represented by AQFT than the Lagrangian form.

Here we enter into quite subtle considerations as to which elements of our current theory should be ‘projected’ in order to help in the determination of its successor. Perhaps following the line suggested by Post in his discussion of the heuristics of theory construction (Post 1971), we might focus on the relevant symmetry principles, a move to which the structural realist would certainly be sympathetic. Unfortunately, as Wallace admits, the discretized QFTs he considers are not covariant. One option would be to simply accept that the successor theory might not be covariant, or even might not involve space-time at all at the fundamental level (as in the case of loop quantum gravity). Covariant space-time would then emerge from this more fundamental theory as an ‘effective, approximate’ concept. 

Alternatively, if the cutoff variant were regarded as approximately Poincaré covariant this would not help, since approximate Poincaré covariance at large distance scales does not provide any indication as to whether the successor theory is covariant or not (Fraser op. cit. p. 562). On the other hand, Fraser argues, if we follow the principle (AQFT) approach we will either discover that Poincaré covariance taken as an exact principle is a useful guide to the successor, or that it is not possible to combine it with other field-theoretic principles, in which case we have again learned something significant. And more generally, searching for a realistic model of AQFT might well lead to a more general mathematical framework in terms of which the successor could be formulated (although in that case, presumably this more general framework will supersede that of AQFT). This has taken us into the realm of heuristic strategies but Fraser’s conclusion is clear: ‘Resting content with the cutoff variant of QFT because it is empirically adequate at large distance scales would be a strategic mistake because it would hinder the search for theory X.’ (ibid.) Wallace sees no such hindrance and claims that Fraser’s argument here ‘… is an argument for the first-order project of trying to find interacting algebraic quantum field theories, not for the philosophical project of asking what the world would be like if there was such a theory and it correctly described reality.’  (forthcoming, p. 18). It is with the latter that the structural realist is primarily concerned, of course.

However, it is with regard to the issue of inequivalent representations that Fraser sees a difference in the content of the conventional and AQFT approaches: ‘… the cutoff variant does not have even approximately the same content as algebraic QFT because the cutoff variant has a finite number of degrees of freedom and therefore does not admit unitarily inequivalent representations; in contrast, algebraic QFT has an infinite number of degrees of freedom and therefore admits unitarily inequivalent representations.’ (op. cit., p. 560) But this of course is precisely one of the reasons the cut-off interpretation might be adopted, as far as the realist is concerned. Crucially, however, Fraser insists that inequivalent representations should not be eliminated since they are put to use in spontaneous symmetry breaking (Earman 2004); I shall return to this shortly
. Furthermore, Wallace’s earlier argument that the existence of such representations is not pathological in the long distance case, is not compelling, she maintains, because the issue of whether such degrees of freedom need to be taken into account is precisely the point of contention. On this point the two diverge on what it means to ‘take into account’: as noted already (fn 9) Wallace acknowledges that long-distance divergences must be tackled using algebraic methods, although he insists that the maintenance of the short-distance cut-off means that introducing such methods does not render the conventional formulation equivalent to AQFT (forthcoming p. 17). Such moves will presumably be regarded as part of a diverse range of such devices to which the advocate of conventional QFT can help herself.

Nevertheless, this still leaves the structural realist with a fundamental problem. We recall that tackling the issue of inequivalent representations is not merely a matter of recovering, in some sense, the ‘appearances’. In the case of ‘ordinary’ quantum mechanics with finite degrees of freedom, the structural realist can insist that the relevant structure, or features of the structure of the world, can be represented via Hilbert space and that it doesn’t matter whether one then chooses the Heisenberg or Schrödinger representations since these are unitarily equivalent. In the case of QFT, it is argued, it does matter which representation one picks, since the differences between them may be physically significant (see Earman op. cit.). On the other hand, investing all physical significance with the underlying algebraic structure may, at best, significantly alter the structuralist picture, or, at worst, yield too thin and minimal a basis for even a structural realist interpretation. 

Option 2: the Swiss Army Knife Approach

As noted above, Ruetsche expresses the dilemma nicely as that between ‘algebraic’ and ‘Hilbert space’ chauvinisms (2003). And as also suggested, one could adopt the (often expressed) view that all the physical content of QFT is invested in the net of algebras. However, as Ruetsche says, that’s a hard line to take since such an algebra picks out only a subset of the bounded operators defined on the relevant Hilbert space representation and all the rest – that she terms ‘parochial’ to the representation – would have to be dismissed as ‘unphysical accretions’. However, since these would include most of the projection operators, including those in the spectrum of the total number operator, this would mean ‘…investing with physical significance fewer observables than either scientific practice or our favored approaches to interpreting quantum theories can bear. ‘(ibid., p. 1330). On the other hand, going the chauvinist route and picking just one Hilbert space representation (which would raise the issue again of the grounds for doing so) runs the risk of investing with physical significance fewer states than our practices can bear, since it would rule out using those states associated with an alternative representation. 


That inequivalent representations can have physical significance is demonstrated by the case of quantum statistical mechanics where the accommodation of phase transitions in terms of the existence of multiple distinct equilibrium states requires going to the thermodynamic limit of infinite number of systems (i.e. the limit as the number N of microsystems and the volume V they occupy goes to infinity, while their density remains finite) and characterising these distinct equilibrium states in terms of unitarily inequivalent representations (ibid. pp. 1334 - 1339). In this context, the Hilbert space chauvinist is led to insist that only one equilibrium temperature is physically possible and all others are ruled out as impossible. Furthermore, this is incompatible with the explanation of phase transitions according to which different phases – corresponding to different representations – co-exist at such a transition. On the other hand, investing all the physical content in the algebra runs up against the objection that since the concrete representations correspond to the phase and temperature of a system at equilibrium, these too are contentful. As Ruetsche notes, this would not be a problem if the algebraic chauvinist could understand the differences between such representations in purely algebraic terms, but that is not possible since temperature cannot be captured in this way (p. 1339). 


Now the obvious question is whether such inequivalent representations do similar work in the QFT context. Here I shall briefly look at two cases where they appear to do so: spontaneous symmetry breaking and superselection principles.

Case 1: Symmetry Breaking and Structuralism
Earman argues that inequivalent representations cannot be dismissed since they do work when it comes to explicating spontaneous symmetry breaking in the context of the Standard Model, where we encounter field theories with degenerate vacua, where the vacuum states differ from one another everywhere in space (see Wallace 2006, for other examples). The relevant global continuous symmetry is then spontaneously broken so that each unitarily inequivalent representation has its own vacuum state (Earman 2004, p. 182). Thus, Earman writes, ‘… a full understanding of spontaneous symmetry breaking in QFT cannot be gained by beavering away within any one representation of the CCR … but must take into account structural features of QFT that cut across different representations.’ (p.183). It is precisely such structural features that the structural realist would be to keen to invest with ontological significance. However, as we have seen, insofar as these features are represented by the underlying algebra, they may not capture everything of physical interest.

Symmetry breaking in general terms has been presented (in discussion) as another challenge to the ontic structural realist, since, as we have seen, she invests certain physical symmetries with ontological significance as features of the structure of the world (Ladyman 1998; French 2006; Ladyman and Ross 2007). The problem is that if a symmetry is broken, then it is not, in some sense, present in the empirical situation and cannot be given a realist gloss by the structuralist, or so it would seem. However, instead of thinking of the symmetry as somehow ‘lost’, the situation is better understood as one where the relevant phenomena is characterised by a symmetry that is ‘lower’ than the unbroken symmetry (see, for example, Castellani 2003; Brading and Castellani 2008). And expressed in group-theoretic terms, this means that the group characterising the latter is ‘broken’ into one of its subgroups. Consider the simple example of a ping-pong ball subjected to an external force and which subsequently buckles (Stewart ad Golubitsky 1992, p. 51). Here the spherical symmetry represented by O(3), the orthogonal group in three dimensions is broken to yield the circular symmetry represented by O(2), where the symmetries of the latter are contained in the former. In the case of the standard model, the fundamental symmetry of SU(3)xSU(2)xU(1) is spontaneously broken down to SU(3)xU(1) at the electroweak energy (about 100GeV). Thus, symmetry breaking can be described in terms of relations between transformation groups, something the structural realist can easily accommodate. Indeed, the objection above is a curious one to make, since the notion of symmetry being spontaneously broken is generally regarded as providing a way to allow symmetries to apply to, in some sense, asymmetric phenomena. 


Now, there are two things to note about spontaneous symmetry breaking in general (SSB). First, it does not occur with finite systems, since the relevant degenerate states can superpose uniquely to give a lowest energy state. In the infinite volume limit these states are all orthogonal to one another and hence separated by a superselection rule (Brading and Castellani op. cit.). It is these rules that connect the different representation classes associated with the unitarily inequivalent representations.  


Secondly, and related to the objection noted above, accounting for the (asymmetric) phenomena in terms of the breaking of some more fundamental symmetry obviously involves an inferential move that itself requires justification. As Brading and Castellani (ibid) note, there is an implicit assumption in this account to the effect that asymmetry must be explained in some terms or other. As they go on to say, if these terms are understood as causal, then this assumption looks similar to Curie's principle: the symmetries of the causes must be found in the effects; or, equivalently, the asymmetries of the effects must be found in the causes. If this is extended to include the case of SSB, it can be regarded as equivalent to a methodological principle according to which the asymmetry of the phenomena must come from the breaking (explicit or spontaneous) of the symmetry of the fundamental laws. It is this methodological principle that underpins the above inferential move and the issue now concerns its justification (for a critical consideration of this issue see Morrison 2003). 

Brading and Castellani identify (at least) three such justifications (see also Brading and Castellani 2003) when it comes to Curie’s Principle,:

i) via Leibniz’s Principle of Sufficient Reason: there must be a ‘sufficient reason’ for one thing to happen, rather than another (see vF?)

ii) via a principle of causality: the absence of symmetry can create and thereby cause a phenomenon;

iii) via the invariance properties of deterministic physical laws: given these properties of the laws connecting the earlier and later states of a system, any symmetry in the former must be found in the latter.

However, i) and ii) are clearly problematic when it comes to SSB. Of course, it all depends on what one takes to be a ‘reason’, but one could argue that ‘spontaneous’ symmetry breaking is precisely that which occurs without a reason. Ditto for the causal version, which as expressed, also raises well-known concerns as to whether the absence of something can cause anything. It may be that such worries lie behind arguments that SSB implies that Curie's principle is violated because a symmetry is broken “spontaneously”, that is without the presence of any asymmetric cause (Brading and Castellani 2008). However, Brading  and Castellani argue that the symmetry of the “cause” is not lost, since it is conserved in the entire ensemble of the relevant solutions (that they take to be the whole “effect”). Thus they give the example of a linear vertical stick with a compression force applied to the top and directed along its axis: 

‘The physical description is obviously invariant for all rotations around this axis. As long as the applied force is mild enough, the stick does not bend and the equilibrium configuration (the lowest energy configuration) is invariant under this symmetry. When the force reaches a critical value, the symmetric equilibrium configuration becomes unstable and an infinite number of equivalent lowest energy stable states appear, which are no longer rotationally symmetric but are related to each other by a rotation. The actual breaking of the symmetry may then easily occur by effect of a (however small) external asymmetric cause, and the stick bends until it reaches one of the infinite possible stable asymmetric equilibrium configurations.’ (ibid.)

These configurations are all related via the relevant symmetry transformations and hence ‘there is a degeneracy (infinite or finite depending on whether the symmetry is continuous or discrete) of distinct asymmetric solutions of identical (lowest) energy, the whole set of which maintains the symmetry of the theory.’ (ibid.; see also the discussion in Stewart and Golubitsky 1992, Ch. 3) Now we’ll return to this point briefly below but it’s worth noting that it nicely meshes with Earman’s comments on the role of inequivalent representations in explicating SSB within QFT: one has to consider the whole ensemble – in this case, of representations – in order to understand what is happening
. 


With regard to iii), however, Brading and Castellani argue that this misrepresents Curie’s Principle, and that ‘the significant connection between symmetries of physical systems and symmetries of laws has to do not with symmetries of states of those systems, but symmetries of solutions (more precisely, of ensembles of solutions).’ (ibid.) Under such a construal, the justification no longer works. 


All three of the justifications of Curie’s Principle are thus problematic in one way or another. A possible way forward would be to place it in the context of a broadly metaphysical understanding of the relationship between laws plus the associated symmetries and the phenomena. It may be that a structural perspective on this relationship could also help provide more secure grounds for the Principle (see Cei and French forthcoming). However, that would take us beyond the scope of this paper. Certainly, one might argue that the broader methodological principle should be seen as a further component of the structuralist framework that allows us to retain symmetries as part of our fundamental structuralist ontology while also accounting for the blatantly asymmetric phenomena
. With regard to its philosophical justification, this should perhaps piggyback on its physical counterpart: insofar as SSB is justified within physics – in the usual terms – so we can accept the methodological principle (and if the Higgs isn’t found, all bets are off!
). Again, further discussion is needed but I shall not pursue this here.

The point to bear in mind when we return to Ruetsche’s ‘swiss army knife’ approach is that if we are to understand the way in which inequivalent representations do some work in the context of SSB, we need to embrace, in some sense (and that sense will be important as we shall see) all these representations, in just the way that although the stick eventually falls one way rather than another, we need to embrace all the possible ways it might fall if we are to understand what is going on in these terms. It is in this sense that the ‘ensemble’ of inequivalent representations does work within QFT.
Case 2: Superselection sectors and statistics
In non-relativistic quantum mechanics, quantum statistics and in particular the distinction between Bose-Einstein and Fermi-Dirac forms (corresponding to symmetric and anti-symmetric wave functions respectively) is in effect an ‘add-on’ to the theory, arising from the assumption of Permutation Invariance (see French and Rickles 2003). This determines that every physical observable commutes with the permutation operators and thus it can be understood as a restriction on the possible observables of a system, given its state. From this perspective it can be viewed as yielding a superselection rule determining which observables are physically relevant. The action of the permutation group is such as to divide up the Hilbert space into subspaces representing symmetry sectors corresponding to the possible types of permutation symmetry possessed by the particles whose state vectors lie in that subspace. In addition to the two mentioned above, other kinds of permutation symmetry are also possible, corresponding to paraparticles, a possibility noted as early as the 1930s by Dirac (for a brief history of parastatistics see French and Krause 2006, Ch. 3; for a defence of a form of structuralism using parastatistics, see Caulton and Butterfield forthcoming). Whenever these are mentioned it is almost always pointed out that such possibilities are not in fact found in nature. However, leaving aside the suggestion that the margin of error in experimental tests of, say, the representational adequacy of Fermi-Dirac statistics with regard to electrons is sufficient to still allow such possibilities, it should be remembered that an important stage in the development of quantum chromodynamics was achieved with the representation of quarks as paraparticles of a certain type (see French 1995). Subsequently, quark aggregates were re-described in terms of Fermi-Dirac statistics through the incorporation of colour as a kind of hidden variable, and in general (within certain constraints), one can always generate such a re-description in this way. This yields a further form of underdetermination (French 1985).


AQFT recovers the above features but without assuming any add-on to the theory, by virtue of the fact that inequivalent representations of the net of algebras yield superselection rules. And according to Halvorson and Müger, it is in its analysis of these rules that ‘… the algebraic approach most clearly displays its beauty, utility, and foundational importance.’ (Halvorson and Müger op. cit., p. 55).


The original idea behind superselection rules is straightforward: superposition of states cannot be unrestricted (see the discussion in Haag op. cit., p. 108). Thus we should not allow superposition of states with integral and half-integral spin (or, equivalently, corresponding to Bose-Einstein or Fermi-Dirac statistics respectively), nor of states with different charge, for example. Such states belong in different subspaces or superselection sectors of the overall Hilbert space. It turns out that these distinctions – between particles with different statistics and between those with different charges, or quantum numbers in general – are encoded in the structure of the net of observable algebras (Haag op. cit., p. 149). Since these distinctions correspond to the natural kind structure of the world (or, at least, the world of elementary particles), and, as I noted in the introduction, the structural realist has long maintained that this structure can be incorporated within her framework (see French 2006, for example), it would seem that this consequence of the existence of inequivalent representations might also be accommodated. 


Omitting a great deal of technical detail (see Haag op. cit. Ch. IV; Halvorsen and Müger op. cit. §11.4), I shall simply summarise the main results here
. Essentially one imposes a selection criterion on the set of inequivalent Hilbert space representations. On the Doplicher-Haag-Roberts (DHR) criterion one requires that all expectation values of all observables should uniformly approach the vacuum expectation values when the measurement region is far from the origin. This is taken to yield those states of primary interest for elementary particle physics, adopting the idealization that in the distance, as it were, we have empty space (Haag op. cit., p. 151). This excludes long-range forces such as electromagnetism, where this long range character is tied to the vanishing of the mass of the photon (ibid., p. 153). 


This criterion yields equivalent classes of irreducible representations corresponding to charge superselection sectors, where ‘charge’ here is meant quite generally to include baryon number, lepton number, isospin and so forth (ibid., p. 154). If the background has the dimension of Minkowski space-time or higher these charge quantum numbers stand in 1-1 correspondence with the labels attached to the irreducible representations of the global gauge group. One then obtains a composition law of charges that corresponds to the tensor product of these group representations and a form of conjugation that corresponds to the complex conjugate representation (ibid., pp. 154-155). It then turns out that a sign is intrinsically attached to each type of charge and this sign determines whether that charge is broadly bosonic or fermionic in nature (Halvorson and Müger op. cit., pp. 126-127). If the global gauge group is Abelian, then standard Bose-Einstein and Fermi-Dirac statistics are the result. If, however, it is non-Abelian, then the statistics in the superselection sectors arising from the composition of a given type of charge may be described either in terms of parastatistics, where the order of the paraparticle corresponds to the dimension of the irreducible representation of the gauge group in the charge 1-sector, or in terms of standard statistics, with hidden elements added – thus extending the observable algebra – and the non-Abelian part of the gauge group is understood as an internal symmetry of this extended algebra (ibid., p. 155). This latter option was taken by Han and Nambu when they introduced colour in the quark case (see French 1995). 


If the background is that of 2- or 3-dimensional space-time then the picture becomes less straightforward: one has to substitute the braid group for the permutation group and quantum groups, for example, for gauge groups and one obtains the famous ‘anyon’ statistics, among others (Haag op. cit., pp. 192 – 197; Halvorson and Müger op. cit., pp. 131-133; for a brief consideration of this in the context of issues to do with particle identity, see French 2000). Of course, one obtains the definition of the symmetric group from the braid group by adding the condition that each generator is its own inverse, so each representation of the former yields a representation of the latter; or, ‘[i]n slogan form: a system that obeys permutation statistics also obeys braid statistics.’ (Halvorson and Müger op. cit., p. 132).


The upshot is that from this DHR perspective, permutation symmetry is treated as a kind of gauge symmetry and the explanation of quantum statistics arises from the structure of the category of representations of the observable algebra (Halvorson and Müger, op. cit., p. 126)
. Beginning with a pure state of the algebra, we construct the GNS representation that this state induces. Since the Hilbert space is not a tensor product, there is no natural representation of the permutation group on it. However, the DHR analysis yields the result that the GNS representation is isomorphic to an object of the category of localized transportable endomorphisms (ibid., p. 129; Haag op. cit., pp. 156-159).
 This category does allow product formation and thus we can construct the construct the tensor product of this object and introduce permutations. This in turn yields a natural representation of the permutation group in the symmetric *-category and an associated classification of para-Bose and para-Fermi representations (Halvorson and Müger op. cit., pp. 129ff). 

In particular, the superselection approach under the DHR criterion allows us to make sense of non-permutation invariant states and quantities within the framework of permutation invariance. The standard view of such states is that they represent so much ‘surplus structure’. One might then argue that theories that generate such surplus structure should be rejected in favour of those that do not, or, at least, that generate less (Teller and Redhead 2001). This is a problematic methodological principle, however, since such structure can prove to be heuristically useful, as the case of quarks and parastatistics demonstrates (for further discussion, see French and Krause 2006, pp. 193-197; French forthcomingb). On the other hand, if such structure is retained and taken to correspond to possibilities that are contingently not realized, the obvious question is why they do not correspond to the actual world. Adopting the ‘principle of plenitude’ suggests that there should be particles corresponding to every symmetry type, and the question then is why do we not see them (Halvorson and Müger op. cit., p. 128). Indeed, the problem is even more acute: since any system that has a symmetry described by the permutation group has a symmetry described by the braid group, and since the latter has infinitely many irreducible representations, the principle of plenitude would imply that there are more particles ‘… than we could ever possibly describe’ (ibid., p. 133). 

Now, what is the structural realist to make of all this? First of all, as I indicated above, she can adapt what has already been said about permutation symmetry in the context of structural realism and claim that what inequivalent representations are doing here is capturing a fundamental feature of the natural kind structure of the world, namely the distinction between bosons and fermions, or more generally, parabosons and parafermions. Indeed, the DHR analysis can be understood as further advancing the structuralist stance since its alternative explanation of quantum statistics means that we don’t have to impose permutation invariance on the theory as a further symmetry condition; rather, as sketched above, the statistics and the associated kind classification arise naturally from within the (AQFT) formulation of the theory itself. Thus, the structure of the world has one less fundamental feature. Far from presenting a problem for the structural realist then, inequivalent representations in this context help her cause!

There is still the issue of what to do about all the representations that don’t seem to correspond to any kinds of particles we observe in the actual world. On the one hand, as already noted, eliminating this surplus structure would be not only ad hoc in this context
 but would also throw away a heuristically useful resource. On the other, retaining them opens the door to the principle of plenitude and the kinds of concerns outlined above. Now the structural realist does not have to accept the principal of plenitude and she could plausibly maintain, of course, that not all mathematical structures correspond to reality. As Weyl pointed out, early in the history of such discussions:

'The various primitive sub-spaces are, so to speak, worlds which are fully isolated from one another. But such a situation is repugnant to Nature, who wishes to relate everything with everything. She has accordingly avoided this distressing situation by annihilating all these possible worlds except one - or better, she has never allowed them to come into existence! The one which she has spared is that one which is represented by anti-symmetric tensors, and this is the content of Pauli's exclusion principle.' (1968, p. 288)

The problem is that if the structural realist wishes to avail herself of the work done by inequivalent representations in showing how quantum statistics drops out of the AQFT formulation under the DHR criterion, she can hardly then back away from what this work yields. In particular, it might be argued, she can’t then pick and choose which features of that structure she is going to take as real or actual and which is merely surplus. Now one response to this issue would be to modally expand the relevant notion of structure so that it covers a range of possible worlds. I shall suggest that this is one way the structuralist can understand Ruetsche’s proposal for dealing with inequivalent representations.

Back to Ruetsche

Returning to the debate between advocates of ‘conventional’ QFT and AQFT, we recall that Wallace (2006) has raised concerns about investing the relevant infinities associated with inequivalent representations with physical significance. In particular, one might insist that going to the limit is a significant idealization and one should be wary of interpreting the elements of such a limit in a realistic manner. Ruetsche dismisses this objection in the case of quantum statistical mechanics on the grounds that she is interpreting precisely those features of the idealization that allow it to explain the phenomena and do representational work (ibid., p. 1342). One could argue that in the QFT case it is not so clear that the relevant idealized features do similar work: given the spatio-temporal limits we are constrained by, one could insist that we can in fact do everything we need to do and explain everything we need to explain in terms of ‘conventional’ QFT
.  Nevertheless, concerns remain about dismissing the move to the limit as an idealization in this way: when it comes to cut-off variants of QFT, Fraser has pointed out that it is the assumption of finite degrees of freedom that is the idealization, since we know (unlike the case of quantum statistical mechanics) that QFT systems should be taken to have an infinite number of degrees of freedom (unless space-time is taken, on non-ad hoc grounds, to be discrete and finite)
. And unlike the case of quantum statistical mechanics, she maintains, there is an alternative to the cut-off approach. A possible response here is to return to the above debate over pinning down the successor theory and note that unlike the case of quantum statistical mechanics, the idealization of finite degrees of freedom is justified, in part, on the grounds that the theory will eventually be replaced by an appropriate deeper structure. Hence the point about the role of idealizations is not decisive since it depends on how we view the relationship between our current theory and its successor.
Ruetsche’s own way out of the dilemma is to adopt what she calls a ‘Swiss Army Knife’ approach (ibid., pp. 1339-1441). She begins by situating the issue at a more fundamental level of the realist programme than we have considered so far. Consider how we, whether object oriented or structural realist, read off our commitments from the theory. We begin by specifying the physical content of the theory, and an even more fundamental issue than whether that content should be understood in terms of objects or structures is that of distinguishing that which is physically possible from the impossible. That sorting of possibilities is achieved by the Hilbert space structure of observables according to the Hilbert space chauvinist, and by the abstract algebraic structure according to her algebraic counterpart. Ruetsche suggests that we refuse to make such a sort and specify the content in ‘one fell swoop’; rather we should take such specification as appropriately tiered, with a corresponding gradation in the possibilities allowed by the theory. Thus at the first tier, corresponding to the broadest set of possibilities, we have the space of algebraic states on the appropriate abstract algebra. At the next tier, physical contingencies are taken into account by distinguishing the narrower set of possibilities corresponding to the empirical situation through appeal to the relevant features of that situation. Other algebraic states are then to be thought of as more or less remote possibilities, rather than dismissed as physically impossible. 


As Reutsche notes, we can also think of this tiered specification of content in terms of the universal representation of an algebra, which is the direct sum over the set of algebraic states of the relevant representations. This would then yield the theory’s broadest set of physical observables, and,

‘[a]t this stage of content specification, this vast host of physical observables is just sitting there, like blades folded up in a Swiss army knife. The next (coalescence) stage appeals to contingent features of the physical situation to focus on a small set of representations, which are summands in the universal representation. Observables parochial to those representations are extracted for application to the situation at hand. Thus coalescence is something like opening the Swiss army knife to the appropriate blade or blades, once you've figured out what you're supposed to do with it.’ (ibid., p. 1341).


Can such an approach be put to serve the realist cause? In the case of the object oriented realist it would seem it would push her towards a form of ‘patchwork realism’ (cf. Cartwright 1999), according to which she could only make realist claims about specific objects within the domain underpinned by the relevant ‘patch’. Beyond such a ‘patch’ no such claims are warranted. In this case the patches would correspond to different representations and hence must not be thought of a spatio-temporally delimited. However, in addition to responding to the well-known criticisms of patchwork realism, such a realist would have to give some account of the relationship between these patches and the underlying universal algebra. Focussing on the latter takes us to structural realism.


This too would have to be significantly modified in terms of our metaphysical understanding of structure. Typically the structure of the world is taken to be actual but modal in the sense both of allowing for causal empowerment (if one thinks that causality is a notion that applies at this level; Ladyman and Ross (2007) and Norton (2009) do not but although I am personally sympathetic, for this discussion I do not want to tie structural realism necessarily to such Russellian approaches) and of supporting the relevant counterfactuals via the laws and symmetries it embodies (see Cei and French forthcoming). However, on Ruetsche’s picture, this fundamental structure would have to be understood as inherently modal in a more profound (and perhaps problematic) sense of encompassing the full range of allowable physical possibilities. Actuality will then emerge, again in a patchwork manner, depending on the representational blade that is pulled out of this structural knife as it were. Thinking in terms of possible worlds (and again, I do not necessarily want to tie structural realism to such a representation of modality; there may be other understandings of possibility etc. that can be put to service here), the abstract algebra would have to be viewed as a structure that effectively spans physically possible worlds, rather than being confined to the actual one. (Thus we would have a kind of ‘Trans-World Structuralism’.) 


Furthermore, this meshes well with the understanding of SSB touched on above. The latter gives us a further reason to incorporate all the relevant inequivalent representations (corresponding to the different vacuum states) into the structuralist picture: thus if we recall the example of the vertical stick under compression,
 we need to consider the ‘possibility space’ covered by all the post-collapse orientations of the stick in our explanation
. From the SSB perspective (from which the inequivalent representations are deemed to ‘do work’) the representations represent (!) the post-break situation and the symmetry – which the structuralist will want to focus on – is preserved across all of these possibilities, or in Reutsche’s engaging terms, for all the blades of the knife
. It is for this reason that Stewart and Golubitsky refer to spontaneous symmetry breaking as ‘symmetry spreading’ (Stewart and Golubitsky 1992). (Of course, as Earman notes, what distinguishes SSB in QFT is that a symmetry of the laws of motion is not unitarily implementable, a feature that implies but is not implied by the failure of the vacuum state to exhibit the symmetry.)
Let us return to Earman’s claim that ‘… a full understanding of spontaneous symmetry breaking in QFT cannot be gained by beavering away within any one representation of the CCR … but must take into account structural features of QFT that cut across different representations.’ (2004 p.183). The point, we recall, is that such a ‘full understanding’ requires us to consider all the inequivalent representations, thus undermining the stance of the Hilbert space chauvinist
. But now the structuralist could raise the following dilemma against her critic: if the QFT situation is like that of the stick, in the sense that SSB is invoked to account for the asymmetric phenomena, then the role of the inequivalent representations is not so fundamental; or at least, not so threatening to the structuralist. Here we are invoking SSB in order to retain a symmetry based ontology, something the structuralist would certainly approve of. If on the other hand, we accept that we cannot dismiss the inequivalent representations, since they are doing some work for us, then we should take the above Earman quote to heart, but then it is the structural features that cut across different representations that are important, and again the structuralist can only murmur her approval.

Of course, on either alternative further issues arise. In the first case, one might feel that the goalposts have shifted somewhat. The original criticism was that the structural realist cannot identify the relevant representations as isomorphic as in the case of the wave and matrix mechanics and so is faced with genuinely different ontological pictures. The above response acknowledges that the relevant structure (as characterised by the net of algebras) gives too thin an ontology, as it were, but redirects attention to the way that SSB allows us to preserve the ontological primacy of symmetry. However, it is not really a case of goalposts having been moved, but rather that of different aspects of structure and structural realism being emphasized. In the case of the wave and matrix formulations of QM, Ladyman emphasized the underlying Hilbert space structure as the structuralist’s ontological locus. Both he and French also emphasized the role of symmetries such as permutation invariance in this context, but in that context the two are not tied so closely together as in the case of QFT, or, perhaps, are tied together in a different way. In the latter case, Howard is obviously right that we cannot appeal to isomorphism, but we can identify an underlying structure. And the inequivalence is tied up with the asymmetry of the actual phenomena. In order to accommodate that, we appeal to SSB and the structuralist retains the ontological emphasis on symmetry
. Indeed, the symmetry connects the unitarily inequivalent representations each with its own vacuum state. As Earman notes, ‘… this is the precise sense in which spontaneous symmetry breaking in QFT involves degeneracy of the vacuum.’
What about the underlying assumption that unitary equivalence is a necessary condition for physical equivalence? We recall that it is on the basis of this assumption that the unitarily inequivalent representations were taken to present a problem for structural realism in the first place. Ruetsche takes it from Clifton and Halvorson’s demonstration that quantum theories are physically equivalent if and only if they are unitarily equivalent on the basis of establishing appropriate mappings between both the terms representing fundamental physical quantities of the theories and between predictions regarding the values of observables. (Clifton and Halvorson; see Ruetsche op. cit. p. 1332). As Baker (forthcoming) notes, the latter requirement is uncontentious. The former, however, is more problematic. If the fundamental quantities are taken to correspond to the Weyl operators that generate the algebra (on the structuralist sympathetic grounds that such quantities should be independent of the choice of representation) then this requirement demands that any such mapping take each Weyl operator in one representation to the very same Weyl operator in the other (ibid.).  In particular, it rules out the possibility that some Weyl operator in the first should be mapped to a different Weyl operator in the second, which is precisely what certain symmetry transformations allow. As Baker notes, ‘[s]ometimes a symmetry can guarantee the existence of a translation scheme in Halvorson and Clifton's sense (but only if the symmetry is unitarily implementable).’ (ibid., p. 15) Furthermore, in the context of SSB, Baker argues that the Clifton and Halvorson requirements are in tension with what he takes to be the best available ontologies of space-time – namely relationalism and sophisticated substantivalism, both of which entail that spacetime symmetry transformations do not represent real physical changes in a system (ibid. p. 10). Since a similar entailment holds for structuralist interpretations of space-time physics (see Rickles and French 2006), the structural realist may also have grounds for rejecting the Clifton and Halvorson scheme. 
For these, and other reasons, Baker urges that we rethink our criteria of intertranslatability in the QFT context. In particular he suggests that a sufficient condition should be the existence of a symmetry mapping between representations (ibid. pp. 19-20). As he notes, the question as to whether this is also a necessary condition remains open but certainly the structural realist would be amenable to this suggestion. Given the existence of just such a mapping between the inequivalent representations of QFT (‘spreading’ the symmetry, as it were), the structural realist can now appeal to Baker’s condition to assert the inter-translatability of the representations and remove the assumption behind Howard’s challenge. With a suitable understanding of space-time she can also offer ontic structuralism as an appropriate ontological framework for Baker’s view (there may be others of course), and conclude that from this perspective the inter-translatability can be understood in structuralist terms.

So, the critic can’t have it both ways: if she flags up the significance of the inequivalent representations as a problem, then she has to acknowledge the role of SSB, which fits the structuralist agenda.
Turning finally to permutation invariance and quantum statistics, we can easily see how an appropriately modal notion of structure can provide the relevant metaphysical framework here. As in the case of SSB, a full understanding and explanation of quantum statistics must take into account the structural features of QFT that cut across different representations. And what this account shows is that, ‘it is the structure of the category of representations that provides the really interesting theoretical content of QFT.’ (Halvorson and Müger op. cit., p. 57) Following Ruetsche’s schema then allows the structural realist to take this structure seriously: invoking the knife metaphor again, we can think of the bosonic and fermionic cases as corresponding to two of the blades that are deployed in the actual world. Others, such as those corresponding to the parastatistics cases, are retained as heuristic resources; indeed, they were in fact deployed in the early history of quantum chromodynamics and may be again. Eliminating these latter cases as features of the structure we are interested in would not only remove a valuable resource, but would lose the kinds of important intra-structural connections briefly indicated above. 

Nevertheless, the DHR analysis suggests that algebraic chauvinism is inappropriate, since the representations also feature as part of the content of the theory (Halvorson and Müger, op. cit. p. 118). In this respect, as I noted above, structural realism has perhaps been guilty of focusing too much on the group-theoretic characterization of structure in the non-relativistic context and of downgrading or dismissing the ontological significance of the associated representations
. The above considerations drive home the point that in this case the representations must return to centre stage, not least because they are contributing to the structuralist account of the natural kind classification of the world. It is precisely because of this contribution that the existence of inequivalent representations is again not an issue. As Halvorson and Müger nicely suggest, this is only seen as a problem because the representations are understood to be competitors in some sense (op. cit., pp. 121-122). This is a further feature laying behind the challenge to the structural realist: if the representations are not isomorphic and therefore equivalent, they must be competitors but then any grounds for selecting one over another will introduce a non-structural element and undermine the structuralist picture.  However, this understanding is unhelpful. Compare the situation with disjoint group representations for example (ibid.): there we are not inclined to see these as merely competitors precisely because of the relations that hold between them.  Likewise, as Halvorson and Müger emphasise, what the DHR analysis reveals are the additional relations on the category of physical representations in the superselection case. And again, an understanding of these representations as competitors is not entirely appropriate. Consider the statistics case again: of course, if a particle is in the Bose-Einstein sector it cannot be in the Fermi-Dirac; nor, because the Hamiltonian is an observable and thus commutes with the permutation operator, can it leave the former sector and move to the latter.
 In that sense they are competitors. But of course, to understand the actual world we need both, and the relations between them (as resulting from the action of the permutation group in the non-relativistic case), so in this sense – which is what the structural realist will seize on – they do not compete.

Nevertheless, as Halvorson and Müger point out, using the importance of the representations to motivate a shift to a form of Hilbert space chauvinism here would be far too simplistic a response (op. cit., p. 119). Indeed, as they say, if we were to focus ontological attention on just one representation we would not only be ignoring the really interesting structure – namely the relations between representations – but we would not be able to define Bose and Fermi fields, among other things. Their ‘Representational Realism’ focuses on this structure that arises from the inter-representational relations and its explanatory role, and takes it as comprising the content of the theory, along with the net of algebras and the dynamics, as captured by the representation of the translation group (ibid.). One can understand this as a form of structural realism, along the lines suggested here.
 
Conclusion
There may be more options for the structural realist but the above considerations illustrate ways in which she can respond to Howard’s challenge. 
In general, like most realists she urges that one takes the ‘best’ theory we currently have available and invest significance in the relevant structures it presents. Now, one criterion for being the best obviously has to do with empirical success and this the ‘conventional’ form of QFT has in spades (Wallace forthcoming). Furthermore, as we have seen, it may be able to assuage concerns about inequivalent representations. On this basis, the structuralist might be inclined to suggest that, with the usual caveats about approximate truth etc., the structure of the world is (approximately) as given by conventional QFT with cut-offs. She is not compelled to take the algebraic route and of course her emphasis on symmetry as captured group-theoretically can still be satisfied within this approach as manifested by the Standard Model.
 

Of course, the defender of the AQFT approach will insist that the conventional formulation cannot be ‘the best’, precisely because it incorporates critical idealizations and lacks foundational coherence. Furthermore, the emphasis on fundamental algebraic structure is alluring to the ontic structural realist who, as Howard notes, has precisely focussed on similar underlying structure in the case of quantum mechanics. Adopting Ruetsche’s attempted dissipation of the problem of inequivalent representations then pushes the structural realist towards the adoption of a profoundly modal conception of this structure. However, such a conception seems entirely appropriate in the context of understanding the role of these representations for explaining both SSB and quantum statistics. Again we recall that the fundamental problem with regard to the former is that the dynamics does not determine the representation and hence SSB must be appealed to. The focus then is on the symmetry that connects the inequivalent representations but then the problem appears to have dissolved; or at least, it is now the ‘problem’ of accounting for asymmetric phenomena on the basis of the fundamental symmetry and dynamics. There remains the further issue of justifying SSB but this is not particular to structural realism. And of course, one option would be to follow Morrison’s line in doubting whether SSB can be given a realist interpretation. In that case it might be seen as an ad hoc mathematical artefact but then the point that inequivalent representations do real work has been lost. With regard to the statistics, we have seen how the DHR analysis can actually help the structuralist cause by showing how these need not be understood as arising from the imposition of permutation invariance, but as being encoded within the algebraic formulation of the theory. Furthermore, this analysis reveals the importance of the structure of these representations and following Halvorson and Müger’s ‘representational realism’, the structural realist can incorporate this structure into her worldview, noting the issues it raises as to whether the representations at issue should be regarded as competitors in the sense that the challenge seems to require, and thereby draw the latter’s sting.

As I have already suggested, one of the crucial issues in this discussion has to do with how we determine differences in content. If we take what counts as ‘approximate’ as tied to a certain domain or energy regime, then perhaps we can indeed maintain that the content of conventional QFT approximates that of AQFT across the domain or energy regime considered. Presenting the existence of inequivalent representations as an example of such differences in content seems to beg the question at issue. And as far as the structural realist is concerned, differences with regard to object oriented ontology will not count as significant precisely because she will focus on the structural commonalities involved. Indeed, one might suggest that such differences are effectively ‘washed out’ from the perspective of structural realism. 

Furthermore, Fraser admits that AQFT must be viewed as essentially provisional, with the pursuit of this programme leading to an appreciation of deeper structure, in that the quest for a realistic model of the axioms ‘…will uncover a more general mathematical framework which could prove more suitable for formulating quantum gravity.’ (2009, p. 563) Given this, and despite both her and Wallace’s arguments, the structural realist may not feel compelled to see the two programmes as fundamental rivals with conflicting ontologies. Indeed, returning again to the context of SSB, she might articulate the following third option: to fully understand SSB we must take into account structural features of QFT that cut across different representations. These features are captured by the algebra which can be understood, from the perspective of Ruetsche’s Swiss Army Knife approach, as representing a modal form of structure stretching across possible worlds, as it were. However, tracking the break in symmetry and shifting down through the energy regimes, we can adopt, as realists, the best theory we currently have available, namely the Standard Model and the associated conventional form of QFT with cut-offs. And as structural realists we can then invest with ontological significance the relevant structures this theory presents us with, including the associated symmetries such as SU(3)xSU(2)xU(1). This investment is, as always, fallible and provisional, in particular since we have good reason to believe that the theory will be superseded (by something like loop quantum gravity or string theory).
 Far from presenting a problem for structural realism, then, inequivalent representations indicate how that position can be further developed and strengthened.
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� Hence spatio-temporal localizability is not required as a ‘Principle of Individuation’.


� See also Halvorson and Müger (2006) on the difficulties associated with defining field quantities at space-time points.


� Thu Baker notes that despite these problems, field operators are still defined, allowing the possibility of an interpretation of interacting states as yielding probabilities for the manifestation of ‘field-like quantities’ (op. cit., p. 606) .


� As Ladyman has emphasised, this ‘web of relations’ should be understood as inherently modal in certain respects, something I shall return to below.


� Baker suggests an alternative Lewisian metaphysics that takes parts of spacetime as ontologically fundamental (personal correspondence). �


� Alternatively, as Baker has suggested (see fn 3 above), one could claim that the expected value of an operator in the local algebra assigned to an open region of spacetime is a physical property of that region.  Of course that raises the issue of how we should interpret such regions and spacetime in general from a realist perspective. A structuralist interepretation of spacetime (see, for example, Stachel 2002; Rickles and French 2006) would offer an obvious option here.


� Kronz (2004) suggests that the algebraic quantum field theorist views this feature as an embarrassment and contrasts this attitude with that adopted in quantum statistics mechanics where these inequivalent representations are seen as having physical significance. However, as we shall see, the stance of those working in the foundations of algebraic QFT, at least, may have shifted towards the latter attitude, as the role of such representations in understanding superselecting rules and spontaneous symmetry breaking is emphasised.


� This is something that Kerry McKenzie has recently emphasised in her own work.


� In his more recent work (Wallace forthcoming), he makes it clear that algebraic methods may be drawn upon to tackle these representations but maintains that this is not tantamount to acceding to the requirements of the AQFT programme.


� Wallace now agrees that they represent rival research programmes because they adopt conceptually incompatible approaches to the problem of renormalisation (forthcoming). 


� However, Wallace notes that in her (2009) she only considers the case of l42, a scalar field theory in two spacetime dimensions, with a 4 interaction term (forthcoming pp. 13-14). Here, he argues, we do have genuine underdetermination but as soon as we move to QED, QCD or the standard model, the underdetermination is broken by the empirical success of conventional QFT. Fraser (forthcoming) considers this evidence of success in the context of a form of ‘No Miracles Argument’ and argues that given the application of renormalization group methods which underpin the underdetermination, the inference to the approximate truth of the theory is weak. 


� Relatedly she argues (forthcoming) that the empirical success of conventional QFT cannot form the basis of a ‘No Miracles Argument’ (see fn 10) because, in part, the lack of models of AQFT means that the class of candidate theories to bring within the scope of the NMA is being ‘illegitimately’ restricted. Again she maintains that were such models to be constructed we would have a superior account to conventional QFT and under these circumstances we should refrain from making NMA type inferences. Of course Wallace might respond that were a whole range of things to be undertaken we would have all kinds of different accounts but all we have to work with, for NMA purposes, is our current empirically successful theory, namely conventional QFT.


� One might think of asking a similar question of Newtonian mechanics from our current standpoint. The theory can then be regarded as approximately or partially true in a domain specific manner (see da Costa and French 2003). 


� I’d like to thank Doreen Fraser for emphasising this way of framing the differences between her approach and Wallace’s.


� Thus the transition from classical to quantum mechanics is not typically understood in terms of the inclusion of further forces or fields, whereas it is in the case of QFT to quantum gravity. In the former, the relevant domains can be delineated in terms of the value of Planck’s constant.


� However, as already noted, Fraser rejects the claim that the empirical success of conventional QFT should be taken to form the basis of a No Miracles Argument in favour of it.


� Indeed, as Baker has emphasised (personal correspondence) much of the extant work on these representations – including the Unruh effect/Rindler quanta, superselection rules, as well as spontaneous symmetry breaking – has to do with IR-inequivalence.  In these cases, Wallace acknowledges that algebraic methods may be illuminating but insists that the latter are not what are at issue in his debate with Fraser; rather it is that of real cut-offs versus no cut-offs (forthcoming, p. 13). 


� According to Earman, Curie’s principle is vacuous in QFT if vacuum representations are demanded since the antecedent condition of an initially symmetric or semi-symmetric state is never fulfilled (op. cit.). 


� cf. Weyl, who wrote that symmetry as the norm ‘from which one deviates under the influence of forces of a non-formal nature’ (Symmetry, p. 13).


� Although Earman has voiced the suspicion: ‘when the veil of gauge is lifted, what is revealed is that the Higgs mechanism has worked its magic of suppressing zero mass modes and giving particles their masses by quashing spontaneous symmetry breaking.’ (op. cit., p. 191). And Morrison has argued that even if the Higgs is found this will not assuage all concerns regarding the justification for SSB (op. cit., pp. 360-362).


� In this case inequivalent representations do not correspond to different vacuum states but rather to different local excitations of the same vacuum state (Halvorson and Müger op. cit., p. 118).


� Halvorson and Müger are dismissive of the explanation given by French and Rickles in terms of permutation invariance, on the grounds that this involves an ‘overly simplistic formalism’ (op. cit., p. 125). This is perhaps a little unfair, given that the context of these considerations was primarily non-relativistic quantum mechanics and when QFT was discussed, the ‘conventional’ formulation was typically adopted. Still, it is undeniable that AQFT offers a useful insight on this issue, particularly as far as the structuralist is concerned.


� An endomorphism is just a morphism from a mathematical object to itself; so in set theory, endomorphisms are functions from a set onto itself.


� It is ironic that Teller and Redhead urged a shift to a QFT based metaphysics of particles as non-individuals on the grounds that it allows us to drop the surplus structure associated with para-symmetric and non-symmetric representations (Teller and Redhead op. cit.).


�See also Weyl 1931 p. 238 and p. 347. 


� This would also constrain the limits of our realism, although perhaps only in the same ‘in principle’ way that dismissing worries about events beyond the event horizon does.


� Earman also suggests that reflection on the nature of QFT might be used to support the idea that it is the finite case that is the idealization, fostered by thinking classically in terms of physical systems ‘… as consisting of hunks of spatially localized matter. ‘(op. cit., p. 192)


� Also used by Nambu in his Nobel prize presentation on SSB.


� Another example would be that of ferromagnetism (see, for example, Morrison p. 354) where the symmetry is not lost but is effectively hidden, as it still exists over all possible directions (cf Castellani 2003 p. 325).


� As Fujita notes, in a related context (the Goldstone theorem), the mathematics is straightforward but the physics is difficult because ‘one has to examine all the possible conditions in nature when the symmetry is broken spontaneously’ (2007, p. 50). What I am suggesting is that in order to accommodate inequivalent representations in QFT, the structuralist must likewise incorporate the examination of ‘all possible conditions in nature’ into her structuralist ontology. 


� One could think of the different degenerate vacuum states as belonging to the same Hilbert space, but as lying in different `superselection sectors' (Earman op. cit.).


� As I have indicated, structural realism emphasises both laws and symmetries as aspects of structure. However, in this context the ontological weight given to each might shift through further physics research – and not just on the basis of (perhaps overblown) claims that (gauge) symmetries help pin down the dynamics but also because of the role of SSB in cosmology: ‘… as the universe expands and cools down, it may undergo one or more SSB phase transitions from states of higher symmetries to lower ones, which change the governing laws of physics.’ (Nambu Nobel Prize speech).


� And again I am grateful to Kerry McKenzie for pressing me on this.


� It turns out that certain three-body interactions may take paraparticles between different paraparticle sectors; see French 1987.


� The nature of the structure being out forward may encourage further changes to the structural realists characterisation of structure, pushing her towards a category-theoretic conception. We recall that the DHR superselection sectors have the structure of a braided tensor *-category with conjugates (where “braided” can be replaced with “symmetric”, when the spacetime dimension is three or greater). Landry has long suggested that category theory might provide a natural framework for ontic structural realism (see her 2007), although I shall not consider this further here.


� The role of the Lagrangian here would also offer a corrective to North’s espousal of Hamiltonian formulations as representing the structure of the world (North 2009; for a response, see French forthcomingb).


� This suggestion obviously requires further elaboration. As Doreen Fraser has noted (personal communication) there is a difference in kind between the representations offered by conventional QFT and AQFT and the unitarily inequivalent representations that feature in SSB. Due attention may then need to be paid to the issues noted previously regarding how we understand the scope of these theories.





