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Abstract

A theorem due to Bob Geroch and Pong Soo Jang [“Motion of a Body in General Relativity.”
Journal of Mathematical Physics 16(1), (1975)] provides the sense in which the geodesic
principle has the status of a theorem in General Relativity (GR). Here we show that a
similar theorem holds in the context of geometrized Newtonian gravitation (often called
Newton-Cartan theory). It follows that in Newtonian gravitation, as in GR, inertial motion
can be derived from other central principles of the theory.

1 Introduction

The geodesic principle in General Relativity (GR) states that free massive test point particles

traverse timelike geodesics. It has long been believed that, given the other central postulates

of GR, the geodesic principle can be proved as a theorem. In our view, though previous

attempts3 were highly suggestive, the sense in which the geodesic principle is a theorem

of GR was finally clarified by Geroch and Jang (1975).4 They proved the following (the

statement of which is indebted to Malament (2010, Prop. 2.5.2)):

Theorem 1.1 (Geroch and Jang, 1975) Let (M, gab) be a relativistic spacetime, with
M orientable. Let γ : I → M be a smooth, imbedded curve. Suppose that given any open
subset O of M containing γ[I], there exists a smooth symmetric field T ab with the following
properties.

1. T ab satisfies the strict dominant energy condition, i.e. given any future-directed time-
like covectors ξa, ηa at any point in M , either T ab = 0 or T abξaηb > 0;

2. T ab satisfies the conservation condition, i.e. ∇aT
ab = 0;

1I am indebted to David Malament for helpful comments on previous drafts of this paper, and for sug-
gesting the topic. Thank you, too, to helpful audiences in Paris and Wuppertal, and particularly to Harvey
Brown and David Wallace.

2weatherj@uci.edu
3For instance, Einstein et al. (1938); Thomas (1962); Taub (1962); Dixon (1964) as well as references in

Geroch and Jang (1975).
4See also Ehlers and Geroch (2004), who prove a version of the Geroch-Jang theorem that permits

backreaction of the particle on the metric.
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3. supp(T ab) ⊂ O; and

4. there is at least one point in O at which T ab ̸= 0.

Then γ is a timelike curve that can be reparametrized as a geodesic.

The interpretation of the Geroch-Jang theorem can be put as follows: if γ is a smooth

curve about which it is possible to construct an arbitrarily small matter field satisfying

the conservation and strict dominant energy conditions, then γ can be reparametrized as

a timelike geodesic. More roughly, the only curves about which matter can propagate are

timelike geodesics. The Geroch-Jang approach has many virtues that previous attempts

lacked: (1) Geroch and Jang do not make any specific assumptions about the kinds of

matter fields that might compose the free massive test point particle (i.e. they do not need

to assume it is a perfect fluid or a dust, etc.), aside from general assumptions that any body

in GR would be expected to satisfy; (2) Geroch and Jang are able to show that a free massive

test point particle traverses a curve within spacetime, as opposed to a “line singularity” (cf.

Einstein et al., 1938); and (3) Geroch and Jang do not need to make simplifying assumptions

regarding the mass multi-pole structure of their test objects (cf. Dixon, 1964).

In so-called “geometrized Newtonian gravitation,” sometimes known as Newton-Cartan

theory, the motion of a free massive test point particle is again governed by a geodesic

principle. But thus far, little attention has been paid to the question of whether here, too,

the geodesic principle has the status of a theorem. The central result of the present paper

(Theorem 4.4 and Corollaries 4.5 and 4.6) is that a direct parallel to the Geroch-Jang theorem

does hold in geometrized Newtonian gravitation.5 It is worth noting that in the course of

proving the geodesic principle as a theorem of geometrized Newtonian gravitation, we prove

a lemma that can be understood as a proof of Newton’s first law (appropriately reformulated

in covariant, four dimensional language) in non-geometrized Newtonian gravitation. Thus

5At least, the Geroch-Jang theorem and Theorem 4.4 of this paper are directly parallel mathematically.
There is a second class of questions that one might ask, concerning the interpretations of the two theorems
in the contexts of their respective spacetime theories. For instance, one might wonder if the conservation
condition is as natural an assumption in geometrized Newtonian gravitation theory as in GR. We do not
address this such questions here, but will return to them in future work.
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we show that the principles governing inertial motion in both standard Newtonian theory

and geometrized Newtonian gravitation are dependent on the other principles of the theory,

just as in GR.

The remainder of the paper will proceed as follows. In section 2 we will briefly review

geometrized Newtonian gravitation. Section 3 will establish several important preliminaries

concerning integration in classical spacetime, as well as appropriate definitions of momentum

flux, angular momentum flux, and center of mass in the geometrized context. The main

results of the paper will be presented in section 4.

2 Review of Geometrized Newtonian Gravitation

Geometrized Newtonian gravitation was first developed in the 1920s by Élie Cartan (1923,

1924) and, apparently independently, by Kurt Friedrichs (1927), with substantial later con-

tributions by Ehlers (1981), Künzle (1976), Trautman (1965), and others (see Malament

(2010, Ch. 4) for an extensive list of references). Geometrized Newtonian gravitation is dis-

tinctive because it re-casts standard Newtonian dynamics and gravitation in a geometrical

language, bringing it as close to GR as possible. Indeed, it can be shown that in a precise

sense, geometrized Newtonian gravitation is a classical limit of GR (Künzle, 1976; Ehlers,

1981; Malament, 1986). It is thus the ideal context for work that seeks to compare GR with

classical Newtonian physics. In this section we will briefly review the central concepts of ge-

ometrized Newtonian gravitation. We will not describe the full details of the theory; rather,

the focus will be on setting up the language in which we will operate in the remainder of the

paper. For details, we recommend Malament (2010, Ch. 4), which is (to our knowledge) the

most systematic treatment of the subject available.

We begin by defining a classical spacetime.

Definition 2.1 A classical spacetime is an ordered quadruple (M, tab, h
ab,∇), where M is

a smooth,6 connected, four dimensional manifold; tab is a smooth symmetric field on M of
signature (1, 0, 0, 0); hab is a smooth symmetric field on M of signature (0, 1, 1, 1); and ∇ is

6We will explicitly indicate that various fields are smooth in the statements of lemmas and theorems, but
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a derivative operator on M compatible with tab and hab, i.e. it satisfies ∇atbc = ∇ah
bc = 0.

We additionally require that tab and h
ab are orthogonal, i.e. tabh

bc = 0.

Note that “signature,” here, has been extended to cover the degenerate case. We can see

immediately from the signatures of tab and hab that neither is invertible. Hence in general

neither tab nor h
ab can be used to raise and lower indices.

The field tab can be thought of as a temporal metric on M in the sense that given any

vector ξa in the tangent space at a point, p, ||ξa|| = (tabξ
aξb)1/2 is the temporal length of ξa

at that point. If the temporal length of ξa is positive, ξa is timelike; otherwise, it is spacelike.

At any point, it is possible to find a covector ta, unique up to a sign, such that tab = tatb. If

there is a continuous, globally defined vector field ta such that at every point tab = tatb, then

the spacetime is temporally orientable (we will encode the assumption that a spacetime is

temporally oriented by replacing tab with ta in our definitions of classical spacetimes). hab,

meanwhile, can be thought of as a spatial metric. However, since there is no way to lower the

indices of hab, we cannot calculate the spatial length of a vector directly. Instead, we rely on

the fact that if ξa is a spacelike vector (as defined above), then there exists a (non-unique)

covector σa such that ξa = habσb. The spatial length of ξa can then be defined as (habσaσb)
1/2.

It can be shown that this length is independent of the choice of σa. If ξa is not a spacelike

vector, then there is no way to assign it a spatial length. Note, too, that it is possible to

define the Riemann curvature tensor Ra
bcd and the Ricci tensor Rab with respect to ∇ as in

GR (or rather, as in differential geometry generally). Flatness (Ra
bcd = 0) carries over intact

from GR; we say a classical spacetime is spatially flat if Rabcd = Ra
nmqh

bnhcmhdq = 0. This

latter condition is equivalent to Rab = hanhbmRnm = 0.7

We describe matter in close analogy with GR. Massive point particles are represented by

their worldlines, which are smooth future-directed timelike curves parameterized by elapsed

time. (Point particles in the current framework have the same attenuated status as in

throughout the supporting discussion, we will at times take for granted than any object that is a candidate
for smoothness is indeed smooth.

7See Malament (2010, Prop. 4.15).
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GR—really, we are thinking of a field theory, and point particles are some appropriate

idealization.) For a point particle with mass m, we can always define a smooth unit vector

field ξa tangent to its worldline (the four-velocity), such that we can define a four-momentum

field, pa = mξa. Thus the mass of the particle is given by the temporal length of its four-

momentum. In similar analogy to the relativistic case, we can associate with any matter field

a smooth symmetric field T ab. T ab encodes the four-momentum density of the matter field

as determined by a future directed timelike observer at a point, but in this case all observers

agree on the four-momentum density at any point q: (pa)|q = (tbT
ab)|q. Contracting once

more with tb yields the mass density, ρ = tatbT
ab. Since T ab encodes mass and momentum

density in geometrized Newtonian gravitation, rather than energy and momentum density

(as in GR), it is called the mass-momentum tensor. It is standard to assume that mass

density is positive whenever T ab ̸= 0, i.e. ρ = T abtatb > 0. This condition, called the mass

condition, takes the place of the various energy conditions in GR.

In the present covariant four dimensional language, standard Newtonian mechanics can

be expressed as follows. Let (M, ta, h
ab,∇) be a classical spacetime. We require that∇ is flat.

We begin by considering the dynamics of a test point particle with mass m and four-velocity

ξa. The acceleration of the particle’s worldline, ξb∇bξ
a, is determined by the external forces

acting on the particle according to the relation F a = mξb∇bξ
a. In the absence of external

forces, a massive test point particle undergoes geodesic motion. If the total mass-momentum

content of spacetime is described by T ab, we require that the conservation condition holds,

i.e. at every point ∇aT
ab = 0. To add gravitation to the theory, we can represent the

gravitational potential as a smooth scalar field φ on M . φ is required to satisfy Poisson’s

equation, ∇a∇aφ = 4πρ (where ∇a is shorthand for hab∇b). Gravitation is considered a

force; the gravitational force on a point particle is given by F a = −m∇aφ.

In geometrized Newtonian gravitation we again begin with a classical spacetime (M, ta, h
ab,∇),

but now we allow ∇ to be curved. Once again, the acceleration of a particle with mass m

and four-velocity ξa is determined by the relation F a = mξb∇bξ
a, where F a represents the
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external forces acting on the particle; likewise, free massive test point particles undergo

geodesic motion. However, the geodesics are now determined relative to the not-necessarily-

flat derivative operator. The conservation condition is again expected to hold. Gravitation

enters the theory via a geometrized form of Poisson’s equation: if T ab describes the total

mass-momentum density in the spacetime, then the Ricci curvature tensor Rab = Rn
abn

is given by Rab = 4πρtatb. Since the Riemann curvature tensor (and by extension, the

Ricci tensor) is determined by ∇, the geometrized Poisson’s equation places a constraint

on the derivative operator. In particular, ∇ must be such that, for all smooth vector

fields ξa, Rabξ
a = −2∇[b∇n]ξ

n = 4πρtatbξ
a. Note, too, that the geometrized Poisson’s

equation forces spacetime to be spatially flat, because if Poisson’s equation holds, then

Rab = hanhbmRnm = 4πρhanhbmtntm = 0 by the orthogonality condition on the metrics.

It is always possible to “geometrize” a gravitational field on a flat classical spacetime—

that is, we can always move from the covariant formulation of standard Newtonian gravita-

tion to geometrized Newtonian gravitation, via a result due to Andrzej Trautman (1965).

Proposition 2.2 (Trautman Geometrization Lemma.) (Slightly modified from Mala-

ment, 2010, Prop. 4.2.1.) Let (M, ta, h
ab,

f

∇) be a flat classical spacetime. Let φ and ρ

be smooth scalar fields on M satisfying Poisson’s equation,
f

∇a

f

∇ aφ = 4πρ. Finally, let
g

∇ = (
f

∇, Ca
bc),

8 with Ca
bc = −tbtc

f

∇ aφ. Then (M, ta, h
ab,

g

∇) is a classical spacetime;
g

∇ is
the unique derivative operator on M such that given any timelike curve with (normalized)
tangent vector field ξa,

ξn
g

∇nξ
a = 0 ⇔ ξn

f

∇nξ
a = −

f

∇ aφ; (G)

and the Riemann curvature tensor relative to
g

∇,
g

R a
bcd, satisfies

g

Rab = 4πρtatb (CC1)
g

Ra
b
c
d =

g

Rc
d
a
b (CC2)

g

Rab
cd = 0. (CC3)

8This notation is explained in Malament (2010, Prop. 1.7.3). Briefly, if ∇ is a derivative operator on M ,
then any other derivative operator on M is determined relative to ∇ by a smooth symmetric (in the lower
indices) tensor field, Ca

bc, and so specifying the Ca
bc field and ∇ is sufficient to uniquely determine a new

derivative operator.
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Trautmann showed that it is also possible to go in the other direction. That is, given a

curved classical spacetime, it is possible to recover a flat classical spacetime and a gravita-

tional field, φ—so long as the curvature conditions (CC1)-(CC3) are met.

Proposition 2.3 (Trautman Recovery Theorem.) (Slightly modified from Malament,

2010, Prop. 4.2.5.) Let (M, ta, h
ab,

g

∇) be a classical spacetime that satisfies (CC1)-(CC3) for
some smooth scalar field ρ. Then, at least locally on M , there exists a smooth scalar field φ

and a flat derivative operator on M ,
f

∇, such that (M, ta, h
ab,

f

∇) is a classical spacetime; (G)

holds for all timelike curves with (normalized) tangent vector field ξa; and φ and
f

∇ together

satisfy Poisson’s equation,
f

∇a

f

∇ aφ = 4πρ.

It is worth pointing out that the pair (
f

∇, φ) is not unique. It is also worth pointing out

that whenever we begin with standard Newtonian theory and move to geometrized Newto-

nian theory, it is always possible to move back to the standard theory, because Prop. 2.2

guarantees that the curvature conditions (CC1)-(CC3) are satisfied.

3 Some preliminary definitions

We can now proceed to lay the groundwork for the present contribution. Throughout this

section, let (M, ta, h
ab,∇) be a classical spacetime. Let T ab be a smooth symmetric tensor

field on M satisfing three conditions: (1) the mass condition, (2) the conservation condition,

and (3) given any spacelike hypersurface Σ ⊂M , supp(T ab) ∩ Σ is bounded.

For any manifold A, we will denote the space of all smooth tensor fields on A by T(A);

the space of smooth contravariant fields on A will be T•(A) and the smooth covariant fields

on A will be T•(A). Suppose then that Σ ⊂ M is an imbedded submanifold of M . (Note

that we will always assume that submanifolds are connected.) The map
Σ
ı : Σ → M will be

assumed to represent the imbedding map (i.e. the identity map); the corresponding pull-back

map
Σ
ı ∗ : T•(M) → T•(Σ) represents the restriction of a covariant tensor field on M to a

covariant tensor field on Σ. Throughout this section and the next, we will write that a given

spacelike hypersurface slices the support (or the convex hull, etc.) of T ab. This assertion can
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be spelled out in a number of ways; one that is adequate for current purposes is as follows.

Let Σ ⊂M be a spacelike hypersurface of M . We will say that Σ slices the support (say) of

T ab if and only if supp(T ab) ∩ Σ ̸= ∅ and for any spacelike hypersurface Σ̃ such that Σ ⊆ Σ̃,

supp(T ab) ∩ Σ = supp(T ab) ∩ Σ̃. The idea is that there is at least one point q ∈ supp(T ab)

that is also in Σ, and moreover, any points in supp(T ab) that are spacelike related to q are

also in Σ.

3.1 Volume Elements in Classical Spacetimes

In what follows, we will make essential use of volume elements on differentiable manifolds

with classical spacetime structure. Some work is required to say what is meant by a volume

element without a (invertible, non-degenerate) metric in the background. First, the stan-

dard notion of orientability carries over intact from more familiar contexts: the underlying

manifold of a classical spacetime is orientable if it admits a smooth, globally defined, non-

vanishing 4-form. In this context, we can define a volume element on an orientable manifold

as a smooth 4-form ϵabcd satisfying the normalization condition,

ϵabcdϵefghh
bfhcghdh = 6tate,

which is equivalent to requiring that, given any four vectors at any point p ∈ M , if one of

them is a unit timelike vector, ξa, and the other three are mutually orthogonal unit spacelike

vectors,
i
ηa, then ϵabcdξ

a 1
ηa

2
ηa

3
ηa = ±1. Dimensionality considerations are sufficient to show

that the volume element is unique up to sign. Specifying a volume element on M provides

an orientation for the manifold; when we call a manifold oriented, we are assuming a fixed

choice of a volume element in the background. Finally, to say two n-forms ωa1···an and ω′
a1···an

are co-oriented is to say that ωa1···an = fω′
a1···an , where f > 0 everywhere.

Now we consider hypersurfaces of M . A hypersurface in a classical spacetime is spacelike

at a point if all of its tangent vectors are; otherwise it is timelike at that point. In what
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follows, we will limit attention to hypersurfaces that are either everywhere spacelike or

everywhere timelike. Suppose Σ is a (timelike or spacelike) hypersurface ofM . As above, we

will say Σ is orientable if it admits a smooth, globally defined, non-vanishing 3-form. Then, if

Σ is orientable, it is always possible to factor the volume element on M in the neighborhood

of Σ into
M
ϵ abcd =

Σ
n [a

Σ
ωbcd], where

Σ
ωabc is a (non-unique) 3-form on M and where

Σ
na is a unit

covector field normal to Σ. If Σ is spacelike, then
Σ
na = ±ta; if Σ is timelike, then hab

Σ
na

Σ
nb = 1

and whenever va ∈ T•(M) is tangent to Σ, va
Σ
na = 0. We can then take

Σ
ı ∗(

Σ
ωabc) =

Σ
ϵabc to

define a volume element on Σ (in other words, the restriction to Σ of any 3-form satisfying

the factorization condition above gives a volume element on Σ). As above, dimensionality

considerations show that volume elements on hypersurfaces are unique up to sign; to say a

hypersurface is oriented will be to assume that there’s a fixed choice of volume element in

the background.

Note that there are in general two possible unit covector fields normal to any given

oriented hypersurface of M : if
Σ
na is a unit normal covector field, then so is −Σ

na. However,

the sign of
Σ
na as we have defined it is wholly fixed by the relative orientations of M and Σ

because
M
ϵ abcd is fixed by the orientation of M and the sign of

Σ
ωabc is fixed by the orientation

of Σ. Thus given any oriented hypersurface ofM , there is a unique unit normal covector field

that satisfies the stated factorization condition. Conversely, a choice of normal covector field

uniquely picks out an orientation for a hypersurface. As a matter of definition, in the special

case where Σ is an oriented spacelike hypersurface, we will call Σ future-directed (relative to

the orientation of M) if
Σ
na = ta; likewise, Σ is past-directed if

Σ
na = −ta. Finally, if A is an

oriented p dimensional manifold, we will denote its volume element by
A
ϵa1···ap .

3.2 Integration in Flat Classical Spacetimes

Here and in the next three subsections (§§3.2-3.5), we will assume that ∇ is a flat derivative

operator and that M is oriented and simply connected.9 Under this assumption, we will

9Since any manifold is locally simply connected, we can always extend the notion of integral (and likewise,
momentum flux, angular momentum flux, and center of mass) described here by limiting attention to simply
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need to make sense of some improper-looking integrals, in which the integrand and the

integral have (the same) contravariant indices. That is, we will consider integrals of the form

αa1···an =
∫
S
βa1···anωb1···bp where S is a three or four dimensional imbedded submanifold ofM

and ω is a 3− or 4−form, respectively. We make no claims about what such integrals mean

(if anything) under general circumstances. However, when ∇ is flat and M is orientable

and simply connected, they can be understood as follows. Pick a point, q ∈ M , and let

{ 1
σa(q), . . . ,

4
σa(q)} be an orthonormal∗10 basis for the cotangent space of M at q.11 Since

∇ is flat, parallel transport of covectors is (locally) path-independent; since M is simply

connected, we can extend the cobasis at q to all points in M without introducing any

ambiguities, by parallel transporting each of the cobasis elements to each other point. This

method is guaranteed to produce smooth fields of orthonormal covectors on M—that is,

fields of constant basis covectors, { 1
σa, . . . ,

4
σa}.12

We can define the integrals required in terms of such bases. Taking an integral with

a single contravariant index (it is easy to see how to generalize to more indices), we say

αa =
∫
S
βaωb1···bp is the vector field such that, given any covector field κa ∈ T•(S), α

aκa =∑4
i=1

i
κ

i
σaα

a =
∑4

i=1

i
κ
∫
S

i
σaβ

aωb1···bp , where
i
κ is defined so that κa =

∑4
i=1

i
κ

i
σa.

13 Note that

since S is an imbedded submanifold of M ,
S
ı ∗(βa i

σa) = βa i
σa ◦ ı = βa i

σa because βa i
σa is a

scalar field. The vector α must exist, as the defining relation for the integral generates a

map from the covectors to C∞. Moreover, it can easily be shown that this definition of the

integral is independent of the choice of basis, due to the linearity of the integral.

Finally, it will prove helpful to register up front how to express two well-known facts about

connected open regions of an arbitrary manifold (construed as submanifolds). We will return to this idea in
Corollary 4.5.

10The star indicates that the language is being abused. See Malament (2010, pgs. 168-9).
11Nothing rides on the dimensionality of M here, but since we already have a background manifold in

place, we are using it for specificity. The construction we are using would work in any space that is flat,
orientable, and simply connected.

12Why? The field is smooth because parallel transport is smooth. The resulting fields form a basis
everywhere because parallel transport preserves temporal and spatial length and the dot product of constant

vectors: ∇a(h
bc i
σb

j
σc) = 0 since all of the relevant fields are, by definition or construction, constant.

13This definition of the integral is intended to conform to a kind of piecewise integration over the var-
ious components of a vector: a generalization of, in the notation of a first-year vector calculus class,∫
S
(βx(x, y, z), βy(x, y, z), βz(x, y, z))dxdydz, which would yield a constant vector.
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integration in the present language.14 First, suppose that Σ ⊂ M is an oriented, imbedded

hypersurface of M and let βa be an arbitrary contravariant vector field on M . Then we

can immediately write 4βaMϵ abcd = 4βaΣn[a
Σ
ωbcd] = βaΣna

Σ
ωbcd − 3

Σ
n[bβ

aΣω|a|cd]. To integrate, we

need to take the pull-back to Σ of both sides of this expression, yielding
Σ
ı ∗(4βaMϵ abcd) =

Σ
ı ∗(βaΣna

Σ
ωbcd − 3

Σ
n[bβ

aΣω|a|cd]) =
Σ
ı ∗(βaΣna

Σ
ωbcd) =

Σ
ı ∗(βaΣna)

Σ
ϵbcd, because the pull-back map

commutes with exterior multiplication, and
Σ
ı ∗(

Σ
na) = 0 because

Σ
na is normal to Σ. Thus,

∫
Σ

Σ
ı ∗(βaMϵ abcd) =

1

4

∫
Σ

Σ
ı ∗(βaΣna)

Σ
ϵbcd.

Secondly, suppose that N is a four dimensional submanifold ofM with boundary ∂N , where

we assume δN can be written as the union of a collection of hypersurfaces, each of which is

everywhere timelike or everywhere spacelike. Then if ωbcd is any 3−form on N , we can write

Stokes’ theorem in the current language as

∫
N

daωbcd =

∫
N

∇[aωbcd] =

∫
∂N

∂N
ı ∗(ωbcd),

where d represents the exterior derivative on N . Both of these facts will be of use in the

ensuing discussion.

3.3 Momentum

We can use this notion of integration in classical spacetimes to define the momentum flux

through a spacelike hypersurface.

Definition 3.1 Given any oriented hypersurface Σ ⊂ M , we define the momentum flux

through Σ to be P a(Σ) =
∫
Σ
T abtb

Σ
ϵcde =

∫
Σ
pa

Σ
ϵcde.

Proposition 3.2 Let Σ1, Σ2 be any two future-directed spacelike hypersurfaces slicing the
support of T ab. Then P a(Σ1) = P a(Σ2).

14These are discussed in full rigor by Boothby (2003); we find the lecture notes by van Suijlekom and
Hawkins (2009) to be particularly clear, though they are brief.
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T
ab

1Σ

2Σ

3Σ

Figure 1: Σ1 and Σ2 slice the support of T
ab, which is bounded in any spacelike hypersurface

by construction. Σ3, then, is a hypersurface that joins Σ1 and Σ2 but does not intersect the
support of T ab so that Σ1 ∪ Σ−

2 ∪ Σ3 forms the boundary of an oriented four dimensional
submanifold of M ; here, the arrows give the orientation of S, which is inherited from Σ1 and
Σ−

2 .

Proof. Let Σ1 and Σ2 be two future-directed spacelike hypersurfaces slicing the support of

T ab. Consider a third (timelike) hypersurface, Σ3, connecting Σ1 and Σ2 in such a way that

(1) supp(T ab) ∩ Σ3 = ∅ and (2) if we reverse the orientation of the temporally prior of the

spacelike hypersurfaces (say, Σ2), then ∂S ≡ Σ1∪Σ−
2 ∪Σ3 forms the boundary of an oriented,

simply connected four dimensional submanifold S ofM , whose orientation is as given by the

normal covectors depicted in Fig. 1. Since the support of T ab does not intersect Σ3, it follows
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immediately that
∫
Σ3
T abΣ3

n b
Σ3
ϵ cde = 0. Let κa be an arbitrary covector field on M . Then,

κa(P
a(Σ1)− P a(Σ2)) =

4∑
i=1

i
κ

(∫
Σ1

T ab i
σatb

Σ1
ϵ cde −

∫
Σ2

T ab i
σatb

Σ2
ϵ cde

)

=
4∑

i=1

i
κ

(∫
Σ1

T ab i
σatb

Σ1
ϵ cde +

∫
Σ−

2

T ab i
σatb

Σ−
2
ϵ cde +

∫
Σ3

T ab i
σa

Σ3
n b

Σ3
ϵ cde

)

=
4∑

i=1

i
κ

(∫
Σ1

Σ1
ı ∗(T ab i

σatb)
Σ1
ϵ cde +

∫
Σ−

2

Σ2
ı ∗(T ab i

σatb)
Σ−

2
ϵ cde

+

∫
Σ3

Σ3
ı ∗(T ab i

σa
Σ3
n b)

Σ3
ϵ cde

)
=

4∑
i=1

i
κ

(∫
∂S

∂S
ı ∗(T ab i

σa
∂S
n b)

∂S
ϵ cde

)

= 4
4∑

i=1

i
κ

(∫
∂S

∂S
ı ∗(T ab i

σa
S
ϵbcde)

)
= 4

4∑
i=1

i
κ

(∫
S

∇[nT
ab i
σ|a

S
ϵb|cde]

)

The third equality follows because T abta
i
σb is a scalar field, and so it is unaffected by the

pull-backs; the fifth equality makes use of the relation cited above concerning flux integrals;

and the final equality follows by Stokes’ theorem.

Consider the integrand of the last of the expressions above, ∇[nT
ab i
σ|a

S
ϵb|cde], which is a 4-

form. The space of n−forms on any n dimensional manifold is one dimensional, and so it must

be that ∇[nT
ab i
σ|a

S
ϵb|cde] = f

S
ϵncde, for some scalar field f . The goal is to show that f must

be zero; if this is the case, then the integrand vanishes. Let
S
ϵ abcd (with raised indices) be a

totally anti-symmetric contravariant tensor, normalized so that
S
ϵabcd

S
ϵ efgh = 4!δa

[eδb
fδc

gδd
h].

This field can be constructed out of any (contravariant) basis fields for S. Multiplying the

integrand by
S
ϵ abcd and contracting, then, we find

f
S
ϵncde

S
ϵ ncde = 4!f = ∇[n(T

ab i
σ|a

S
ϵb|cde])

S
ϵ ncde

= 4!∇n(T
ab i
σa)δb

n = 4!∇bT
ab i
σa = 0,

where the last step follows from the conservation condition on T ab. Thus f = 0. It follows

immediately that κa(P
a(Σ1)−P a(Σ2)) = 0. But κa was an arbitrary covector, which means
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that P a(Σ1)− P a(Σ2) must vanish identically, and so P a(Σ1) = P a(Σ2). �

We have not given an interpretation to T ab yet; however, it is worth noting that if

T ab is understood as the Newtonian mass-momentum tensor, Prop. 3.2 is a statement of

conservation of momentum. To see why, note that if Σ1 and Σ2 are spacelike hypersurfaces

slicing the support of T ab, then the momentum flux is the same through both of them. Since

we have assumed that M is simply connected, it is possible to define a global time function

on the spacetime, and so Prop. 3.2 implies that P a is constant in time.15

Definition 3.3 Let Σ ⊂ M be any spacelike hypersurface slicing the support of T ab. Then
the total momentum of the system can be defined pointwise as follows. At any point p ∈M ,
(P a)|p = P a(Σ). By Prop. 3.2, P a is independent of the choice of surface.

Proposition 3.4 The covariant derivative of P a is given by ∇nP
a = 0.

Proof. Fix o ∈ M and let Σ ⊂ M be any spacelike hypersurface slicing the support of

T ab. Then (P a)|o =
∫
Σ
T abtb

Σ
ϵcde. Let (P a)∥o represent the vector field found by parallel

transporting (P a)|o to all points of M . Now take an arbitrary point p ∈ M . By definition,

we have (P a)|p =
∫
Σ
T abtb

Σ
ϵcde =

(
(P a)∥o

)
|p. But p was arbitrary and so P a = (P a)∥o. Since

(P a)∥o is constant by construction, P a must be constant as well. We can conclude that

∇nP
a = 0. �

Remark 3.5 Note that P a is timelike, as P ata =
∫
Σ
T abtatb

Σ
ϵcde > 0.

3.4 Angular Momentum

We have shown that P a is a constant timelike vector field relative to ∇. Thus its integral

curves are geodesics. We will work with a normalized vector field, V a, given by V a =

15In general, it is always possible to define local time functions on a classical spacetime. If we allowM to be
non-simply connected, we can limit attention to simply connected open regions of M . We can then calculate
momentum flux within the simply connected region, in which case, so long as the local simultaneity slices
associated with a given local time function slice the support of T ab, the local P a will be constant relative to
the local time function.

14



P a/(P ntn), whose integral curves are also geodesics. In what follows, let Γ be the set

of maximal integral curves of V a. Since ∇ is flat, we can define a class of vector fields,

{ p
χ a|p ∈ M} ⊂ T•, satisfying the following properties: for any p ∈ M , (

p
χ a)|p = 0 and

∇a
p
χ b = δa

b.16 These can be thought of as fields of “position vectors” centered at a specified

point. At each point q, (
p
χ a)|q gives the vector “from p to q” in the tangent space at q.

Definition 3.6 Given any point p ∈ M and any oriented hypersurface Σ ⊂ M , we define

the angular momentum flux through Σ relative to p to be Jab(Σ, p) =
∫
Σ

p
χ [aT b]ctc

Σ
ϵdef .

Proposition 3.7 Let Σ1, Σ2 be any two future-directed spacelike hypersurfaces slicing the
support of Tab and let p ∈M . Then Jab(Σ1, p) = Jab(Σ2, p).

We omit the proof of this claim, as it follows by identical reasoning as the proof of Prop.

3.2.

Prop. 3.7 is analogous to Prop. 3.2 and can similarly be interpreted as a statement of the

conservation of angular momentum about any given point. It justifies a definition analogous

to that of P a.

Definition 3.8 Let Σ ⊂ M be any spacelike hypersurface slicing the support of T ab. Then
the total angular momentum, Jab, can be defined pointwise in the following way. At any
point p ∈M , (Jab)|p = Jab(Σ, p). By Prop. 3.7, Jab at any point is independent of the choice
of Σ.

Proposition 3.9 The covariant derivative of Jab is given by ∇aJ
bc = −δa[bP c].

Proof. Fix o ∈M and consider any p ∈M and any spacelike hypersurface Σ that slices the

support of T ab. Then (Jab)|p =
∫
Σ

p
χ [aT b]ctc

Σ
ϵdef =

∫
Σ

o
χ [aT b]ctc

Σ
ϵdef +

∫
Σ
(
p
χ [a − o

χ [a)T b]ctc
Σ
ϵdef ,

where in the last step we have added and subtracted
∫
Σ

o
χ [aT b]ctc

Σ
ϵdef , which is a vector that

16Such a vector field, relative to ∇, exists everywhere whenever ∇ is flat and the underlying space is
orientable and simply connected. To see why, note that at any point p, one can always pick a basis for the
tangent vector space at p by taking the tangent vectors at p of a set of coordinate curves through p (see the
discussion in Malament (2010, pg. 53)). Since ∇ is flat, one can parallel transport this basis to find a set
of coordinate basis fields everywhere. Then the reasoning in the proof of Prop. 1.7.11 of Malament (2010)
applies, using the coordinate maps and basis vectors that we have just described.
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we can understand to be defined at p. Notice that (
p
χ a − o

χ a) is a constant vector field: at

any point q, it is just the vector “from p to q” minus the vector “from o to q”. Thus the

field (
p
χ a − o

χ a) is given by the constant vector “from p to o” at every point. This could

be characterized as (
p
χ a)|o parallel transported to every point or alternatively as −(

o
χ a)|p

parallel transported to every point. (See Fig. 2.) For clarity, we will again use the notation

(va)∥p to represent the (global) vector field found by parallel transporting (va)|p to all points.

In this notation, we have (Jab)|p =
∫
Σ

o
χ [aT b]ctc

Σ
ϵdef −

∫
Σ
(
o
χ [a)∥pT

b]ctc
Σ
ϵdef .

(where the vector “at p” has 
been parallel transported
“to q”)

p

o

q

X
a

|q

p

=

(     )

X
a

|q

o

-(     )

X
a

|p

o

-(     )

X
a

|q

o

-(     )X
a

|q

p

(     ) X
a

|p

o

-(     )

Figure 2: At any point q, (
p
χ a − o

χ a)|q is the vector found by parallel transporting −(
o
χ a)|p

to q.

Since (
o
χ a)∥p is a constant vector field, we can pull it out of the integral to write, (Jab)|p =∫

Σ

o
χ [aT b]ctc

Σ
ϵdef −

(
o
χ∥p

[a
∫
Σ
T b]ctc

Σ
ϵdef

)
|p
. But

(
(
o
χ a)∥p

)
|p
= (

o
χ a)|p and

∫
Σ
T bctc

Σ
ϵdef = P b, so

we have (Jab)|p =
∫
Σ

o
χ [aT b]ctc

Σ
ϵdef−(

o
χ [aP b])p. Moreover, in the present notation,

∫
Σ

o
χ [aT b]ctc

Σ
ϵdef =

(Jab)∥o. This means we can write (Jab)|p =
(
(Jab)∥o −

o
χ [aP b]

)
|p
. But p was arbitrary, so Jab

can be characterized in general as Jab = (Jab)∥o −
o
χ [aP b]. Taking the action of ∇a on both

sides of this final expression yields ∇aJ
bc = −δa[bP c]. �

3.5 Center of Mass

Now suppose additionally that (M,∇) is geodesically complete.17 We can use the concepts

already defined to describe the center of mass of T ab.

17As with simple connectedness, we will ultimately relax this condition by proceeding locally.
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Definition 3.10 A set A ⊆ M is spatially convex if and only if for all p, q ∈ A for which
there is a spacelike geodesic segment γ : I → M with endpoints p and q, γ[I] ⊆ A. For
any tensor field Xa1···

b1··· , let X = {X̃|X̃ is spatially convex and supp(Xa1···
b1··· ) ⊆ X̃}. Then the

spatial convex hull18 of Xa1···
b1··· , denoted ConvHull(Xa1···

b1··· ), is given by ConvHull(Xa1···
b1··· ) =

∩
X.

Proposition 3.11 Let Σ be a spacelike hypersurface slicing the spatial convex hull of T ab.
There exists a unique point q ∈ Σ such that (Jabtb)|q = 0. Moreover, q ∈ ConvHull(T ab).

Proof. First we will prove that a point as described in the statement of the proposition exists.

Fix some arbitrary o ∈ Σ and consider (Jabtb)|o/(P
ntn) =

∫
Σ

o
χ aT bctbtc

Σ
ϵdef/(P

ntn) = Ra.

Note that this expression is simply a definition of Ra—no claim has yet been made; moreover,

P ntn is just a scalar constant. We have used the fact that since o ∈ Σ,
o
χ a is spacelike

on all of Σ to simplify this expression. Ra is a constant, spacelike vector field (spacelike

because the integrand is spacelike over the entire domain of integration). We can then write∫
Σ

o
χ aT bctbtc

Σ
ϵdef = Ra

∫
Σ
T bctbtc

Σ
ϵdef =

∫
Σ
RaT bctbtc

Σ
ϵdef or

∫
Σ
(
o
χ a−Ra)T bctbtc

Σ
ϵdef = 0. But Σ

is a spacelike hypersurface of a geodesically complete, simply connected classical spacetime,

so it is a flat, three dimensional Euclidean manifold. Thus
o
χ a − Ra would be the position

vector field centered at the point q = o + Ra(o) (where we are using the natural affine

structure of Euclidean space to represent points as a formal sum between a point and a

vector, so a point p can be written as a sum of any point p′ and a vector v from p′ to p

as p = p′ + v),19 if in fact there is such a point20 in Σ. But even if there is no such q in

Σ, the vector field
o
χ a − Ra is well defined, and we can use the notation

o
χ a − Ra =

q
χ a to

describe a vector field on Σ without assuming that q ∈ Σ. Note, however, that if q ∈ Σ,

then (Jabtb)|q = 0 and q would be the desired point, so it only remains to show that q ∈ Σ

and we will have established existence.

We claim that there is such a point q ∈ Σ. To see why, first note that
∫
Σ

q
χ aT bctbtc

Σ
ϵdef is a

positively weighted average of position vectors, and so it can only vanish if the position origin

18At times, we will drop the “spatial,” but we will always mean the spatial convex hull.
19For more on this notation, see Malament (2009).
20It is possible that Σ is bounded and o + Ra(o) lies outside the bound of Σ, or that q has been excised

from Σ.
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falls within the spacelike slice of the convex hull of T ab over which the average is performed.

(See, for instance, Benson (1966) for a proof of this well-known claim.) So q ∈ ConvHull(T ab)

(and a fortiori, q ∈M , sinceM is geodesically complete). But Σ slices the spatial convex hull

of T ab, by hypothesis. So suppose there is no such q in Σ. Then we could define Σ̃ = Σ∪{q}.

Since q is spacelike related to o ∈ Σ, Σ̃ is a spacelike hypersurface. Thus we have a spacelike

hypersurface such that Σ ⊆ Σ̃ but Σ ∩ ConvHull(T ab) ̸= Σ̃ ∩ ConvHull(T ab), and so Σ does

not slice ConvHull(T ab), which is a contradiction. Thus, since q ∈ ConvHull(T ab) and q is

spacelike related to o ∈ Σ (as it is by construction), q ∈ Σ.

It remains to show that q is unique. Suppose there were two such points, q and q′,

where q ̸= q′. Then
∫
Σ

q
χ aT bctbtc

Σ
ϵdef =

∫
Σ

q′

χ aT bctbtc
Σ
ϵdef = 0 =

∫
Σ
(
q
χ a − q′

χ a)T bctbtc
Σ
ϵdef . Let

Ra be as defined above and furthermore take Qa be the unique constant vector field such

that q′ = o + Qa(o). Then we have
∫
Σ
(
q
χ a − q′

χ a)T bctbtc
Σ
ϵdef =

∫
Σ
(Ra − Qa)T bctbtc

Σ
ϵdef =

(Ra −Qa)
∫
Σ
T bctbtc

Σ
ϵdef = 0. But T bctbtc is nonvanishing and never negative by assumption

(the first follows because T ab is nonvanishing and the second by the mass condition), and so∫
Σ
T bctbtc

Σ
ϵdef ̸= 0. Thus Ra −Qa = 0 and q = q′. It follows that q is unique. �

Prop. 3.11 allows us to speak of a single center of mass at a given time.

Definition 3.12 Given a spacelike hypersurface Σ slicing the spatial convex hull of T ab, we
will call the unique q ∈ Σ for which (Jabtb)|q = 0 the center of mass of T ab in Σ.

Note finally that since q ∈ ConvHull(T ab), we have a sense in which the center of mass

is inside the worldtube of T ab.

4 A Newtonian geodesic principle

We can now consider the motion of a particle in geometrized Newtonian theory. First, we

require several lemmas.

Lemma 4.1 Let (M, ta, h
ab,∇) be a classical spacetime, and suppose that M is oriented

and simply connected and that (M,∇) is geodesically complete. Assume that ∇ is flat. Let
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T ab be a smooth symmetric tensor field on M satisfying: (1) the mass condition, (2) the
conservation condition, and (3) given any spacelike hypersurface Σ ⊂ M , supp(T ab) ∩ Σ is
bounded. Let G ⊂ M be the collection of center of mass points of T ab. Then there is a
smooth curve (γ : I → M) ∈ Γ (recall that Γ is the set of maximal integral curves of V a)
such that G = γ[I].

Proof. Consider any g ∈ G and let γ : I →M be one of the (unique up to reparameterization)

maximal integral curves of V a passing through g. For concreteness, we can fix γ by supposing

that γ(0) = g. By definition, (Jabtb)|g = 0. Moreover, V n∇n(J
abtb) = V n(δn

aP b−δnbP a)tb =

(V aP b − V bP a)tb = 0, so Jabtb is constant along γ. Thus Jabtb must vanish along all of γ

and γ[I] ⊆ G. But G ⊆ γ[I]. Suppose otherwise. Then there would be some point g′ ∈ G

such that g′ ̸∈ γ[I]. By the definition of a center of mass point, there must be some spacelike

hypersurface Σ for which g′ ∈ Σ. SinceM is geodesically complete, there must be a spacelike

hypersurface Σ̃ such that Σ ⊆ Σ̃ and γ[I]∩ Σ̃ ̸= ∅. But if γ[I]∩ Σ̃ ̸= ∅, there must be exactly

one point in p ∈ γ[I] ∩ Σ̃ because γ is a timelike curve. So p ∈ G (since we already showed

that γ[I] ⊆ G). By Prop. 3.11, there is exactly one center of mass point in any spacelike

hypersurface slicing the convex hull of T ab, so p = g′ and g′ ∈ γ[I], which is a contradiction.

Thus γ[I] = G. �

It follows immediately that in flat, simply connected, geodesically complete classical

spacetimes, the path traced out by the center of mass of T ab can always be reparameterized

as a geodesic (so long as T ab is conserved). In other words, Lemma 4.1 gives us a statement

of Newton’s first law, as a consequence of the mass condition, the conservation condition,

and a condition on the boundedness of the body represented by T ab. The second lemma is

more complicated and involves a general classical spacetime.

Lemma 4.2 Let (M, ta, h
ab,∇) be a classical spacetime and suppose M is simply connected.

Moreover, suppose that Rabcd = 0 and Rab
cd = 0.21 Let γ : I → M be a smooth timelike

21What should one make of these conditions? Spatial flatness holds in any classical spacetime satisfying
the geometrized version of Poisson’s equation. The second condition, Rab

cd = 0, is precisely the curvature
condition necessary to recover standard Newtonian gravitation from geometrized Newtonian gravitation
(Trautman, 1965; Malament, 2010). See section 2. This condition is strictly necessary for the argument
given here to proceed.
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curve. Then there exists a flat derivative operator on M ,
f

∇, that (1) is compatible with hab

and ta and (2) agrees with ∇ on γ.

Proof. There are many flat derivative operators compatible with hab and ta (Cf. Mala-

ment, 2010, Prop. 4.2.5).22 Our strategy will be to construct one such operator (call it
f1

∇)

as in the proof to Prop. 4.2.5 and then keep it fixed as a reference. We will then construct

a second operator that additionally satisfies (2) by making use of
f1

∇.

Since Rabcd = 0 and Rab
cd = 0, there exists (globally, since M is simply connected) a

timelike vector field ηa that is rigid and non-rotating (i.e. ∇aξb = 0). Let ĥab be the spatial

projection field relative to ηa (see Prop. 4.1.2) and define ϕa = ηn∇nη
a and κab = ĥn[b∇a]η

n.

We will take the reference derivative operator to be given by
f1

∇ = (∇,
01

Ca
bc) where

01

Ca
bc =

2hamt(bκc)m. As is shown in the proof of Prop. 4.2.5, this choice of derivative operator is flat

and compatible with ta and hab.

Prop. 4.2.5 shows that a second derivative operator/vector field pair (
f2

∇,
2

ϕa) will also

be flat and compatible with hab and ta iff ∇a(
2

ϕb −
1

ϕb) = 0 and
f2

∇ = (
f1

∇,
12

Ca
bc) where

12

Ca
bc = tbtc(

2

ϕa −
1

ϕa). Moreover, by Prop. 1.7.3, there must exist a symmetric tensor field
02

Ca
bc such that

f2

∇ = (∇,
02

Ca
bc). Indeed,

02

Ca
bc =

01

Ca
bc +

12

Ca
bc.

One can write the required relation between
1

ϕa and
2

ϕa as
2

ϕa =
1

ϕa + ψa where ψa is

a covariant spacelike vector field satisfying ∇bψa = 0. The condition that two derivative

operators agree at a point p can be stated by demanding that the Ca
bc field relating them

vanishes at that point. Thus
f2

∇ agrees with ∇ on γ just in case
02

Ca
bc vanishes on γ. This

condition in turn holds just in case
01

Ca
bc +

12

Ca
bc = 2hamt(bκc)m + tbtcψ

a = 0 on γ. Since ηa is

timelike, 2t(bκ
a

c) + tbtcψ
a = 0 on γ just in case ηbηc(2t(bκ

a
c) + tbtcψ

a) = 0 on γ. (That this

condition is necessary and sufficient follows from the fact that κab = 0,23 which implies that

22All of the propositions of the form X.X.X cited in this proof are references to Malament (2010); we will
refer to the proposition numbers directly and suppress further citations where no ambiguity can arise.

23Here is where the condition Rab
cd = 0 is necessary. In a spatially flat classical spacetime, Rab

cd = 0 iff
there exists (at least locally) a rigid and non-rotating timelike field. If Rab

cd ̸= 0, then it is possible to find
a rigid (∇(aηb) = 0) field, but not a non-rotating one; using this construction with a rigid but rotating field
leads to κab = ∇[aηb] ̸= 0, which means that in general one cannot find a flat derivative operator that agrees
with ∇ on γ, at least by the argument offered here.
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hrb(2t(bκ
a

c) + tbtcψ
a) = hrc(2t(bκ

a
c) + tbtcψ

a) = 0. Hence by the discussion following Prop.

4.1.1, if ηbηc(2t(bκ
a

c) + tbtcψ
a) = 0 at p for any ηa, then 2t(bκ

a
c) + tbtcψ

a = 0 identically at

p.) But ηbtb = ηctc = 1 and, as shown in the proof of Prop. 4.2.5, 2κ b
a η

a =
1

ϕb. Thus

ηbηc(2t(bκ
a

c) + tbtcψ
a) =

1

ϕa + ψa, and so
f2

∇ agrees with ∇ on γ whenever ψa = −
1

ϕa on γ.

Note that this condition is equivalent to saying that, again on γ,
2

ϕa = 0.

As stated above, it is also necessary that ∇bψa = 0 obtain. So we have two conditions on

ψa (that it is constant in spacelike directions, and that it is the opposite of
1

ϕa on γ). We claim

that there is a field that meets both conditions. For any spacelike hypersurface Σ slicing

the spatial convex hull of T ab, let ψa be the vector field one finds by parallel transporting

(relative to ∇) the vector −
1

ϕa at the point where γ intersects Σ to all other points of Σ

(this construction cannot produce ambiguities because we have assumed spatial flatness, and

thus parallel transport in space is always path-independent, at least in a simply connected

manifold). Then ψa is smooth, because
1

ϕa is, and moreover, it satisfies both requirements.

Thus
f2

∇ = (
f1

∇, tbtcψa) = (∇, 2hamt(bκc)m + tbtcψ
a) is the required derivative operator. �

It is important to note that the argument just given only permits one to find a flat

derivative operator that agrees with ∇ on timelike curves. The argument fails for curves

that intersect the same spacelike hypersurface more than once because ψa has to satisfy

∇aψb. Once ψa has been chosen so that
f2

∇ agrees with ∇ at one point on a given spacelike

hypersurface, its value is fixed for the whole hypersurface, and so it cannot generally be made

to agree with ∇ at any other point on the same spacelike hypersurface. This will complicate

the proof of the result in the present paper, relative to the Geroch-Jang theorem, but it is

not fatal, in large part because of the following result.

Lemma 4.3 Let (M, ta, h
ab,∇) be an arbitrary classical spacetime, and suppose that M is

oriented and simply connected. Suppose also that Rabcd = 0. Let T ab be a smooth symmetric
tensor field on M satisfying: (1) the mass condition, (2) the conservation condition, and
(3) given any spacelike hypersurface Σ ⊂ M , supp(T ab) ∩ Σ is bounded. Suppose that Σ1

and Σ2 are spacelike hypersurfaces slicing the support of T ab. Finally, let
f

∇ be any flat
derivative operator on M that is compatible with the spatial and temporal metrics. Then
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taP
a(Σ1) = taP

a(Σ2), where P
a(Σi) is defined relative to

f

∇.

Proof. This result follows the proof of Prop. 3.2 closely. The most important thing to note

is that here we assume that ∇aT
ab = 0, but not that

f

∇aT
ab = 0. Thus the argument that

the integrand
f

∇[nT
abt|a

S
ϵb|cde] vanishes fails. However, we now are considering a special case

wherein κa = ta. Without loss of generality, we can always choose to integrate relative to a set

of basis fields in which ta is a basis element. Then, by the Stokes’ theorem argument given in

the proof of Prop. 3.2, we have ta(P
a(Σ1)−P a(Σ2)) =

∫
S

f

∇[nT
abt|a

S
ϵb|cde]. But

f

∇[nT
abt|a

S
ϵb|cde]

is an exterior derivative, and so it is invariant under different choices of covariant derivative

operator. That is, we can write
f

∇[nT
abt|a

S
ϵb|cde] = dn(T

abta
S
ϵbcde) = ∇[nT

abt|a
S
ϵb|cde], where in

the last expression we are using the general curved derivative operator associated with the

spacetime—relative to which T ab is conserved. Again by reasoning present in the proof to

Prop. 3.2, it can be shown that ∇[nT
abt|a

S
ϵb|cde] = ∇b(T

abta)
S
ϵncde. Since ta is compatible with

∇, we have ∇b(T
abta) = 0. Thus ta(P

a(Σ1)−P a(Σ2)) = 0, or for any spacelike hypersurfaces

slicing the support of T ab, Σ1 and Σ2, P
a(Σ1)ta = P a(Σ2)ta. �

It is now possible to state the general theorem concerning the Newtonian geodesic prin-

ciple.24

Theorem 4.4 Let (M, ta, h
ab,∇) be a classical spacetime, and suppose that M is oriented

and simply connected. Suppose also that Rabcd = 0 and Rab
cd = 0. Let γ : I → M be a

smooth imbedded curve. Suppose that given any open subset O of M containing γ[I], there
exists a smooth symmetric field T ab ∈ T•(M) with the following properties.

1. T ab satisfies the mass condition, i.e. whenever T ab ̸= 0, T abtatb > 0;

2. T ab satisfies the conservation condition, i.e. ∇aT
ab = 0;

3. supp(T ab) ⊂ O; and

4. there is at least one point in O at which T ab ̸= 0.

Then γ is a timelike curve that can be reparametrized as a geodesic.

24The present proof is heavily indebted to the approximation scheme used in the proof of the Geroch-Jang
theorem, though the framework in which their proof is presented is not immediately available in the classical
context.
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Proof. We will consider three cases.

Case 1: First, suppose that γ is (everywhere) timelike. Let O be an open subset of

M containing γ[I] and let T ab be a field meeting the requirements of the statement of the

theorem. Since M is always locally geodesically complete, we can freely choose O so that

there always exist geodesically complete spacelike hypersurfaces slicing the support of T ab.

By Lemma 4.2, there exists a flat derivative operator onM ,
f

∇, that is consistent with ta and

hab, and which agrees with ∇ on γ. For each spacelike hypersurface slicing the support of

T ab, Σ, it is possible to define P a(Σ) and Jab(Σ) (again, we can limit attention to geodesically

complete hypersurfaces if necessary). These fields are defined relative to
f

∇ in the sense that

the parallel transport necessary to make sense of such integrals is performed relative to
f

∇.

Note that P a(Σ) and Jab(Σ) are globally defined fields; however, since T ab is not necessarily

conserved relative to
f

∇, Props. 3.2 and 3.7 no longer hold and the fields are dependent

on the choice of Σ. However, since each Σ is geodesically complete, Prop. 3.11 still holds

for each Σ; likewise Lemma 4.1, continues to hold for each of the P a(Σ) and Jab(Σ) fields

individually (at least within a neighborhood of the unique center of mass point associated

with Σ), relative to
f

∇. Thus for each Σ, there is a geodesic
Σ
γ (relative to

f

∇) that passes

through the spatial convex hull of T ab (relative to
f

∇). One can think of these geodesics as

the “unperturbed” paths of a particle: i.e. the paths a particle would take if the scalar field

associated with
f

∇ (the gravitational potential relative to
f

∇) suddenly vanished at the time

associated with a given Σ.

As has already been mentioned, T ab is not necessarily conserved relative to
f

∇. However,
f

∇aT
ab = (

f

∇a − ∇a)T
ab is given by a smooth field (a sum of products of the

02

C a
bc field

constructed in Lemma 4.2 and T ab) that vanishes on γ, since by construction the two oper-

ators agree there. Thus, for any constant scalar field α > 0, one can make |
f

∇aT
abtb| < α

everywhere by shrinking the support of T ab (which is always possible because a suitable T ab

exists for any neighborhood of γ).
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Let Σ1 and Σ2 be any two appropriate spacelike hypersurface slicing the support of T ab

and consider the fields Jab(Σ1)ta and Jab(Σ2)tb. The curves
Σ1
γ and

Σ2
γ consist of the points

at which Jab(Σ1)ta and Jab(Σ2)ta vanish, respectively. Now let Σ be some other appropriate

spacelike hypersurface slicing the support of T ab, and let p ∈ Σ. The field Jab(Σ1)ta (for

instance) at p can be interpreted as the vector pointing from p to o, where o is the point at

which
Σ1
γ intersects Σ. Note that this interpretation makes sense because (1) Σ is always a

flat space with Euclidean affine structure and (2) Jabta is always spacelike (as can be seen

immediately by the symmetry properties of Jab). This means that at any p in an appropriate

Σ, the vector (Jab(Σ1)− Jab(Σ2))ta represents the vector from p to o, minus the vector from

p to o′ (where o′ is the point at which
Σ2
γ intersects Σ), which is just the vector from o′ to o.

Note that this difference is independent of p, but dependent on the spacelike hypersurface

containing p. So we can define a (spacelike) vector field ηa = (Jab(Σ1) − Jab(Σ2))tb whose

spatial length at any point p in a spacelike hypersurface slicing the support of T ab represents

the distance between the points at which
Σ1
γ and

Σ2
γ intersect that spacelike hypersurface.

Our goal will be to show that the spatial length of ηa can be made arbitrarily small

everywhere. To see this, note that since ηa is always spacelike, there exists a vector βa such

that ηa = habβb. The spatial length of ηa is then given by (habβaβb)
1/2. Pick an arbitrary

point p ∈M and consider habβaβb = βaη
a at p. By definition of the terms involved, this last

expression can be written in terms of a constant basis
1
σa, . . . ,

4
σa (relative to

f

∇), so that

habβaβb =
4∑

i=1

i

β

(∫
Σ1

p
χ[aT b]c i

σatbtc
Σ1
ϵ def −

∫
Σ2

p
χ[aT b]c i

σatbtc
Σ2
ϵ def

)
. (4.1)

By the Stokes’ theorem reasoning in the proof of Prop. 3.2, we can construct a submanifold

S with Σ1 and Σ2 forming partial boundaries, such that,

habβaβb =
4∑

i=1

i

β

∫
S

f

∇[n
p
χ[aT b]c i

σ|atb
S
ϵc|def ]. (4.2)
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Again by the reasoning of the proof of Prop. 3.2, we can show that
f

∇c(
p
χ[aT b]c i

σatb) =

p
χ[a(

f

∇cT
b]c)

i
σatb. This final expression, meanwhile, represents a scalar field that can be made

as small as one likes by shrinking the support of T ab. It follows that the righthand side of

Eq. (4.2) can be made arbitrarily small. And so, for any positive scalar field α, one can

choose O so that habβaβb < α.

It follows that for any two appropriate spacelike hypersurfaces Σ1 and Σ2, the geodesics

Σ1
γ and

Σ2
γ can be made arbitrarily close to one another in the sense that, given any two

appropriate spacelike hypersurfaces slicing the support of T ab, Σ1 and Σ2, and any open

set A containing
Σ1
γ [I], we can choose T ab so that

Σ2
γ [I] ⊂ A as well. Moreover, for each Σ,

Σ
γ passes through the intersection of the spatial convex hull (relative to

f

∇) of T ab and Σ,

and so we can conclude that the image of the original curve, γ[I], is arbitrarily close to a

geodesic (relative to
f

∇), in the same sense. This last result is only possible if γ can itself be

reparameterized as a geodesic (relative to
f

∇). Finally, since
f

∇ agrees with ∇ on γ, then γ

must be a geodesic relative to ∇ as well, up to reparameterization.

Case 2: Now suppose γ is (everywhere) spacelike. We claim that there exist open

sets containing γ[I] for which there does not exist a smooth symmetric field T ab ∈ T•(M)

satisfying conditions 1-4. Suppose that for any open set containing γ[I], such a field did

exist. We know that there always exists a flat derivative operator on M , so let
f

∇ be any

such flat derivative operator. Since γ is everywhere spacelike, there must be some spacelike

hypersurface Σ such that γ[I] ⊆ Σ.

First, suppose that Σ can be chosen to be bounded. Then we can also freely choose

a neighborhood O of γ which is also bounded. Since M is simply connected, it admits a

global time function, t : M → R, which is unique up to an additive constant. We can

choose O so that there is some value t′ of the time function with the following property: if

Σ′ is a spacelike hypersurface whose time value is t′, Σ′ satisfies Σ′ ∩ O = ∅. It follows that

T ab vanishes on Σ′, and thus that P a(Σ′) = 0 (where the integrals are performed relative

to the arbitrary flat derivative operator
f

∇). Thus P a(Σ′)ta = 0. Meanwhile, by the mass
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Figure 3: An example in three dimensions of an open set O whose “temporal height” goes
to zero at spatial infinity, and which contains a spacelike hypersurface. In the case where γ
is restricted to a single spacelike hypersurface, Σ, the depicted set can be chosen to contain
γ. Thus there must be some point p ∈ O at which T ab is non-vanishing. By smoothness, we
can assume p ̸∈ Σ. One can then choose a cylinder (as shown) whose bottom (or top) slices
O, but which doesn’t intersect the set elsewhere. The argument in Lemma 4.3 then yields a
contradiction. (See Case 2 in the text.)

condition, we know that P a(Σ)ta > 0. Now we can use a slightly modified25 version of the

argument of Lemma 4.3. Since O is bounded, we can freely choose some third (timelike)

hypersurface Σ′′ (adjusting our choices of O and Σ if necessary) s.t. Σ′′ ∩ O = ∅, and such

that Σ ∪ Σ′ ∪ Σ′′ forms the boundary of a four dimensional submanifold of M , S (where we

reverse the orientation of, say, Σ′ so that S is outwardly oriented). We can thus apply the

Stokes’ theorem argument given in the proofs of Prop. 3.2 and Lemma 4.3 to show that

P a(Σ)ta = P a(Σ′)ta, which is a contradiction.

25Modified because by our definition, Σ′ does not slice the support of T ab, since Σ′ ∩ supp(T ab) = ∅. But
in this special case the argument still goes through.
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Now suppose that Σ cannot be chosen to be bounded. For simplicity, we will assume

that Σ can be chosen so that it extends to spatial infinity in all directions.26 Choose O so

that it has the following property: in the limit of spatial infinity, the “temporal height” of

O goes to zero (see Fig. 3). Here’s one way (of many) to make this idea precise. Without

loss of generality, choose the time function t so that for any s ∈ I, t(γ(s)) = 0. Let ϖ

be any (fixed) timelike geodesic passing through Σ. Then given any point p in a spacelike

hypersurface intersecting ϖ, we can define a distance function d : M → R relative to ϖ as

the (spatial) distance from ϖ to p. We can then define an open set O = {p ∈ M | |t(p)| <

a and |d(p)t(p)| < 1}, for some constant real number a chosen so that ϖ intersects all of the

simultaneity slices of M with time values from −a to a. Note first that Σ ⊂ O, so γ[I] ⊂ O.

Moreover, for any p ∈ O − Σ, there exists a spacelike hypersurface Σ′ for which p ∈ Σ′ and

Σ′ slices O (since the restriction of O to any spacelike hypersurface except Σ is bounded by

construction).

From here the argument is similar to the bounded case. For any given a, there exist

spacelike hypersurfaces Σ± such that for any p ∈ Σ+, t(p) > a, and for any p ∈ Σ−,

t(p) < −a. These are necessarily such that Σ± ∩ O = ∅. It follows that T ab vanishes on

Σ±, and thus that P a(Σ±) = 0 (where the integrals are performed relative to the arbitrary

flat derivative operator
f

∇). Thus P a(Σ±)ta = 0. Meanwhile, we know there must be some

point p ∈ O at which T ab ̸= 0. We can freely suppose that t(p) ̸= 0 (because if t(p) = 0,

there necessarily exists a neighborhood around p in which T ab ̸= 0, since T ab is smooth, and

which must include points whose time values are greater and less than 0). Suppose without

loss of generality that t(p) > 0 (if t(p) < 0, simply reverse the temporal order of the ensuing

argument—we have already chosen O so that there are temporally prior, non-intersecting

spacelike hypersurfaces). Since p ∈ O−Σ, we know there’s a spacelike hypersurface Σ′ that

contains p and slices O. By the mass condition and the smoothness of T ab, we know that

26We are ignoring the case where Σ is unbounded, but not necessarily in all directions. The argument
given here is intended to be representative: it can be extended to include these more complicated cases by,
for instance, choosing O so that the temporal height of its closure would vanish at any boundary of Σ.
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P a(Σ′)ta > 0. Now we can use Stokes’ theorem as immediately above by connecting Σ′ and

Σ+ to reason to a contradiction. Thus γ cannot be spacelike.

Case 3: So far we have shown that if γ is everywhere timelike then it must be (reparametriz-

able as) a geodesic, and that γ cannot be everywhere spacelike. The final case concerns curves

that are sometimes timelike and sometimes spacelike. Given case 1, it is sufficient to show

that if γ satisfies the assumptions of the theorem and is timelike at at least one point, then

it is timelike everywhere. Suppose it isn’t—i.e., suppose there is at least one point q at

which γ is spacelike. Let s1 ∈ I be such that γ is timelike at γ(s1) and let s2 ∈ I be

such that γ is spacelike at γ(s2). Let ξa be the tangent field to γ. We can define a scalar

field on γ by α = ξata. α can be understood as a smooth function α : I → R defined by

α(s) = α ◦ γ(s) = (ξata)|γ(s). Since γ is timelike at γ(s1), we know that α(s1) > 0; likewise,

since γ is spacelike at γ(s2), α(s2) = 0. Since α is just a smooth function on the reals,

however, we know that there must be a number t ∈ I such that α(t) > 0, but for which(
d
ds
α
)
(t) ̸= 0. But by definition of ξa, d

ds
α(s) = (ξa|γ(s))(α) = ξa∇aα = tbξ

a∇aξ
b. So at γ(t),

we know that (tbξ
a∇aξ

b)|γ(t) ̸= 0, and that ξata > 0.

So γ is timelike at γ(t), which means (since γ is smooth and imbedded) that there must

be an open neighborhood Q of γ(t) such that the restriction of γ[I] to Q is timelike. (Why?

Since γ is smooth, there must be an open neighborhood J ⊆ I of t such that γ[J ] is timelike.

And since γ is imbedded, there must be an open subset Q of M such that γ[J ] = γ[I] ∩Q.

So the restriction of γ[I] to Q is timelike and contains γ(t).) We can freely choose Q so

that it is simply connected. Note that since γ is such that for any neighborhood of γ, there

exists a smooth symmetric field T ab satisfying conditions 1-4, it follows that for any sub-

neighborhood Q′ of Q containing γ[I] ∩ Q, there also exists a smooth symmetric field T ab

such that the restriction of T ab to Q satisfies conditions 1-4, relative to Q′. (Why? Extend

Q′ to a neighborhood O of all of γ in any way at all, so long as O ∩ Q = Q′. Then a

field T ab satisfying conditions 1-4 relative to O is guaranteed to exist by the assumptions

of the theorem; the restriction of T ab to Q automatically inherits conditions 1-3. And by
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the conservation of mass argument given in Lemma 4.3, if T ab is non-vanishing anywhere

within O, as it must be, then it is possible to show by a series of flux integrals that it is non-

vanishing along the length of the curve, and so T ab must be non-vanishing somewhere in Q′.)

But then if we take Q as a submanifold of M and take the restriction of γ to Q as a timelike

curve, case 1 applies and γ must be a geodesic everywhere in Q. It follows that at γ(t) ∈ Q′,

(ξa∇aξ
b)γ(t) = 0, which is a contradiction (since we showed that (tbξ

a∇aξ
b)|γ(t) ̸= 0). And so

γ must be timelike everywhere. �

Mathematically, theorem 4.4 differs from the Geroch-Jang theorem in at least two im-

portant ways.27 First, it requires two curvatures conditions: spatial flatness and Rab
cd = 0.

Spatial flatness follows immediately from the geometrized version of Poisson’s equation; how-

ever, the Geroch-Jang theorem does not require one to assume Einstein’s equation (or any

curvature conditions following from it), and so the requirement of spatial flatness is perhaps

a defect of Theorem 4.4. The second curvature condition, meanwhile, is necessary to recover

standard Newtonian gravitation from the geometrized theory. Without it, it is possible

to find a more general “Newtonian” theory (see Künzle (1976); Ehlers (1981); Malament

(2010)), but with a vector potential replacing the scalar potential of standard Newtonian

gravitation, and with a universal rotation field affecting the behavior of this vector potential.

Strictly speaking, this generalized Newtonian theory is the classical limit of GR. However,

the present argument for Lemma 4.2 fails if we relax this second curvature condition, and

so we are not guaranteed that a flat derivative operator exists that agrees with the curved

operator on γ. It is quite likely (we believe) that a different argument can be given to show

that such a derivative operator does exist, in which case it would be possible to relax the

condition Rab
cd = 0 in Theorem 4.4. We would like to note, however, that insofar as we were

interested in the status of the geodesic principle in Newtonian physics (rather than in some

generalized Newtonian physics), Rab
cd = 0 is a perfectly reasonable requirement: it holds just

27As mentioned in footnote 5, we are deferring questions concerning interpretational differences between
the two theorems in the contexts of their respective spacetime theories to a later paper. Here we are only
concerned with the mathematical structures of the two theorems.
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in case a geometrized Newtonian spacetime admits a standard Newtonian representation. It

is part of what makes a classical spacetime Newtonian.

Secondly, Theorem 4.4 requires the assumption that the underlying manifoldM be simply

connected; the Geroch-Jang theorem, however, does not seem to require any such global

topological assumptions.28 The reason that simple-connectedness is required here is that

vector integration in a classical spacetime, at least as we have developed it, requires simple

connectedness to ensure a unique result for the integral (since otherwise, parallel transport

is not necessarily globally unique). Geroch and Jang use Killing fields to avoid this problem

entirely; however, one does not have access to timelike Killing fields, even locally, in a classical

spacetime. However, there are two simple corollaries available that extend the result to a

more general case. The first uses the fact that any manifold is locally simply connected; the

second uses the fact that a geodesic need only be locally extremal.

Corollary 4.5 Let (M, ta, h
ab,∇) be a classical spacetime, and suppose that M is oriented.

Suppose also that Rabcd = 0 and Rab
cd = 0. For any p ∈ M , there exists a neighborhood of

p, Q, such that if (1) γ : I → Q is a smooth curve, and (2) for any open subset O of Q
containing γ[I] there exists a smooth symmetric field T ab ∈ T•(M) satisfying conditions 1-4
of Theorem 4.4, then γ is a timelike curve that can be reparametrized as a geodesic (segment).

Corollary 4.6 Let (M, ta, h
ab,∇) be a classical spacetime, and suppose that M is oriented.

Suppose also that Rabcd = 0 and Rab
cd = 0. Let γ : I → M be a smooth curve with the

following property: for any p ∈ γ[I], there exists a neighborhood of p, Q, such that in any
open subset O of Q containing the restriction of γ[I] to Q there exists a smooth symmetric
field T ab ∈ T•(M) satisfying conditions 1-4 of Theorem 4.4, then γ is a timelike curve that
can be reparametrized as a geodesic.

Corollary 4.5 precisifies a sense in which local geodesic motion has the status of a general

theorem in geometrized Newtonian gravitation. Corollary 4.6, meanwhile, shows that there

is a sense in which one can relax the requirement of simple connectedness and still find

a global result. It is important to emphasize, however, that we do not get something for

28It is possible that there is a global topological assumption lurking in the background of the Geroch-Jang
theorem, though we do not see where it enters. Reconstructing the proof of the Geroch-Jang theorem in
detail is beyond the scope of this paper.
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nothing: the additional requirement that conditions 1-4 hold in the neighborhood of any

point of the curve is a substantial strengthening of the conditions required for Theorem 4.4.

In particular, if one assumes simply that conditions 1-4 hold in any open set O containing

the curve mentioned in Theorem 4.4, then it need not follow that T ab is non-vanishing in

any open set containing only part of the curve, as would be necessary to generalize Corollary

4.6 further.
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