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                                                               Abstract 
 
The Reeh-Schlieder theorem asserts the vacuum and certain other states to be spacelike 
superentangled relative to local fields. This motivates an inquiry into the physical status 
of various concepts of localization. It is argued that a covariant generalization of Newton-
Wigner localization is a physically illuminating concept. When analyzed in terms of 
nonlocally covariant quantum fields, creating and annihilating quanta in Newton-Wigner 
localized states, the vacuum is seen to not possess the spacelike superentanglement that 
the Reeh-Schlieder theorem displays relative to local fields, and to be locally empty as 
well as globally empty. Newton-Wigner localization is then shown to be physically 
interpretable in terms of a covariant generalization of the center of energy, the two 
localizations being identical if the system has no internal angular momentum. Finally, 
some of the counterintuitive features of Newton-Wigner localization are shown to have 
close analogues in classical special relativity. 
 
1. Introduction: Relativistic quantum field theory (QFT) presents us with a number of 
novel counterintuitive features, over and above those of general quantum theory which, 
for some time now, have been discussed from various philosophical perspectives. Among 
the novelties we have the breakdown of unitary equivalence between the basic dynamical 
variables of an interacting field with two distinct values of the interaction strength. This 
is known as Haag's theorem (Haag, '92, p.57, and references therein). As a consequence it 
is impossible to compare, in one and the same Hilbert space, how the field theoretic 
system will evolve with and without the interaction turned on. We have the property of 
the vacuum state (and others), called Superentangled by Clifton et al (98), which allows 
any part of the Hilbert space to be reached by operations on the vacuum state with 
operators constructed within any, arbitrarily small space-time region. This is known as 
the Reeh-Schlieder theorem (Reeh and Schlieder, '61). And, thirdly, we have the presence 
of Rindler quanta in the vacuum state(Unruh, '76; Birrell and Davies, '82, p.109; Unruh, 
'90; Wald, '94, Ch.5 and references therein). 
 
Invariably the term 'counterintuitive', as used here, refers to seemingly strange and 
bizarre differences between the quantum domain and what we have come to expect on 
the basis of our long term exposure to classical physics. Accordingly, one might well 
argue that we must simply bite the bullet of recognizing classical physics as a poorer 
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approximation to reality than quantum theory. We must shed our classical intuitions, 
painful as that experience may be, and get on with the business of building a quantum 
intuition. That quantum intuition will then serve us well until a still better theoretical 
scheme than quantum theory comes along and the painful process must be repeated. 
Indeed, physicists are trained to do just that (the training doesn't always take) and, as a 
physicist, I am very sympathetic to that policy. However, in the interests of developing 
deeper understanding and philosophically sophisticated interpretations, it is valuable to 
study, in some detail, the relationships between the counterintuitive quantum features and 
the corresponding or analogous classical features. A lurking danger in such endeavors is 
that of unconsciously lapsing into regarding only classical accounts or accounts 
consistent with a classical ontology as constituting real understanding, and, thus, trying to 
explain quantum strangeness along classical lines. Conciously embracing such a view is 
not a danger, but simply a philosophically conservative and, I think, naïve position. 
Having noted the lurking danger, the effort should be undertaken. 
 
In this presentation there is far too little space to consider all the counterintuitive features 
of QFT that I've mentioned. I have, therefore, chosen to focus on the Reeh-Schlieder 
theorem and the novel perspective on that theorem provided by Newton-Wigner fields 
(Fulling, '89, pp.54-56), which create and annihilate quanta in Newton-Wigner position 
eigenstates (Newton '49). Hence my title. To keep kinematical considerations as simple 
as possible, I will discuss scalar fields only, with their associated spinless quanta. A 
comment on how matters generalize to higher rank fields will be made at the end. To 
permit the least questionable use of the somewhat more familiar language of heuristic 
QFT, and to disentangle the Reeh-Schlieder issue from the dynamical questions 
surrounding Haag's theorem, I will consider only a non-interacting field. This last is a 
severe limitation on our territory. But it enables us to shine a brighter light upon it. 
 
A few years ago Michael Redhead (1995a, b) presented very illuminating analyses of the 
implications of the Reeh-Schlieder theorem and extended our awareness of the EPR type 
correllations existing in the bounded energy states of relativisitc QFT. In the process, 
however, Redhead argued that an important ingredient in understanding these features for 
the vacuum was the impossibility, in the free field case, of converting the global 
statement of the absence of quanta in the vacuum as a whole, at any time, into local 
statements of the absence of quanta in bounded  regions of space at any time. Unlike the 
case in non-relativistic QFT, the most obvious candidate for the number density operator 
at a point fails to commute with itself at distinct points of space. Thus one can not, 
simultaneously, claim the absence of quanta in two disjoint volumes, even in the vacuum. 
He then argued against the counterexample provided by the number density operators 
from Newton-Wigner fields on the grounds of the violation of covariance and physical 
inconsistency in the account of localization. 
 
I believe this latter argument to be misguided and will show below that a natural 
generalization of the Newton-Wigner fields restores covariance, albeit not local 
covariance, and that interesting implications rather than inconsistency is found in the 
attendent account of localization. 
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In passing, Rindler quanta will be briefly mentioned as illustrating Reeh-Schlieder 
superentanglement. 
 
2. The Reeh-Schlieder Theorem: We begin the discussion by considering the relevent 
state vectors. State vectors represent the relationship of a physical state of affairs to a 
frame of reference or space-time coordinate system. In QFT the defining characteristic of 
the vacuum state is the absence of measureable structure that would differ from one 
inertial frame to another, i.e. the physical state of affairs has the same relationship to 
every inertial frame. Thus, if |Ω> represents the vacuum in the frame F and |Ω'> 
represents the vacuum in the frame F', then 
 
                                                             | .                                               (2.1) 'Ω Ω> =  | >

Ω >

>

>φ

 
This being the case, it then follows that the total 4-momentum operator, , and the total 
generalized angular momentum (6-momentum) operator, , since these operators 
produce the changes in a state vector when one changes the reference frame by 
infinitesimal Poincare' transformations, have the effect, 

$Pµ

$Mµν

 
                                                     .                                    (2.2) $ | $Pµ µνΩ > = 0 = M |   
 
In other words the QFT vacuum, quite in keeping with classical intuition, is devoid of 
total energy, momentum and generalized angular momentum. 
 
The other state vectors to which the Reeh-Schlieder theorem applies are those for which 
the energy spectrum is bounded. This means there exists an energy value, E0, such that 
 
                                      < > ,                                       (2.3) ≤ <Ψ Ψ Ψ Ψ|( $ ) | |P En n0

0

 
for all n. Such state vectors are densely distributed through the state space. 
 
Next we turn to the operators which figure in the Reeh-Schlieder theorem. Our 'operator' 
valued field will be denoted by, φ , and to allow the anti-quanta of the field to be 
distinct from the quanta, the field will be distinct from its adjoint, 

$ ( )x
$φ †(x). Among the 

properties of the field that will play important roles in our discussion are:                 
 
                      (1.) Locally covariant transformation rule (in this case, scalar), 
 
                                           ,                               (2.4) < > <Ψ Ψ Ψ Ψ'  =  | $ ( ' )| ' | $ ( )|φ x x
 
                            for any | , where, |  is obtained from | by unitary Ψ > 'Ψ > Ψ >
 
   
                            representatives of Poincare' transformations, 
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                                                            | .                                     (2.5) ' $ ( , ) |Ψ Λ Ψ> = U a >

= 0

 
                      (2.) Microcausality, 
 
                                                [ ,                            (2.6) $ ( ' ), $ ( )] [ $ ( ' ), $ ( )]φ φ φ φx x x x=   †

 
                                 for  x  and  x'  relatively space-like. 
 
                      (3.) Free field equation of motion, 
 
                                                   .                                           (2.7) ( ) $ ( )∂ ∂ κ φµ

µ + 2 0x =
 
 
                      (4.) Canonical commutation relations,     
 

                                         [ , $ ( , ' ) , $ ( , ) ] ( ' )φ
∂

∂
φ δx

x
x0

0
0x x† 3 =  i −x x

                                                                 (2.8) 

                                           [ . $ ( , ' ) , $ ( , ) ]φ
∂

∂
φx

x
x0

0
0 0x x =

 
Features (3.) and (4.) do not play a role in the proof of the theorem, as stated below, but if 
they hold, as they do in our example, the theorem can be strengthened in a manner we 
will mention.    
 
 Now consider any bounded open region, O, of space-time, and the set, C∞(O), of all 
smooth, real functions on space-time which vanish outside O. For every  f  ∈ C∞(O), 
define 
                                        φ φ .                          (2.9) $ ( ) : ( ) $ ( )f x f x= d 4∫ x
 
Finally build the operator algebra, A(O), by taking all possible combinations of adjoints, 
products and sums of all the φ . The theorem is now easily stated: $ ( )f
 
       Reeh-Schlieder theorem: For any such region, O, the set of vectors, A(O) | ,     Ω >
       obtained by applying all the operators in A(O) to the vacuum state vector is  
       dense in the Hilbert space, H, of state vectors. The same is true of  A(O) | , Ψ >
       where |  is any state vector of bounded energy,  Ψ >
 
The technical term for this property of the vacuum state and the bounded energy states is 
that they are 'cyclic' relative to A(O). 
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The strengthening of the theorem that can be achieved if the relationships (3.) and (4.) are 
invoked is that the open 4-dimensional regions, O, and the associated algebras, A(O), can 
be relaced by open 3-dimensional regions of space at a single time, (x0, O), and their 
associated algebras, A(x0, O). By allowing interactions in the evolution of the field one 
loses the assurance that smearing the fields in 3-dimensions is sufficient to handle the 
singular nature of the field.  
 
Now just what is counterintuitive about this theorem? Well, it is common practice to 
regard the operators in A(O) as representing actions or operations that can be performed 
within O, and, if an operator is self adjoint, as representing a quantity that can be 
measured by actions taken within O. No claim is made, of course, that the corresponding 
actions for a given operator would be simple, or even within current technological 
capacities. Only that such actions are possible in principle. But if so the theorem is 
amazing! For suppose |  is a state vector describing a state of affairs in which the only 
deviation from vacuum properties occurrs within the union of the interior of the future 
and past lightcone envelopes of a region, O', that is space-like separated from O. Then 
according to Reeh-Schlieder actions can be performed on the vacuum within O which 
will produce a state vector as close to |  in the Hilbert space as you like. And O can be 
as small as you like, and as far, space-like wise, from O' as you like.  

Θ >

Θ >

 
Corollary to the Reeh-Schlieder Theorem: This is not all! From the microcausality 
condition it follows that when O and O' are relatively space-like every member of A(O) 
commutes with every member of A(O') and from this it follows that no non-zero operator 
in any such algebra can annihilate the vacuum state. The technical term designating this 
property is that the vacuum is 'separating' with respect to the algebras. 
 
But this means there are no pure annihilation operators in any A(O) since, 
 
              a ,    (2.10) $ $ ( ),    and    a | =               a =  0∈ > ⇒A O Ω 0 $

 
i.e. no annihilation operators for anything! And, by conjugation, no creation operators 
either. In other words, countable systems can not be added to the vacuum by local 
operations. Nor, however added, can they be removed by local operations! 
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Fig. 1: Space-like separated effects allowed by Reeh-Schlieder
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O
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The common interpretation is easily subject to criticism. For if you and the necessarry 
aparatus are in O , to perform the actions in question, it is not clear in what sense they are 
being performed on the vacuum! This criticism is not so easily brought if the state is 
merely of bounded energy, rather than the vacuum. You and your aparatus might well be 
part of a state of bounded energy. But quite apart from all this anthropomorphising, it is 
remarkable that any state can have enough structure within an arbitrarily small region, O, 
to enable even the mathematical reconstituting of essentially the whole state space. This 
is the kind of feature that gives rise to the term 'superentangled' of Clifton et al.  For the 
vacuum state to be such a state was a great, counterintuitive, surprise.  
 
Interestingly enough, an explicit, albeit formal, expression for the entanglment in the 
vacuum between two space-like separated regions, O and O', can be constructed 
employing the creation operators obtained from a Fourier transform of the field in 
Rindler-anti-Rindler coordinates. The possibility depends on the fact that between any 
two space-like separated regions of Minkowski space-time one can find intersecting 
hyperplanes, tangent to a light cone, which define the boundaries of a rindler-anti-Rindler 
coordinate system. The physical, or Minkowski vacuum state, | , is then expressed in 
terms of Rindler and anti- Rindler quanta creation operators acting on the Rindler-anti-
Rindler vacuum state, 

Ω >

|0  (Fig. 2) R ,0R >
 
.   
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Fig. 2: Vacuum entanglement via Rindler quantization
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           Some comment may be useful here. The operators of  A(O) are formal      
           functionals of the Rindler operators, , and their adjoints only. No anti- $ ( )a kR

           Rindler operators are involved. The operators of A(O'), on the other hand, are     
           formal functionals of the anti-Rindler operators, $ ( )a kR , and their adjoints, alone. 
           The equation in the figure, therefore, expresses, in terms of the Rindler-anti- 
           Rindler vacuum, the entanglement in the Minkowski vacuum state between the  
           region O and the space-like separated region O' and its causal envelope. 
 
 
Furthermore, suppose  is a projection operator in A(O), i.e.  represents a possible 
outcome of some local measurement in O. Then, since, 

$Π $Π

 
                                              ,  (2.11a) P( $ / ) | $ | $ ||Π Ω Ω Π Ω Π Ω =   =  || |   < > > 2

where P denotes probability, we have, 
 
                                   .  (2.11b) P( $ / ) $ | $Π Ω Π Ω Π =  0    =  0    =  0  ⇒ > ⇒
 



 8 

Thus every possible outcome  of a local measurement in O has a non-zero 
probability of occurring in the vacuum! Again a very counterintuitive result. Not exactly 
paradoxical, to be sure, but is it, perhaps, time to question the meaning of being 
localized?! 

( $Π ≠ 0 )

 
3. Knight-Licht Strict Localization: Many concepts of localization have been proposed 
over the years. We will consider two. The first, proposed by Knight ('61) and Licht ('63)  
is very much in the spirit of the Local Algebra approach to QFT in which the Reeh-
Schlieder theorem is couched. It has, however, some seriously objectionable features. 
 
Denoting the causal future, +, and causal past, −, of a Space-time region, O', by C ± ( O' ), 
we say that the state vector, , describes systems and processes |Ψ > strictly localized 
within  U O , iff 'O' :=  C ) C+ ∪( O'

>A

Ω >

)

)− (
 
                                                  ,   (3.1) < > <Ψ Ψ Ω Ω| $ | | $ |A  =  
 
for any  A , with O completely outside of U$ ( )∈A O O ', i.e. O' is space-like relative to O. 
It's very easy to build such states. For example, 
 
                                                      | ,    (3.2) : $Ψ > =  exp[ i B ]|
 
is such a state if  . Unfortunately, it turns out that strictly localized states 
can not contain only a finite number of quanta. At best, they can approach finite quanta 
states arbitrarily closely. Conceptually more serious is that if |  is strictly localized 
within U

$ $B = B†

Φ >

∈A(O'

Ψ >
O and |  is strictly localized within UO ' , where O and O' are relatively space-

like, the state vectors need not be orthogonal. This is distressing since, in any inertial 
reference frame, there would be time intervals during which the non-vacuum physical 
state of affairs would be spatially disjoint in  |  and | . The non-zero inner product 
between the state vectors would then have to be interpreted as proportional to a 
probability amplitude for 

Ψ > Φ >

finding the system/processes confined to one of the spatial 
regions given that, simultaneously, the system/processes are confined to the other. 
Accepting counterintuitive consequences of  an introduced concept is one thing. 
Accepting consequences that undermine the very concept one is trying to construct is 
quite another thing. We turn to another localization concept. 
 
4. Newton-Wigner Localized States: One might well ask why a simple appeal to the 
decomposition of the field into positive and negative frequency parts, 
 
                                                  ,    (4.1) $ ( ) $ ( ) $ ( ))φ φ φx x=  +  (+) (− x
 
doesn't suffice to provide a satisfactory localization concept? Especially in the case of 
free fields, this decomposition is unequivocally interpretable as the separation of the local 
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space-time field, φ , into the part, φ , which removes (in a manner associated 
with the space-time point, x)  a single quanta from any state vector it's applied to (if 
they're there to be removed), and and the part, , which similarly adds a single 
anti-quanta. That being the case, why isn't it natural to identify 

$ ( )x $ ( )( )+ x

$ ( )( )φ − x

 
                  φ ,    and       , (4.2) $ ( ) | ),( )+ > +x x†  :=  |(Ω > $ ( )( )φ − x | : |( ),Ω > − >=  x
 
as the states of single quanta and anti-quanta, respectively, localized at the space-time 
point, x? The reason for not doing so is exactly the same as the most serious objection to 
Knight-Licht Strict Localization, i.e., the absence of orthogonality. Unlike the local field, 

, itself, the positive and negative frequency parts do not commute $ ( )φ x
(with their adjoints ) at space-like separation and, consequently, the previously defined 
states are not orthogonal for space-like separation, i.e., for x ~ x', 
 
                                                        .    (4.3) < ± ± > ≠( ), |( ), 'x x 0
 
So, once again, localization (of something) here, now, would not be incompatible with 
localization (of the same thing) there, now. But that is incompatible with the concept of 
localization one is trying to articulate. 
 
In fact this specific problem of orthogonality of putatively localized states had already 
been 'solved' in 1949 by Newton and Wigner (NW). The context in which they worked 
was the single particle state space but it is straightforward to reformulate their results in 
QFT (Fuller, '89, p.54). Again one starts with the positive and negative frequency parts of 
the local field, but now one modifies them with an integral transform, 
 
      $ ) ( $ )( , )( )φ φNW

† 0 †(x ,  :=  x x2 0R x+ ,     $ ( , ) ( $ )( , )( )φNW
†  :=  x R0 02x x−φ ,  (4.4)  x

 
where  
 

                                            R : = κ
∂
∂

2
2

−




x

,      (4.5) 

 
as mentioned, is not the spatially local differential operator that the compact expression 
suggests. In fact it is a highly non-local integral transform. Nevertheless, the state vectors 
(with corresponding relations holding for the anti-quanta), 
 
                                        ,        (4.6) | , : $ ( , ) |x xNW

0 0x x> >= NW
†φ Ω

 
satisfy the orthogonality condition, 
 
                                      ,   (4.7) NW NWx x< >0 0, | , ' ( 'x x x x= 3δ − )
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while the fields satisfy the equal time commutation relations, 
 
                                  [ ,        $ ( , ), $ ( , ' ) ] ( ' )φ φ δNW NWx x0 0 3x x x† =  − x

x

NWΛ >

)a

                                                (4.8) 
                                   [ ,        $ ( , ), $ ( , ' ) ]φ φNW NWx x0 0x x = 0
 
and evolve according to, 
 
                                       i .    (4.9) x xNW∂ φ φ0 0 0$ ( , ) $ ( , )x  =  R NW

 
Thus, even for multi quanta-anti-quanta states, a coherent notion of being localized here 
now, i.e. in a definite region of space at a definite time seemed to be available. All was 
not well, however. While the NW localized states transformed as expected under the 
Euclidean group of rotations, ΛR , and spatial translations, 
 
                             ,   (4.10) $ ( , ( , ))| , ,U xR NW RΛ 0 0a x x a> += | x0

 
they did not enjoy locally covariant transformation rules under any transformation 
involving a Lorentz boost, ΛB . At the field theoretic level this takes the form, 
 
           ∀ ,     ,     (4.11)           ( ' , ' )x0 x $ ( ' , ' ) $ ( , ) $ ( , ) $ ( ,φ φNW B NW Bx U a x U0 0x x≠ Λ Λ†

 
i.e., a boost of the  NW field at a given position and moment is not equal to the NW field 
at any position and moment! Furthermore, as follows from the evolution equation for the 
field, the NW localized states have a superluminal contribution to their evolution, 
(Fleming, '65; Ruijsenaars, '81; Hegerfeldt, '85) i.e. 
 
                                       NW ,      (4.12) NWx x< >0 0 0, | ' , 'x x ≠

φ 0 x

 
for space-like separated x and x' if  x0 ≠ x0'. These results ultimately dismayed Wigner 
('83, pp.310-313) and lead to Redheads' assessment mentioned earlier. But we will 
shortly see that these negative judgements are premature. By recognizing the NW states 
and the fields that create them as members of a larger family we will recover fully 
covariant transformation properties (Fleming, '66, p.1978; '96). But why make the 
effort?! What is it about the NW fields that is relevant to the assessment of the Reeh-
Schlieder theorem and the structure of the vacuum? 
 
5. The Vacuum Relative to the NW Fields: Here we exploit the free evolution of the 
NW fields and consider the algebras, ANW(x0, O), generated by polynomials in the 3-
dimensionally smeared fields, 
 
                                     φ ,   (5.1) $ ( , ) ( ) $ ( , )NW NWx f x f x0  :=  d 3 x∫
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and 
                                   $ ( , ) ( ) $ ( , )NW NWx f x f x0  :=  d 3 x∫φ .   (5.2) φ 0 x
 
It turns out that the vacuum state is not cyclic nor separating with respect to ANW(x0, O)    
for any (x0, O). Separation is trivially lost since each ANW(x0, O) contains the annihilating 
operators, and $ ( , )φNW x f0 $ ( , )φNW x f0 , for any smooth function, f, with support 
confined in O.  Cyclicity is then lost since ANW(x0, O) is a subset of the commutant of 
ANW(x0, O') for any O' disjoint from O. In fact the vacuum is a product state relative to 
the NW fields in the same way that Redhead indicated the non-relativistic vacuum was, 
relative to the Schroedinger field operator. Thus taking, 
 
                                           ,  (5.3) $ ( , ) $ ( , ) $ ( , )n x x xNW NW NW

0 0x x := †φ φ 0 x

0 x Ω >

 
as the definition of the number density operator for quanta ( and a corresponding 
definition for anti-quanta) we do have, for  x ≠ x', 
 
                                           [ ,   (5.4) $ ( , ), $ ( , ' ) ]n x n xNW NW

0 0x x  =  0
 
and so the vacuum can, and does, simultaneously satisfy, 
 
                          ,   (5.5) $ ( , )| $ ( , ' )|n x n xNW NW

0 x Ω >  =  0 =   
 
i.e. the vacuum is devoid of quanta (and anti-quanta) at every NW position at every time! 
Note that, unlike the Rindler-anti-Rindler quanta that were referred to earlier to display 
the Superentanglement of the vacuum, the quanta we're dealing with now are the garden 
variety kind. The same quanta and anti-quanta created and annihilated by the local field, 

. It is only our way of assessing $ ( )φ x where they are that has been modified! 
 
So, relative to local fields the vacuum has the Reeh-Schlieder property and can be said to 
be devoid of quanta only globally, not locally. On the other hand, relative to NW fields 
the vacuum does not have the Reeh-Schlieder property and is devoid of quanta locally as 
well as globally. Now it is clear why it would be worthwhile to see the NW fields as 
covariant structures. 
 
6. Generalizing the NW Fields to Covariant Fields: For our present purpose it is useful 
to express  and $ ( ,φNW x0 x ) $ ( ,φNW x0 x )   in terms of the local field, , itself, rather 
than in terms of its, already non-local, positive and negative frequency parts. We have, 

$ ( )φ x

 

                            {$ ( , ) $ $ ( , )/ /φ ∂NW x R i R0 1 2 1 2 0x x =  
1
2

+ − }φ x0φ ,  (6.1a) 
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                            {$ ( , ) $ $ ( , )/ /φ ∂NW x R i R0 1 2 1 2 0x x =  
1
2

†
− − }φ x0

)φ 0 y

φ .  (6.1b) 

  
 
In this way we see just where the operator, R, introduces non-locality. Reminding 
ourselves that R is a spatial integral transform, i.e. for some non-trivial  r( x − y ), 
 
                               ,   (6.2) ( $ )( , ) ( ) $ ( ,R x y r xφ 0 x x y :=  d 3 −∫
 
we see that the NW fields are not merely associated with a single point of space-time, but 
with the whole of space at a particular time as well. It is then not surprising that they do 
not transform into one another under Lorentz boosts. For the whole of space at a single 
time in one inertial frame is a very different slice of space-time than the whole of space at 
any single time in another relatively moving inertial frame. Just as local fields, expressed 
in terms of the coordinates of distinct reference frames, are kinematically related only 
when the two sets of coordinates refer to the same space-time point, so our non-local NW 
fields will be kinematically related to fields in relatively moving frames that refer to one 
and the same pair of point of space-time and slice of space-time. But, to repeat, an 
instantaneous slice of space-time in one inertial frame is not an instantaneous slice in a 
relatively moving inertial frame. So, to find the kinematically related fields we must 
extend our definition of the NW fields to include fields similarly related to non-
instantaneous slices of space-time, i.e. to arbitrary space-like hyperplanes. 
 
To do this, all that is required is to appropriately alter R and ∂0 which occur in the 
definitions. Thus we introduce (Fleming, '96) the future pointing, time-like, unit 4-vector, 
ηµ, and define, 
                                                     D ,    (6.3) η

µ µ µ∂ η η∂ :=  − ( )
and                                                                       
                                      R Dη η

µ
µκ κ ∂ ∂ :=   =  2 2+ + −2 2( )η∂ ,  (6.4) 

 
and, finally, 
 

                       {$ ( , ) $ ( ) $ ( , )/ /φ η∂ φ ηη ηNW x R i R :=  
1
2

1 2 1 2+ − } xφ η ,  (6.5a) 

 

                      {$ ( , ) $ ( ) $ ( , )/ /φ η φ η∂ φ ηη ηNW x R i R :=  
1
2

†
1 2 1 2− − } x .  (6.5b) 

 
The generalized operator, Rη, is an integral operator over a hyperplane consisting of 
points with coordinates, y, for which ηy is fixed. For ηµ ≠ (1, 0), this is a non-
instantaneous hyperplane and as η varies over its possible values, all possible space-like 
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hyperplane orientations are included. And, indeed, as expected, under the unitary 
representation of the inhomogeneous Lorentz group, , we now have $ ( , )U aΛ
 
                               U a ,  (6.6) $ ( , ) $ , ) $ , ) $ ( ,x U a x aNWΛ Λ Ληφ η φ( (  =  †

NW + )Λ

)

 
and similarly for the anti-quanta NW field. This is just the hyperplane dependent 
analogue to the local field transformation equation, 
 
                                         U a .   (6.7) $ ( , ) $ ) $ , ) $ (x U a x aΛ Λ Λφ φ( (  =  † +
 
Just as the vacuum had a product state structure relative to the original NW fields at each 
time, so, now, the vacuum has a product state structure relative to the hyperplane 
generalized fields on each hyperplane. Recently (Ali, '98), in the literature of quantization 
over phase space and the use of positive operator valued (POV) measures for 
representing observables, it has also been found that relativistic systems require a form of 
hyperplane dependence for the dynamical variables. These investigations are driven by 
group theoretic considerations and the detailed relation to the more intuitively motivated 
considerations at work here remains to be determined. 
 
Still, one might demur. One might say that while the construction has been rendered 
covariant, and we do have definite localization on each hyperplane, and the vacuum is 
locally empty of quanta and anti-quanta on each hyperplane when we use the generalized 
NW account of localization -- still, this is a counterintuitive form of localization. 
Localized states have a superluminal component in their evolution (no superluminal 
group velocities, however!) and being localized at  x  on the hyperplane of orientation  η1 
does not require, and is, in fact, incompatible with being localized at  x  on the 
hyperplane with orientation  η2  where  η2 ≠ η1. This is a strange kind of localization! Is 
there any reason to think that this is anything more than an amusing formal construction? 
Does generalized NW localization have any physical significance?! 
 
To answer this question we take a classical diversion. 
 
7. A Classical Diversion; the Center of Energy: Consider a classical system 
characterised, for our purposes, by a symmetric energy-momentum-stress (EMS) tensor 
field,                                                 

                                                         θ .     (7.1) θµν νµ( ) ( )x = x

 

 
To begin with, we assume the system to be locally closed , i.e. 
 
                                                       ∂ θ .     (7.2) µ

µν ( )x  = 0
 
In such circumstances the total 4-momentum, 
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                                                 P x ,    (7.3)  xµ µθ:= d 3∫ 0 0( , x )

µν

)0

µρ

 
is conserved, i.e. independent of the time, x0. It is also well known that under these 
circumstances this same 4-momentum can be expressed as an integral over an arbitrary 
space-like hyperplane, 
 
                                       P x ,    (7.4) x xµ

νδ η τ θ η =  d 4∫ −( ) ( )
 
where the hyperplane is composed of the points with coordinates, x , satisfying 
 
                                                   η x − τ = 0,      (7.5) 
 
where η is a future pointing, time-like, unit vector, normal to the hyperplane, and τ 
selects one hyperplane from all those with the same normal direction. 
 
Clearly we could say that the total 4-momentum was hyperplane independent and that its 
time independence was a special case of its hyperplane independence. But this way of 
speaking would be appropriate only if we took seriously the association of total 4-
momentum with all space-like hyperplanes in every inertial frame. 
 
To see the advantage of doing just that we consider the more general case of a system 
that is locally open. In other words we relax (7.2). The 4-divergence of the EMS field, 

, not necessarilly vanishing allows the total "4-momentum" of the system (at a 
definite time) 
∂ θρ

µρ ( )x

 
                                       ,    (7.6) P x x xµ µθ( ) ( ,0 0 := d 3∫ x
 
to be time dependent. As a consequence it would not, in fact, transform like a 4-vector 
(What would the transformed time be?). However, by generalizing the definition of the 
total "4-momentum" to arbitrary space-like hyperplanes, using exactly the expression on 
the right hand side of (7.4), we can recover a genuine 4-vector. Thus, writing 
 
                                     P ,   (7.7) x x xµ

ρη τ δ η τ θ η( , ) ( ) ( ) := d  4∫ −

    
for the "4-momentum" on the (η, τ) hyperplane, we find that under the Poincare' 
transformation, (Λ, a), we have, 
 
                                          P ,    (7.8) ′ ′ ′ Pµ

ν
µ νη τ η τ( , ) ( , ) = Λ

 
and the quantity defined by (7.7) is a genuine 4-vector, the hyperplane dependent (HD) 4-
momentum of the open system.     
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Similarly, (Fleming and Butterfield, '98) if we define the Center of Energy (CE) position 
variable, X(x0), implicitly, by, 
 
                               P x ,    (7.9) x x0 0 00( ) ( )X x( x ) := d  0 3∫ θ

 
then ( x0, X(x0)) does not form a 4-vector (because of the relationship of  X(x0) to all of 
space through the integration). But, again, we can recover a genuine 4-vector by 
generalizing the definition to arbitrary space-like hyperplanes, 
 
                          η η .  (7.10) τ η τ δ η τ θ η ηµ µ

λ ρP X x x x x( , ) ( ) ( )( , ) := d 4 −∫ λρ

a µ

 
Under the (Λ, a) transformation we have, 
 
                                          .    (7.11) ′ ′ ′ +X Xµ

ν
µ νη τ η τ( , ) = Λ ( , )

 
In the case of this CE position variable one has to generalize to hyperplanes even for 
locally closed systems in order to have the desired 4-vector transformation properties. 
The reason, of course, is that even for a closed system, unlike the total 4-momentum, the 
CE position variable is be time dependent. Quite generally, the move to hyperplanes is a 
generalization of time dependence which enables one to recover covariant transformation 
properties.  
 
Now it turns out that this classical, physically meaningful, hyperplane dependent, 
position 4-vector, has properties that bear a resemblence to the counterintuitive properties 
of the generalized NW position eigenvectors. First, we note that  X µ (η, τ ) usually does 
not trace out a hyperplane independent world-line in space-time. This means that if we 
choose two distinct hyperplane orientations, represented by  η1  and η2 , and if  the 
intersection of the hyperplanes ( η1, τ1 ) and  ( η2, τ2 ) contains the point with coordinates 
X µ (η1, τ1), it need not contain the point with coordinates X µ (η2, τ2), and usually will 
not! The world-line traced out on the η1 hyperplanes will be distinct from the world-line 
traced out on the η2 hyperplanes. This is an obvious analogue to the failure of NW 
localization at the point  x  on the  η1 hyperplane containing  x  to imply localization at  x  
on the  η2  hyperplane containing  x.  
 
Second, there are circumstances, for open systems, when the hyperplane dependent 
world-lines of the classical CE can exhibit superluminal motion (Fig. 3.). It can happen, 
for instance, whenever "energy" is flowing into the system in one region and out of the 
system in a space-like separated region. It's a consequence of the global, collective 
coordinate nature of the CE. Here the analogy to NW superluminal evolution is not 
terribly close  
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Fig. 3: Hyperplane dependence of the classical CE (open system)  
 
                   At the bottom of the figure we have the world lines of two freely moving  
                   particles and the CE position variable for the two particle system. In 1+1  
                   dimensional space-time there is no angular momentum and if we interpret   
                   this diagram in 3 space the particles must be understood to be  
                   moving directly away from each other with no perpendicular distance  
                   between their trajectories. Consequently there is no internal angular  
                   momentum. In that circumstance the CE position variable for the two particle  
                   system generates a hyperplane independent world line. Then the right hand  
                   particle suffers an external impact. On all those hyperplanes containing the  
                   impact event, the two particle system is open and its CE position variable  
                   ceases to generate an independent world line until we are beyond all the  
                   hyperplanes containing the impact event. Since the event is (unrealistically) a  
                   point event, the CE on hyperplanes of any fixed orientation suffers the Z   
                   shaped discontinuity pictured. This is due to the discontinuity in the 4- 
                   momentum of the right hand particle induced by the impact. An analogous  
                   non-relativistic impact would not render discontinuous the center of mass  
                   world line since it would not change the mass of the particle. A more realistic  
                   interaction that took some time would soften the Z shaped CE world lines  
                   into S shaped world lines, but they might well still have superluminal  
                   portions in the middle of the S. 
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Fig. 4: Hyperplane dependence of the classical CE  (rotating system)
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               This figure pictures the location, relative to the geometrical center, of the  
               instantaneous CE position variable of a rotating massive sphere (or cylinder) in  
               three relatively moving inertial frames. In any single frame the same  
               information could be conveyed by considering the CE position variable on three  
               differently oriented hyperplanes, namely, hyperplanes with those orientations  
               that made them instantaneous in the three frames respectively. This behaviour  
               of the classical CE is replicated in the expectation values of the quantum CE  
               position operator. Mφller calculated that for the rotating Earth the CE could be  
               as far as ~ 10 m. from the geometrical center in a reference frame in which  
               the Earth was translating at nearly the speed of light. For an electron the  
               analogous quantum calculation yields ~ 10-3 Å . If the muon neutrino has a rest  
               energy of  ~ 10-3 ev, as some recent neutrino oscillation measurements allow,  
               the corresponding calculation yields ~ 10-1mm ! 
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since the latter happens for closed systems as well. But the suggestion is strong that we 
should pursue this further. 
 
One can rigorously show that the classical generalized CE has hyperplane dependent 
world-lines only for systems that are space-like extended and are open (Fig. 3.) and/or 
rotating (Fig. 4.).  We now return to quantum field theory. 
 
8. The CE in Quantum Field Theory: If we admit into our quantum field theory a field 
operator for the EMS field, 
 
                                                  θ ,     (8.1) $ ( ) $ ( )θµν νµx =  x

τ$

τ 

µ

x x

x >

 
(a step that is trivially permissable only for free fields) then we can introduce the CE 
position operator by analogy with the classical CE variable, i.e., 
 
          η η . (8.2) τ δ η τ θ η η ην

ν µ µ λρ
λ ρ

µν
ν

µ$ $ ( ) $ ( ) $P X x x x x : ( , ) := d  =  M  +  P4 −∫
 
In this definition we recognize  and  as the hermitian generators of the Poincare' 
group representation for the system (which exist whether the EMS field can be 
introduced or not - and so our CE position operator is more secure than the EMS field 
operator) and where the colon to the left of the position operator on the left hand side 
indicates a symmetrized product. 

$P ν $Mµν

 
This position operator satisfies the operator constraint equation, 
 
                                            ,     (8.3) η η τµ

µ$ ( , )X  =
 
which gaurantees that the expectation values of the CE position operator will, indeed, lie 
on the ( η, τ ) hyperplane. It also satisfies the covariant transformation rule, 
 
               U a  ,   (8.4) $ ( , ) $ ( ' , ' ) $ ( , ) $ ( , )X U a X†  =   +  aΛ Λ Λµ µ

ν
νη τ η τ

 
where,  η' = Λη , and, τ' = τ  +  a Λη .  
 
But for our purposes, the most important property of the CE position operator is that, 
 
                                       ,   (8.5) $ ( , | ,X NW NW

µ µη τ η η η= x)| , x => >
 
where, 
 
                                           .    (8.6) | , $ ( , ) |η φ ηx NW>  :=  NW

† Ω
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In other words the field theoretic NW position eigenvectors are eigenvectors of the CE 
position operator! What's more, if we construct multi-quanta NW localized states such as, 
 
  , (8.7) | ; , , , $ ( , ) $ ( , ) $ ( , )|η φ η φ η φx x x x x xn NW n1 2 1 2− −− > − − − > :=  NW

†
NW

†
NW

† Ωη
 
where  ηx1 = ηx2 = --- = ηxn , then we find, 
 

   (8.8) 
η η τ η η

η

µ

µ
η

$ : $ ( , )| ; , , ,

: , ) | ; , , ,

P X x x x

R x x x

n NW

j
j

n NW

= x

                                                  =  ( x    .

1

j

1 2

1 2

− −− >

− −− >∑ h

 
These relations continue to hold if we include anti-quanta in the construction of the NW 
multi-localized state. 
 
The NW fields are not mere formal constructions. They have unequivocal physical 
significance. For the quantum field theoretic system of a free scalar field, the hyperplane 
dependent NW scalar field, relative to which the vacuum has the structure of a product 
state rather than a Superentangled Reeh-Schlieder state, are fields which create and 
annihilate quanta and anti-quanta in states with precisely defined centers of energy. In 
assessing the physical significance of the Reeh-Schlieder theorem we must address the 
question of the comparative relevance to the actions we gross, macroscopic creatures 
perform, in what we judge to be bounded regions of Space-Time, of the (formal?) 
Minkowski coordinate variable of the local field vs. the physical Minkowski coordinate, 
on a hyperplane, of the NW field. For purposes of interpretation, if not for purposes of 
calculation, it would be foolhardy to dismiss the integral transform between these fields 
as immaterial to macroscopic concerns, given the global differences in the structure of 
the vacuum relative to them. 
 
9. Turning on Spin and Interactions: The analysis of the structure of NW fields and the 
relationship of the vacuum state(s) to them in the presence of interactions remains to be 
carried out. The situation is complicated by the enhanced singular structure of fields in 
the presence of interactions. This is what originally motivated the turn to 4-dimensional 
smearing of the local fields in the formulation of general field theory, while our 
examination of the hyperplane dependent NW fields is very much a 3+1 dimensional 
approach, albeit covariant. While it is hard to believe that the vacuum would become 
Superentangled relative to the NW fields as a consequence of turning on interactions, it is 
also uncertain that it would retain the product state character it displays relative to free 
NW fields. Furthermore, the status of the energy-momentum-stress field becomes both 
more tentative and more important in the presence of interactions. We leave it there for 
the present. 
 
In the presence of spin, i.e. of fields with non-trivial spinorial-tensorial rank, if 
interactions are absent, the situation remains essentially the same as we have presented 
with one notable change. The corresponding hyperplane dependent NW fields can still be 
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constructed and the vacuum has the product state structure relative to them, i.e. the global 
vacuum is a composite of local vacua. The Minkowski coordinate of the NW fields, 
however, is no longer the eigenvalue of the CE position operator, but of a different 
position operator, algebraically related to the CE. We call it the generalized NW position 
operator. The reason this happens is that the general CE position operator has non-
commuting components for any system with non-zero internal angular momentum and, 
consequently, the components can not be jointly diagonalized in any basis. This is, as 
usual, a carry over from the non-zero Poisson brackets between the components of the 
classical CE for rotating systems. Happily, a Newton-Wigner position operator with 
commuting components continues to exist and is algebraically related to the CE position 
operator by, (Fleming, '65a) 
 

                      $ ( , ) $ ( , )
$ ( ) $

$ ( $ $

P
M PNW

µ µ
µ α β γ

α β
η τ η τ

ε η

η
 =  X

 +  M )CE −
Σ

X  ,   (9.1) γη

 
where, 
 
                                           $ $ :=  Pµ

µ
$M P ,             (9.2) 

 
and    .   (9.3) $ ( ) { $ $ , ( , ) $ $ , ( , ) $ }Σ µ µ α β γ

α β α β β α γη ε η τ η τ η :=  (1 / 2)  +  M X P X PCE CE−
 
10. Conclusions: The vacuum state has the Reeh-Schlieder property relative to the local 
field but it does not have the Reeh-Schlieder property relative to the hyperplane 
dependent Newton-Wigner fields. Instead, relative to the HD-NW fields the global 
vacuum, on any single hyperplane, is a composite of local vacua. The HD-NW fields, and 
the states they create, display a counterintuitive superluminal component in their 
evolution, which, nevertheless is compatible with Lorentz covariance. The local fields 
allow the possibility of arbitrary space-like distant effects from arbitrarily localized 
actions, equally counterintuitive and equally compatible with Lorentz covariance! The 
local field evolves subluminally and satisfies microcausality but depends on a Minkowski 
coordinate devoid of any direct quantum physical interpretation. The HD-NW field 
violates microcausality but depends on a Minkowski coordinate which is related to an 
eigenvalue of a HD position operator, itself closely related to the classical HD center of 
energy position variable. How shall we choose between these perspectives?  
 
We need not choose and we should not. Rather, wisdom lies in exploring the implications 
and the subtler details of  the interpretation of both perspectives. To be sure, in the 
present context of local quantum field theory the local fields are the fundamental 
dynamical variables. Nevertheless, many of the HD dynamical variables and HD 
observables that can be constructed from the local fields represent genuine physical 
features of the world that local quantum field theory presents to us. Remember our 
discussion of the 4-momentum of an open system. Without them many questions can not 
be answered in a manner that explicitly displays the Lorentz covariance with which the 
answer must be compatible and they do have classical analogues. And in any case 
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fundamentality is a variable status. Quantum field theory could, in principle, be 
reformulated in terms of the HD-NW fields without any reference to the local fields. I do 
not recommend the reformulation. The result would be much more complicated than the 
formulation in terms of local fields. But the integral transform from the local fields to the 
HD-NW fields is invertable. No information is lost thereby. The HD-NW fields could be 
used as the fundamental dynamical variables. 
 
For some time I have argued that HD position operators, such as the general CE and the 
general NW position operators, are more closely related than the local field coordinate to 
assessments of where, on hyperplanes and in space-time, objects, systems, their 
localizable properties and phenomena are located. But whether this view prevails or not, 
the world of quantum field theory is replete with HD physical properties. Such 
terminology is, of course, easily misinterpreted. So let me close with the explicit 
declaration that for me, any quantity that can play an important role in the description and 
analysis of the structure and behaviour of physical systems is likely to represent a 
physical property of those systems. 
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