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1 Introduction

Condensed matter physics concerns the “study of matter at everyday length
and energy scales.” [12] The physics of such systems is by and large de-
coupled from the more “fundamental” physics at small lengths and higher
energies. The nature of this decoupling is of great interest and brings with
it the possibility of understanding aspects of how certain phenomena can be
emergent. I believe there are important problems (many problems, in fact)
for which “fundamental theory” will be completely inadequate for explana-
tion. How a drop breaks as it drips from a faucet is one such problem. I will
examine this problem from two perspectives. First, from the perspective of
a (perhaps) less “fundamental” theory, continuum hydrodynamics. Second,
from the perspective of state-of-the-art simulations in the (perhaps) more
“fundamental” theory of molecular dynamics.

Let me begin the discussion by quoting at some length a statement con-
cerning the concept of “fundamental physics” with which I have some sym-
pathy. This comes from the introduction to David R. Nelson’s recent book
Defects and Geometry in Condensed Matter Physics.

The modern theory of critical phenomena has interesting impli-
cations for our understanding of what constitutes “fundamental”
physics. For many important problems, a fundamental under-
standing of the physics involved does not necessarily lie in the

∗I would like to thank Leo Kadanoff and Sidney Nagel for helpful discussions.
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science of the smallest available time or length scale. The extreme
insensitivity of the hydrodynamics of fluids to the precise physics
at high frequencies and short distances is highlighted when we
remember that the Navier-Stokes equations were derived in the
early nineteenth century, at a time when even the discrete atom-
istic nature of matter was in doubt. . . .

Although the precise nature of physics at very short length scales
need not have a profound impact on deep unresolved questions at
much larger scales, knowledge of the correct short-distance the-
ory is of course far from useless in condensed matter physics. A
first-principles calculation of the viscosity and density of water,
for example would require a molecular or atomic starting point.
Deriving hydrodynamic parameters such as the viscosity from an
atomistic framework is the task of kinetic theory, in which sig-
nificant progress has been made during the last century . . . ; and
we are impressed when ab initio band-structure experts are able
to correctly predict the lattice constant and crystal structure of
silicon via numerical solutions of Schrödinger’s equation. Never-
theless, there will always be important problems that a strict ab
initio approach based on a more fundamental theory are unlikely
to resolve.” [12, pp. 3–4]

My aim here is in part to argue that this last claim is too weak. There are
problems “fundamental” theory cannot resolve. The drop breakup problem
provides an interesting, and I think, representative example of the kinds of
issues involved. As noted, I will examine this problem from the two perspec-
tives mentioned by Nelson; namely, from the point of view of the continuum
Navier-Stokes theory and from the point of view of state-of-the-art computer
experiments or simulations of molecular dynamics.

Of course, computer simulations of molecular dynamics are not the ab
initio derivations of which Nelson speaks. Though they do indeed share
many features with such derivations and they are powerful tools that are
receiving much attention in the literature. The status of such experiments or
simulations presents a number of interesting philosophical problems: To what
extent can they be considered experiments? And, to what extent do they
exhibit features of theory. For the most part, I will ignore these questions
in this paper. They have been explicitly addressed by Johannes Lenhard [8].
Having said this, however, I do believe that such simulations provide genuine
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insight into the nature of the molecular theory and what it can tell us about
real systems. This will become clear below.

In what follows, I will first describe, from the point of view of Navier-
Stokes theory the problem of drop breakup and show how that theory is
capable of providing deep understanding of the shape of the drop at the
point of breakup. Of course, just prior to breakup as the radius neck of the
fluid narrows down and approaches molecular scales, some kind of molecular
mechanism must come into play. Thus, I turn to molecular dynamical simu-
lations of the breakup at the level of nanometers. Following this, I discuss an
attempt to reconcile the two perspectives, and draw some conclusions about
the nature of “fundamental theory.” I will argue that the concept of funda-
mental theory is ambiguous, admitting both ontological and epistemological
readings that do not march in lockstep.

2 Hydrodynamics

As water drips from a faucet it undergoes a topological change—a single
mass of water changes into two or more droplets. This is the most common
example of a hydrodynamic discontinuity that arises in a finite period of time.
In Victorian times Lord Rayleigh recognized that drops form as a result of
a competition between gravitational force and surface tension. He was able
to determine the typical size of a droplet and was able to set the time scale
upon which a drop would form. [5, p. 866]

Recent work on the problem has focused on characterizing the shape of
the fluid interface at and near the time of breakup. One needs to examine the
nonlinear Navier-Stokes equations for free surface flows. These problems are
considerably more difficult to solve than those where the fluid is constrained
(say by the walls of a pipe).1 The Navier-Stokes equations must develop a
singularity in finite time that is characterized by divergences both in the fluid
velocity and in the curvature of the interface at the point of snap-off.

To begin we assume that the typical geometry of a dripping drop is ex-
hibits axial symmetry about the z-axis. Figure 1 provides the relevant de-
tails. Assuming axial symmetry, the velocity field inside the fluid is given by

1In such cases (at least for laminar flows) one can conquer by dividing the problem
into two asymptotically related regimes—one near the wall (the boundary layer where
viscous effects will dominate), and the other, far from the wall, where such effects are
subdominant.
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Figure 1: Geometry of a Falling Drop

a function v(z, r). One can define a time dependent radius function, h(z, t),
describing the shape of the drop at any given time. R1 and R2 are the princi-
pal radii of curvature of the axisymmetric surface Ω. In this geometry, using
cylindrical coordinates, the Navier-Stokes equations are given by
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The acceleration due to gravity (g) is in the negative z-direction; vz and
vr are, respectively, the velocities in the axial and radial directions; p is the
pressure; ρ is the fluid density; and ν is the kinematic viscosity. Equation (3)
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expresses the continuity of the fluid. Equations (1) and (2) express the
force balance. The accelerations on the left-hand-sides are due to a pressure
gradient (from surrounding the air), viscous stresses, and to gravity (in the
z-direction).

These equations are subject to two boundary conditions. The first comes
from a balance of normal forces

nσn = −γ

(
1

R1

+
1

R2

)
, (4)

and the second from a balance of tangential forces

nσt = 0. (5)

Here σ is the stress tensor and γ is the surface tension and equation (4), called
the “Young-Laplace equation,” says that the stress within the fluid normal
to the interface and near the surface must be balanced by a stress that acts
normal to the surface due to surface tension. The formula “(1/R1 + 1/R2)”
appearing here is equal to twice the mean curvature of the surface Ω at
the point of evaluation. Equation (5) expresses the fact that sheer stresses
vanishes at the interface. It is possible to express the mean curvature in
terms of the radial “shape” function h(z, t).2 This allows us to write the
equation of motion for h(z, t) as follows:

∂h

∂t
+ vz

∂h

∂z
= vr |r=h . (6)

This says that the surface must move with the fluid at the boundary.
These equations define a difficult and complex moving boundary value

problem. We are interested in what happens near the point at which the fluid
breaks—at the singularity. Prima facie, that should make the problem even
more difficult, as nonlinear effects will dominate. Nevertheless, by focusing
on the behavior of the fluid near the singularity, it is possible to simplify the
problem dramatically and provide, exact solutions to these equations. There
are two aspects of the problem that allow this to happen.

The first [4, p. 942] derives from the fact that, near breakup, the axial
extension of the fluid is much greater than its radial extension. This allows
us to to make the simplfying assumption that the singularity is line-like. In
turn this allows us to find a one-dimensional solution to the full Navier-Stokes

2See Eggers [4].
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equations by introducing a characteristic axial length scale lz that is related
to a radial length scale lr according to the following scheme:

lr = εlz, (7)

where ε is a small parameter. If, in addition, we introduce a characteristic
time scale tz we can nondimensionalize the quantities appearing in above
equations. The characteristic scales lz, lr, and tz are, of course, constants and
so have zero time derivatives. Nevertheless, as the singularity forms, these
characteristic scales will be different at different stages of the singularity
formation. [4, p. 942]

The second feature of the moving boundary problem that allows for sim-
plification is the fact that near the singularity, surface tension, viscous forces,
and inertial forces all become equally important. [4, p. 942] Surface tension
is related to the radius of curvature which diverges at the singularity, vis-
cous forces are also important, and inertial forces must also be considered
as the fluid velocity is increasing with greater pressure gradients due to the
increasing curvature. Given this, the fluid acceleration diverges leaving the
constant acceleration of gravity out of the picture near the singularity.

Furthermore, and this is extremely important, close to the singularity, all
of the length scales become arbitrarily small in comparison with any external
length scale such as the nozzle size of the faucet. This is an indication that
one should expect the singular solutions of the one dimensional Navier-Stokes
problem to possess similarity or scaling properties. To a large extent and for
a wide range of fluids, this turns out to be the case.

It is worth stressing the importance of discovering a similarity solution to
a physical problem. This discovery will mean that one can expect essentially
identical behavior in the system when “viewed” at different (appropriately
chosen) scales. Such solutions are crucial in standard cases of modelling in
which one builds a model, experiments with it, and then argues that the same
observed properties will hold at different scales. For instance, consider the
investigation of the aerodynamic properties of wings through exerimentation
on model wings in a wind tunnel.3 In addition, however, the existence of sim-
ilarity solutions and their corresponding scaling laws play essential roles in
our understanding of why different systems exhibit identical or nearly iden-
tical behavior when described in the appropriate (dimensionless) variables.
This, will become clear as the argument below progresses.

3An excellent discussion of dimensional analysis, similarity solutions, scaling laws can
be found in [1].
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Returning to the process of drop formation, recall the following fact.
“External” length and time scales that are determined by the initial condi-
tions and the boundary conditions become irrelevant in the description of
the singularity. This is critical for our understanding of the nature of the
singularity. It means, for example, that it is possible to describe the flow near
the breakup using only “internal” length and time scales, defined in terms of
the fluid parameters. One introduces the so-called viscous length scale and
the viscous time scale as follows:

lν =
ρν2

γ
(8)

tν =
ρ2ν3

γ3
(9)

These scales imply that when the viscosity ν is doubled, the breakup will
look the same at length scales four times as large and at time scales eight
times as large. This is an instance of scaling.

On the supposition that the breakup occurs at a single point z0, and at an
instant t0, we can measure spatial and temporal distance from the singularity
in terms of the dimensionless variables:

z′ =
z − z0

lν
(10)

t′ =
t− t0

tν
. (11)

See Figure 2.4

In effect, the scales lν and tν characterize the width of the critical region
around the singularity. For a specific fluid, they are fixed constants and do
not change with time as do the characteristic scales mentioned above (lz, lr,
lt).

It is possible now to demonstrate that a scaling or similarity solution in
the variables z′, t′ exists that describes the drop radius or shape function

h(z′, t′) = |(t′)|αΦ(ξ), (12)

where the similarity variable ξ is defined as follows.

4The pictures of water drops in figures 2, 3, 4, and 5 are courtesy of Sidney R. Nagel
and appear in [11].
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Figure 2: Water Droplet at Breakup

ξ =
z′

|t′|β
. (13)

One can determine the values of the scaling exponents α and β from dimen-
sional analysis. Eggers then shows, both analytically and numerically, that
the similarity solution (12) does hold for the problem. One finds the func-
tion Φ by inserting the similarity solution into a nondimensionalized version
of the fundamental differential equation (6).5 Furthermore, such a solution
is in excellent agreement with the full solutions for the (one-dimensional)
Navier-Stokes equations at low viscosities.6

The existence of such a similarity solution in the variable ξ indicates that

5This equation is nondimensionalized using the equations (10)(11).
6Shi, Brenner, and Nagel [13] argue that Eggers’ and Dupont’s solution needs to be

corrected as there are perturbations (noise) that play an essential role in determining the
character of the fluid shape near breakup.
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the shape of breaking drops is universal. One can see evidence of this by
examining the shapes in figures 3 and 4.

Figure 3: Water Droplet at Breakup

Notice the cone-to-sphere shape in figure 3 and note the identical shape
at the top of the about-to-break satellite drop in figure 4. This demonstrates
that how the drop is formed (whether, for instance, it drips solely under the
influence of gravity or is sprayed in the air by a crashing wave) is irrelevant
for the shape it takes on as it breaks.7

In fact, this similarity solution characterizes an entire class—a universal-
ity class—of fluids at breakup. This class is, in part, determined by the ratio
of the viscosity of the fluid to the viscosity of the surrounding medium. For
example, the shape of water drops dripping from a faucet surrounded by air
(figures 3 and 4) in which νint � νext is different than that of a drop forming
in a fluid surrounded by another fluid of approximately the same viscosity

7See [11].
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Figure 4: Water Droplet after Breakup

(figure 5) where νint ≈ νext .8

That these shapes are to be expected is completely accounted for by the
nature of the similarity solution (12) just prior to breakup. Furthermore,
Eggers has shown that for scales sufficiently larger than the microscopic,
it is actually possible to continue, uniquely, the similarity solution before
breakup to one that holds beyond the singularity, after breakup. At breakup
some molecular mechanism must come into play, but the uniqueness of this
continuation is an indication of the self-consistency of the hydrodynamic
description. The striking conclusion is that the evolution of the fluid both
before and after breakup is independent of the molecular microscopic details.

8Interestingly, Doshi et al. [3] have recently demonstrated a third regime, characterized
by νint � νext that fails to exhibit universal behavior. The breakup profiles in this latter
regime are nonuniversal and depend upon initial and boundary conditions in a way that
the other two regimes do not.
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Figure 5: Two Fluid Breakup: νint ≈ νext

So the existence of the scaling solutions to the one-dimensional Navier-
Stokes equations provide evidence for the universality of the phenomenon.
And, as a result, it is possible to explain why different fluids, of different
viscosities, dripping from different nozzles, etc., will exhibit the same shape
upon breakup.

3 Molecular Dynamics

Let me now describe the drop breakup problem from the point of view of
state-of-the-art simulations in molecular dynamics. Michael Moseler and Uzi
Landman investigate the formation, stability, and breakup of jets at the
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Figure 6: Formation of Nanojets

nanolevel.[10] They model propane as it is injected into a vacuum through
a nozzle of diameter six nanometers. The simulation involves following ap-
proximately 200,000 propane molecules as they are pushed through a nozzle
composed of gold molecules at various pressures. The molecules interact
according to the Lennard-Jones 12-6 potential:

φLJ(r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

, (14)

where ε and σ are, respectively, energy and length scales appropriate to
the materials. The term proportional to ( 1

r12 ) dominates at short distances
and represents the repulsion between molecules in very close proximity to
one another. The ( 1

r6 ) term dominates at large distances and represents the
attractive forces between the molecules. Thus the potential has an attractive
tail at large r, reaches a minimum near r = 1.122σ, and is strongly repulsive
for r < σ.9

9The use of the Lennard-Jones potential is justified in investigation of this sort (in-
teractions between closed-shell atoms) for the following reasons. It exhibits long-range
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Figure 7: Molecular Dynamical Configurations of Nanojets

The nanojets in figure 6 were simulated by pressurizing the nozzle down-
stream at 500MPa (million Pascals) and a controlled temperature within the
nozzle of 150 K.10 This results in a 200 m/s flow velocity for the jet. For
t < 1 nanosecond following the initial exit of the fluid, the flow exhibits tran-
sient behavior. One can see the beginnings of the formation of fast moving
droplets and molecular clusters in this initial period, and after that one sees
the formation of necking instabilities resulting in breakup and the formation
of drops. Moseler and Landman note that for t ≥ 1ns, a steady state is
achieved with an average breakup length of 170 nanometers. They report
that, upon repeated simulations, the typical shape at breakup resembles a
double cone as shown in figure 7 B and the upper image in figure 7 D. Oc-
casionally, however, they witness the formation of nonaxisymmetric necks as
in figure 7 A and an elongated neck configuration as in figure 7 C which

van der Waals attraction, extremely strong short-range repulsion and has a potential well.
Given these features, along with its relative ease of computational implementation, it is the
potential of choice for investigations into generic properties of many molecular dynamical
interactions. For a detailed discussion of molecular dynamical simulations see [7].

10Figures 6 and 7 are courtesy of Uzi Landman and appear in [10, p. 1166 and p. 1168,
respectively].
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was accompanied by the formation of small “split-off” molecular clusters or
“satellite drops”.

If we suppose that the hydrodynamic equations discussed in the last sec-
tion could apply to the nanoscale drop formation problem, then we would
expect the propane (at the nanoscale) to be quite viscous. (Even though,
at larger scales, propane is surely not very viscous.)11 Viscous fluids such
as glycerol or honey exhibit long necks prior to breakup. (Just think about
the honey that you drip into your cup of tea, or the maple syrup you pour
over your pancakes.) In fact, Moseler and Landman apply the hydrodynamic
equations (particularly, equation (6)) and show that as expected for a vis-
cous fluid, the propane jet should develop long necks prior to breakup. This
is shown in figure 7 D and is the simulation labelled “LE” for “lubrication
equations.”

The discrepancy between the double cone shape of the the molecular dy-
namical simulation and the hydrodynamic description of the same process
is a direct indication that continuum deterministic hydrodynamics fails to
apply at the nanoscale. Large hydrodynamic fluctuations become impor-
tant at the nanolevel signaling a break down of the deterministic continuum
description. As Moseler and Landman note,

. . . the continuum description of such small systems requires the
use of exceedingly small volumes, each containing a very limited
number of particles, and consequently, continuum variables asso-
ciated with such small volume elements, which represent (local)
averages over properties of the microscopic constituents are ex-
pected to exhibit large fluctuations. [10, p. 1168]

Moseler and Landman introduce a stochastic term (Gaussian noise) into
the hydrodynamic equations and solve the stochastic continuum equations.
They demonstrate remarkable agreement with the dominant double cone
shape of the molecular dynamical simulations. This agreement is displayed
in figure 7 D. Compare the top molecular dynamical run with the stochastic

11The reason for this depends on the scale of observation. For “macroscopic” observa-
tion, the scale (lobs ) is on the order of one micron (10−6m), and at this level of observation
the ratio lobs /lν � 1. This ratio is what we expect for low viscosity fluids such as water
that yield the asymmetric cone-to-cap shape at breakup. However, at the nanolevel—at
the level of molecular dynamics—lobs is on the order of a few nanometers (10−9m). At
this level, lobs/lν � 1. This ratio holds of viscous fluids such as glycerol and leads to an
expectation of thin neck formation prior to breakup. [10, p. 1167]
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continuum equations labelled SLE. This agreement “strongly suggests that in
[nanojets] the very nature of the dynamical evolution is influenced strongly by
hydrodynamic fluctuations, deviating in a substantial way from the behavior
predicted through the analysis of the deterministic [continuum equations].”
[10, p. 1168] Further analysis shows that it is possible to see the failure of
the deterministic continuum equations as a consequence of a new length scale
becoming important at the nanolevel. Moseler and Landman introduce this
so-called “thermal capillary length” that for most materials is on the order
of interatomic distances.

The fact that a new length scale becomes important at the nanolevel is,
according to Moseler and Landman, further indication that the universal-
ity described above (provided by the scaling solutions to the Navier-Stokes
equations) breaks down. As they say,

The appearance of an additional length scale in the [stochastic
continuum] simulations . . . is a direct consequence of the exten-
sion to include temperature-dependent stress fluctuations, and its
magnitude determines the nature of the jet evolution, including
the appearance of solutions other than the universal ones pre-
dicted through the deterministic [continuum equations]. [10, p.
1168]

Let me make a few observations and pose a couple of questions concern-
ing the molecular dynamical simulations and their potential for providing
explanations for certain aspects of very small-scale drop phenomena. First
of all, notice that every molecular dynamical simulation of nanojet forma-
tion is different.12 The images in figure 7 A, B, and C attest to this. While
Moseler and Landman assert that “[t]he most frequently observed breakup
process [exhibits] close to pinch-off formation of an axisymmetric double cone
shape of the neck . . . ,” this amounts to a statistical claim based solely upon
generalizations from different simulation runs. [10, p. 1168] And, while it
is sometimes appropriate to say that the explanatory buck must stop some-
where, one might, in this situation, ask for an explanation of why this is the
statistically dominant shape for nanojet breakup.

12One might think that this is merely an artifact of simulation and that it counts against
treating the molecular dynamical simulations as genuinely providing theoretical informa-
tion about the formation of nanojets. This would be a mistake. The differences in sim-
ulations can be attributed to difference in initial conditions, and, as a result, are to be
expected.
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One important virtue of the scaling solutions to the Navier-Stokes equa-
tions discussed in section 2 is that they allow for exactly such an answer to
the analogous explanatory why-question on larger scales. We can explain
and understand (for large scales) why a given drop shape at breakup oc-
curs and why it is to be expected. The answer depends essentially upon an
appeal to the existence of a genuine singularity developing in the equations
of motion in a finite time. It is because of this singularity that there is a
decoupling of the breakup behavior (characterized by the scaling solution)
from the larger length scales such as those of the faucet diameter. Without a
singularity, there is no scaling or similarity solution. Thus, the virtue of the
hydrodynamic singularity is that it allows for the explanation of such univer-
sal behavior. The very break-down of the continuum equations enables us
to provide an explanation of universality. This is completely analogous to
the renormalization group explanation of the universality of critical phenom-
ena.13

No such explanation, appealing to a singularity to explain the universal
double cone structure, is available from the “fundamental” theory that lies
behind the molecular dynamical simulations. If one looks, for example, at
any of the results presented figure 7 A, B, or C, one cannot locate the actual
breakup location in either time or space. There is no well-defined singularity
in the equations. And, of course, one would not expect there to be, since
the Newtonian molecular dynamical equations do not develop singularities
in finite times.

4 Reconciliation?

So the question is whether it is possible to provide some kind of theoretical
answer to the question of why the double cone structure is to be expected in
nanojet breakup. Moseler and Landman show that if one introduces fluctu-
ations into the continuum hydrodynamic equations, and solves those equa-
tions, the shape is similar to that typical of many molecular dynamical sim-
ulations. But the challenge is to understand the qualitative change in the
breakup shape that occurs in the regime in which fluctuations apparently
make a leading contribution to the shape function. To put this another way,
we would like to have an account of the statistical universality of the double
cone structure—one that provides the kind of understanding that the scaling

13See [2] for a discussion.
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solutions provide for the breakup profile at larger scales by demonstrating
that most of the details of the evolution are by and large irrelevant.

In a paper entitled “Dynamics of Liquid Nanojets” [6] Jens Eggers pro-
vides the desired explanation. Eggers notes that Moseler’s and Landman’s
stochastic continuum equations suggests that “hydrodynamics, at least when
suitably generalized to include fluctuations, is fully capable of describing free
surface flows down to the scale of nanometers.” [6, p. 084502-1] There is a
simple physical argument to understand what goes on at the nanolevel. One
can think of the random noise introduced into the continuum equations as
representing a kind of effective force that is generated by the fluctuations.

[A] random fluctuation which increases the thread radius also in-
creases its effective mass, slowing down the motion. Any fluctua-
tion towards a smaller neck radius, on the other hand, accelerates
the motion. On average, the fluctuations thus drive the thread
towards breakup, in fact more effectively than surface tension . . . .
[6, p. 084502-2]

As Eggers notes, however, conventional perturbative analysis around the
deterministic continuum solution cannot describe this mechanism. This is
because the fluctuations—the noise—makes the dominant contribution. The
idea that one can average about a fixed time

no longer makes sense for this problem, because there is a finite
probability for pinchoff to have occurred, so the original formu-
lation ceases to be valid. Thus a valid description has to be
conditioned on the event of breakup to take place at a fixed time
t0. It is then natural to ask for the most probable sequence of
profiles that brings one from the initial condition to a “typical”
breakup event. [6, p. 084502-2]

Eggers develops an ingenious and difficult argument involving path integrals
to determine probability of the “optimal” path to breakup. For our purposes
here, the interesting feature is that to solve this problem he needs to assume,
for a fixed breakup time t0, that the solution is self-similar. He finds that
the unique solution, on this assumption, is the symmetric profile of a double
cone unlike the asymmetric long-neck similarity profile for the deterministic
equations. It is important that the similarity solution is only possible on the
assumption that there is a singularity at t0 in the (stochastic) hydrodynami-
cal equations. The result is an explanation for why such a symmetric profile is
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to be expected that is grounded in the “less fundamental” continuum theory
of hydrodynamics.

A further consequence of this explanation is that we can understand why
so few satellite drops are formed in nanojets and why there is a very narrow
distribution in the size of the droplets that are formed. If one looks back at
figure 4, one sees that a satellite drop is about to detach itself from the nozzle
at the upper end of the picture. This is a consequence of the asymmetric,
long-neck nature of the dripping process. That smaller satellite molecular
clusters, such as that in figure 7 C, are rare is a direct consequence of the
universality of the double cone profile for nanojets. They occur only for large
fluctuations in the neck region which are statistically rare.

So, surface tension driven pinching at larger scales essentially determines
the breakup time. Nevertheless, at times very close to that, a different pro-
cess dominated by fluctuations takes over, speeding up the breakup at the
nanoscale. The transition between these different scaling regimes can be un-
derstood in terms of the emergence, as one approaches the nanolevel, of a
new length scale—the thermal capillary length. Most importantly, however,
our understanding of this transition and of the universality of the different
profiles, depends essentially upon singularities in the continuum hydrody-
namical equations. The details of the molecular dynamics drops out of our
explanation of the origin of the different universality classes.

5 Conclusion

I began this paper with a passage from David Nelson’s book to the effect that
sometimes, “fundamental” theory will be unlikely to “resolve” various impor-
tant problems. The case of a dripping faucet is, I believe, a representative
example of just such a problem. I have tried to show that a complete under-
standing (or at least an attempt at a full understanding) of the drop breakup
problem requires essential use of a “nonfundamental” theory—namely the
continuum Navier-Stokes theory of fluid dynamics. But, of course, if we
think of the molecular theory as fundamental, then there is a conflict. How
can a false (because idealized) theory such as continuum fluid dynamics be
essential for understanding the behaviors of systems that fail completely
to exhibit the principal feature of that idealized theory? Such systems are
discrete in nature and not continuous.

I think that we may be able to better understand what is going on here
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if we examine exactly what is meant by “fundamental theory.” Throughout
this paper I have placed the term in scare quotes for a reason. I think that
the term “fundamental theory” is ambiguous. On the one hand, there is
a clear sense in which the molecular theory is more fundamental than the
fluid dynamical theory. It is more fundamental because it more accurately
describes the genuine nature of the system. Fluids are composed of a finite
number of molecules, and when we are looking at fluids around the scale of
intermolecular distances, that theory most correctly characterizes the system
of interest. This is a sense in which the molecular theory is ontologically
fundamental. It gets the metaphysical nature of the system right.

On the other hand, I have argued here and elsewhere that such onto-
logically fundamental theories are often explanatorily inadequate. Certain
explanatory questions—particularly, questions about the emergence and re-
producibility of patterns of behavior—cannot be answered by the ontologi-
cally fundamental theory. I think that this shows, that for many situations,
there is an epistemological notion of “fundamental theory” that fails to co-
incide with the ontological notion.

Explanations of universal patterns of behavior require means for elimi-
nating details that ontologically distinguish the different systems exhibiting
the same behavior. Such means are often provided by a blow-up or singu-
larity in the epistemologically more fundamental theory that is related to
the ontologically fundamental theory by some limit. In the present case,
the Navier-Stokes equations for free surface flows contain the seeds of their
own destruction—they can develop singularities in finite times. But far from
rendering the theory useless, out of the singularity is born the explanatory
structure needed for full understanding.

In a brief communication in Nature entitled “Euler’s Disk and its Finite-
time Singularity,” H. K. Moffatt states that “. . . nature abhors a singularity,
and some physical effect must intervene to prevent its occurrence.” [9, p.
833] In one sense, the above investigation bears this out. We see no real
singularity in the molecular dynamical simulations of nanojet breakup. The
finite-time singularity in the Navier-Stokes equations is prevented by the
molecular mechanisms that that theory (legitimately) ignores. In another
sense, though, nature needs the singularities. For without them, one can-
not fully characterize, describe and explain the emergence of new universal
phenomena at different scales.

Finally, there is another way of thinking about a certain aspect of this
problem. The molecular dynamical simulations of Moseler and Landman
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allow for a Humean statistical generalization: Most simulations appear to
yield a double cone structure for nanojet breakup. But the simulations do
not provide any theoretical account or explanation for this statistical gen-
eralization. Rather, in order to account for the empirical generalization at
the “fundamental” level of molecular dynamics, we must appeal to the non-
Humean similarity solution (resulting from the singularity) to the idealized
continuum Navier-Stokes theory.
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