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Abstract

This paper, part I of a two-part project, aims at

answering the simple question 'what is spontaneous symmetry

breaking?' by analyzing from a philosophical perspective a

simple classical model.  Related questions include: what does
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it mean to break a symmetry spontaneously?  Is the breaking

causal, or is the symmetry not broken but merely hidden?  Is

the meta-principle, 'no asymmetry in, no asymmetry out,'

violated?  And what is the role in this of random

perturbations (or fluctuations)?

1. Introduction

It is probably not immediately obvious, unlike for

instance the concept of quantum measurement, that the concept

of spontaneous symmetry breaking (SSB) calls for a

philosophical discussion.  It may involve complex and

difficult theories which challenge the ingenuity of a

physicist or a mathematician, but why is it also

philosophically interesting?  Two answers come forth quite

readily.  First, what is interesting, and perhaps also

puzzling, about the type of symmetry breaking to which SSB

refers is the 'spontaneousness.'  There are different types

of symmetry breaking, most of which I would say are not

obviously philosophically interesting.  The breaking of a

symmetrical object by some external influences, such as

cracking a perfectly spherical ball by a jack hammer and thus

making the fragments anisotropic, is a symmetry breaking that

may take a complicated physical theory to explain but does

not generate any philosophical puzzlement.  Nor is it

puzzling about the breaking of the symmetry of a natural law

when a term that does not obey that symmetry is added to the

Lagrangian (or Hamiltonian) of the system that the law
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governs.  But in those cases involving SSB no discernible

external forces or impacts nor symmetry violating terms are

present to explain the phenomena.  Are the breakings of this

type perhaps 'without any causes?'  Krieger (1996) when

explaining the word 'spontaneous' in 'spontaneous

magnetization' -- a species of SSB -- says, '[it] is here

used to mean without a direct and deliberate influence, on

its own, arising without a necessarily given direction.(p.

285)'  The language is kept ambiguous perhaps on purpose.

Second, although there are rigorous theories about

several kinds of SSB phenomena (most of which, such as those

for ferromagnetism, superconductivity, and the standard model

of the electroweak interactions, are very abstract and

complex), when it comes to the general conception of SSB

there appear to be some confusing or misleading discussions

in the literature.  When introducing the subject of SSB and

before going into the specific theories, some authors like to

offer general remarks or simple examples and metaphors that

purportedly show that there is really nothing mysterious or

terribly uncommon about SSB.  Weinberg (1996) says, '[w]e do

not have to look far for examples of spontaneous symmetry

breaking.(p. 163)'  A chair, he says, is a case of SSB,

because '[t]he equations governing the atoms of the chair are

rotationally symmetric, but a solution of these equations,

the actual chair, has a definite orientation in space.(p.

163)'  By the same token, we may say that the macroscopic

world is full of finite objects that break spatial isotropy
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(see also, Anderson 1997, 263-266, where he took Samuel

Johnson's retort of Berkeley by kicking a stone and thus

demonstrating its existence for a demonstration of the

existence of SSB as well!).  Coleman (1975), when introducing

the notion of SSB, says, 'there is no reason why an

invariance of the Hamiltonian of a quantum-mechanical system

should also be an invariance of the ground state of the

system.(p. 141)' Hence, symmetry breaking of this type is not

only common but also theoretically unremarkable; however,

this is true only with finite objects.  But, Coleman

continues, SSB in systems of infinite size is not only less

common but also theoretically interesting and deep.  Should

we not wonder why on both counts: why is it 'a triviality'

for finite systems but significant for infinite ones?

Abdus Salam is reported to have offered the following

metaphor to explain SSB (Moriyasu 1983, 99, also see Brout &

Englert 1998).  We are asked to imagine some dinner gusts

sitting at a round table on which plates are set at an equal

distance, and between any two plates a single spoon is

placed.  Given each guest is seated directly in front of each

plate, the left and right symmetry for each guest of using a

spoon holds.  However the symmetry is broken, and bound to be

broken, when the first guest picks up a spoon, any spoon.

What does this metaphor tell us about SSB?  Does the

spontaneousness refer to something analogous to a choice that

the guest makes who first picks up a spoon?  We do see such

metaphorical language being used in the technical discussion
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of SSB; for instance, the spins in a ferromagnet are said to

'choose' to align themselves along a certain direction when

the temperature drops below the critical value.  Connection

is also made to the case of Buridan's ass (Moriyasu 1983, 86-

87, 101), suggesting that what saves the ass from starving

between the two stacks of hay is perhaps an SSB.

One also often hear the complaint that the term

'spontaneous symmetry breaking' is misleading; the right term

should be 'hidden symmetries,' which refers to systems in

which some symmetries of the law are not visible -- hence,

hidden -- from the lowest energy solution(s) of the law-

equations (cf. Coleman 1975, 142).  This seems to suggest

that no symmetry is broken in such systems; rather different

symmetries apply to different aspects of them.

Still others (cf. Ross 1985, 59-60) regard the results

of SSB not so much as broken symmetries than as approximate

ones.  Should we then regard SSB as an epistemic notion

rather then a notion that refers to a physical property?

Furthermore, is SSB connected to the concept of quantum

measurement, supposing that one regards the measurement as

the breaking of the unitary evolution of a quantum system?1

Does SSB give support to the existence of genuinely emergent

properties, as some have so argued (cf. Anderson 1997, 263-

266)?  Does van Fraassen's general discussion of symmetry

principles (cf. van Fraassen 1989, chapters 10-11) need any

amendment in view of SSB?  What becomes of the claim that
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only the gauge invariant are physically real if both global

and local gauge symmetries may be spontaneously broken?

I hope the above is sufficient to justify an in-depth

philosophical investigation of SSB, which I shall carry out

in a two-part project.  I begin this first part by bring to

the attention of the philosophical community a beautiful and

elementary model of SSB in classical mechanics (cf.

Greenberger 1978, Sivardière 1983, Drugowich de Felício &

Hipólito 1985). This simple model (and its variants) reveals

some of the elementary properties that all cases of SSB

share, and they are probably the most interesting properties

to examine from a philosophical point of view, or so shall I

argue.

2. A model of spontaneous symmetry breaking

Imagine a circular wire ring vertically suspended as

shown in Figure 1.  It rotates freely, and on it is

frictionlessly threaded a bead.  The only forces acting on

the bead are gravity, mg , and the normal force, N , the bead

receives from the wire.
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Figure 1. A bead with mass, m ≠ 0, moves
frictionlessly on a circular wire of radius, R ,
which rotates around the z-axis with a constant ω.

Question: when is the bead stationary on the wire?  In other

words, what is (are) the equilibrium state(s) of this

rotating system?  The bead will be stationary whenever the

forces are balanced out, which means,

In z-direction: Nz − mg = Ncosθ − mg = o, (1)

In y-direction: Ny − ma = (N − mω 2R )sinθ = o, (2)

where, a is the linear acceleration of the bead, which is

a = ω 2r = ω 2Rsinθ.

When (1) is true, N = mg / cosθ .  Substitute this into (2)

to eliminate N , we have

m( g / cosθ − ω 2R )sinθ = 0. (3)

There are obvious two solutions to this equation:

i. θ = θ0 = 0 such that sinθ0 = 0, which therefore satisfies (3).

ii. θ = ±θ1 ≠ 0 such that g / cosθ1 − ω 2R = 0; or cosθ1 = g / ω 2R.
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Solution (ii), θ1, has a further property: cosθ1 increases

when ω  decreases (with R  and g being given as constants), and

yet cosθ1 has an upper bound of 1.  Hence, there is a critical

value, ω = ω1, where cosθ1 = 1 = g / ω1
2R , such that below this value

solution (ii) makes no sense in physics.  The standard way of

dealing with such a situation in physics is to say that then

solution (i) takes over, so that for all ω  such that 0 ≤ ω ≤ ω1,

θ = θ0 = 0 is the solution at which the system is in equilibrium;

and for those ω  such that ω > ω1, solution (ii) -- cosθ1 = g / ω 2R

-- takes over so that all angles θ1, where 0 < θ1 < π / 2 2, are

possible equilibrium positions for the bead on the wire.

Or equivalently, though perhaps less transparently, the

same results can be reached from the Lagrangian (or

Hamiltonian) formulation of this problem.  Besides obtaining

the two solutions, it also gives us the potential energy (or

a dimensionless function of it) as a function of the angle,

θ .  Without going into the actual derivation (see Greenberger

(1978) for details), let me summarize the main steps of the

argument.  The Lagrangian of the bead is of the usual form: L

= (kinetic energy) - (potential energy).  Since we are only

concerned with the stationary situations, we only need to

look at the potential energy term, which has two components:

one due to the bead's weight and the other its centrifugal

tendency.  Writing everything out explicitly, we have the

potential energy in the following form:

= mgRU( θ ), (4)
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where U( θ ) is the dimensionless potential.  Some simple

calculations yields that

U = 2sin2( θ / 2 )[1- βcos2( θ / 2 )] , β = ω 2R / g.

Now, for the bead to be in equilibrium on the wire at a give

ω  is for its potential to be an extremum, which means that

∂U / ∂θ = sinθ(1- βcosθ ) = 0. (5)

This equation, one should realize, is essentially the same as

(3); and so we can derive the same two solutions as given

above.  There are two further benefits from this approach: an

exact knowledge of the solutions' stability and a diagram --

in which U( θ ) is plotted against θ  -- that vividly shows the

SSB in this model.

First, the solutions from (5) are stable if ∂ 2U / ∂ 2θ > 0;

and now ∂ 2U / ∂ 2θ = cosθ - βcos2θ.  So,

iii. for θ = θ0 = 0, we have ∂ 2U / ∂ 2θ = 1- β , which means that the

bead is stable for β < 1; and

iv. for θ = ±θ1 or cosθ1 = 1 / β = g / ω 2R , we have ∂ 2U / ∂ 2θ = β -1 / β ,

which means that the bead is stable for β > 1.

In other words, βc = 1 or ω1 = g / R is a critical value where

the equilibrium solution switches from θ = θ0 = 0 to θ = θ1 > 0.

From either approach we see an SSB at the critical

point, ω1 = g / R, in that, as shown in Figure 2, for β (or ω )

to pass the point from below, the lowest energy solution for

the bead passes from θ = θ0 = 0 to θ = θ1 > 0; and while U( θ0 )

preserves the system's rotational and reflectional symmetries3

with respect to the z-axis, U( θ1 ) preserves neither, although
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the Lagrangian and the dynamical equations of the system

preserve the symmetries on both sides of the critical point.

U(θ)

θθ0

θ1
−θ1

β>βc
β=βc

β<βc

Figure 2. The dimensionless potential, U( θ ),
against θ .  Note, β = ω 2R / g and βc = ω1

2R / g =1.

3. The meaning of SSB

The model described and the argument given in the

previous section are to my best knowledge the simplest and

purest case of SSB.4  Moreover, it has most of the formal

(e.g. mathematical) properties that the more important models

of SSB in the literature have.5  In another paper -- part II

of the project, I will discuss the relevant similarities and

differences between this model and the others, and it will

show that the most basic philosophical questions about SSB

can all be addressed in this model.  Therefore, without
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further ado, let us begin to consider the questions in their

(semi-) logical order.

1. Why is the symmetry breaking in the model an SSB rather
than an ordinary symmetry breaking?  Or what is an SSB?

A general answer one frequently sees in the literature, as

mentioned in section 1, is that an SSB occurs in a system

when its Lagrangian or dynamical law has certain symmetries

which the ground state solutions do not preserve (cf.e.g.

Anderson 1984, 266; Coleman, 1975, 141-142).  To see what

this claim means, let us examine our simple model to which

the claim certainly applies.  Given the model, the

independent variables which determine the bead's states are,

in polar coordinates, θ ,θ̇;ϕ,ϕ̇ = ω,6 which are, respectively,

the vertical angle from the z-axis, the velocity; the

horizontal angle of rotation, the angular velocity.  Now ϕ

does not explicitly appear in the Lagrangian, which implies

that the Lagrangian has the rotational symmetry (i.e. the

transformations: ϕ → ϕ' = ϕ + α, where α is an arbitrary angle

do not affect the Lagrangian) (see note 3 for a caveat).  The

Lagrangian is such a function of θ  and θ̇  that it is

reflectionally symmetrical (i.e. invariant under

θ → −θ ,θ̇ → −θ̇ ).7  But from Figure 2 we see that U( θ1 ) -- a

clear example of a ground state -- has neither.

This is clearly different from the breaking of a

symmetry when the Lagrangian in question contains a term that

does not preserve the symmetry.
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2. But do all cases of non-spontaneous symmetry breaking
have their symmetries broken by the presence of an
asymmetrical term in the Lagrangian?

What the Lagrangian represents may be regarded as the lawlike

properties of a system, which include both its intrinsic

properties and enduring interactions with its environment.

This is why from its Lagrangian one can derive the law-

equations of the system in question.  However, a particular

state of a system should be the result (or evolution) of its

lawlike properties with a given set of initial and/or

boundary (i/b) conditions (cf. Wigner 1979).  It is certainly

possible that a symmetry is broken not because of any

asymmetrical lawlike properties -- which would show up in the

Lagrangian -- but because of some special i/b conditions --

which would not (ibid.).  A natural question then would be:

3. is a symmetry breaking due exclusively to i/b conditions
an SSB or not?

It seems that the answer would have to be a 'no', for

what we have in our simple model does not appear to be a case

of symmetry breaking by any special i/b conditions.  To see

this point, just imagine that we begin with ω = 0 and let it

very slowly (e.g. adiabatically) increase.  The argument in

the previous section is taken to have told us that once ω

passes the critical value, the bead will depart from O and

ascend the wire and thus break the symmetries.  Nowhere in

this process is any asymmetrical i/b conditions introduced,
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and yet the symmetries are broken.  Perhaps it is in this

sense the symmetries are said to be truly spontaneously

broken in this model (and presumably in all those other

models that share this feature).  Whether this is accurate is

a question I shall return later.

Note that it is not a legitimate objection to simply say

that because the model is idealized so that it does not tell

us what happens in a real wire-and-bead system where any

number of asymmetrical causal factors may exist to actually

break the symmetries.  The bifurcation of the lowest energy

state (or ground state) beyond the critical point is a result

for the model as it is given, idealized and totally

symmetrical.  Whatever asymmetrical factors a real system may

contain cannot be responsible for the fact of this

bifurcation, which is derived without even mentioning any

such factors.

We now ask the question:

4. Is an SSB a symmetry breaking that is without any cause?

Since neither a lawlike property nor any i/b conditions of a

system may be regarded as responsible for a true SSB, the

answer may obviously appear to be affirmative.  But the

matter is not so simple, so let us approach it more

carefully.  First, van Fraassen (1989, chapters 10-11)

discussed two general forms of what he calls 'the symmetry

arguments.'
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There are two forms of argument which reach their
conclusion 'on the basis of considerations of symmetry.'
One, the symmetry argument proper, relies on the meta-
principle: that structurally similar problems must
receive corresponding similar solutions.  A solution
must 'respect the symmetries' of the problem.  The
second form, rather less important, assumes a symmetry
in its subject, or assumes that an asymmetry can only
come from a preceding asymmetry. (p. 233)

Since the second form is rather a strategy in theory

constructions than a principle (and one may argue that it

follows, or is strongly suggested by, the contrapositive of

the meta-principle), I shall only consider the first form in

connection with our question above.  Let us then look at the

following question:

4.1. Is the meta-principle --  structurally similar problems
must receive corresponding similar solutions -- true
among deterministic systems?

Here is another way of putting the meta-principle which makes

it a bit more precise.  The principle says that problems that

can be transformed into one another by a symmetry must

receive solutions that are related by the same symmetry.  A

symmetry is taken here to be a group of transformations that

leaves what is transformed 'essentially the same' or 'the

same in all essential properties. (ibid. pp. 235-236)'  And

we only consider deterministic systems because (i) our model

is a deterministic system, or it is certainly regarded as one

in the literature, and (ii) there is a sense in which the

principle is already violated by indeterministic systems.8
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Prima Facie, the answer is 'no' and the SSB in our

simple model is sufficient for such an answer.  The

'problems' in our model would be the different equations or

Lagrangians connected by the rotational or the reflectional

transformations given above (which are the two symmetries for

the problem).  If the principle holds, the ground-state

solutions should also preserve the symmetries; but they do

not in the region of ω > ω1.  Hence, the meta-principle fails.

Second, as mentioned in the introduction, some people

argue that SSB is a misnomer; the phenomena it refers to

should properly be called 'hidden symmetries.'  The laws

which govern the behavior of a system has one set of

symmetries and the behavior another, usually lesser, set.

Since what we measure is behavior, the symmetries of the laws

are therefore hidden from us.  Now the question:

4.2. Is there a breaking of symmetry in the case of hidden
symmetries?

As our quote from Coleman in section 1 indicates, there

seems to be nothing odd about this situation, or there is no

reason why symmetries should not be so hidden.  In other

words, no symmetry is 'broken' in the so-called spontaneous

symmetry breaking, and all the worry about an uncaused

'breaking' of something is a misguided exercise caused by an

inappropriate name!  If this is right, the answer to our

previous question -- whether the meta-principle holds -- is

still a 'no' since the symmetries are still not preserved;

however, it seem to suggest that 'there is no reason why'
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such a principle should hold or why anybody should regard it

a kind of violation to have symmetries in a problem (e.g. a

Lagrangian) which are absent in its ground-state solutions.

In a limited sense this is just right for our model:

when you look at the Lagrangian or the two equations (of

balance) in the z- and y-directions, you see rotational and

reflectional symmetries, and then when you look at the stable

ground-state solutions with ω > ω1, you do not see them any

more.  The solutions are mathematical results from the

equations -- nothing suspicious are introduced to the

derivation -- and yet the symmetries are hidden.  However, if

you look at the model and consider the movement of the bead

as ω  increases, something extraordinary does happen and hence

a symmetry breaking in some sense is present.  To repeat what

I said earlier in response to the 3rd question, as the wire

ring begins to rotate and very slowly increases its angular

velocity, at first the bead sits at the lowest point of the

ring, motionless; but as ω  passes its critical value ω1 the

bead starts climbing the ring and thus breaks the symmetries.

However one regards the symmetries of the Lagrangian or the

laws in this model (e.g. as 'hidden' or otherwise), there is

presumably a physical process during which the system goes

from preserving them (0 ≤ ω ≤ ω1) to not preserving them

(ω > ω1).  Therefore, calling the symmetries 'hidden' rather

than 'broken' does not make the legitimate quest for an

explanation of why the bead sudden departs from O goes away.

From a physical point of view, the ascending of the bead on
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the wire ring is caused by the centrifugal tendency of the

bead; but how does the bead acquires a such a tendency while

remaining motionless at the lowest point of the rotating

ring?  Hence the main question (question 4) is still with us.

Third, if there is a breaking of a symmetry, it might

not be too far-fetched to ask: what then is its dynamics?  So

here comes the crucial question concerning the nature of SSB.

4.3. Is there a dynamic process for SSB (in general) and, if
there is, do we, or are we likely to, have a theory for
it?

In our model there does seem to have a dynamic process

through which the bifurcation occurs (or the symmetries are

broken).  When we rotate the vertically suspended wire ring

faster and faster, the bead would eventually depart from its

symmetrical ground state and settle into an asymmetrical one.

And we do have a theory which tells us when the bifurcation

occurs and what the asymmetrical ground states are.  As we

shall see later that this is true for almost all models of

SSB: a bifurcation which breaks the symmetry occurs when the

values of some (controllable) parameter crosses its critical

value.

And yet, I want to argue that there is no dynamics for

SSB; or to put it another way: if by a dynamics we mean a set

of laws governing the processes in question, then there is

not such a thing for SSB.
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First, one should not think that if there is ever a real

system exactly like our simple model, then the bead, if it

initially sits motionlessly at the lowest point of the wire

ring, would ever depart from that point however fast the ring

rotates.  This is because it is one thing for that position

(i.e. O in Figure 1) to no longer be the stable ground (or

equilibrium) state for the bead when ω > ω1 but quite another

for the bead to actually move out of that position (and to be

transferred into one of the new stable ground states).  One

can easily see by looking closely at Figure 2 that O is still

an equilibrium state when ω > ω1; only it is no longer a

stable one.  The difference between these two kinds of states

is essentially that a system in the latter will return to it

when subject to perturbations, while it in the former will

not.  In other words, if there are perturbations present in

our model, the bead will not stay at O when ω > ω1 but will

stay at θ1 or −θ1.  Since, strictly speaker, there are no

perturbations of any kind in our idealized model, there

should not be any movement of the bead which causes the

(spontaneous) breaking of any symmetries of its Lagrangian or

its laws.9

Therefore, second, what the theory of our model tells us

is really only the possibility of SSB, not what it is and how

it happens.  It tells us precisely under what condition there

is a change of the stable ground state solutions to the

problem given by the model; but it does not give us an

account of the dynamic process of a system's actual breaking
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of the symmetry, namely, the system's making the transition

from a symmetrical state to an asymmetrical one.  The actual

breaking can happen only if some asymmetrical causal factors

are introduced to the model.  Because of the instability of

position O (or θ0 = 0), neither a sustained force nor a

disturbance of measurable magnitude is necessary; small, and

usually random, perturbations or fluctuations are sufficient

to do the job.  Because of the ubiquitous presence of such

perturbations, people often neglect to mention them and sound

as if an SSB may occur even in an idealized model as ours.10

Therefore, the dynamic process in our model which is

parameterized by the angular velocity of the wire ring and

which tells us a complete story of how the stable ground

state solution of the system bifurcates from a single

symmetrical state to two asymmetrical states is not the

process by which an SSB occurs, if it actually occurs at all.

The 'real' (or efficient) cause must lie among the

perturbations present in a real wire-and-bead system, for

which the theory of the system has no account.  Now, to have

a dynamics which deterministically accounts for a certain

type of processes in physics means, in general, that a

dynamic law (or a set of such laws) exists, which given the

i/b conditions of the system in question at one instant of

time determines its states at any other instants.  We do not

know any dynamic laws which tell us how random perturbations

cause particular breakings of the symmetry, nor is it likely

that we will ever discover such laws.11
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Hence, there are two ways -- one may think of it as SSB1

and SSB2 -- of giving the notion of SSB a precise meaning:

(i) it means that there are stable ground states that do not

preserve some of the symmetries of the Lagrangian (or the

laws); or (ii) it means that any actual breaking of a

system's symmetry can be achieved by random perturbations.

Of course, had the symmetrical ground state not become

unstable, perturbations would not have been capable of

breaking the symmetry.  Or to put it in another way:

the difference between a spontaneous symmetry breaking
and a non-spontaneous one is that the former can be
broken by perturbations while the latter cannot, even
though perturbations are present in both cases.

With this much said, we can now answer our main question

(i.e. question 4): whether SSB is uncaused.  The answer

appears to be negative, if I am right so far.

Someone may object to the answer as follows.  Is it not

true according to my own account of SSB that even without

taking into account of the random perturbations, the symmetry

is broken in the solution of a problem that preserves it in

the sense that the symmetrical solution is not stable while

the stable one is not symmetrical?  In other words, would not

the demonstration -- without introducing the perturbations --

that an increase of ω  across its critical value produces a

bifurcation of the ground state be sufficient for a genuine

symmetry breaking?

The point would be justified if an interesting feature

of the ground states which are suppose to comprise the
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'symmetry breaking' solution is not present.  From Figure 2

one can clearly see that the ground states when ω > ω1 always

come in pairs: (θ1,−θ1), which taken together is reflectionally

symmetrical, and if one imagine a 3-d extension of the

figure, i.e. with 0 ≤ ϕ < 2π, one can see that the solution is

also rotationally symmetrical.  This is what physicists call

a (continuously) degenerate solution, meaning that from a

formal point of view any of these infinite number of ground

states -- < θ1,ϕ >  -- is a possible stable ground state.  Of

course, each of these states is asymmetrical, but taken

together the solution, which is what our highly abstract

model offers us, still has a symmetrical 'shape.'  Hence,

again, the formal argument from our model only provides us

with the possibility of symmetry breaking (in the ground-

state solutions).

Do all cases of SSB have this feature?  To my best

knowledge they do.  This is a remarkable feature of SSB: it

shows that even with the possibility of symmetry breaking, an

SSB respects at some level the symmetries in the problem.  In

fact, one should expect SSB to have this feature, for

otherwise it would not be consistent with the fact we

realized earlier that an actual breaking of the symmetry is

caused by some random perturbations.  If the ground states do

not form a degenerate set whose members are transformable

from one to another by the same symmetry that each is

supposed to break, it would be a genuine puzzle as to how

random perturbations could produce a set of non-randomly
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distributed possibilities.  For instance, if in our model,

state U( θ1 ) is possible but U(-θ1 ) is not, then it would be a

puzzle as to why the perturbations in the direction of θ1 can

cause the bead to ascend the wire ring while the

perturbations in the direction of -θ1 can not; or it would be

equally puzzling why there are perturbations in the direction

of θ1 but none in the direction of -θ1, given the symmetries

assumed in the model.  On the other hand, if it ever turns

out that there are such SSB's, then the metaphysical

landscape of physics would be radically changed.  So far, we

do not see such a change.

In connection with van Fraassen's meta-principle or to

visit question 4.1 again, we may say the following.  'No

asymmetry in, no asymmetry out' holds in spite of the

existence of SSB.  If we banish the random perturbations

(which we do for all idealized models), the 'broken

symmetrical' solution comprise a set of degenerate ground

states, each of which breaks the symmetry but all of which

together preserve it.  If we count the random perturbations,

then 'no asymmetry in' is no longer true.

And in connection with our question (3) of whether SSB

may be a case of symmetry breaking by i/b conditions, we now

see that the answer will depend on our conception of random

perturbations or fluctuations.  According to Poincaré (1952,

64ff), being the results of random perturbations is what it

means to be the results of chance.12  Along this line, we

should not count in i/b conditions such things as random
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perturbations, for it clearly does not fit the schematic

division of dynamical laws and i/b conditions that Wigner

(1979) has emphasized.  And hence, SSB is not a case of

symmetry breaking by i/b conditions.  However, this short

remark does not do justice to this rich subject about chance

and perturbations, which I will take up in another paper (see

note 11).

Finally, one may think that we also deserve an answer to

the question: why should the increase of the angular velocity

in our model, nowhere during which is any asymmetry

introduced, 'cause' a transition from a ground state,

< θ0 ,0 > , which makes an SSB impossible to a set of ground

states, < θ1,ϕ >,0 < ϕ < 2π, which makes it possible?  It is not

at all clear whether an answer to this question is possible.

What would be the answer like which says more than something

to the effect that the lawlike properties of the models tell

us -- by entailment -- that it is so.  Since, as we argued

earlier, there is a sense in which no symmetry is broken from

this transition, namely, each < θ1,ϕ >,0 < ϕ < 2π is of equal

chance, either the question does not make proper sense or the

answer is simply this: the transition is caused by the

crossing of the angular velocity over the critical value.

In contrast, if it turns out that not all

< θ1,ϕ >,0 < ϕ < 2π are of equal chance, then a quest for a

causal explanation, with some asymmetry in the cause, will be
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justified, and we are again under the spell of van Fraassen's

meta-principle.

4. Conclusion

From a simple classical model we are able to see that

what people usually refer to as SSB has in fact two different

meanings: SSB1 means having stable and degenerate ground

states each of which taken singly breaks the symmetries of

the Lagrangian (or the laws); and SSB2 means that the

breakings of symmetries can be done by random perturbations

or fluctuations; and also how in such phenomena, a symmetry

in question is and is not broken, depending on which level

one is considering them.  Thus, some of the seemingly

puzzling remarks, some of which I sampled in section 1, can

now be seen as the result of confounding these two meanings

of SSB.  When people argue that SSB is a misnomer and that it

should be called 'hidden symmetry,' they are thinking of SSB1

but not SSB2, for it is not proper to call a symmetry hidden

if SSB2 is meant.  The metaphorical image of objects

'choosing' to break a symmetry without apparently having a

sufficient reason can now be understood as alluding to the

fact that, according to SSB2, the symmetry is not broken by

anything that can be counted in physics as a proper cause.

Of course no object really makes a decision in such cases;

but analogous to the dinner guest who first picks up his/her

spoon or Buridan's ass which goes for one of the stacks of

hay, the move the object makes into one of the symmetry-
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breaking ground state is arbitrary.  Other questions, such as

whether the size of a system has anything intrinsically to do

with SSB and whether SSB demonstrate the existence of

emergent properties, cannot be answered by this analysis.

For that one may want to read the other paper -- part II of

this project.  
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1 Simon Saunders posed this question in a roundtable discussion (Cao
1999, 382-383).  Anderson (1997, 50-51) gives a short and sketchy
comment on the connection.

2 I excludes θ1 = π/2 because only when ω → ∞ do we have θ1 → π/2.

3 Strictly speaking this wire-ring model only has reflectional symmetry,
which is sufficient for our discussions in the rest of the paper.  But I
shall include rotational symmetry, because one can easily extend this
model to a spherical system by sweeping the wire-ring once around the z-
axis; or think of a sphere inside which the bead can only move
frictionlessly along a great circle.  This makes the connection with the
other models a lot more transparent.
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4 For other related mechanical models in which spatial symmetries are
spontaneously broken, see Alben 1972, Aravind 1987, Johnson 1997, Racz
and Rujan 1975, Sivardière 1985, Sivardière 1997.  Much more widely
mentioned, but seldom explicitly demonstrated, cases of SSB include
Euler's rod, which buckles under a perfectly vertical load, and
Poincaré's rotating 'nebula' in self-gravitating equilibrium, which
separates into a two-body system when a critical value of its angular
velocity is passed.

5 The main difference between the mechanical models and those in
statistical mechanics is that the latter deal with many-particle systems
which, under thermodynamic limit, have an infinite number of degrees of
freedom; and the main difference with the models of quantum gauge fields
is that there the symmetries in questions are no longer spatial
symmetries but rather gauge symmetries of internal spaces.

6 Because of the wire's constraint, the bead has only 2 degrees of
freedom, and therefore 4 independent coordinates.

7 The Lagrangian for our model is:

L = T − V = (1 / 2)mR2θ̇2 + (1 / 2)mω 2R2 sin2 θ − mgR(1 − cos θ ) (Greenberger 1978).
The sine and cosine functions are symmetrical with respect to θ and -θ.

8 See the discussion on pp. 239-240 of van Fraassen 1989; also see pp.
250-257 for his discussion of the connection between the symmetry
principle and determinism.  Ismael (1997) argued against van Fraassen
and concluded that Curie's principle holds in the indeterministic
contexts as well (pp. 176-178).  However, such a conclusion derives from
Ismael's particular reading of the principle, which is more restrictive
than van Fraassen's.  I regard Ismael's reading of the principle a bit
too narrow, but I will not argue the point in this paper; see also note
11 below.

9 Poincaré (1952, 67) makes the same point on a model of a stationary
cone balanced on its point.

10 To my best knowledge, there are two exceptions: Radicati 1987 and
Ismael 1997, both are discussions of Curie's principle of symmetry and
each contains a brief section on SSB.  Both in broad outlines give the
right analysis of SSB but reach opposite conclusions as to whether
Curie's principle is violated by, inter alia, SSB.  Radicati: yes; while
Ismael: no.  On SSB itself, Radicati states that to be an SSB 'two
conditions' must be 'satisfied: (i) the system is nonlinear and
possesses bifurcation points where a set of stable solutions of lower
symmetry branch off the original symmetrical solution; (ii) the system
is subject to external chance perturbations. (p. 204)'  Similarly,
Ismael writes, 'In general, if a system is non-linear and possesses
bifurcation points where a set of stable solutions of lower symmetry
branch off from the original symmetrical solution and the system is
subject to external chance perturbations, a very small chance
perturbation may switch the solution to an asymmetrical one. (p. 180)'
It is not clear whether SSB can only occur in nonlinear systems or what
is meant by 'external' in 'external chance perturbations.'  In quantum
field theories with regard to gauge symmetries it should be possible to
have linear models that contain SSB and random perturbations may well be
internal to the system in question.
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11 This point is connected to the relationship between SSB and chance
(or indeterminism), which will be the topic of another paper soon to be
completed.  The upshot is this: whenever the final states are the
results of SSB, which state among them the system in question will end
up is a matter of chance.  See e.g. Poincaré (1952, 64ff), van Fraassen
(1989, 233ff) and Ismael (1997, 176-178) for discussions of the
relations among symmetry breaking, chance, and indeterminism.

12 Poincaré's notion of chance is weaker; it takes all effects to be
chancy if they are the results of very small, perhaps imperceptible,
causes, whether or not such causes are randomly distributed.


