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Abstract

This paper, part II of a two-part project, continues to

explore the meaning of spontaneous symmetry breaking (SSB) by

applying and expanding the general notion we obtained in part

I to some more complex and, from the physics point of view,

more important models (in condensed matter physics and in

quantum field theories).

1. Introduction

In another paper1 -- part I of the same project -- I

have examined the concept of spontaneous symmetry breaking

(SSB) from a simple mechanical model -- the ring-bead model,

the result of which can be summarized as follows.

1. Two different meanings exist for what people call

'spontaneous symmetry breaking' or 'spontaneously broken

symmetry'.  One meaning, SSB1, refers to the fact that a

system has stable and degenerate ground (i.e. lowest energy)

states, each of which breaks the symmetry(-ies) of the

Lagrangian (or the dynamic law); and the other, SSB2, that the

breakings of symmetries are caused by nothing more than

random perturbations.



2

2. The two meanings distinguish the formal/mathematical

aspect of SSB from its causal/physical aspect.  The idealized

models usually display to us the former, which via rigorous

mathematical arguments show us the possibility of an SSB,

while the latter aspect tells us via physical arguments what

must happen to or in a system for an SSB to actually take

place there.  From the formal arguments we typically see a

one-parameter controlled dynamical process in which the

crossing of a critical value of the parameter produces a

bifurcation or a spread of the original ground state into a

set of degenerate ground states, which together preserve the

symmetry of the dynamics but singly breaks it, so that the

system when nudged by a particular perturbation, however

minute, may fall into one of such states.

3. No actual breakings in SSB are therefore uncaused -- if

spontaneity is mistook for such -- for the perturbations are

the antecedent asymmetries that cause them, and yet the

possibility of SSB does emerge without any causes in the form

of antecedent asymmetries.

I have also argued there, on general grounds, that this

result must hold in general for all cases of SSB.  But

modifications and limits will have to be introduced, as we

shall see in this paper.  The main aim of this part II is to

see what, if any, we need to add to our understanding of the

concept by going through some of the most intensely discussed

models of SSB in the areas of condensed matter physics and

high energy physics.
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I will then be able to approach the remaining questions

I asked in the introduction section of part I: why is the

size of a system relevant to whether an SSB takes place in

it?  Is there a place of arbitrary choice in some SSBs?  Does

the existence of SSB provide a straightforward argument for

'emergentism'?  And does our understand of SSB help us to

understand quantum measurement?

2. Phase transitions as SSB

One of the main concerns in condensed matter physics is

to understand how matter makes the transition from one phase

to another and what happens exactly at the transitional

regions.  The study of how liquid turns into gas when enough

heat is introduced and what happens at boiling is an example

of it, so is the study of magnets making the transition from

paramagnetic to the ferro- (or antiferro-) magnetic phase,

and so are the studies of transitions from a normal fluid to

a superfluid and from a normal conductor to a superconductor.

the former two types, as shall be made clear later, can be

seen as SSBs of external symmetries, and the latter two,

internal symmetries (e.g. gauge symmetries).

First, ferromagnetism.  Experimental results show that

some metals have the property that when at relatively high

temperatures, the magnetization of them by an external

magnetic field, B, disappears when the field is withdrawn,

but when the temperature drops below a certain 'critical

value', Tc, a nonzero magnetization remains even when B is



4

reduced to zero.  We call the former the paramagnetic, and

the latter the ferromagnetic, phase; and it is further noted

that the phase transition region at Tc has a singularity in

the sense that the magnetization as a function of B develops

a discontinuity at B = 0: the value of the function switches

from + m(≠ 0) to −m when it goes from B → 0+ to B → 0− (cf.

Stanley 1971; Goldenfeld 1992; Liu 1999).

Two types of theories are used to account for phase

transitions: the mean-field models, which assume micro-

structure but only deal with averaging effects, and the

lattice models, which deal with idealized but truly

microscopic processes.

Different mean-field models are devised, some for

particular systems; but there is a generic model, which I

will call the Landau model ('the Landau-Ginsburg theory' in

some literature), that aims at covering all phase transitions

(cf. Goldenfeld 1992).  Assuming that the crucial independent

variables for the study of phase transitions are (besides the

temperature) the coupling constants -- representing the

nature and intensity of interactions between a system's

constituents -- and the order parameter -- representing the

transition between an ordered and a disordered state (the

generic feature of all phase transitions), the Landau model

seeks to construct a function -- the Landau free energy

density, L -- of these two variables.  Assuming again that

the order parameter is small, one may consider the expansion

of L  in terms of it only up to its 4th power; and then
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through some general considerations, such as of symmetry, one

sees that all the coefficients of odd powered terms vanish;

and hence, we have,

L = a0 (J,T) + a2(J,T)η2 + a4(J,T)η4,

where J  is the coupling constant, T temperature, and η the

order parameter.  After some general analysis of the

coefficients, we have a simplified form:

L = a(J)tη2 + 1

2
b(J)η4, (1)

where, t = (T − Tc ) / Tc, a > 0 and b > 0 are two constants (given a

fixed coupling constant, J ), whose values are left for

experiments to determine.

If η is a scalar, then L, when B = 0, is invariant under

reflection: η → −η, while its ground state (the lowest free

energy state) is not necessarily so.  To see this, we look

for the minimum of L, namely

∂L/∂η = 2η(at + bη2 ) = 0.

From this some familiar results follow:

(i) for t > 0 (i.e. T > Tc), η = 0 is the only ground-state

solution, but

(ii) for t < 0 (i.e. T < Tc), we also have the symmetry breaking

solution, η2 = −(a / b)t (or η = ± −(a / b)t ).

These are exactly analogous to those of the mechanical model

we saw in part I.
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If the order parameter is a vector, e.g. η = (η1,η2,...ηn ),

it can represent systems of continuous symmetries, such as of

n-dimensional rotations.  Equation (1) is invariant under a

group of n-dimensional rotations, and solution (ii) breaks

this symmetry.  This is analogous to the case of Poincaré's

inverted cone we discussed in part I (see also figure 1).

To apply this model to the phenomenon of ferromagnetism

or antiferromagnetism, one only needs to identify the order

parameter as the total magnetization S (i.e. η = S = (S1,S2,S3 ))

and the coupling constant as the short-range interaction

between neighboring spins.

Unfortunately, the Landau model is an defective theory

both quantitatively and qualitatively.  Quantitatively

defective because it gives the wrong numerical values for

such quantities as the critical exponents, which tell us the

behavior of a system arbitrarily near the critical

temperature.  And qualitatively defective because it does not

give us a microscopic account of the order parameter.

Were it the right model for phase transitions, it would

enable us to say the following, given its striking similarity

with the mechanical model (cf. table 1)2.  It is the random

perturbations of the order parameters -- whatever they denote

-- that cause a system to make the transition, with equal

probability, from one (symmetrical) to another (symmetry-

breaking) phase.
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Table 1. The formal parallelism between the two models

Mechanical model (ring-bead system) Landau model (known to be defective)

Extremum equation:

∂V / ∂θ = sinθ(1 − β cosθ ) = 0.

Extremum equation:

∂L/∂η = 2η(at + bη2 ) = 0.

When β < 1, θ0 = 0. When t > 0 , | η0 | = 0.

When β > 1,  θ0 = ±θ1 ≠ 0 . When t < 0 ,  | η0 | = η1(t) ≠ 0 .

SSB of reflectional (or rotational)

symmetries.

SSB of continuous rotational symmetries.

A simple but still realistic microscopic model that can

accurately account for ferromagnetism is the Heisenberg

model; and it can be reduced to an even simpler model -- the

Ising model, which figures in most of the rigorous arguments

in the literature (cf. Thompson 1972; Goldenfeld 1992). Below

are the basics of the model:

(i) a lattice of N fixed sites of equal distance, each

of which is occupied by a particle of certain spin, si.

(ii) an interaction between any two sites are given by

the term, Jijsi • s j, where, i or j = 1,2,..., N, and Jij ≠ 0 for

specified sites (e.g. nearest neighboring sites) and Jij = 0

otherwise.  ( Jij > 0 for ferromagnets and Jij < 0 for

antiferromagnets.)

The Hamiltonian of the system, which is its total

energy, is an expression of the following kind:
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HN ∝ Jijsi • s j
< i, j >
∑ plus B si

B

i
∑ , (2)

where < i, j > means pairs of sites with specified relations

only, B is the external field, and si
B the spin component in

B's direction.3

Next, then, is the partition function:

ZN =
[s1 ]∑ ... exp(− HN / kT)

[s N ]∑ , (3)

(where k is the Boltzmann constant and T the temperature and

each summation is over all the values of each spin).  It is

the sum of exp(− HN / kT) for every possible value of the spin on

every site in the lattice.

If this function, per impossibile, is computed, we can

then recover all thermodynamically interesting quantities

with well-established rules; for instance, the most important

in our case are the fee energy,

FN = UN − TSN = −kT ln ZN, (4)

where UN is the internal energy and SN the entropy; and the

magnetization per site,

mN = 1
N

si
i=1

N

∑ = − 1
N

∂FN

∂B
. (5)



9

Then one can plot a set of curves in the mN − B space

parameterized by the temperature T, and the curves ought to

agree, within the limit of approximation, with the empirical

generalizations from experiments.  Especially, one should find

the singularities in those curves with T < Tc, as I mentioned

above.

If this were true, the phase transition models would be no

more puzzling, or interesting, to theorists than the simple

mechanical models we saw in part I.  We have no such luck.

First, as represented by the Heisenberg model (or any other

lattice models), a finite system can be proven to harbor no

phase transitions in that no singularities can possibly be found

in those with T < Tc even if an exact calculation of (5) is

obtained.  Second, it is then proven that if one takes the model

system in question to the thermodynamic limit, the singularities

reappear.  I now explain these points in some depth in turn.

First, no phase transitions can appear in finite systems.

There are two (types of) arguments for this claim, one (cf.

Griffiths 1972: 50-55) uses a simplified version of our model

and show that its partition function when expanded as a

polynomial with a finite number of terms is everywhere analytic

(i.e. differentiable to at least the first few degrees), and the

other (cf. Goldenfeld 1992: 49-52; Griffiths 1972: 59-63) uses a

general symmetry argument, which I give a sketch below.

The symmetry in question is the symmetry of time-reversal,

T, which not only flips every spin but also B; in other words,
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T:(si ,B) → (−si ,−B).  If we apply time reversion to a finite

Heisenberg system, we have from (2) to (5) the argument as:

HN (B, J,{si }) = HN (−B, J,{−si })4 ⇒ ZΛ (B, J,T) = ZΛ (−B, J,T) ⇒ FN (B, J,T) = FN (−B, J,T).

And then from (5) we have,

mN (− B) = − 1
N

∂F(− B, J,T)

∂ (− B)
= −(− 1

N

∂F(B, J,T)

∂ (B)
) = −mN (B). (6)

Obviously, mN (0) = −mN (0) = 0, namely, the magnetization with the

absence of external field must vanish, which means that there

cannot be any spontaneous magnetization at any non-zero

temperature.  This is a general result since the only

condition, besides the system being described by a finite

Heisenberg model, is the application of a time-reversal

operation.  It also shows that any phase transitions of this

type must break the time-reversal symmetry of the

Hamiltonian.

Second, phase transitions appear in thermodynamic limit

(cf. Ruelle 1969; Goldenfeld 1992; Emch & Liu 2002).  Taking

the thermodynamic limit of a system, such as a Heisenberg

system, is an act of idealization that takes, in a well-

controlled manner, the volume V  and the number of sites N of

the system to infinity with the assurance that the density

N / V  remains finite.  Its justification aside (cf. Liu 1999),

its benefits are numerous: not only singularities (re-)appear

in the limit, but one also gets, among other details of the
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transitions, the correct numerical values of the critical

exponents.

The reason that a finite system fails to exhibit a phase

transition is, as I mentioned earlier, that its free energy

FN or f N = FN N  (the free energy per site) is analytic.  When

the thermodynamic limit is taken, f ∞ = lim
N → ∞

( f N ) is still a

continuous function of its independent variables (i.e. B, J,T ),

but it may not be analytic, e.g. it may be discontinuous at

certain values of, say, B, such that at those values the left

and right limits of the derivative, ∂f ∞ ∂B, are not equal.

One of such points is B = 0 at any T < Tc, and we have

m0
+ = lim

B→ 0+
∂f ∞ ∂B ≠ lim

B→ 0−
∂f ∞ ∂B = m0

− (7)

But from (5) we have5

m0
+ = −m0

− ≠ 0, (8)

which means the appearance of spontaneous magnetization or

the SSB of time-reversal symmetry.

This is no more than a possibility argument; however, to

calculate any quantity, such as the value of Tc or of one of

mo
+ and mo

− in Heisenberg model, is next to the impossible.

Simpler models have to be used and among them the Ising model

is the one used most often.  An Ising model is a Heisenberg

model with the restriction: si → (1 / 2)σ i, where σ i is the Ising

spin and has only two possible values: {+1,−1} or {up, down};
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and the Onsager transform-matrix method in giving a rigorous

study of the model is one of the most celebrated results in

contemporary condensed matter physics.  It shows, inter alia,

that a 1-dimensional Ising model harbors no phase transition

if the inter-site interactions are between nearest neighbors

only or decrease exponentially (the two most plausible kinds)

-- phase transitions are dimension-sensitive -- and that the

2-dimensional Ising model with a nearest-neighbor interaction

is perhaps the simplest model that exhibits a phase

transition.  However, as we are frequently reminded in the

literature, the Onsager solution does not quite solve the

problem (cf. Emch & Liu 2002: §12.2), for to do that the

calculation has to handle not one but two limits, one is the

thermodynamic limit, N → ∞ , and the other the limit of B → 0+

or B → 0− (because magnetization is conceptually understood,

as mentioned earlier, as the remaining magnetic moment of a

system when the external field B is reduced to zero).  The

Onsager solution handles with complete rigor the former but

not the latter because it is not yet possible to calculate

the magnetization of a 2-d Ising model at B ≠ 0.  However, one

can calculate another closely related important quantity of

the model, the correlation function of distant spins at B = 0

and below the critical temperature, and then use its direct

relation to magnetization to obtain latter's values.  So

finally we have the result:

mo
± = {

± M(J,T),

0

T < Tc

T > Tc

(9)
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where M(J,T) is a complex non-zero function.

We are yet to see a way of calculating with the same

degree of rigor a 3-d Ising model, which is closer to

ordinary ferromagnets, although a 2-d model is by no means

less 'real' than the 3-d model because both are equally

idealized.

This concludes my sketch of the (rigorous) formal

arguments for the possibility of phase transitions (as

manifested in ferromagnetism).  When one realizes that the

M(J,T) in (9) is very similar to η1(t) in table 1, one may

think that the above is an unnecessary long detour; but it is

a detour in which the truth about phase transitions (up to a

certain degree of idealization) is revealed.  In other words,

whether the Landau model may be on the right track is

something without the detour no one can judge.  Moreover, the

formal analogy between the Heisenberg model and the

mechanical model is still strong: both involve a one-

parameter controlled dynamical process, which has a critical

value for its parameter, beyond which a bifurcation (or a

spread if the symmetry is a continuous one) occurs and which

leads to some new, degenerate ground states that together

preserve the symmetry of the Hamiltonian (or Lagrangian)

while separately break it.

Should we expect that the analogy holds at the causal

level as well?  Now that we have the exact, albeit idealized,
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micro-structures -- unlike in the case of the Landau model --

we should be able to answer this question.  If the formal

analogy with the mechanical model is not superfluous, the SSB

here ought to be caused by some kind of perturbations (as

understood in condensed matter physics), and if the Landau

model is not totally on the wrong track, the perturbations

must have something to do with whatever the order parameter

refers to.

A ground state of a condensed-matter system is one that

has the lowest free energy (not the Landau free energy),

which, as seen in (4), is defined as F = U − TS, (unlike the

case in mechanics where the ground state is the lowest energy

state).  Without thermal agitation (e.g. if, per impossibile,

T = 0), stationary spins on a lattice have a tendency to align

themselves in the same direction.  (Consider the

interactional energy term − Jσ iσ j in a 1-d model.  If both

spins are in the same direction: σ i = σ j = −1 / +1, the energy is

then − J, but if they are in opposite directions, σ i = −σ j,

then the energy is J , which is greater.)  The ground state

would be one in which all the spins point to a single

direction, which in an infinite system is referred to as

having a 'long-range order.'  For T > 0 and as it increases,

the free energy (F = U − TS) becomes smaller ( S usually

increases with T).  In a 2-d (or higher dimensional) Ising

system, for instance, the contention between the

interactional tendency (as in U ) to align and the thermo-

motion6 (as in TS) to dis-align results in a two-phase
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pattern for T > 0 with a phase transition at Tc.  Above Tc,

the thermo-motion of the spins wins over the tendency for

alignment such that the ground state becomes a paramagnetic

one, while below Tc, the opposite holds such that the ground

state becomes a ferro- (or antiferro-) magnetic one.  This

explains qualitatively why the magnetization in Tc < T < 0 (or

the long-range order) increases its magnitude as the

temperature drops.

A puzzle seems to arise: the mechanical case seems to

show that the thermo-motion inside a system is the source of

perturbations (or fluctuations) that cause the actual SSB,

while here the presence of thermo-motion seem to 'cause' the

breaking-up, rather than the formation, of long-range orders,

which are responsible for the SSBs and new phases.

To resolve this puzzle involves the identification of

the right kind of perturbations that does the breaking of the

relevant symmetry.  In the case of ferromagnetism it is the

inter-spin interaction that is responsible for the formation

and maintenance of long-range orders; but it is not a

randomly distributed element in the system, nor is it

necessarily small; hence it cannot be identified as the

source of perturbation (or fluctuation) by any stretch of the

latter's meaning.  However, the interaction is only the

potential, but not the actual, cause of the presence of long-

range orders.  The thermo-motion T > 0 is the constant

presence, against which we may conceive the SSBs in

ferromagnetism either negatively as the lack of disruption of
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residual magnetization when B → 0+ or B → 0− or positively as

the chancy formation of long-range orders at B = 0.  The

latter is fully support by the rigorous solution of Onsager

for the 2-d Ising model.

When T > Tc, the thermo-motion is so strong that any

incidentally formed cluster of aligned spins will be

destroyed long before it can reach the critical size from

which an actual long-range order can grow.  As T → Tc and with

B = 0, it becomes physically possible for the clusters to get

over the critical size.  However, the thermo-motion is still

strong enough to make it a matter of chance, namely, the

probability of clusters getting over the critical size

directly depends on the random thermo-motion that tends to

prevent such.  Nor is it possible to quantitatively estimate

what the critical size of such clusters is or in which

direction (in 3-space) its net spin points.  Therefore, as in

the mechanical case, when T < Tc, the condition of the system

is such that the formation of long-range orders is possible,

while which order actually obtains depends on which cluster

of aligned spins grows by chance over the critical size.

Therefore, there are at least two different ways that a

transition to a ferromagnetic phase can take place: one is to

take the system below the critical temperature with the

external field present, and then diminish the field until it

vanishes.  The system, for lack of the thermo-energy to

destroy the long-range order established by the field before

it vanishes, will remain in that ferromagnetic phase; and the
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other is to decrease the temperature as above without the

presence of the external field.  When the temperature goes

below Tc, perturbations in the form of the emergence of spin-

aligning clusters in the system appear, which eventually

cause the occurrence of long-range orders.  In the former

case, the direction of the magnetization is determined by the

external field, while in the latter, it should be a matter of

chance.  Strictly speaking, only the latter can be regard as

a case of SSB.

3. The spontaneous breaking of gauge symmetries

What remains to be discussed is the largest class of

complex and recondite models of SSB which has attracted a

great deal of attention in recent decades.  Some models of

this class belong to the condensed matter physics and some to

the high energy physics; what identifies them is that they

are the result of what is referred to by this section's

title.

I begin with a generic case of the spontaneous breaking

of a gauge symmetry in a quantum field (φ(x)) of the form:

φ = 1
2

(φ1 − iφ2 ) and φ* = 1
2

(φ1 + iφ2 ),

where φ1 and φ2 are two real scalar fields, and which may

represent a charged particle-field of zero spin.  It is well-

understood that quantum fields can be studied as classical

fields for certain of their properties and then as quantum
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fields for others.  Very roughly (cf. Itzykson & Zuber 1980;

Huang 1998) before quantization φ(x) behaves very much like a

classical field potential that obeys the relativistic quantum

equations of motion, where |φ(x)|2 tells us the field strength

at x, and then upon quantization it becomes an operator in

the Fock space as functions of creation and annihilation

operators that acts on vacuum state, 0 , to yield quantum

excitation states at x.  The field is supposed to be of

infinite extension, so that some regard quantum fields as

infinite many-body systems (cf. Strocchi 1985; Martin &

Rothen 2002).  For the classical part, we have its Lagrangian

consisting of two parts: the dynamical and the interactional:

L = K − V , where V , the interactional potential, is a function

of |φ |2 = φ * φ , which when expanded has the following form (cf.

Ludwig & Falter 1996: 374):

V(|φ | ) = ε
2

µ 2 |φ |2 +λ |φ |4, (10)

where ε = ±1.7  (I will return to discuss the meanings of

µ 2 > 0; and for the potential to remain bounded from below, it

must be that λ > 0).

Very similar to the mechanical case in part I, we know

that the lowest energy state (= the ground state) of the

field is when

∂V

∂φ φ = φ 0

= 4φ0 * (
ε
4

µ 2 + λ |φ0 |2 ) = 0; (11)
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(i) when ε = +1, the only solution is,

|φ0 | = 1
2

φ10
2 + φ20

2 = 0; and hence, |φ10 | = |φ20 | = 0

(ii) when ε = −1, there is another solution:

|φ0 | = 1

2
φ10

2 + φ20
2 = v = 1

2
µ 2 / λ ≠ 0,

which means that the potential has its minimum, (φ10 ,φ20 ), at

any one of the points on the φ1 ~ φ2 plane with a radial

distance of |φ0 | = v from the origin (see figure 1), and which

implies that the ground state is

φ0 = ve− iα ,  α = const. (12)

V

φ2

φ1

ρ=|φ0|ζ
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Figure 1: the potential for ε = -1.  The minimum is
at any point of (ρ, ζ), where ρ = |φ0| and 0 ≤ ζ < 2π
(i.e. imagine the result of the shown curve sweeping
2π).

We can now see that while the potential (10) is

invariant (also is the Lagrangian) under the group (U(1)) of

gauge transformation: φ → φ ' = φeiθ, while the ground state in

solution (ii) (i.e.(12)) is not, i.e. φ0 ' = φ0e
i(θ − α ) ≠ φ0.

These results can be directly translated into quantum

field results when φ(x) is canonically quantized (i.e. when

φ(x) becomes an operator)8 and is brought to act on the vacuum

state, 0 , of zero number of particles as the ground state of

the field.  Therefore, in solution (i) we have 0 φ0 0 = 0, and

in solution (ii), 0 φ0 0 = v = (1 / 2) µ 2 / λ , which implies that

φ0 0 = ve− iα, containing an arbitrary phase factor which breaks

the gauge symmetry seemingly without any cause.  I will

return to discuss the meaning of this SSB later; for now it

is a formal result (cf. Bernstein 1974).

As in the mechanical and ferromagnetic models, the

symmetry-breaking ground states also appear to be infinitely

degenerate in this case, with different values of α in (11)

such that the gauge transformations take one such state into

another.  However, there is a possible complication for

quantum systems (cf. Weinberg 1996: 163-167) because of the

possibility there of superposed states and quantum tunneling;

for instance, if φ0 ≠ 0 and −φ0 are the two symmetry-breaking

vacuum states, why should one believe that the 'real' ground
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state is one of them but not a superposition of the two,

which does not breaking the symmetry?  The same worry applies

to the continuous symmetries as well.  It turns out that for

infinite quantum systems such superposed states do not exist

(cf. Coleman 1975).  This result further supports the idea of

'thermodynamic' limit and strengthens the similarity between

the condensed matter cases and the quantum field ones (see

also, Strocchi 1985; Anderson 1997).

To see then how a massless field emerge, we note (cf.

figure 1) that the new degenerate ground states form a

circle, which makes it simpler to use a polar expression of φ

such that φ = ρeiζ (= 
1
2

(φ1 − iφ2 )), where ρ and ζ , just like φ1

and φ2, are two real spinless fields where ρ corresponds to

the length and ζ  and angle in the φ1 ~ φ2 plane (see figure 1).

Now, expanding in the neighborhood of the new ground state,

ρ0 = φ0 = v, in terms of ρ' = ρ − v, we get a Lagrangian in terms

of the two new fields, ρ' (x) and ζ (x), such that we can

directly read off the mass distribution situation from it.

The result is that the ρ'-field is massive and the ζ -field

massless (i.e. having zero rest mass).

The last result can be generalized to a theorem (the

Goldstone theorem), which has a relativistic version for

quantum fields and a non-relativistic one for condensed

matter systems.  The former says essentially that if the

Lagrangian density of some fields is invariant under a

continuous (discrete groups may not have this feature) global

gauge group, G(α s ) (where s = 1,...,m indexes the number of
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independent constants that parametrize the transformations),

and a 4-current density, js
µ (x) (where µ = 0,1,2,3), exists and is

conserved, then for each field, φ i (y) (where i = 1,...,n), such

that its vacuum state does not vanish (i.e. 0 φ i (y) 0 = vi ≠ 0)

there exist a massless (and spinless) particle which has the

same quantum number as φ i (y)'s.  If one needs to picture such

massless boson-fields, one is usually advised to think of

them as fields that rotates the asymmetrical vacuum state

(cf. (12) and figure 1) from one phase (e.g. e− iα) to another

(e.g. e− iα '); and since these states are degenerate, no energy

is need to do the rotation, and hence the bosons are

massless.  (Conversely, one may say that the masslessness of

the Goldstone bosons entails that the corresponding SSB

results in a set of degenerate symmetry-breaking vacuum

states.9)

(Historically, the massless and spinless Goldstone

bosons were a problem because there were good reasons to

believe that they do not represent any real quantum fields

nor can any known quantum fields be represented by them. Some

years earlier, the original Yang-Mills proposal for

characterizing the strong interaction by the gauge field

theory of isotropic spin ran into essentially the same

problem.  It was then realized (Englert & Brout 1964; Higgs

1964a, b) that the Goldstone theorem no longer holds if

local, rather than global, gauge groups are applied to

quantum fields.  Logically, one of the premises for the

Goldstone theorem is only valid for global gauge groups, a
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'loophole' from which massive bosons become possible (cf.

Schwinger 1962).  If one uses either the U(1) or the SU(2)

local gauge group to 'introduce' either the electromagnetic

field or the Yang-Mills field, respectively, one obtains a

'coupling' of it with the Goldstone boson field.  The result

of such an 'interaction'10 turns out to be the cancellation of

the two massless fields and the emergence of a new field with

the appropriate number of massive and massless components.

This model -- the Higgs model (or mechanism) -- is indeed a

rare triumph of scientific ingenuity (even by the standard of

theoretical physics), but its details do not shed new light

on the nature of SSB in quantum fields, since the SSB that

produces the Goldstone bosons is assumed in the Higgs model.11

Hence, I will not discuss it here.

Nor is it necessary for our purposes to give an account

of the more complex models that supposedly represent real

force-fields.  There is nothing in the SSB of, for instance,

the gauge theory of the unified field of the weak and the

electromagnetic interaction that may offer insight into its

nature which the simple model cannot.)

4. The meaning of the SSB of gauge symmetries

Let us first see some striking similarities among the

three models (some of which I have alluded to earlier) -- the

mechanical, the Landau, and the quantum-field model -- as

listed in table 1.
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Table 1. The formal parallelism among the three models.

Mechanical model (ring-

bead system)

Landau model Quantum field model

(complex scalar)

Extremum equation:
∂V

∂θ
= sinθ(1 − β cosθ ) = 0.

Extremum equation:

∂L/∂η = 2η(at + bη2 ) = 0.

Extremum equation:
∂V

∂φ
= φ * (

ε
2

µ 2 + λ |φ |2 ) = 0 .

When β < 1, θ0 = 0. When t > 0 , | η0 | = 0. When ε = +1,  |φ0 | = 0 .

When β > 1,  θ0 = ±θ1 ≠ 0 . When t < 0 ,  | η0 | = η1(t) ≠ 0 . When ε = −1,  |φ0 | = v ≠ 0 .

SSB of reflectional (or

rotational) symmetries.

SSB of continuous rotational

symmetries.

SSB of global continuous

gauge symmetries.

Degenerate ground states but

no Goldstone modes.

Goldstone modes, e.g. spin

waves.

Goldstone bosons.

One can see that the striking similarity between the

mechanical and the Landau model, on the one side, and the

quantum field model, on the other, is only formal -- by

'formal' here I mean merely syntactic or uninterpreted --

which cannot tell us whether the SSBs are of similar nature.

Here is where the problem seems to lie.  In the mechanical

model, the physics of its SSB is in the relation between the

centrifugal force acted on the bead (proportional to ω 2 or

to β) and the deviation of the bead from its 'symmetric'

position (measured by the deviation angle θ ).  When the

strength of the force passes a certain magnitude, the

condition of the ring-bead system becomes such that it would

cost less energy to keep the bead stationary at an angle, θ1,
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than keeping it at θ0 = 0.  And hence a perturbation from the

system's internal thermo-motion may actually cause the bead

to move to θ1.  A similar story holds for the Landau model

(when corrected by the lattice model).  When the temperature,

which indicates the amount of thermo-motion in a system,

passes a certain magnitude, the balance of the thermo-motion

and the tendency for a long-range order due to inter-

molecular interactions becomes such that it costs less Landau

free energy to form than not to form the long-range order.

And hence a perturbation in the form of a lack of sufficient

thermo-motion may actually allow some randomly formed cluster

to grow to a long-range order.

No such stories can be told in the quantum field case

despite the formal similarities.  We do not know what the bi-

valued ε may mean in physics.  One of course may eliminate

it by directly taking µ 2 to be capable of assuming positive

and negative values.  But to what does µ 2 refer?  Does it

make sense for it to have negative values?  As mentioned

earlier (see (10)), the term µ 2 |φ |2 in the Lagrangian is best

conceived as a mass term for the quantized field (since

|φ(x)|2 is the probability of finding the field quanta at x,

µ 2 should be the net mass term).  If so, what does it mean to

have negative mass?  Even if negative mass can be made

meaningful, what physical picture of SSB can it offer?  What

relation can its change between being positive and being

negative have with φ such that a causal picture for the

actual transition between |φ0 | = 0 and |φ0 | = v ≠ 0 can be had?  I
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do not see a plausible answer to this question, nor can I

find one in the literature.12

Nevertheless, when it comes to the nature of the SSBs in

quantum fields, models of phase transitions are frequently

invoked in the literature to supply heuristic or substantive

ideas (cf. Anderson 1963; Aitchison 1982; Li 2000; Strocchi

1985).  Indeed, one is not far off in observing that the only

offering for the physical cause of the SSB in quantum fields

comes from various arguments by analogy between the SSBs in

condensed matter and in quantum fields.  The conceptual

justification at the most general level is apparently the

idea that quantum fields are in essence 'many-body' systems

of infinite degrees of freedom, and hence there ought to be

some substantive -- not just formal -- similarities between

models treated in the two areas.

Different models of phase transitions are used in this

connection, the closest being the models of superconductivity

and of superfluidity since both are instances of SSBs of

gauge symmetries (cf. Anderson 1997; Aitchison 1982; Moriyasu

1983).  But the problem is we do not really understand these

two phenomena any better than we do of quantum fields.  The

BCS model was thought to be the correct one for

superconductors until the discovery of high-temperature

superconductivity, of which the model gives no adequate

account.  And the relation between superfluidity and the

Bose-Einstein condensation is so intricate that current
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researches are constantly revising our understanding of it

(cf. Emch & Liu 2001, ch. 14).13

Nor can the Landau model -- thought it covers all phase

transitions -- be regarded as adequate, for it is known to be

false.  Without the lattice models and the detailed arguments

and calculations, one would not know whether the Landau model

is even approximate.  However the formal similarities may be

taken to suggest that our model is also a 'mean-field' model

for quantum fields, meaning that it uses variables that only

represent, and equations that are only true for, the average

effects of quantum fields.  If so, a negative value of µ 2 and

the transition to it from a positive value -- a puzzle at

this level -- may receive either a proper interpretation or a

correction at the next level, as in the case of η in the

Landau model.  But at our present understanding of quantum

fields, there is no indication that this will be the case:

the Lagrangian (see (10)) may be an approximate one, but

there is no reason to believe that its independent variables

are not fundamental to the quantum field it represents.

All considerations so far seem to indicate that the

knowledge of the true causes of SSBs in quantum fields is not

forthcoming.  The following addition observations further

support this point.  First, all SSBs we have studied before

those in quantum fields, either in detail or in passing, can

be regarded as phase transitions (one can regard the

mechanical SSB as a transition between two stable equilibrium

positions as ω  changes).  The SSB in our generic quantum-
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field model cannot be viewed as such because the model gives

us no idea of what kind transition process might take place

there.  Some take the result, 0 φ0 0 = v, to mean that '[t]he

vacuum is filled by a Bose condensate (~ v), or in other

words, the field has a fixed orientation in the space of the

internal degrees of freedom of φ.' (Ludwig & Falter 1996:

375)  But this is borrowing from condensed matter physics

without rigorous arguments (cf. Moriyasu 1983 for a similar

view explained in greater length).  Even if this is the right

interpretation, it still does not explain how or by what a

normal, symmetrical vacuum state may get into such a

symmetry-breaking state -- a vacuum filled with a Bose

condensate or with a field with a fixed orientation.  The

model's answer, by passing from the positive µ 2 to the

negative µ 2, seems entirely inappropriate.

Second, it is not clear, because of what has just been

said, how a particular symmetry-breaking solution, φ0 = ve− iα ,

is 'chosen.'  Many regards this a matter of convention (let

us recall the Salam metaphor mentioned in the introduction of

part I, and see also Martin & Rothen 2002: 317) and such an

attitude seems justified by the observation that no such

solutions are directly observable.  In fact, neither the

phase-independent solution, |φ0 | = v, nor the massless

Goldstone bosons (as a result of the former) are observable.

However, it is difficult to make sense of such a view.  There

certainly are appropriate cases in which a choice of a phase

is truly conventional; but those must be cases in which the
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gauge symmetry is not broken in any sense.  Then for

theoretical (or computational) reasons, one may choose a

convenient phase to work on -- mostly commonly a phase

condition rather than a particular phase; but that is the

same as choosing a (set of) coordinate system(s) in studying

certain processes which are invariant under transformations

among such coordinate systems.  If the symmetry (or

invariance) is truly broken, in whatever forms, it makes no

sense to talk about its result being arbitrarily chosen or

chosen by some conventions.

Third, because of the Higgs mechanism that rehabilitates

the SSB model in connection with the Goldstone theorem,

little attention is paid in the literature on what the

'physics' is for whatever goes before the Higgs mechanism;

all the talks about the 'interactions' between the Goldstone

bosons and the gauge field photons that result in the

appearance of massive gauge fields (not to mention the

grosser expressions, such as that 'the gauge fields eat the

Goldstone bosons and thereby become massive') seem to be

dressing the purely formal results with metaphorical clothes.

Despite all this, there is no suggestion that the SSBs

in quantum fields, if they are genuine physical processes of

symmetry breaking, are of a different nature from the ones in

mechanics and condensed matter physics.  There is no reason

to believe, for instance, that the symmetry-breaking vacuum

states are not some kind of 'long-range order' of the

individual phases of the field quanta in the vacuum.  The
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question is what it means to have a long-range order of

quantum-field phases and what the cause of it is.  Even if,

by analogy with the Landau model, we may assume that the

symmetrical vacuum state, 0 φ0 0 = 0, represents the lack of an

order of phases, and the symmetry-breaking states, 0 φ0 0 = v,

the presence of it, it can hardly help us in figuring out

what the cause of such an order of phrases in a vacuum state

might be.  The lack of a clear picture of what a long-range

order in terms of phase-coordination in a vacuum state is

blocking the analogy from yielding any real insight into what

the nature and cause of SSBs in quantum fields are.

What have we learned about SSB?

1. From the epistemological point of view.

Different levels of theorizing fare differently in terms

of being able to satisfy the requests for an explanation of

how certain SSBs arise.  Classical mechanics, in which the

ring-bead model is studied, is in fact incapable of providing

a satisfactory explanation of its SSB.  It tells us via a

simple and rigorous derivation how an SSB is possible, but to

explain how it arises and whether it is in fact caused, one

has to go beyond mechanics and study it as a system in

statistical mechanics.  (The same is true with Poincaré's

cone.)  Quantum statistical mechanics -- the dominating

theory used in condensed matter physics -- in which the

Landau and the Heisenberg model are studied seems at the

moment the most adequate level of specificity for both the
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possibility and the actuality of the spontaneous breaking of

a symmetry.  It also provides analogical examples for the

study of quantum-field SSBs, without which no explanation --

in the full-blooded sense of explanation -- of such SSBs can

even be conjectured.  The murkiest water for SSB per se is

the realm of quantum field theory.  From the analogy between

the Landau model and the generic model of the quantum-field

SSB (see table 2) it seems that the latter may also be a

half-way house for the phenomenon.  With Heisenberg model, we

are able to see which are, and which are not, the right

conjectures in the Landau model, but where could the

'Heisenberg model' in the quantum field theory be?

2. From the ontological point of view.

We now have a good idea of what the causes of actual

SSBs must be: given the possibility of SSB, it is likely that

all causes of the actual breakings have something to do with

the random perturbations (or fluctuations) of the systems in

question.  This is not yet clearly demonstrated in the

quantum-field model, but it is difficult to imagine that the

nonvanishing of 0 φ0 0  is not due to some kind of long-range

orders as the result of vacuum fluctuations, although its

precise mechanism and laws are not yet known.  whence comes

the possibility of SSB?  (In other words, how is it possible

that a symmetry-breaking solution has a lower energy, i.e.

stabler, than the symmetrical solution.)  Without an answer

to it, we really do not know what it really means for the

Lagrangian or the equation of motion of a system to obey
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certain symmetries and for the system's ground states to

break them.  For the mechanical model, the possibility comes

from a battle between gravity and the centrifugal force

acting on the bead: when the rotating bead reaches certain

speed, the latter, which is a function of the speed while the

former is not, wins over the former and opens the possibility

for the bead to be stable higher up the ring.  For the

condensed matter model, the battle that makes the SSB in it

possible is between the tendency to align due to the inter-

spin interaction and the tendency to dis-align due to the

thermo-motion.  When the former wins over the latter, the

possibility of long-range orders materializes.  Again, there

is no reason to believe that some such stories will not hold

for quantum-field models.

5. Conclusion

Let me conclude this paper by addressing the remaining

questions from part I (see section 1).  Should the size of a

system matter as to whether SSB occurs in it or not?  In

particular, how should we understand Coleman's remark (1975)

that while SSBs in finite systems are common and not

interesting the ones in infinite systems are the opposite?

By now we should know that it is not the size of a system per

se that matters, for most systems in which the thermodynamic

limit is taken in order to account for the phase transitions

taking place in them are macroscopically finite; but rather

whether the boundaries of the systems should be taken into
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consideration.  If the boundaries matter and they are the

reason for breaking the symmetries of the Lagrangians, then

naturally we do not have SSBs there, while the genuine SSBs

can only happen in those systems whose boundaries are such

that they, though finite in size, should be treated as

infinite systems.

Is there a place of arbitrary choice in some SSBs?  The

answer should be 'no,' although it is not yet clear in the

quantum-field cases.  Arbitrary choices (e.g. by convention)

are only justifiable when the symmetry is intact.

Does the existence of SSB provide a straightforward

argument for 'emergentism'?  Anderson has argued forcefully

for an affirmative answer on several occasions (cf. Anderson

1997).  There is an ambiguity about the notion of emergent

properties that may have let to a confusion in this case.

'Emergent property' is sometime inappropriately used to mean

the emergence of a new property at the end of a process which

the system undergoing the process does not have previously.

This is clearly not the meaning that can be used in

association with the notion of emergentism, a philosophical

view that says that there exists at a certain time properties

of a system which cannot be accounted for by the intrinsic

properties of the parts and their relations within the system

at the same time.  That SSB is an agency for new properties

in the former sense may well be a reasonable claim, but it is

simply not true if the latter meaning is implied.  There is

simply no way of construing, for instance, the spontaneous
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magnetization of a ferromagnet as a property not accountable

by the spins and their interactional relations at the time

when the magnetization occurs.  In other words, if such

results of SSBs are 'emergent properties,' then it seems that

any thermodynamical property is emergent as well.

And lastly, can the notion of SSB help us to resolve the

quantum measurement problem?  What I have discussed in these

two parts is obviously not nearly sufficient to answer this

question.  The connection to the measurement problem is made

by Anderson (1997: 50-51) in the form of long remark.  The

idea is that the transition in quantum measurement from a

superpositional state to a determinate one may be regarded as

an SSB in the following sense.  The superposed states of a

quantum system before a measurement may be regarded as states

that are transformable by a group of transformations under

which the laws that the system obeys are invariance.  After

the measurement, this symmetry is spontaneously broken when

the system settles into one of the superposed states (NB: the

system's Lagrangian still preserves the symmetry).  And this

happens because during the measurement the quantum system

becomes part of a macroscopic solid system -- the measurement

apparatus or the observer -- which by default is one of the

'broken-symmetry objects' (ibid. 50).  It is obvious that to

realize this idea one must be able to say what the symmetry

is for the superposed states and how becoming part of an

apparatus produces a spontaneous breaking of that very

symmetry.  And even if this, which is not a simple task, can
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be formulated, it is still not clear that it solves the

problem of quantum measurement.
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1 The paper is currently available at the website: philsci-
archive.pitt.edu.

2 To remind our readers, the mechanical model comprises a vertically
suspended metal ring rotating frictionlessly with a bead threaded
frictionlessly on it.  θ  is the angle of the bead from the ring's

downward vertical radius and β = ω 2R / g, ω  is the angular velocity, and

R the radius, of the ring, and g is the gravitational constant.

3 This 'non-equation' is to highlight the two energy terms, the first on
the RHS being the energy from spin interations and the second the energy
from the interation of the spins with the external field.  Omitted are
several constants that do not concern us here.

4 Here I use −P  to represent < −Px ,−Py,−Pz > .
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5 Taking the thermodynamic limit on the system, i.e. making f N → f ∞ ,

should not affect the validity of (6) for all non-singular values of
f ∞.  And given no other singular points exist in the neighborhood of

B = 0, (which must be true because the singular points are not dense for
f ∞), (6) holds in it on both sides of B = 0, which implies that when
the value of B approaches 0 from the opposite sides, the magnetization
value of the system will always be of the same magnitude but in opposite
signs; hence (8).

6 I will use this term to refer to any random motion of the consituents
of a macroscopic system, whose increase or decrease is accounted for
solely by the addition or subtraction of heat or by the increase or
decrease of temperature.

7 Most texts do not use ε = ±1 but instead let µ 2 admit negative values
(cf. Aitchison 1982; Quigg 1983; Rajasekaran 1989).  I will return to
this point later.

8 It is worth noting that one may question the rigor of this
translation, for the most rigorous way of obtaining the quantum-field
results is to derive the vaccuum solutions in the two cases directly
from a quantized field Lagrangian (or potential as in (10)).  This
'seems not to be available.  We shall accept it as an assumption.'
(Aitchison 1982, 85)

9 For different proofs and discussions of the Goldstone theorem, see
Guralnik et al 1968; Weinberg 1996; and O'Raifeartaigh 1986 for a proof
in classical fields.

10 I use 'coupling' and 'interaction' (with quotes) to indicate the
purely theoretical nature of what they refer to.  It is not at all clear
whether there are massless Goldstone bosons or Yang-Mills gauge fields,
not to mention whether they actually couple with each other.

11 It is indeed customary in the literature of Higgs mechanism to begin
with some assumptions, one of which is to assume, rather than to prove
or derive, the existence of some symmetry-breaking vacuum states,
|φ0 | = v .

12 Referring to another model (the σ-model), Ling-Fong Li wrote, '[i]n
the frame work [sic] of relativistic field theory,..., spontaneous
symmetry breaking seems to be put in by hand, i.e. setting the quadratic
terms to have negative sign in the scalar potential in order to develop
vacuum expectation value.  This is rather ad hoc and no physical reason
is given for why this is the case.' (Li 2000: 22)  This is, to my best
knowledge, the only explicit allusion to this problem.  Li then proceeds
to give two models, the Ising model and the superfluid model, to show
the physics of SSB

13 I am by no means challenging the attempt to obtain a unified
understanding (and theories) of the phenomena in these two areas or to
reduce one area to the other or to use analogical features across the
areas for heuristic purposes.  I only argue against the move of using
whatever we now understand of the nature of SSB in superconductivity or
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superfluidity to directly say what the nature of SSB in quantum fields
is or is not.


