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Consider a system with a given complete set of state variables and depen-

dent upon some set of parameters. Suppose you care about some quantity s

that is a function of these variables and parameters. It turns out that in some

instances, you can take the system on a round trip excursion in the abstract

space of parameters and �nd that despite the fact that the state variables

return to their initial values, and the fact that there is no local rate of change

for quantity s, nevertheless, there is a global change in s's value at the end

of the round trip. Things, in other words, are physically di�erent. Further-

more, it turns out that you can explain the physical changes that appear as a

result of these round trip excursions, by appeal to certain purely geometrical

features of the abstract space in which the excursion can be parameterized.

This is, prima facie, odd. What sort of role can geometrical/topological fea-

tures of some abstract space play in explaining and providing understanding

of \real" physical phenomena?

In some contexts, particularly those involving waves or wavefunctions,

the failure to return to the same physical situation is attributed to what has

been called a \geometric phase." The most important example of this is often

called \Berry's phase" which was �rst discovered in studying the quantum

mechanics of systems in situations where the adiabatic limit holds.

The understanding of geometric phases is related to a relatively recent

controversy in the philosophical literature about how to understand the con-

cept of gauge invariance. One aspect of this debate involves trying to under-

stand the di�erence between the role of gauge potentials in classical physics

(particularly, classical electromagnetism) where they appear to be nothing

more than convenient mathematical constructs for generating physically real

�elds, and their role in quantum mechanics where it seems that they might

very well have some sort of causal or physical relevance. The primary ex-

ample discussed in the literature is the Aharonov-Bohm (AB) e�ect. See

(Belot, 1998; Healey, 1997, 2001; Leeds, 1999). The AB e�ect, it turns out,

is intimately related to Berry's phase.

This paper focuses on the explanatory value of the geometric structures

that are the subject of this debate. Gauge structures appear in many places

in physics and their geometric/topological properties often play important

explanatory roles. In many cases issues about reifying these structures sim-

ply do not arise. One sees that genuine explanation of certain phenom-

ena requires appeal to purely geometric or topological features of a relevant

abstract space. The reason the debate rages in the context of quantum me-

chanics and electromagnetism|particularly in the AB e�ect|has to do with
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certain metaphysical assumptions about the nature of spacetime which are

absent in many applications where gauge invariance plays an important role.

Most of my attention here will focus on purely classical situations where

round trip excursions are important. Examples include such diverse phenom-

ena as why and how a cat can right itself when dropped with its legs up in

the air, how a car can be parallel parked, and certain interference phenomena

involving classical polarized light.

To get some sense of the ubiquity of this kind of geometrical aspect of

round trip excursions in a space of parameters the next section considers

some examples.

1 (An)holonomy: Some Examples

The failure of the physical situation to return completely to its original state

upon a cycle of a parameter dependent system in parameter space is called an

\anholonomy." Each such instance has the following form. Some quantity,

s, characteristic of a system is \slaved" to certain variables Xi; fi = 1; 2; : : :g
which are taken around some kind of loop in X-space. If the values Xi

return to their original values (that's what is meant by the loop), yet the

slaved quantity s fails to return to its original value, the di�erence between

the s values is the geometric phase or \anholonomy."1

1.1 Parallel Transport

Let's begin with a simple and familiar example. This is the parallel trans-

port of a vector around a loop on the surface of the sphere. Consider the

case where a vector tangent to the sphere at the north pole and to a given

great circle follows that great circle down to the equator. It is then \parallel

transported" along the equator (another great circle) to some other point,

and then is �nally taken back up to the north pole. See �gure 1. Upon com-

pletion of its circuit on the sphere, parameterized by coordinates of longitude

and latitude (X1; X2) the vector fails to return to its original \state." It is

pointing in a di�erent direction. This fact is called \holonomy" by the math-

1Many of the examples discussed here as well as a number of others are nicely presented

in (Berry, 1991).
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ematicians and \anholonomy" by the physicists.2 The di�erence in angle

between the initial and the �nal vectors at the north pole is proportional to

the solid angle subtended by the circuit on the sphere and is independent of

the particular coordinatization. It is a feature of the geometry of the surface

of the sphere.

Figure 1: Parallel Transport Around a Sphere.

One can easily perform a very simple experiment which exhibits exactly

the same phenomenon: Hold your arm out in front of you. Put out your

thumb perpendicular to your arm so that it points up. Bring your arm up so

that it is over your head. Next, bring your arm down to your side so that your

thumb is now pointing backwards. Finally, bring your arm back in front of

you. Your arm is pointing in the direction in which it started and your thumb

is now pointing 90Æ from where it started. The direction of your thumb, just

as the direction of the vector, fails to return to its initial place even though

there has been no local rotation of your arm about its axis. Parallel transport

is, in e�ect, de�ned in terms of the following restrictions: (1) the constant

orthogonality between the the vector representing your thumb's direction and

2The terms \holonomy" and \anholonomy" derive from the classical mechanics of sys-

tems evolving under certain constraints. If the constraint is integrable and leads to a

reduction in the number of degrees of freedom, it is called \holonomic." Nonintegrable

constraints are called \anholonomic" or \nonholonomic." Geometers apparently do not re-

spect this distinction calling anholonomies \holonomies." (Berry, 1990) takes this reversal

of usage to be \a barbarism."
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the radius vector from the center of the sphere (your arm's direction centered

at your shoulder) and (2) the requirement that there be no twisting of the

\thumb vector" about the radius vector.

1.2 Foucault's Pendulum

The kind of parallel transport just discussed features in Foucault's pendulum.

Consider a \pendulum" that exhibits circular motion instead of the usual

back and forth motion. (The latter can be understood as the superposition

of two circular motions.) Consider �gure 2.

t=0
t=24 hours

solid angle

c

Figure 2: Foucault's Pendulum.

Suppose the pendulum bob has a period of one second about its axis of

rotation. After one revolution of the earth (24 hours) about its axis the

pendulum's axis clearly returns to the same position. However, pendulum

bob has not returned to its initial position. That is to say, the \start" of

the pendulum's rotation has shifted by a certain angle, called \Hannay's

angle" which is equal to the solid angle subtended by the pendulum's axis

of rotation around the globe. In this case the bob's starting position for its

rotation about the pendulum axis is slaved to the rotation of the pendulum's

axis itself.
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1.3 Crystal Dislocations

And now for something (apparently) completely di�erent. The simplest type

of imperfection in a crystal is called an edge dislocation. Dislocations can

Slip 

Start and End
of Burgers Circuit C

dislocation

Figure 3: Edge Dislocation.

be produced by plane of atoms in a crystal lattice \slipping" over another

plane in a way analogous to cards in a deck sliding over one another. If one

ignores the edges of a crystal then such a slip doesn't change the perfection

of the crystal structure since the entire plane just moves over, say, one lattice

point. But most instances of slip are not global and a�ect only part of the

slip plane leaving portions of it una�ected. Figure 3 gives an idea of what is

going on here.3

Now imagine a circuit passing through lattice sites in the \goodmaterial"|

that is, through parts of the crystal that lacks the imperfection.4

This is called a \Burgers circuit". In the �gure it begins and ends at

the site in the upper left. This curve, C, is associated with a circuit in an

ideal (perfect) crystal that fails to close if and only if the Burgers circuit C

3See (Read, 1953) for a nice clear discussion. The fact that the lines connecting the

lattice sites are not at right angles to one another reects elastic strains in the material.
4In other words, such a circuit passes through lattice sites that, except for strains, look

the same with respect to their nearest neighbors.

5



encircles a dislocation. This image is shown in �gure 4.

Start of
Image of C

End of 
Image of C

Anholonomy
(Burgers vector)

Figure 4: Image of the Burgers Circuit in Figure 3.

The anholonomy in this case is called the Burgers vector which is indi-

cated in �gure 4. In this case, it is the Burgers vector which is slaved to a

set of discrete variables Xi that label the lattice sites of the crystal.

1.4 The Berry Phase

Recent interest in various anholonomies was sparked by Michael Berry's 1984

paper entitled \Quantal Phase Factors Accompanying Adiabatic Changes."

Berry considered a nonrelativistic quantum system governed by a param-

eter dependent Hamiltonian Ĥ(X). He showed that if one transports the

\system" adiabatically around a circuit C in parameter space (X-space), the

system will remain at every instant throughout this evolution in the same

eigenstate for the Hamiltonian. Nevertheless, when the circuit C is com-

pleted, the system will have gained a circuit dependent \geometrical phase,"

ei(C) in addition to the dynamical phase, e�iEt=~, which is present in the

evolution of any stationary state. The geometrical phase, known now as the

\Berry Phase," was a truly remarkable discovery. It is a fundamental feature

of quantum evolutions which had gone unnoticed by physicists working in
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quantum mechanics for approximately 50 years!5 In the same paper Berry

also showed that one can understand the famous AB e�ect|a quantum me-

chanical e�ect|as an instance of the geometrical or Berry phase. This will

be discussed further in section 2 below.

1.5 Pancharatnam's Phase

Berry's work was presaged by the Indian physicist S. Pancharatnam (Pan-

charatnam, 1956) who discovered an analogous anholonomy while studying

phase shifts in classical polarized light. Pancharatnam discovered an an-

holonomy in the phase of a light wave as it is taken through a cycle of

polarization states. This phase shift is distinct from the shift associated with

the free propagation of light over the same path. Here let me briey describe

Pancharatnam's phase. More details will be o�ered below in section 4.

In the classical theory of light one can completely represent the polariza-

tion states of a plane wave of light with a given wave vector k by points on the

surface of a sphere called the \Poincar�e sphere." (See �gure 5.) The \north

pole" of the sphere represents the state in which the light is right circularly

polarized, the \south pole" represents left circularly polarized light, points

along the \equator" represent di�erent states of linear polarization, and all

other points represent di�erent states of elliptical polarization. Antipodal

points represent orthogonal states of polarization.6

Pancharatnam considered the question of how to de�ne the phase dif-

ference between two such light waves in di�erent states of polarization. On

physical grounds he argued that one ought to consider them to be completely

in phase if, were one to allow them to interfere, the intensity of the resulting

beam would be a maximum. In e�ect, this de�nes a conception of \distant

parallelism"|a connection|on the Poincar�e sphere. (Berry, 1987, p. 1402)

A consequence of Pancharatnam's de�nition is that \being in phase" is

not transitive. That is, suppose a wave in polarization state jAi is in phase

with a wave polarized in state jBi. Further, suppose that jBi is in phase

with jCi. On Pancharatnam's conception, it doesn't follow that jAi is in
phase with jCi. In particular, if a light beam originally in state jAi is taken

5Actually, the geometrical phase is much more general than Berry's original paper

shows. The evolutions need be neither adiabatic nor unitary as shown by (Samuel and

Bhandari, 1988).
6Unless otherwise noted we will always assume that the light waves are completely

polarized and of unit (normalized) intensity.
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though a sequence of \ideal polarizers"7 jBi, jCi, and then jAi, the resultant
beam jA0i generally will not be in phase with the initial beam. The di�erence

in phase between jAi and jA0i is the anholonomy and is equal to -1/2 times

the solid angle subtended by the spherical triangle ABC at the center of the

Poincar�e sphere. In this case the slaved variable is the phase of the light

wave as it is taken around a loop in the polarization space|a circuit on the

Poincar�e sphere.

R

L

VH

A
B

C

Figure 5: The Poincar�e Sphere.

1.6 Falling Cats and Parallel Parking

A problem that has received a fair amount of attention in the literature

on modern geometrical mechanics8 concerns the description and explanation

of the following seemingly paradoxical, yet commonplace fact: A cat when

dropped at rest with its feet pointing up will (often, hopefully, if it's not

too high . . . ) manage to right itself and land safely on its feet. Somehow

7This means that there is no loss of intensity as the beam is passed through the polar-

izer. (Equivalently, the polarizers in this idealization are represented by unitary transfor-

mations on the states.)
8See, (Montgomery, 1993) for a discussion.
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the cat is able to rotate itself 180Æ on the way down even though (and this

is the apparently paradoxical part) it has zero angular momentum to start

with, and by conservation of angular momentum, has zero angular momen-

tum throughout its fall. (Note, too, that the cat does not get any external

purchase by scratching at the air.)

The apparent paradox comes from thinking of the cat as a rigid body

for which one de�nes the angular momentum as the moment of inertia times

the angular velocity. Of course, a cat is not a rigid body and is capable of

exerting its muscles in such a way as to change its shape. We can think of the

cat as having the same shape at the beginning of the fall (feet perpendicular

to its body, approximately) as it does at the end of its fall. This suggests

that we represent the cat's contortions in a space of shapes. As the cat twists

itself around it changes its shape, eventually coming to have the same shape

it began with. It executes a circuit or round trip in shape space, the end

result of which is equivalent to a 180Æ rigid rotation in real space. Thus,

its orientation in physical space is slaved to a set of variables describing its

shape in shape space.9 The anholonomy or geometric phase is the rotation

of the cat in physical space.

In this situation we see that there is a constraint imposed upon the

system|namely, the conservation of angular momentum. Geometrically,

this constraint is a symmetry of the mechanical system. There are other

types of constraints that do not arise from mechanical symmetries but which

also lead to anholonomies. A paradigm example of this kind of anholonomic

constraint is that of a wheel or ball being constrained to roll on a surface

without skidding.

A car, for instance, is constrained (most of the time, one hopes) in this

way. It can only move in the direction of its wheels and at a rate propor-

tional to the angular velocity of the wheels. Crucially, the car cannot move

(without skidding) perpendicular to its front-back orientation. Nevertheless,

by executing familiar maneuvers one is able to move the car into a parking

spot exactly perpendicular to this orientation! The car executes a series of

motions involving changes in steering direction and direction of motion so

that, without skidding, it moves in the perpendicular direction. It begins in

a certain orientation or shape (parallel to the parking spot) and undergoes

a circuit in the space of steering directions and directions of motion so that

9These variables will, for instance, describe the angles between the cats various body

parts.
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it returns to its initial orientation or shape but undergoes a motion impossi-

ble to achieve with either input motion alone. Its net displacement into the

parking spot is the anholonomy.

2 The Aharonov-Bohm (AB) E�ect

In 1959 Aharonov and Bohm predicted a peculiar quantum mechanical e�ect.

For our purposes here we can discuss a simple gedanken experiment which

illustrates the essential points. (See (Healey, 1997) for a detailed discussion of

this experiment.) Consider a two slit experiment with electrons. Let j 1i be
the amplitude for passing through slit 1 and j 2i be the amplitude for passing

through slit 2. Then the probability density for arriving at the detector screen

C is given by k j 1i + j 2i k
2. (See �gure 6.) The e�ect of turning on the

1

2

C
Solenoid

Source

Figure 6: Two Slit Experiment with Solenoid.

solenoid current is to create a nonzero magnetic �eld within the solenoid

(coming out of the page) and zero �eld elsewhere. Despite the fact that

the electrons traversing the apparatus feel no magnetic �eld regardless of

the magnetic ux through the solenoid, there is an observable di�erence in

the interference pattern on the screen. This is the AB e�ect. The result of

turning on the current leads to a new probability density for arriving at the

10



screen C given by kj 1i+e
iq�j 2ik

2, where q is the charge on the electron and

� is the magnetic ux through the solenoid. (I'm oversimplifying somewhat

here, see (Healey, 1997) for more details.) In other words, the interference

pattern that appears on the screen will experience a shift when there is ux

through the solenoid. The fact that the magnetic �eld is zero everywhere

outside the cylinder has led a number of interpreters to wonder about the

nonlocal e�ect that the �eld inside the solenoid may have on the distant

electrons.

Some, including Aharonov and Bohm themselves, argue that this demon-

strates that the magnetic vector potential A (which does change when there

is current in the solenoid) is acting on the electrons as they traverse the

apparatus. See (Healey, 1997) and (Belot, 1998) for discussions of various

interpretive moves.

One way, stressed by Belot, of understanding the import of the AB ef-

fect relies on treating classical electromagnetism in the framework of gauge

theories. On the traditional interpretation of electromagnetism (with no AB

solenoid in the picture), the magnetic �eld B is de�ned to be the curl of the
vector potential A:

B � r�A: (1)

And, since r�A = r� (A +r�) for any suÆciently smooth function �,

we see that B is invariant under the transformation

A 7! A
0 = A+r�: (2)

This is a gauge transformation. In classical electromagnetism B is, therefore,

a gauge invariant quantity whereas A is not. Gauge invariance is often taken

to be a necessary condition for a �eld quantity to be physically \real."10

Hence for a �xed value of the electric �eld, A and A0 can correspond to the

same magnetic �eld|if they do, they lie on the same gauge orbit.

Now, if we consider the AB e�ect in this gauge framework, we see a

problem. If we consider the �eld outside the solenoid, we �nd that there

are potentials A and A0 that correspond to the same magnetic �eld, yet lie

on di�erent gauge orbits. Belot's paper is an extended investigation of the

consequences of this problem for interpreting electromagnetism.

In his original paper (Berry, 1984) Berry argues that the AB e�ect is a

speci�c instance of his geometrical phase and hence an instance of anholon-

10(Healey, 1997, p. 22), for instance, says \[b]ut there is reason to doubt that the

magnetic vector potential is a physically real �eld, since A is not gauge-invariant . . . ."
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omy. Roughly, the idea is that one can consider the experimental situation

of �gure 6 from a di�erent perspective. Consider a single electron which tra-

verses the upper path through slit 1 and is then brought back along the lower

path through slit 2. It then traverses a circuit that encloses the solenoid, re-

turning to its initial position in parameter space X which, in this case, is

real space or spacetime. Upon return the wavefunction for the electron has

picked up an additional phase that is directly proportional to the magnetic

ux in the solenoid. In section 3 we will see why it is correct to consider this

phase to be a function of the \geometry" of the situation.

Most interpreters argue that the AB e�ect shows us that the traditional

interpretation of electromagnetism is untenable. On that view, only the

electric and magnetic (or the electromagnetic) �elds act on charged particles.

And, the �elds act on the particles locally. The AB e�ect can be understood

as raising doubts about both these claims. Belot in e�ect subscribes to this

view that the traditional interpretation is misguided although he puts the

point slightly di�erently. He says that \[U ]ntil the discovery of the Aharonov-

Bohm e�ect, we misunderstood what electromagnetism was telling us about

our world." (Belot, 1998, p. 532)

3 (An)Holonomy and Fiber Bundles

The �rst examples of anholonomy considered above in section 1 were trans-

parently geometrical in nature|they involved, explicitly the notion of par-

allel transport on the surface of a sphere. In this section, I would like to

briey discuss the general, natural mathematical theory for representing an-

holonomy. This is the theory of �ber bundles and it is here that we can see

that all of the examples discussed above, including the AB e�ect, are really

instances of a similar type of geometrical phenomenon. I will �rst describe

the theory of �ber bundles using two simple examples: The cylinder and the

M�obius strip. Following this I will discuss the more complicated case of the

magnetic monopole which, as it will turn out, is intimately connected with

the geometrical characterization of the Poincar�e sphere.

3.1 The Cylinder and The M�obius Strip

Consider the space which is a cylinder of unit height and radius. This space,

call it E, is the direct product of two spaces|a space M which in this case
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is the circle S1, and a space F which in this case is the line segment (0; 1):

E =M � F:

E (the cylinder) is called the \total space", S1 is called the \base space,"

and the line segment, (0; 1), is called the \�ber." See �gure 7. There

F

M = S1

E

Figure 7: The Cylinder E =M � F .

is a projection, � which maps the total space E onto the base space M .

Suppose we cover the circle S1 with small neighborhoods U�. Then for each

neighborhood U�, �
�1(U�) is homeomorphic to U� � F .11 In other words,

locally the total space E looks like a direct product. In fact, this is trivially

the case for the cylinder since the entire cylinder (globally) just is itself the

direct product M � F .

Now consider the M�obius strip to be the total space. Here too the base

spaceM is the circle S1 and the �ber F is the line segment (0; 1). See �gure 8.

If we take a small neighborhood U� of some point in S1, then just as with

the cylinder ��1(U�) will look like U� � F . Globally, however, the M�obius

strip E is not a direct product: It is twisted.

One can cover the base spaceM by small neighborhoods U� with overlaps

Ui \Uj � Uij. Suppose the bundle over each U� is homeomorphic to Ui�F .

In order to sew all of these local bundles together to form the total space E

we must have rules which enable the identi�cation of the local trivializations

11A homeomorphism is a continuous map with a continuous inverse.
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(Ui � F and Uj � F ) above the intersections Uij. These rules or transition

functions (call them gij) are continuous maps from the intersections to a

group G which acts on the �bers: gij : Uij ! G. So a �ber bundle is a

5-tuple (E; �; F;G;M). In the case of the M�obius strip, one has G = f�1g
where the element �1 acts on F = (0; 1) by sending x to 1� x.

M = S1

p
Up

x
E

Figure 8: The M�obius Strip.

For instance, choose a point x on the �ber ��1(p) above a point p on the

base space S1. Suppose that x is 3/4 of the way \up" the �ber. See �gure 8.

Of course, x is a point in the total space E|the M�obius strip. In a local

coordinate system of a neighborhood Up � F , x has coordinates: (p; 3=4). If

we choose a homeomorphism h from the �ber above p to the interval (0,1)

and try to extend it continuously as we go around the circle from p back to

p, we will see that �ber's \direction" will have been reversed. That is the

image of the point x under this transformation will have coordinates in the

neighborhood Up�F : (p; 1=4). The point on the total space fails to return to
its original position after a circuit in the base space. This is the anholonomy

associated with the M�obius strip.

3.2 Reduction and Reconstruction

The mechanical examples of the falling cat and parallel parking are best

understood in terms of �ber bundles. As mentioned in section 1.6 these sys-

tems evolve under certain kinds of constraints. Geometrical mechanics seeks
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to understand the behaviors of such systems by exploiting the symmetries

(e.g., angular momentum conservation) or constraints to reduce the phase

space of the system to one with fewer degrees of freedom than the full phase

space. In the case of falling cats, we can understand this reduction in the

following way.

The full con�guration space consists of the shape space together with

a space of rotations and translations which orient the cat in physical space.

Thus the base space of the �ber bundle is the shape space of the cat. The con-

nection on the �ber bundle is sometimes called the \mechanical connection"

and is the direct result of the symmetries of rigid body rotation. (Cendra

et al., 2001; Montgomery, 1993) The group G of the �ber bundle is in this

case the group of rigid spatial rotations and translations. In such situations

it is fairly natural to think of the base space of the bundle (the shape space)

as a space of control parameters. Thus the cat is able to control|via its

muscles|its shape, resulting ultimately in the 180Æ rotation in real space.

Were one to observe the cat's evolution in shape space alone|that is, in

a frame of reference attached to some part of the cat|then it would appear

that there are \mysterious" (Coriolis and centrifugal) forces that are acting

upon the cat. These forces can be understood in terms of the curvature of

the mechanical connection. From this point of view, the problem is then

to reconstruct the \full" motion, given the motions in the shape space|the

reduced con�guration space. Thus one aspect of the reconstruction problem

is to determine the geometric phases or anholonomies. The reconstruction

problem is, therefore, a sort of inverse of the program of reduction.

Pancharatnam was, in e�ect, engaged in a program of reconstruction. He

realized that the representation of the polarization states of light in terms of

the Poincar�e sphere failed to capture all the observable features of polarized

light. So, without really realizing it, he showed that one needs a nontrivial

�ber bundle|the Hopf bundle|in order to tell the complete story.12

Whether one is most interested in reduction or reconstruction largely

depends upon how the phenomenon in question presents itself. Sometimes,

as in the case of the falling cat, we seek to understand the \full" behavior, and

proceed by simplifying the dynamics given symmetries we observe. In other

cases, such as the AB e�ect, it seems that we notice apparently anomalous

behavior in (what turns out to be) the base space, and are concerned to

explain or account for the presence of the anholonomies. The real di�erence

12The Hopf bundle is discussed in detail in the next section (3.3).
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here is a di�erence in attitude towards the space in which the phenomenon

takes place. In the case of the cat, we witness the behavior in real physical

space, and seek to understand the behavior in terms of reduction focusing on

the shape space. In the case of the AB e�ect, the phenomenon also apparently

takes place in real physical space or spacetime, yet the full understanding

seems to require our taking space or spacetime to be the base space of a �ber

bundle and so we engage in the reconstruction.

3.3 The Magnetic Monopole

Let us now consider another example in somewhat more detail. Suppose,

contrary to what is believed to be the case, there are magnetic monopoles.

The upshot of this supposition is the nonzero divergence of the magnetic

�eld B, r � B 6= 0. This has the consequence that one cannot write B as

the curl of some nonsingular vector potential A as in equation (1) above. A

magnetic monopole of strength g located at the origin has a radial magnetic

�eld B = gr=r3. The total magnetic ux through a sphere surrounding the

monopole is � = 4�g. Now, it is possible to �nd a vector potential A that

gives the correct �eld B everywhere except on an in�nite ray beginning at

the origin which, without loss of generality, we take to be the negative z-axis.
In spherical coordinates, (r; �; �), A is given by

Ar = A� = 0; A� =
g

r

(1� cos �)

sin �
: (3)

On the negative z-axis, � = �, and the vector potential is singular. This

singularity in A along the entire negative z-axis is called a \Dirac string".

We could have chosen to have the Dirac string singularity along the pos-

itive z-axis (or, actually, along any radially increasing semi-in�nite path be-

ginning at the origin). Had we made the choice of the positive z-axis, then

A would be given by

Ar = A� = 0; A� = �
g

r

(1 + cos �)

sin �
; (4)

which is singular when � = 0.

(Wu and Yang, 1975) demonstrate how it is possible to de�ne two vector

potentials A+ and A� each of which is nonsingular over a particular domain

(respectively, R+ and R�) such that (i) their curls equal the magnetic �eld of

the monopole in their respective regions and (ii) in their overlap region R� �
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R+ \R�, A+ and A� are related to one another by a gauge transformation.

The regions are de�ned (for r �xed) by

R+ � f(�; �) : 0 � � <
�

2
+ �g

R� � f(�; �) :
�

2
� � � � � �g:

See �gure 9.

θ

z

x

y
φ

r

R+

R-

R±

Figure 9: Construction of Nonsingular Vector Potentials for a Monopole.

The potentials, A+ and A�, in the domains R+ and R� are, respectively,

just the potentials given by equations (3) and (4). In the overlap region R�

they are related by the gauge transformation:

A�

� = A+
� �

2g

r sin �
A�

� = A+
� (5)

A�

r = A+
r

Geometrically, the above construction is an instance of what mathemati-

cians call the \Hopf bundle." And the idea is that the vector potential is

most naturally represented as the connection on the Hopf bundle. This is

a �ber bundle with base space S2 (the surface of a sphere surrounding the

17



monopole at the origin) and �ber U(1).13 The Hopf bundle is similar to the

M�obius strip in that both are nontrivial �ber bundles. The restricted bundle

s

π

Fiber = U(1) 
with Group Space, S1

S2

Figure 10: The Hopf (Monopole) Bundle.

over the upper region R+ is homeomorphic to the direct product R+ � U(1)
and similarly the bundle over R� is homeomorphic to R� � U(1). However,

globally, the bundle is not the product S2 � S
1; instead, it is S3. Figure 10

provides a way of visualizing some of this. As noted the total space E is the

space S3. The projection � maps many points of S3|all those related to

one another by multiplication by a member of the group U(1)|into a single

point s in the base space S2.

Just as with the M�obius strip there are transition functions g� from the

overlap regions (e.g. R�) to the group G = U(1) which enable the identi�-

cation of points in the local trivializations R+ � U(1) and R� � U(1) above

the overlap regions. That is,

g� : (�; �; ei��) 7! (�; �; eif�(�;�)ei�+); (6)

where � and � are in the overlap region R�.14 These transition functions,

13U(1) is the group of complex numbers of unit modulus|all numbers of the form

ei� = cos� + i sin�. Furthermore, since cos2 � + sin2 � = 1, the space of these complex

numbers is the circle S1. This example is a bit more complicated than the M�obius strip

since the �ber is itself the structure group G. This is called a \Principal �ber bundle."
14The f� are winding numbers. They are topological invariants.
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in fact, give rise to the gauge transformations such as that in equation (5)

above.

Now consider an electron of charge q in the �eld of this monopole. Given

the potentialsA+ andA� it follows that if the electron is slowly taken around

a circuit on a sphere of radius r, its wavefunction will gain a phase which is

proportional to the magnetic ux � through that area on the surface of the

sphere de�ned by the circuit. In particular, suppose the circuit is de�ned by

�xed r and � but where � ranges from 0 to 2�. The region, R+ or R�, in

which the circuit lies determines the vector potential A+ or A� to be used.

Suppose it is in R+. Then the change in phase � is given by

� =
q

~c

I
A

+ � dl (7)

=
q

~c

Z �
r�A

+
�
� dS

=
q

~c

Z
B � dS

=
q

~c
�(r; �)

It is clear that this phase change is purely a geometrical property since the

ux is proportional to the solid angle of the circuit subtended by the circuit

on the sphere. This is the physical manifestation of the anholonomy of the

Hopf bundle.

There is a di�erence between the anholonomy of the M�obius strip and that

of the monopole. The connection on the M�obius strip is at. The monopole

bundle, on the other hand, has curvature. What is the relationship between

the existence of anholonomy (nontrivial holonomy) and the curvature of the

connection? If the base space M is simply connected, and the connection is

at, then there is no nontrivial holonomy|no anholonomy.15 Since the circle

S
1 is not simply connected|for instance, a path that loops k times around

the circle cannot be deformed into one which goes around it l times (l 6= k)

without leaving the circle|the M�obius strip can exhibit anholonomy despite

its atness. On the other hand, the base space for the monopole bundle is S2

which is simply connected|all paths that bound disks can be contracted to a

point. The anholonomy in this case is due to the curvature of the connection.

15A topological space is simply connected if every loop in the space can be contracted

to a point without leaving the space.
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The connection here is, in fact, the vector potential A|more precisely, it is

the collection of local vector potentials A+ and A�.

Despite this di�erence there is an important sense in which the two situ-

ations are strongly analogous. The following conditional holds:

If there is nontrivial holonomy or anholonomy and if the connec-

tion is at, then the base space must be nonsimply connected.

The next section aims to show how this conditional yields a very strong geo-

metric/topological analogy between the AB e�ect and the magnetic monopole.

3.4 Dirac Strings, The Wu-Yang Connection, and the

AB E�ect

We have just seen that it is possible to remove the singularity|the string|

in the Dirac presentation of the monopole by moving to the �ber bundle

formulation of Wu and Yang. Let us try to understand the relationship

between these di�erent formulations.

First note that in one important sense, the Dirac string singularity doesn't

really \go away" when one employs the Wu-Yang construction as discussed

above. In e�ect, the two situations are mathematically equivalent. As an

analogy, consider a function in the complex plane, such as log z, that has

a branch cut singularity. One can view this function as being single-valued

\without singularity" by representing the complex plane as a Riemann sur-

face with multiple sheets. This is completely analogous to the Wu-Yang

maneuver to \remove" the Dirac string and view the vector potential as a

multiply connected �eld with components A+ and A�.16

Nevertheless, since the Dirac string can be moved anywhere (we saw,

for instance, that it can be put on the positive or negative z-axes), Dirac

realized that in some sense the string is \nonphysical." Furthermore, he

showed that given the singularity of A (say, on the negative z-axis where
� = �) and the fact that the wavefunction for a test particle (an electron)

in the monopole �eld must be single-valued, then the following condition on

� (see equation (7)) must obtain:

� = 2N�:

16See (Moriyasu, 1983, p. 156).
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If we let � go from 0 to � in equation (7), then the change in phase � =

4�qg=~c.17 This straightforwardly yields the Dirac quantization condition:18

qg =
1

2
N~c: (8)

(Wu and Yang, 1975) show how one can derive the Dirac quantization

condition using the �ber bundle construction described above. In this context

the quantization condition (8) emerges as a result of requiring the single-

valuedness of the transition functions given by equation (6).

Were the Dirac quantization condition (8) not to obtain, it would be

possible to discover the location of the Dirac string by performing AB-type

experiments. That is, we could perform two-slit experiments of the sort de-

scribed in section 2 at di�erent locations and look for phase shifts due to the

ux through the string! So, only if the quantization condition holds, will the

ideal solenoid/string be undetectable. As a result, a number of investiga-

tors (agreeing with Dirac) have held that the monopole string is \merely" a

mathematical singularity and has no physical signi�cance whatsoever. (See,

for instance, (Coleman, 1983; Ryder, 1985).)

But the issue here is really what counts as \physically signi�cant" and

whether there is really a distinction to be made in this context concern-

ing the di�erence between the merely mathematical singularity of the Dirac

string and a genuine singularity of physical signi�cance. If there is no real

distinction to be made, then we should begin to think about how \merely"

mathematical/geometrical structures can play roles in explaining genuinely

physical phenomena.

The AB e�ect is de�nitely detectable, and it remains for us to see to what

extent there is an analogy between the solenoid in the AB experiment and

the Dirac string. To get to this recall that Berry showed how the AB e�ect

can be understood as an instance of anholonomy. Here I would like briey

to discuss the AB anholonomy in the language of �ber bundles.

One can think of classical electromagnetism for a static magnetic �eld as

a U(1) �ber bundle over the base space R3 or over Minkowski spacetime. If

the electromagnetic �eld strength is zero at some point in R3 (the base space)

then the connection on the bundle above that point will be at. Furthermore,

since each loop in the base space is contractible to a point (the space is

17The solid angle subtended by the sphere is 4�. \g" is the monopole charge.
18See for example (Ryder, 1985, pp. 413{417) for a discussion.
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simply connected), the bundle theoretic nature of classical electromagnetism

is trivial. There is, in other words, no anholonomy.

In a sense the AB e�ect demonstrates that this conclusion is too hasty.

Recall that when there is current in the solenoid of the AB experiment,

there is still no magnetic �eld (zero �eld strength) in any region outside the

solenoid. Now, in the context we are considering|namely, that of classical

electromagnetism with quantum mechanical particles|we can think of the

solenoid as being impenetrable. For instance, the magnetic �eld inside the

solenoid can have no e�ect whatsoever on any particle outside the solenoid.

Thus, it is natural to idealize the solenoid to be in�nitely long and in�nitely

thin. The line of magnetic ux, likewise, will be in�nitely thin. Geometri-

cally, one can then think of the base space as R3 � fz-axisg; or if we con�ne
our attention to the plane of the experiment in �gure 6, the base space is

R
2 � foriging.
As we've seen in section 2, the magnetic �eld (and hence, the electric �eld)

are both zero outside the solenoid. But if there is current in the solenoid, the

vector potential A is nonzero in the region outside|which is the con�gura-

tion or base space. On the other hand, the curl ofA,r�A = B = 0:We now

have a U(1) bundle over a nonsimply connected base space: R2 � foriging.
This fact is responsible for the AB e�ect. Despite the atness of the connec-

tion on the bundle over this base space, there will be anholonomy.

To better understand the analogy between the monopole (with the Dirac

string) and the AB e�ect we need to introduce the notion of a contractible

space. A space X is contractible if there exists a family of maps

Ht : X! X for 0 � t � 1

such thatH0 is the identity (i.e. for all x 2 X, H0(x) = x) and such that H1 is

the constant map (i.e. there is a �xed point p 2 X such that H1(x) = p for all

x 2 X). The family Ht is called a contraction and it simultaneously shrinks

all loops. Any space X for which such a contraction exists will therefore be

simply connected. On the other hand, not all simply connected spaces are

contractible. S2 is an example. While every loop on S2 is contractible to a

point, you cannot shrink the entire space to a point which one could do if

the space were contractible. You will get hung up on one of the poles! It is

this feature that allows there to be anholonomies in round trip circuits on

S
2.

Now consider once again the monopole, with its simply connected base

space S2 and �ber U(1). We've seen that this is a nontrivial (Hopf) bundle|
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it admits anholonomies. No nontrivial bundle over S2 admits a at connec-

tion. Suppose though that we label the \south" pole of S2 as s. Even the

nontrivial Hopf bundle becomes trivial if it is restricted to the complement

of fsg:
S
2 � fsg:

The Dirac string singularity is just a manifestation of the fact that this triv-

ialization is not a possibility for the monopole bundle. Likewise, the AB

solenoid idealized as a line removed from spacetime is a manifestation of the

nontrivial bundle nature of electromagnetism on R
3 � fz-axisg.

3.5 Anholonomies: A Distinction

It is worth pointing out a distinction between types of anholonomies.19 It

is not unreasonable to treat this as a distinction between topology and ge-

ometry. There are \topological phases" and \geometric phases." Consider

again the M�obius strip|a �ber bundle with a at connection. As we saw

in section 3.1, a circuit around the nonsimply connected base space takes

any point x on a �ber to 1� x. This is just a reection about the midpoint

on the �ber. Suppose we let the midpoint of the �ber be the origin, with

points below it having negative values and points above it having positive

values. Then the result of looping around the base space is just a change of

sign x! �x. The values of the anholonomy are, therefore, discrete|just a

change of sign|and change discontinuously as a function of the shape of the

circuit. The phase takes on discrete values as the circuit is completed. Call

such an anholonomy \topological".

There are a number of instances where such purely topological phases

have been show to be important physically. For instance, (Berry and Rob-

bins, 1997, 2000) recently have provided an explanation for the spin-statistics

connection for indistinguishable particles (the Pauli exclusion principle) in

terms of a topological phases which is also a sign change associated with

circuits in the projective plane.

By contrast, consider a connection with curvature, say, the Hopf (or mono-

pole) bundle. Consider some loop in the base space S2. Equation 7 tells us

that the phase or anholonomy depends continuously on the shape of the

circuit as it is proportional to the solid angle subtended by the circuit. Call

this sort of anholonomy or phase \geometrical".

19Thanks to Michael Berry for helping me get clearer about this di�erence.
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Oddly enough, the AB e�ect is a kind of hybrid topological and geomet-

rical phase. The phase or anholonomy depends continuously on the ux in

the solenoid, but (as in the case of the M�obius strip) it depends discontinu-

ously upon the shape of the circuit. For example, two loops around gives an

anholonomy twice that of one loop around for constant magnetic ux.

3.6 Summary

This section has aimed to do three things. First, it presents (in a relatively

simple fashion) the theory of �ber bundles and applies this mathematical

framework to some of the examples we have been considering. Second, it

o�ers some brief remarks about how one might think of the �ber bundle

formulation of various problems. We may consider them to be instances of a

program of reduction or reconstruction. And third, it examines the analogy

between the AB e�ect with its \physically real" (though highly idealized)

solenoid, and the Dirac monopole with its \merely mathematical" solenoid|

the Dirac string. The upshot of this discussion is that both the solenoid,

idealized as a line missing from spacetime, and the Dirac string indicate the

appropriateness of a bundle formulation of the various phenomena. More

details about this will be o�ered below in section 5.2.

In the next section, I would like to return to Pancharatnam's anholonomy

discovered in experiments concerning the polarization states of classical light.

This, recall, is naturally represented in terms of a nontrivial bundle over the

Poincar�e sphere.

4 Polarization AB e�ect

In section 1.5 I noted that Pancharatnam discovered a surprising anholon-

omy in the phase of the light wave as the light is taken on a circuit in this

polarization space. It turns out that, geometrically, this problem has the

same structure as the magnetic monopole discussed above. In other words, a

polarized light wave requires for its full speci�cation the Hopf bundle over the

Poincar�e sphere. In this section I will more fully describe the representation

of polarization states of classical light. Berry has claimed that the anholon-

omy discovered by Pancharatnam is \precisely analogous to the phase shift

later predicted by Aharonov and Bohm . . . ." (Berry, 1987, p. 1404) I will

discuss this claim.
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4.1 The Spinor Representation of Polarization States

The state of a fully polarized wave  can be written as a two component

spinor|a column vector of two complex elements which, in general, are

functions of time: �
c1(t)
c2(t)

�
:

These numbers represent the amplitudes for the wave to be in two orthogonal

base states. For instance, suppose we have a wave propagating in the ~z

direction. Choose for polarization base states the linearly polarized states

jXi and jY i in which the electric vector E vibrates, respectively in the ~x and

~y directions. Then in state jXi, E = ~xEei!t+� and in jY i, E = ~yEei!t+�.

We will restrict our attention to waves of unit intensity and to unitary

(norm preserving), \polarization" transformations of these waves.20 Not sur-

prisingly a geometric interpretation (involving the Poincar�e sphere) is avail-

able for the column vector representation  = (c1(t); c2(t)) : In spherical

coordinates21 (and supposing time independence) the polarization state of a

wave can be written (up to phase) as0
@ cos �

2

sin �
2
ei�

1
A :

Consider two waves

 1(�1; �1) =

0
@ cos �1

2

sin �1
2
ei�1

1
A (9)

 2(�2; �2) = e�i�

0
@ cos �2

2

sin �2
2
ei�2

1
A ; (10)

where � is a relative phase between the two waves.

If the two waves  1 and  2 are allowed to interfere, the intensity of the

combined wave is proportional to:

j 1 +  2j
2 = 2 + 2Re ( �

1 2) : (11)

20See note 7.
21� and � are, respectively, the polar angle and azimuth of a point on the surface of a

sphere of unit radius. See �gure 9.
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Recall that Pancharatnam de�nes two waves to be in phase when their in-

tensity is a maximum. This means that  1 and  2 are in phase if and only

if

Re ( �

1 2) > 0 (12)

Im ( �

1 2) = 0:

This is Pancharatnam's connection, which as noted above, de�nes a notion

of distant parallelism between polarization states. It is isomorphic to the

Dirac connection on the monopole.

2|A〉

|A〉 |B〉

|A〉 |C〉 |D'〉

|D+D'〉

|D〉

(a)

(b) A

C

B

D

Figure 11: AB E�ect on the Poincar�e Sphere: (Berry, 1987, p. 1404) (a)

Polarization History of a Light Wave. (b) Circuit on the Poincar�e Sphere.

The phase di�erence � is gotten by substituting the column vectors (9)
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and (10) into these last formulas.22 This phase represents the \di�erence

between the `component of j 1i along j 2i' and j 2i. In other words, � rep-

resents the phase di�erence between (i) the wave resulting from the passage

of the wave in state j 1i through a polarizer that allows only the state j 2i
to pass through and (ii) the reference wave in state j 2i."(Bhandari, 1997,
p. 14)

The 1/2 solid angle result mentioned in section 1 follows from Pancharat-

nam's connection. That is, if through the use of various optical devices,

a pure state of polarization is forced to trace out a closed circuit C on

the Poincar�e sphere, then the phase di�erence between the initial and �-

nal states|the anholonomy|is equal to 1/2 the solid angle subtended by C
at the center of the sphere.

The analogy with the monopole and the Hopf bundle is precise: We

imagine the existence of an abstract monopole (of strength -1/2) centered at

the origin of the Poincar�e sphere. (For details see (Berry, 1987; Brosseau,

1998; Morandi, 1992).) On this conception, the anholonomy due to a circuit

C is (like the Dirac monopole) proportional to the ux through the surface

of the sphere by the �eld generated by a monopole at its center.

(Berry, 1987) has called the Pancharatnam anholonomy the \Aharonov-

Bohm" e�ect on the Poincar�e sphere. He says that the

result is precisely analogous to the phase shift later predicted by

Aharonov and Bohm, according to which two electron beams de-

velop a phase shift proportional to the magnetic ux they enclose.

For polarized light the analogue of magnetic ux is the solid an-

gle of the polygon [see �gure 11] on the Poincar�e sphere. This

is also a ux, namely that of an abstract monopole of strength

-1/2, situated at the centre of the sphere. (Berry, 1987, p. 1404)

In both situations, the phase shifts are represented by nontrivial topolog-

ical features of their respective \state" spaces. A point of disanalogy is the

fact, noted earlier in section 3.5, that the AB e�ect has both \topological"

and \geometrical" aspects. In addition, a common attitude|one taken by

Aharonov and Bohm but which I believe is ultimately mistaken|is that the

vector potential (which changes when the ux changes) must be considered

a real physical �eld. I think that the background intuition for this position

depends upon the fact that the e�ect takes place in space or spacetime where

22See (Brosseau, 1998, pp. 131{135) for details of the calculations.
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issues about causality come to the fore. It would be odd indeed to hold that

the connection on the abstract state space|the Poincar�e sphere|is causally

responsible for Pancharatnam's phase. I think that this ought to give us

pause. Perhaps the question about the \reality" of the connection is simply

misguided. This is the subject of the next section.

5 Interpretations and Conclusions

5.1 Belot's Taxonomy of Interpretations

In section 2 I noted that an instructive way to think about classical (vacuum)

electromagnetism is in the framework of gauge theories. Belot develops this

point of view and o�ers three possible interpretations of electromagnetism

from this perspective. On the one hand, one can think of the vector potential

A as a real physical �eld. Suppose the electric �eld has value E. The state

of the electromagnetic �eld will then be di�erent for di�erent values of the

vector potential. According to Belot

[t]his gives us a literal, hence indeterministic, interpretation of

the gauge-theoretic formulation of electromagnetism: each pair

(A;E) satisfying div E = 0 represents a distinct dynamical state

of the ether, and two solutions, A(t) and A0(t) = A+ grad�(t),

for the same initial data represent two physically distinct histories

of the ether . . . . (Belot, 1998, pp. 541{542)

The indeterminism|more than one future state following from the same

initial state|depends upon the fact that the Hamiltonian or dynamical law,

because it is a function of the electric and magnetic �elds only, is insensitive to

the di�erent values of the vector potential.23 In other words, Belot assumes

that on this interpretation we change only the notion of the state of the

system, but leave the dynamics unchanged. In a sense this is the natural

thing to want to do. After all, we are trying to give an interpretation of

classical Maxwellian electromagnetism.

Despite this, it isn't clear to me that this is an appropriate assumption.

The very notion of the state of a system (or �eld) cannot, in general, be

divorced from the nature of the laws governing the system's (or �eld's) evo-

lution. States and laws are correlative. What we take to be the relevant

23See equations (1) and (2).
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state properties depends upon what we count as laws; and conversely, the

nature of the laws is constrained by what features of the world are important

for characterizing a system's state.24 If, as the interpretation requires, the

vector potential is a real physical �eld, then why think that the dynamics

should be insensitive to the di�erences in values of the potential? At least

some further argument seems to be required here.25

Something analogous, it seems would happen were we to consider a similar

interpretation of the quantum state. We would have to treat each wavefunc-

tion j i that di�ers from another j �i by multiplication by a U(1) phase|a

gauge transformation|as a distinct state. However, because the Schr�odinger

evolution is insensitive to such phase di�erences, the same initial \state" can

give rise to di�erent future states. Hence, the interpretation renders the

theory indeterministic. Note that this indeterminism is completely di�erent

from that typically associated with quantum mechanics. Typically the theory

is taken to be indeterministic because one seems forced to give a probabilistic

interpretation of the wavefunction. Once again, though, we might ask why it

is, if the di�erent phase values are to be physically relevant|that is, if they

�gure in the proper state description, that the dynamics shouldn't reect

this fact as well.

It seems very strange to me to maintain that a dynamical theory can be

rendered indeterministic simply by opting for a literal interpretation of its

gauge structure. It is considerably more plausible to note that the possibility

of a literal interpretation simply indicates that the state description does not

match up in an appropriate way with the dynamical law(s). There is no rea-

son to take the di�erent gauge related quantities to be relevant to the systems

state if one is sure that the dynamical law is correct. On the other hand, if

one has independent reason to take the gauge related quantities to be genuine

or \real", then surely ones dynamics ought to be changed to reect this fact.

My view is that this is really what motivates the \traditional" interpretation

for gauge theories, and not any real worry about indeterminism.

Belot's second possible interpretation for electromagnetism is the \tra-

ditional" interpretation in which only the electric and magnetic (or electro-

magnetic) �elds are physically real. This is a gauge invariant interpretation

24I have discussed the relationships between laws and states at some length in my

dissertation (Batterman, 1987).
25Note that the AB e�ect may provide some such further reasons. But, without such

physical reasons there appears to be no good argument to move to a literal interpretation

since the dynamics of the theory doesn't support it.
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since the value of the magnetic �eld at any point in physical space is the same

for any vector potentials related by the gauge transformation (equation (2)).

A question of importance is the exact nature of the gauge invariance. Belot

considers whether it is \simply gauge-invariant" or coarse-grained gauge-

invariant." A simply gauge-invariant interpretation is one in which there

is a bijection between gauge orbits and states of the electromagnetic �eld.

A coarse-grained gauge-invariant interpretation is one in which the relation

between gauge orbits and states may be many-one. Belot notes that if the

topology of physical space is simply connected then the traditional interpre-

tation is simply gauge invariant. But, if the topology is nontrivial (nonsim-

ply connected), \. . . the traditional interpretation counts as coarse-grained

gauge-invariant . . . ." (Belot, 1998, p. 543)

In a nutshell, for the case of electromagnetism, coarse-grained gauge in-

variance amounts to a claim to the e�ect that there is some information that

is not encoded in the equivalence:

B = r�A = r�A
0: (13)

In other words, despite this equivalence, A and A
0 are not related by the

\gauge transformation" (2). Thus, on a coarse-grained gauge interpretation

distinct gauge orbits [A] 6= [A0] can correspond to the same magnetic �eld.

Such a situation is possible only if there is no function � such that

A
0 = A+r�:

This is exactly the situation that obtains in the AB e�ect.

The third interpretation restores the bijection between gauge orbits and

states of the electromagnetic �eld in e�ect by taking into consideration the

information missing in equation (13). It requires a reinterpretation of the

notion of a gauge orbit. This interpretation has us in e�ect treat the phase

space of electromagnetism as a pair consisting of the divergence free electric

�eld and the gauge invariant \holonomy maps" de�ned in the following way.

The \holonomy" around a loop  in space given a vector potential, A, is

speci�ed by the following gauge invariant integral:

h() = e
H
iA(x)dx: (14)

Gauge invariance means that h() = h0() if and only if A and A0 are on

the same gauge orbit. One can construct holonomy maps from the loops in
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real space into the complex numbers of modulus one (U(1)). This becomes

the con�guration space for electromagnetism and together with its conjugate

electric �eld at each point, we have a simply gauge invariant interpretation

of electromagnetism even in those situations where real space is multiply

connected.

Notice how this last interpretation can be understood in the �ber bundle

formalism discussed in section 3. Having noted the presence of anholonomies

in the AB e�ect, we engage in a program of reconstruction to provide a

representation of these anholonomies. This involves treating the full space for

representing electromagnetism as a nontrivial bundle over the base space|

physical space.

As Belot and others (e.g., (Healey, 1997)) have noted, taking this third in-

terpretive strategy for gauge theories brings with it a host of other problems.

Since the full phase space now requires that we specify the (an)holonomies

for each and every loop about a point in physical space, the state of the elec-

tromagnetic �eld is now rendered nonlocal. In order to say what the state

of the �eld is at a given point we must refer to properties of loops in real

space|loops that go through regions of space arbitrarily far from the given

point.

Now Belot argues that the traditional, simply gauge invariant interpreta-

tion of classical electromagnetism is naturally to be preferred. And that

[w]ithin the realm of classical physics, . . . , [the traditional inter-

pretation] is vindicated|there are no phenomena which allow one

to distinguish between two gauge orbits [A] and [A0] which cor-

respond to the same magnetic �eld. Thus, there are no grounds

internal to electromagnetism upon which to criticize the tradi-

tional interpretation. (Belot, 1998, pp 544{545)

And, of course, he is right about this. It is only when we start to think of

electrons as quantum mechanical that we run into the various interpretive

diÆculties.

5.2 The Importance of Geometry

Nevertheless, I think that it is important to recognize that the interpretive

moves that seem to be required to deal with the AB e�ect are also required to

account for phenomena entirely \within the realm of classical physics." Nat-

urally, I'm talking here about Pancharatnam's phase|the \polarization AB
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e�ect" (section 4). In addition, the various examples discussed in section 1

(including the falling cat and parallel parking) likewise demand that we con-

sider anholonomies as essential for the characterization of the phenomenon

in question.

The ubiquity of anholonomy in both classical and quantum physics should

lead us to consider certain methodological and ontological questions. Take

the latter group of issues �rst. As I noted the AB e�ect has been much

discussed in the literature largely because it seems to force one to adopt

one of two rather strange interpretations. On the one hand, we can take

the line, advocated by Aharonov and Bohm themselves and promulgated

by Feynman, that the vector potential A is a real physical �eld thereby

maintaining some kind of locality. The phase shift is to be explained by the

local action of the vector potential on the wavefunctions of the electrons.

This is a problematic interpretation since the vector potential is, as we've

seen, not gauge invariant and there is some reason to hold that only gauge

invariant quantities are genuine physical quantities. On the other hand, we

can adopt Belot's third \holonomy" interpretation, noting as above, that the

quantity in equation (14) is gauge invariant. But then this forces us to give

up on locality.

There is some debate in the literature (see (Healey, 2001)) about whether

one should adopt the holonomy interpretation or whether one should be a

realist (= substantivalist) about the �ber bundle formulation of the theory.

Healey opts for the nonlocal holonomy interpretation after arguing that the

realist interpretation on which gauge potentials are real connections on �ber

bundles fails to live up to the promise that the gauge potentials be locally

de�ned objects.

I think that this debate is largely a red herring. Nothing like this seems

to be relevant in any of the \classical" cases of anholonomy we have con-

sidered. The reason the debate rages at all, it seems to me, has to do with

the nature of the base space, which in the cases Healey discusses, is \real"

space or spacetime. This space is unlike the \abstract" space of shapes in

the case of the falling cat or the \abstract" space of polarization states|the

Poincar�e sphere|in the case of the polarized light. The relevant di�erence

is that consideration of spacetime carries with it many metaphysical com-

mitments that are completely absent in the other cases. We need to worry

about nonlocality, separability, etc., because of the odd relationships quan-

tum mechanics has to relativity theory. But none of this arises in the other

cases where surprising anholonomies appear.
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Related ontological issues arise when we try to understand the nature

of the \merely mathematical" Dirac strings in the magnetic monopole and

in the abstract polarization monopole at the center of the Poincar�e sphere.

What sort of reality does one want to attach to these abstract features? How

should one want to understand the relationship between the Dirac string and

the real ux that is present in the AB e�ect? This is especially relevant once

one recognizes that most discussions of the AB e�ect very quickly idealize the

solenoid to an in�nite line in space or spacetime. The ux, in this idealization,

just is the abstract topological property of having space or spacetime be

nonsimply connected.

One might ask26 whether, e.g., it is obvious that the polarizationmonopole

at the center of the Poincar�e sphere is purely abstract and represents no real

physical structure. In one sense, I think the answer here is: \Of course, it

represents some physical structure." But in saying that I mean only that

to speak of the monopole is simply to speak of a nonat connection on the

surface of the Poincar�e sphere that explains and represents the Pancharat-

nam phase. Whether we should reify the monopole itself, or treat it as a

purely formal/abstract object is, I believe, irrelevant. The issue is whether

the idealizations|polarization monopole and nonsimply connected space in

the AB e�ect|do better explanatory work than some less idealized descrip-

tion. I believe that the idealized descriptions do, in fact, do a better job.

And, this leads us to the methodological questions.

From my perspective the most interesting issues are methodological and

concern the explanatory role played by these abstract geometrical and topo-

logical features. The most remarkable feature of Berry's discovery of the

geometric phase in quantum mechanics is the fact that topological and ge-

ometric structures of an abstract space of parameters can have observable,

physical, but obviously noncausal \e�ects."

If one wants to understand the interference behavior of polarized light as

the beam is taken through a series of polarizers and returned to its initial

state, one must represent the polarization states using the full apparatus

of the (nontrivial) Hopf bundle over the Poincar�e sphere. Likewise, if one

wants to understand how a cat can right itself when it is dropped with

zero angular momentum, one must investigate its trajectories in an abstract

space of shapes. The full understanding of such varied phenomena demands

reference to nontrivial �ber bundles.

26In fact, an anonymous referee did ask.
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For example, as we have seen in sections 1.5 and 4, Pancharatnam discov-

ered experimentally the intransitivity of phases for classical polarized light.

His physical criterion for when two beams in di�erent polarization states

are in phase|equations (11) and (12)|de�nes a connection on the Poincar�e

sphere. In e�ect, Pancharatnam was engaged in a program of reconstruc-

tion.27 The modern characterization of this program is that he needed to

appeal to the full, nontrivial, Hopf bundle in order to account for the phase

he discovered. One might, I suppose, eschew this �ber bundle representation

in favor of a set of statements about the polarization properties of closed

loops on the Poincar�e sphere, though I don't know why one would want to

here.

In opting for the nonlocal holonomy interpretation (Belot's third inter-

pretation) over a realist/substantivalist interpretation of �ber bundles in the

context of the AB e�ect, Healey is in e�ect taking this latter line. The idea

is that we do not need to (should not need to) appeal to a �ber bundle whose

base space is nonsimply connected. Instead, keep the base space as simply

connected Minkowski spacetime, and explain the AB e�ect by appeal to the

e�ects of electromagnetic properties of closed loops in that spacetime. Again,

I am really not sure what the advantage of this is. And, as I will now try to

show, I think that there are some distinct disadvantages.

It is true that the gauge invariant content of electromagnetism is com-

pletely speci�ed by the set of holonomy maps determined using equation (14)

as discussed in section 5.1. And it is true that this works regardless of the

topological structure of the base space|namely, spacetime. Nevertheless,

I think that it leaves out important explanatory information that the �ber

bundle formulation makes explicit. This is the explicit information concern-

ing the topological nature of the base space. Healey's defense of his non-

separable holonomy thesis|that gauge potential are nonseparable holonomy

properties|depends (in part) on the assumption that topological obstruc-

tions such as magnetic monopoles are not present. He says that

[I]n the absence of magnetic monopoles one can compose a given

loop enclosing a surface out of tinier and tinier loops around

points on that surface. In the limit, the holonomy properties

of a �nite loop are determined by those of any in�nitesimal loops

that that compose it in this way. This gives what might be called

27See section 3.2.
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the loop supervenience of holonomy properties. (Healey, 2001, p.

450)

But where there are topological obstructions, say, monopoles, ux trapping

in a superconductor28, and (perhaps29) the AB e�ect, this justi�cation will

fail. Topological considerations play a crucial role.

It seems to me that for a full understanding of these anholonomies, one

needs to appeal to the topology and geometry of the base space. The �ber

bundle formulation makes that topology explicit. As I said above, I think

that the question of the reality of the �ber bundle formulation versus the

reality of the holonomy interpretation is largely an artifact of the discussion

of cases in which the base space is real space or spacetime. If we take seriously

the idea that topological features of various spaces (abstract or real) can play

an explanatory role, then we can see how to unify a set of apparently diverse

phenomena|namely all of the examples discussed in the pages above as well

as many others.

In addition, appeal to topological features of the sort we are discussing

can provide di�erent and better explanations of the phenomena than one

might otherwise have if one fails to mention them explicitly. For instance,

one might think that the full, complete explanation for why the cat lands on

its feet when dropped upside down is to be had by a detailed and complete

Newtonian account of the forces acting on its various parts as it twists itself

on the way down. What is the point of referring to its abstract shape space

and to the mechanical connection on the �ber bundle?30 I take it that in

the context of the AB e�ect this question is analogous to the above question

asking why we need the �ber bundle formulation given that specifying the

holonomy properties of closed loops in spacetime will provide the explanation

we are after.

The response to these questions involves pointing out that one thing we

really want to understand is the ubiquity and universality of these types of

phenomena. In the case of the falling cat, a question of interest concerns why,

in general, cats behave in this fashion when dropped. Were we to explain

every instance of this falling cat behavior by appeal to the detailed forces

28See (Moriyasu, 1983) for a discussion.
29I don't mean to beg any questions here. After all, part of what I'm trying to show

is that it is most fruitful to treat the AB solenoid as an idealization that results in the

multiple connectedness of the base space of a �ber bundle.
30This question was raised by an anonymous referee as well.
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acting on the individual cats, we will achieve no answer to the question of

why such behavior is generally to be expected.31 In e�ect, each such account

will be completely disjoint from the others and the general question about

the ubiquitous pattern of behavior requires that we abstract from all the

individual details of the particular cases. Such details simply get in the

way. Referring to the mechanical connection on the bundle over the space of

shapes provides the uni�cation we desire. The geometric features enable us

to understand the common behavior in a way that the individual Newtonian

stories do not.

Similarly, in the AB e�ect, it appears that we will need to refer to dif-

ferent nonseparable holonomy properties for each case in which there is dif-

ferent ux running through the solenoid. The di�erent cases are uni�ed by

the topological idealization of the solenoid as a string absent from spacetime

which renders spacetime nonsimply connected. In this way we can under-

stand why, for a given �xed magnetic ux, a loop that goes n times around

the solenoid will have an anholonomy that is n times that of a loop that goes

around once. This topological feature enables us to understand the common

behavior in di�erent AB experiments in a way that the individual appeals to

nonseparable holonomy properties of closed loops in spacetime do not.

So, topological and geometric features of abstract (and real) spaces allow

us to explain universal features of the world. This should not be too surpris-

ing if one recognizes that such explanations are quite prevalent in physics.

For instance, the universality of critical phenomena is explained by appeal

to topological features (�xed points, for instance) in an abstract space of

Hamiltonians. (See (Batterman, 2002b) for detailed discussions.)

The acceptance of these types of explanations raises some additional wor-

ries about realism and about the role of idealizations. For example, how can

it possibly be the case that appeal to an idealization such as the AB solenoid

as a line missing from spacetime, provides a better explanation of genuine

physical phenomena than can a less idealized, more \realistic" account where

one doesn't idealize so severely? I've argued elsewhere (Batterman, 2002a)

(and so will not rehearse the arguments here) that quite often, primarily when

one is interested in explaining universal behavior, appeal to highly idealized

models does, in fact, provide better explanations.

In sum, I think it is diÆcult to hold that the geometric and topological

31See (Batterman, 2002b, Chapters 3, 4) for a discussion of these types of explanatory

why-questions.
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features of the various spaces (particularly, in the cases such as the falling

cat and polarized light) we have considered are causal features. Nevertheless,

they play essential explanatory roles. If we recognize that similar abstract

geometrical/topological properties are present in the AB e�ect, then it seems

we ought to bracket the explanatory problematic from the metaphysical de-

bates that appear to be driving the discussions in the literature. Questions

about the reality of gauge potentials just do not seem to arise in many/most

of the examples we have discussed. The suggestion here is that such questions

may not matter much either when it comes to understanding such quantum

e�ects as the AB e�ect.
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