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SPONTANEOUS SYMMETRY BREAKING AND CHANCE

Abstract

In this paper I explore the nature of spontaneous

symmetry breaking in connection with a cluster of

interrelated concepts such as Curie's symmetry principle,

chance, and stability.

1. A model for spontaneous symmetry breaking

Even though spontaneous symmetry breaking (SSB) as a

technical concept has its origin in condensed matter physics

and high-energy physics (cf. Coleman 1975), its domain of

application is much broader, which includes some simple

classical systems.  In this section I give a general

characterization of the notion of SSB (from a simple model).

It will then become clear that the phenomena of SSB exhibit

some unusual features a detailed examination of which will

shed new light on our understanding of such notions as

Curie's principle of symmetry, random perturbations,

determinism, chance, and stability.  A discussion of the

latter will appear in later sections.

In another paper I have described in detail how SSB

occurs in a simple mechanical model, which shares all the

structural features of SSB that the ones in condensed matter

physics and high-energy physics have (cf. Greenberger 1978 &

Sivardiere 1983).  Here I describe those features without

going into the mathematical arguments.
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Figure 1. A bead with mass, m ≠ 0, is free to move
frictionlessly on a circular wire of radius, R , which
rotates around the z-axis with variable ω.

The model comprises a metal ring vertically suspended

and free to rotate (without friction) and a bead

frictionlessly threaded on it (see Figure 1).  Imagine that

we set the ring into rotation and very slowly1 increase its

angular velocity ω.  A complete story of the system's

mechanical behavior can be told in classical mechanics.  At

first when the angular velocity is low, the ground state of

the system -- the state at which the bead has the lowest

energy -- is the one with the bead resting at the lowest

point of the ring (i.e. at O or θ = 0).  In other words, the

mathematical argument concludes that the potential energy of

the bead has its minimum when it is at rest at O.  This

situation remains until the angular velocity passes a certain

value -- henceforth the 'critical value' -- when O stops
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being the ground state of the system.  Instead, the ground

state begins to 'split' and 'climb' the ring as the angular

velocity continues to increase.  From Figure 1 it means that

the bead will be in its ground state at successive values of

θ or -θ, where |θ| ≠ 0, with corresponding angular

velocities.  The position of the bead's ground state will

become higher and higher on the ring (i.e. the angle θ will

become larger and larger as the angular velocity increases,

and it approaches 90° (or -90°) when the angular velocity

approaches infinity).  Therefore, the bead, originally

resting at O, will in seeking the new ground state depart

from O and ascend one or the other side of the ring; and

because this rotating ring-bead system initially possesses

the reflectional symmetry between the two sides of the ring

with respect to the z-axis, this symmetry is said to be

broken by its ground states after the angular velocity passes

its critical value (cf. Wigner 1979, pp. 3-50).  The symmetry

appears to be spontaneously broken because there are no

apparent causes (asymmetries) in the model that are

responsible for the breaking.

2. The nature of SSB

Are the symmetries truly broken spontaneously in SSB --

i.e. without any causes in the form of asymmetrical

antecedents?  No, for if one thinks that the bead will

inevitably climb the ring from O in our simple model --

exactly as it is described -- then one is mistaken.  If there
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were a physical system in reality that is exactly like our

model, we would have no reason to believe that the bead would

budge at all however fast the ring rotates.  This is because

even though the point O is no longer the ground state of the

system -- the lowest energy state of the bead -- beyond the

critical point, it is still an equilibrium point in the

following sense: there is nothing in the mathematical

argument which indicates that O is not a state in which the

bead will remain forever unless bumped or disturbed, however

slightly, toward another state.  Therefore, it seems that the

actual breaking of a symmetry is only attributable to some

perturbations of the system (which may or may not be caused

by small external disturbances).  In our model the bead won't

actually ascend the ring unless some perturbation (or

fluctuation) at O causes it to do so (cf. Poincaré 1952, pp.

64-90 & Ismael 1997, pp. 179-180).

However, there is a sense of SSB in which perturbations

(or fluctuations) are not relevant.  In our model in which no

asymmetrical elements are considered, the symmetrical ground

state at O is 'broken up' -- i.e. rendered unstable -- when

the angular velocity passes the critical value.  The

bifurcation of the ground state which provides the

possibility for a breaking of the symmetry is present without

any asymmetrical antecedents.  This is connected to the

following general feature of SSB.  What the initial unique

ground state breaks into after the parameter crosses its

critical value is always a set of ground states -- in our
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model they are those at θ and -θ -- which are degenerate,

meaning that they have the same value so that any

transformation -- of the same symmetry they are supposed to

have broken -- from one state to another within the set does

not change the value.  Hence one may say that the ground

states together as a set still preserve the symmetry which

each breaks.

3. Curie's principle and SSB

Although the actual breakings of a symmetry in SSB are

not without causes (or asymmetrical antecedents) if the

analysis given in the previous section is correct, they are

none the less fundamentally different from most cases of

symmetry breaking that are the results of either asymmetrical

external influences, such as forces and impacts, or

explicitly asymmetrical initial and/or boundary conditions.

In both situations, the asymmetrical antecedents could, and

should, be made explicitly in the model so that the broken

symmetries in question are properly accounted for.  This is

not the case with SSB.  Even though we assume that they are

the results of perturbations, it is not possible either to

include any precise information about individual

perturbations in the model -- i.e. in its mathematical

description -- so as to make the symmetry breaking one of the

common type, or to determine by other means which

perturbation causes the system in question to fall into which

symmetry-breaking ground state.
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This feature of SSB, a feature that is regarded as

separating it from the common types of symmetry breaking (and

in some sense justifies calling the symmetry-breaking

'spontaneous'), is of course the same feature I explained

above, namely, the 'breaking' in a model of SSB always

results in a set of degenerate ground states which together

preserve the very symmetry(ies) each breaks.

Several issues now arise regarding the nature of SSB.

One may first wonder whether Curie's principle of symmetry --

which in slogan form reads: 'asymmetry out only if asymmetry

in' -- holds in SSB?  I have argued elsewhere that the

principle holds if we regard SSB as a deterministic

phenomenon.  To give a rough summary we may say that the

asymmetries responsible for the actual breaking of the

symmetry(ies) in question are provided by the perturbations.

And if we disregard the perturbations, there won't be any

actual breaking of the symmetry despite the shift of the

solution from one symmetrical ground state to a set of

asymmetrical ones.

But then one may ask whether one should treat SSB as a

deterministic phenomenon.  It is common to hear an expert say

that in SSB a symmetry is broken by pure chance; or more

precisely, whenever there is SSB in a system, which symmetry-

breaking ground state the system will eventually end up is a

matter of chance.  I shall argue that Curie's principle no

longer holds in the indeterministic contexts, although it

does apply at some level there; so if SSB is an
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indeterministic phenomenon, it violates Curie's principle2.

The conclusion of the argument is in short that the principle

is violated by the truly chancy processes, while it can be

seen to be preserved by the probabilistic regularities --

some of which are natural laws -- that prevail in those

processes.  In other words, no asymmetry seems present to be

responsible for the obtaining of particular results of a

truly stochastic process, while some asymmetry is expected to

be present if any asymmetrical distribution of the results

obtains.

The idea that Curie's principle does not hold in

indeterministic processes is briefly explained in van

Fraassen 1989 (pp. 239-243) and 1991 (pp. 23-24).  Here is an

argument in the spirit of van Fraassen's.  Suppose that we

have a system that radiates particles one at a time along a

single spatial dimension -- in the positive or the negative

direction with respect to the emitter -- and the chance of

one particle in either direction is 1/2.  And suppose that

the state of the system before any emission is reflectionally

symmetrical.  The resulting system after any emission -- the

emitter and the emitted -- would be a state that is not

reflectionally symmetrical.  Given the emissions are

indeterministic, namely, there is no hidden mechanism in the

system that determines which particle is emitted in which

direction, the Curie's principle is violated by this model:

no asymmetry in but some asymmetry out.
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However, at the level of chance distribution, the system

before and after any emission is always reflectionally

symmetrical.  Indeed, were the chances in the two directions

not equal, we would be entirely justified to assume that some

asymmetrical elements exist in the emitter which cause the

unequal chances.  I know of no instance of a scientific

theory in which an asymmetrical probabilistic distribution is

not accounted for by any asymmetrical antecedents or, failing

that, is regarded as an entirely satisfactory result.

Here a detour is in order to prevent a probable

misunderstanding.  The legitimate request for asymmetrical

antecedents for resulting asymmetrical chance distributions

is different from the type of requests commonly known in the

quantum mechanics literature as those for hidden variables.

The former is at the level of determining chance

distributions and the latter individual measurement results.

In fact, at least in quantum mechanics, chance distributions

evolve deterministically because the evolution of either

state functions (in the Schrödinger representation) or

observables (in the Heisenberg representation) which

determines such distributions at any instant given an initial

distribution is entirely deterministic.

The above should be sufficient to resolve an apparent

conflict of view between van Fraassen and Ismael, where van

Fraassen (ibid.) claims that Curie's principle fails, while

Ismael (1997) claims that it holds, in the contexts of

indeterminism.  They ask different questions and, not
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surprisingly, get different answers.  Van Fraassen's question

is whether the principle holds in any indeterministic

processes, and the answer, as one can see from the above, is

clearly a 'no.'  Ismael's question is 'does Curie's principle

have any application where the laws in question are

indeterministic...(p. 176)' and the answer, also in accord

with what is just said, is a 'yes.'  The application of the

principle, as Ismael explains in detail, is indeed on the

level of probabilistic distributions.  Ismael also realized

that the principle does not apply among the purely chancy

processes, but she does not regard such as a violation of the

principle in the indeterministic contexts3.

4. Chance and SSB

Given that at least some SSB happen in deterministic

systems, we now ask first whether and in what sense we are

justified to call the actual breakings a matter of chance,

where by chance I mean some property of physical systems

whose values obey probability calculus.  And secondly, why

are the breakings in SSB equally probable?

It is of course possible, or even very likely, that at

the most fundamental level all physical processes are

indeterministic.  However, that does not make SSB

automatically an indeterministic phenomenon or the chance in

it a chance of indeterminism.  For systems such as the one

represented by ring-bead model, even if every molecule or

field in them is governed by classical deterministic laws,
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the SSB would still occur (as a theoretical result).  Hence,

the existence of SSB, very much like objective chance as we

shall see shortly, is compatible with determinism.

I also want to mention before our in-depth analysis what

might be the first case in which a connection between chance

and SSB is made, although it was not recognized as such.  To

my surprise (and delight) the first example in Poincaré's now

famous discussion of chance in (Poincaré 1952b) is a special

case of SSB: a stationary cone balanced on its point on a

flat surface.  It will topple towards an unpredictable

direction since rotational symmetry is already 'broken' in

that the upright position of the cone in balance is an

unstable equilibrium state and the stable one (i.e. the

ground state) is one of the infinite number of states, [0,

2π), in which the cone lies on its side.  The toppling of the

cone towards any particular direction may be caused by a

particular 'very slight trepidation, or a breath of air. (p.

67)'4  Again, why is the toppling of the cone in any direction

a matter of (equal) chance, even though it is determined by a

specific perturbation?

Those who are familiar with the literature of the

foundations of statistical mechanics (SM) (cf. Sklar 1993 &

Guttmann 1999) may think that the answers to our questions

are, details aside, simple and straightforward.  To put it

roughly, if the use of objective probabilities among

observable (macro-)states (i.e. the coarse-grained states) is

consistent with the assumed underlying determinism among
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dynamical (micro-)states (i.e. the fine-grained states) in

SM, then one can simply say the same (again details aside)

for the chance in SSB.  This is however not true, even if we

assume that the antecedent of the above conditional is

unproblematic.  The case of SSB is similar to, but not the

same as, those in standard SM.  I first point out some

important differences (i.e. the one that are relevant to the

treatment of chance in the deterministic contexts), and then

I try a direct answer to our questions.

To begin with, SSB systems are not the ones in thermo-

equilibrium; instead they are in transitions from one

equilibrium state to another.  Therefore, the appearance of

chance in them cannot be justified in the same way as is the

appearance of chance in systems of equilibrium.  Given that

ergodicity is what we now know justifies with rigor the

consistency of chance in the observable states with

determinism in the dynamical states in equilibrium SM,

ergodicity would not be directly applicable to SSB systems.

That leaves us with the possibility of regarding SSB as

non-equilibrium phenomena, as processes that eventually

approach equilibrium.  We may think of the new ground states

(the states obtained when the parameter is beyond the

critical value) as equilibrium states and the transfer from

the unstable state to them as analogous to what one

encounters in the transport phenomena in the kinetic theory.

Again, things are not so simple as this.
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The kinetic theory -- at whose core is the Boltzmann

equation of the one-particle density function -- does not

apply straightforwardly to SSB systems.  First of all, it is

one of the main challenges of the theory to show that for a

thermo-system the equilibrium state at which the Boltzmann

distribution -- the most probable distribution -- holds is

indeed the state to which all systems in other (non-

equilibrium) states will eventually approach and from which

they, once there, will never permanently leave.  The other

challenge is to show that the approach to equilibrium is

irreversible regarding observable states despite the fact

that the laws that govern the dynamical states are completely

time-reversible.  None of these is a problem for the SSB

systems.  An SSB system when regarded as a thermo-system --

considering the ring-bead system and its immediate

environment as a collection of molecules strictly obeying the

dynamical laws of classical mechanics -- is 'attracted'

towards one of its new ground states, θ  or −θ , not because

of its tendency of becoming 'one of the most probable state,'

as in the kinetic theory case, but rather because -- in a

simpler sense of attraction -- its tendency of moving to a

lower energy state.  This is true both at the observable and

the dynamical level, because even if we look exclusively at

the individual trajectories in the phase space of the ring-

bead system, all of them should be 'deterministically'

attracted towards the subspaces defined by θ  or −θ  and the

corresponding potential energy.5  In other words, the
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transition of the ring-bead system from the former ground

state at the bottom of the ring to one of the latter ground

state higher up the ring is not really a probabilistic

phenomenon; it is a mechanical one.  Essentially the same

holds for the case of Poincaré's cone.  It is not a matter of

'becoming more probable' that the upright cone topples, but

rather it is mechanically determined to do so.  Because of

this feature, there is no good sense in which one may talk

about the physical possibility that a large fluctuation, for

instance, may return the system, the bead on the ring or the

Poincaré cone, to its old ground state, while this would

certainly be possible if the system is a case of the kinetic

theory.  In other words, while it is only an overwhelming

probability that prevents the cream from suddenly separating

on its own from the coffee once the two are well mixed, there

is an energy gap -- a difference at the observable level --

that prevents the system in question to go back to the

previous (symmetrical) ground state in SSB.

Therefore, we cannot directly borrow from SM to answer

our questions, and yet a combination of some notions there,

perhaps slightly modified, may just get us what we wanted.

The rest of the section provides a conception of such an

attempt.  I shall first give the answer in intuitive but

imprecise terms, and then try to precisify it by connecting

it, wherever possible, to what is well established in the

foundations of SM.
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The actual breakings of a symmetry in a case of SSB are

a matter of chance partly because they are caused by

perturbations6 that are randomly distributed in the

neighborhood of the unstable equilibrium point, and partly

because the stable equilibrium states are symmetrically

distributed around (but not close to) it.  In our ring-bead

model, we may conceive of the system as composed of a large

number of molecules and surrounded by some kind of gas.  When

the angular velocity goes beyond the critical value, the

state at O (see Figure 1) becomes unstable, which when

translated into the language of ensembles means the

following.  Of all the possible systems in the ensemble in

the phase-space neighborhood of that state, only those with

configurations that make them occupy exactly the position O

will not depart permanently from O and make the transition to

one of the new ground states, θ  or −θ .  Any system whose

configuration makes it deviate from O, either because of any

slight disturbance from its immediate environment or from its

own thermo-agitation, will, because of the energy gap, make

the transition.  Such perturbations appear to be so small and

so numerous, we may as well regard them as randomly

distributed; and the object, e.g. the bead, is as likely to

depart from O toward one direction as toward another.  And

since the possible states that such departures will end up

are all degenerate, meaning that they all have the same value

for the macroscopic quantity, e.g. the energy gap, that does
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the 'attraction,' there is no reason why the system should

not end up in any of them with equal probability.

Let us now make this answer more accurate.  At the most

general level, the answer has the following structure.

1. An SSB system acquires a chancy character when its

symmetrical ground state becomes unstable.  The values

of the chance -- the probabilities -- are determined by

how the perturbations, if present, are distributed

before the state becomes unstable, i.e. when is it a

stable equilibrium state.

2. The actual symmetry breakings -- the transitions to the

lower-energy ground states -- are entirely determined by

such individual perturbations by individual dynamical

processes.

3. The symmetrical arrangement of the asymmetrical ground

states and the degeneracy of the values of the SSB-

causing property, such as the energy gap, ensure that

the actual breakings have the same probability

distribution as the distribution of the perturbations.

To fill out the structure, we begin with the question of

how the perturbations are distributed.  We can simply say as

I did earlier that the perturbations are randomly

distributed, and then go on to give a precise sense of

randomness.  If the latter turns out to be good enough to

justify the equal-chance character of the actual symmetry

breakings, then we can rest satisfied.  It is beyond the
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scope of this discussion to even touch on the various

approaches to, and controversies over, a precise definition

of randomness (cf. Earman 1986, chs. 8-9; Emch & Liu, 2001,

188-215); it suffices to predict that no satisfactory answer

is forthcoming if one seeks a direct connection between

randomness and the equal chances of perturbations in all

directions from O in the ring-bead model.  Further, even if

such a connection can be figured out accurately, we are still

left with the more difficult question of how we know that the

perturbations are indeed random.

Fortunately, there is another way of approaching the

problem.  We know that before the possibility of symmetry

breaking opens, an SSB system is in a stable equilibrium

state.  If the system can be suitably modeled as a thermo-

system -- systems with a large number of degrees of freedom

-- there is a possibility that we can employ the notion of

ergodicity, or comparable notions such as quasi-ergodicity,

to justify the uniform distribution of the perturbations we

intuitively suspect.

First, can we model SSB systems as thermo-systems?  Some

of them obvious can readily be so modeled, e.g. the systems

in which such SSB as ferromagnetism, superconductivity, and

superfluidity take place.  The SSB systems in quantum field

theories -- e.g. the gauge fields and gauge symmetry-

breakings -- are certainly not thermo-systems in any

straightforward sense.  However, there is so much similarity

between the SSB in quantum SM, such as in ferromagnetism, and
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the SSB in gauge field theory (cf. Aitchison 1984, ch.6), and

from a foundational perspective quantum fields are many-

particle systems of infinite degrees of freedom (cf. Strocchi

1985), I may venture a conjecture here that whatever accounts

for the chance of SSB in the former case can, without any

conceptual modifications, be applied to the latter case.  It

is beyond the scope of this paper to work this out

explicitly, so I shall put aside the questions of whether or

not the SSB in quantum fields are chancy and if they are,

what their nature is.

More importantly, the question is whether or not such

SSB systems as our ring-bead system or Poincaré's cone can be

modeled as thermo-systems.  Prima facie, they are modeled as

rigid-body systems, which are not amenable to thermo-

statistical laws.  But that is only true when no 'very slight

trepidation, or a breath of air' is considered.  When we

consider what I have explained earlier to be the causes of

the actual symmetry breakings in these systems, we should see

that they are indeed distributed as in a thermo-system.  To

put it another way, either the perturbations (together with

the small disturbances that cause them) are excluded from

these models so that they are not thermo-systems, but then

there are no actual symmetry breakings, or the perturbations

(together with the small disturbances that cause them) are

included, and then they can and should be modeled as thermo-

systems.  Hence, even in the case of the ring-bead or the
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Poincaré model we do have thermo-systems in equilibrium

before the symmetrical breaking becomes possible.

But, second, how do we know that such systems are at

least ergodic?  For otherwise, to a system in thermo-

equilibrium but not being ergodic we still do not have the

justification for using either microcanonical (if the system

is isolated) or canonical (if it is in equilibrium with a

heat reservoir) ensemble to model it.  In other words, we

still do not know why the distribution of the actual symmetry

breakings is given by the theory of SM (in this case, of

classical SM).

For those who know the story of the struggle with

ergodicity, it should be obvious that it is practically

impossible to give a rigorous proof here that the systems,

with respect to SSB, are or are not ergodic.  Theorists only

know how to construct such a proof for physical systems that

do not even look like thermo-systems, and yet many simple

thermo-systems seem obviously ergodic from an intuitive point

of view (cf. Emch & Liu 2001, chs. 8-9, especially pp. 317ff;

Toda et al 1995, ch. 5).  At the intuitive level what would

prevent a system from being ergodic is for a possible

trajectory of it to wonder into a region of its phase space

and stay there (practically) forever.  The reason for this is

quite simple.  For ergodicity to hold for a system, the time

average of any function of its variables (as t → ∞) must

equal its ensemble average, so that it justifies the idea

that the probability that the system will be found in a
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certain region of its phase space is proportional to the

phase area of that region (in, say, Lebesgue measure).  But

for this to be true, it is obviously necessary that the

system's trajectory should not stay in a certain region for a

disproportionally long time.  Such islands in which

trajectories may wonder in and never leave are called KAM

tori in the literature, and to be an ergodic system is not to

have KAM tori in the system's phase space.  It is usually

very difficult to prove the absence of KAM tori even if it is

rather obvious from an intuitive inspection.

Our models when in the symmetrical state of stable

equilibrium seem to be ergodic from an intuitive level in the

same way that many simple thermo-systems are.  There do not

seem to be islands or subspaces in the neighborhood of the

state (except the state itself) into which any phase

trajectory of the system -- either the ring-bead or the cone

-- would wonder and stay forever.  Because of the energy

constraint, any trajectory starting away from (or leading out

of) the lowest energy state would eventually, if not quickly,

come (return) to that state.  Given that the systems can be

modeled as thermo-systems and they are ergodic, we are able

to conclude that the probability of having a particular

perturbation occur in a certain region of the phase-space

neighborhood of the unstable equilibrium state should be

proportional to the area of that region.  This implies that

perturbations are uniformly distributed around that state,

namely, a small deviation from it in one direction is equally
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likely as one in another direction.  (To put it more

accurately, think of a phase-space ring around the unstable

equilibrium state.  Given that the system is ergodic, the

probability that a perturbation occurs in one finite section

of the ring must be the same as the probability of its

occurring in any other section of the same size.  The result

is the same even if we let the size of the section approach

zero.  Hence a perturbation from the equilibrium state is

equally likely in any directions.)

The second element (#2 above) in our answer is the

transitions from the unstable equilibrium state to the stable

ones, which are caused by the perturbations.  When the

systems concerned reach a state in which their SSB-parameter

is beyond the critical value, the state becomes unstable --

which means that the systems will not return to it when they

acquire however small a perturbation from it -- and yet the

distribution of the perturbations for these systems should

not be affected.  This means that when symmetry breaking

becomes possible for a system, the system will be disposed to

make a transition from one state to another with the presence

of any perturbation.  But since the distribution of the

perturbations is the same, the probability of the system

departing in one direction should be the same as its

departing in any other direction.

However, how the symmetry in question are actually

broken also depends on what the ground states (the new stable

equilibrium states) are and how they are situated (#3 above).
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If they do not form a set of degenerated states which

together has the same symmetry -- i.e. one being

transformable into any other by the same symmetry group, then

the probability of actual breakings may not be the same as

that in which the system is disposed to break its symmetry.

For example, if in our ring-bead system the perturbations

from O are equally distributed between the left and the right

direction and yet only one of the ground states, say, θ  (but

not −θ ), is allowed (never mind how this can actually be the

case, but it is certainly physically possible), then the

probability of the bead to deviate from O would be 0.5 in

either direction while the probability of it settling into

the ground state is unity; and therefore, the two

probabilities do not match.  (Here I assume that every

perturbation deterministically leads to a transition of the

system to its (or one of its) ground state(s).)7

As a final point, I would like to entertain the

following question about chance and SSB.  Does SSB have

anything to do with the very possibility of chance in a

deterministic world?  Here the question is not just whether

the existence of chance is consistent with such a world but

what that world has to be in order for chancy processes to

arise.  There are more than one ways to answer this question.

Ergodicity theory appears to be the dominating approach,

while other approaches include, Jaynes's (Jaynes 1983),

Khinchin's (Khinchin 1949), and most recently, Albert's
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(Albert 2000).  However, the minimal requirement for the

existence of chances in thermo-systems would be the

possibility of coarse-graining and the existence of

instability (cf. also, Clark 1987).  I want to emphasize here

how in our universe instability depends on coarse-graining

and how the latter is relative and at best inter-subjective

in the sense that the degrees to which a phase space is

coarse-grained is in principle arbitrary and in practice

determined partly by the limits of the size and capacity of

the investigative agents and partly by the agents'

investigative interests.  To see this point, let us remind

ourselves of what it means to have instability in nature8.  If

a partition of a phase space is given by the coarse-graining,

then it is up to nature whether or not any system is stable.

If there are trajectories which begin at time t in the same

cell of the coarse-grained phase space and end up at t'(>t)

in different cells, then the systems having these

trajectories are considered unstable at t; and otherwise, no

systems are.  On the other hand, given the complexity of our

universe, for any set of trajectories, it is possible to

coarse-grain the phase space in such a way that they belong

to the same cell at t but different cells at t'(>t).  The

complexity of the 'universe' -- in the precise sense of not

having all the trajectories in a phase space keeping their

distance (in some given measure) invariant through time -- is

important, because it is certainly possible that a universe

is so 'simple' that no coarse-graining -- indeed no 'any'-
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graining -- of the phase space is able to produce

instability.  (In other words, there are mechanical models

that are absolutely stable.)  And in such deterministic

models, chance really cannot have a place, for however one

partitions the phase space in question, one gets the result

that any set of trajectories belonging to a single cell at

one time belongs to a single cell at any other time.  That

means that the probability of any of those trajectories

ending up in one cell at time t' given it comes from another

cell at time t (<t') is either 1 or 0.

Therefore, complexity is necessary for ensuring the

possibility of instability in a model.  There are certainly

many different ways for a system (or a universe) to become

complex (or more complex); but they all have the general

feature of bringing about stable (or more stable) observable

states that 'cover'9 more and more dynamical states.  One of

the simplest examples of such a process would be the free

expansion of a gas from one volume to another bigger volume.

Imagine a gas first confined in one of the two halves of a

container, which is separated by a dividing door in the

middle.  When the door is suddenly withdrawn, the possible

positions for the gas molecules are by this process doubled

and the number of possible momenta increased.  When the gas

finally permeates the whole container and reaches the

equilibrium, the system has become more complex in exactly

the sense I gave above.
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Now, SSB are not unlike the free expansion of gas.  The

crossing of the critical value of the parameter is analogous

to the withdrawing of the dividing door, for when either

happens, the space of possible observably distinct states is

widened (in the gas case, having the gas in the other half of

the container and in the ring-bead model, having the bead at

rest at positions other than O); and with the parts of the

system in question occupying the possible states, the system

becomes more complex.  Of course, the free-expansion case of

gas is not a case of SSB, so SSB are only one of the ways by

which the above mentioned take place.  One may say that an

SSB is the process by which new observable states result,

which have distinct symmetries, each being different from the

one of the initial observable state.  Although the examples I

considered in this paper happen to involve spatial

symmetries, there are other kinds of symmetries, such as the

gauge symmetries, that are not spatio-temporal.

5. Conclusion

In this essay I first described a simple model in which

the structural features of SSB can be plainly seen.  Then I

showed that there are really two different meanings for SSB,

one, as given in our model, specifies the conditions under

which the possibility of SSB is present; and the other, as

given by the model plus perturbations, which are the real

causes of actual breakings, describes (in not in detail)

conditions for the actual breakings of the symmetry.  And
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then I argued that Curie's principle of symmetry is indeed

violated by actual processes of SSB, even though the results

of such processes, at the level of their distribution, still

make the principle applicable.  Furthermore, the

justification of the use of (equal) chance in SSB turns out

to have a three-element structure: (1) the uniform

distribution of the perturbations that holds even when the

ground state becomes unstable; (2) the deterministic

transition from the unstable state to the stable states; and

(3) the symmetrical (of the same symmetry) arrangement of the

symmetry-breaking states.  Each of these can be justified if

the systems can be models as ergodic thermo-systems.  SSB

systems indeed can be so modeled, or so I have argued.

Lastly, I tried to explain how SSB is a type of instability

which is responsible for producing diverse chancy processes

in our universe, which contributes to its complexity.
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1 As a technical term, 'very slowly' means that the ring-bead system is
at equilibrium at every value of the angular velocity.

2 Even though most of the known types of SSB are regarded as happening
in deterministic systems, there may be indeterministic cases of SSB.  In
fact, one of the most interesting and difficult questions about SSB is
whether the processes of quantum measurement -- the heart of
indeterminism -- are of SSB.  However, one must note that the SSB cases
in condensed matter physics and in high-energy physics are not examples
of indeterministic SSB.  The symmetries are spontaneously broken in
those cases at the level of probabilistic distributions rather than at
the level of purely chancy events.
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3 Ismael's interpretation of Curie's principle is in fact such that the
purely chancy processes in the indeterministic contexts are not in the
proper domain of the principle's application.

4 One should note that the difference between our ring-bead system and
Poincaré's cone with respect to SSB is almost trivial.  The cone case
can be easily modified so that it also has a one-parameter controlled
process of SSB.  For instance, one can think of a rotationally
symmetrical system whose lower part continuously change its shape (which
is the parameter) from spherical to an inverted cone shape.

5 One must note that in this paper, and especially in the rest of it
following this note, there are two kinds of spaces: the 3-dimensional
space and the 6N-dimensional phase space (N being the number of
particles).  In principle one should always make it clear which space
one is talking about when one describes a situation and avoid mixing
them in such descriptions.  But there are occasions where a mixed used
is convenient and free of the risk of confusion.  So, I will
occasionally say things such as 'the phase states -- or states -- of the
ring-bead system around O,' which simply means 'the phase states ...
around the phase point that corresponds to the bead's being at rest in
the 3d space at O.'

6 From here on I will use the word 'perturbation' in a narrower sense,
namely, only to mean a small deviation of the configuration of a system
from a certain understood state -- the unperturbed state -- which may be
caused from an equally small external cause or is due to a small
internal fluctuation.  This is the sense commonly used in physics as a
technical term, such as in 'the perturbation of a celestial orbit' or
'the perturbational expansion' of some equation.

7 If one finds this case difficult to imagine (because switching
directions inevitably requires the passing of the point O), then think
of the case of Poincaré's cone, where all directions of perturbations
from the upright position are possible and yet not all directions along
which the cone lies on its side are allowed; and the set of these
disallowed directions is not of measure zero.  The same argument,
mutatis mutandis, goes through.

8 It does not seem meaninful to assume any mathematical rigor in the
following discussion, given the level of rigor adopted in general for
the paper.  For a rigorous treatment of the related notions --
stability, orbit distances, and sensitive dependences -- for non-
specialists, see Earman (1986, ch. 9) and Smith (1998, 15, 102-105,
167ff).  The following can be taken as an application of those notions
in the contexts of coarse-grained phase spaces.

9 Whenever I say that an observable or macroscopic state covers or
contains a set of dynamical or microscopic states, I mean no more than
that no permutations among the members of the latter can change the
value of the former.


