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I. Introduction 

 

Questions concerning the meaning of the principle of general covariance and, perhaps to 

a lesser extent, its precise historical role in the development of Einstein’s general theory 

of relativity (GR), never quite seem to go away1. General covariance is a bit like the 

principle of equivalence: much cited, often misunderstood, and a noble, if treacherous, 

source of occupation for the philosopher of physics. After all, in the process of 

developing GR, Einstein himself got seriously confused about it in a number of ways, and 

his mature writings never laid the matter to rest. Our own ideas on the topic were largely 

the by-product of immersion in the 1918 theorems of Emmy Noether, whose work was 

inspired by the attempt amongst the Göttingen mathematicians to understand the 

technical role of general covariance in the variational approach to GR. The results of 

Noether's work provide an illuminating method for testing the consequences of what we 

shall refer to as "coordinate generality" and for exploring what else must be added to this 

requirement in order to give the general covariance of GR its far-reaching physical 

significance. The discussion takes us through Noether's first and second theorems, and 

then a third related theorem due to F. Klein (which we call the Boundary theorem). Along 

the way contact will be made with the contributions of, principally, J.L. Anderson, A. 
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Trautman, P.A.M. Dirac and R. Torretti, not to mention the father of the whole business, 

A. Einstein. 

 

 

II. Preliminary considerations. 

 

Let us start with the familiar electromagnetic action in a spacetime with the 

(possibly curved) metric tensor field gµν  which has Lorentzian signature and whose 

determinant is denoted by g: 

 

4 41d d
4EM EMS L x g g F F gµρ νσ

µν ρσΩ Ω
= = − −∫ ∫ x

,

,   (1)  

 

where ,F A Aµν µ ν ν− = − µ  and Ω  is an arbitrary compact region of spacetime. (We are 

adopting the Einstein summation convention for Greek indices throughout.) If, as is well-

known, we apply Hamilton’s principle with respect to variations in the 4-potential , 

then we obtain the covariant form of Maxwell’s equations in the source-free case: 

Aµ

 

 ; 0F µν
ν =  (2) 

 

Now suppose we choose similarly to apply Hamilton's principle with respect to 

variations in gµν , treating (just for the sake of argument) SEM  as the total action. Then we 

immediately obtain 

 

   Tµν = 0         (3) 

   

where as usual in this context the stress-energy tensor Tµν

LEM

 is defined in terms of the 

relevant variational derivative of the lagrangian density : 

 

 2



       Tµν :=
−2
−g

δLEM

δgµν .     (4) 

 

 The result (3) is pretty disastrous: it means that Fµν = 0 . If we want the metric 

tensor to be a bona fide dynamical player, we need to add another term to the action 

which is a functional of at least the gµν  and their derivatives, but not of the  and their 

derivatives—which is of course what is done in GR. But note that the electromagnetic 

field variables do not require an analogous second contribution to the action, independent 

of g

Aµ

µν . Indeed, general covariance goes some way to ruling out such a possibility, as we 

see in section V. 

 Recall now that the Lagrangian in SEM  is a scalar density, so SEM  is strictly 

invariant under general (infinitesimal) coordinate transformations 

 

xµ → ′ x µ = x µ +εξµ      (5) 

 

where ξµ  is an arbitrary vector field, and ε  taken to be small. This condition is sufficient, 

but not necessary, for the general covariance of the Euler-Lagrange equations (2) and (3), 

as we see below. Now a subgroup of this group of arbitrary coordinate transformations is 

that associated with rigid spacetime translations for which the ξµ  in (5) are now 

independent of the coordinates. It follows that elements of this 'rigid' subgroup are also 

‘Noether symmetries’, and are specifically of the kind that figure in Noether’s first (and 

more celebrated) theorem that leads to a connection between symmetries and 

conservation principles2.  

 The theorem, in a generalised form, is this. Suppose that the first order variation 

in the action S vanishes (up to a surface term, of which more below) under a given group 

of infinitesimal transformations of the dependent or independent variables that depend on 

                                                 
2 The English translation of Noether’s celebrated paper (Noether 1918) is found in Tavel 
(1971). Good accounts of the first theorem are found in, for example, Hill (1951), 
Trautman (1962) and Doughty (1990). 
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a number of constant parameters. Then for each such parameter there is a linear 

combination of the Euler expressions associated with each of the dependent variables 

(fields) that is equal to the divergence of the associated  ‘Noether current’. (Recall that 

the “Euler expression” is the variational derivative of the lagrangian density with respect 

to the chosen field variable; when it vanishes, as a result of applying Hamilton’s principle 

to that field, the Euler-Lagrange equations are said to hold for the field. The Noether 

current is a quantity which depends on, inter alia, the way the lagrangian density in turn 

depends on the derivatives of all the field variables.) If the mentioned linear combination 

of Euler expressions happens to vanish, a continuity equation is obtained of the form: 

 

          ∂µ jk
µ = 0      (6) 

 

where the index k in the current picks out one of the constant parameters involved in the 

symmetry transformation. From (6) a time-independent Noether ‘charge’ can finally be 

constructed by integration of   over a 3-dimensional spatial region with suitable 

boundary conditions.  

jk
0

 Let’s apply Noether’s first theorem to the electromagnetic action (1), using the 

invariance under rigid spacetime translations. If we assume that the Euler expressions 

associated with variations in the  vanish, i.e. if we assume Maxwell’s equations (2) 

hold, then the Noether condition reduces to: 

Aµ

 

             Tµν gµν
,σ −g = −2∂µ jσ

µ  ,    (7) 

 

where Tµν  is defined as in (4) and jν
µ  is the Noether current associated with SEM . This 

current, it turns out, takes the form 

 

 4



   
jσ

µ =
∂LEM

∂Aα ,µ

Aα ,σ −δσ
µ LEM

= −g F µα Aα ,σ − 1
4

δσ
µFλρFλρ 

 
 
 

    (8) 

 

and the form of Tµν  can be obtained directly from (1) and (4): 

 

           1
4

F g F FT F ρ αβ
νµν µρ µν αβ= − + .   (9) 

 

Now using again the field equations (2) it can be shown from (8) and (9) that  

 

            −gTσ
µ = jσ

µ + ∂α −gF µα Aσ( ).   (10) 

 

We thus see that the Noether current jσ
µ  equals −gTσ

µ  up to a divergence term. But we 

still have not obtained a conservation principle, because the left hand side of Noether’s 

equation (7) does not vanish. This is also seen by using (10) together with (7), obtaining 

 

    Tν ;µ
µ = 0.         (11) 

 

The failure of this formulation to correspond to a true conservation principle resides in 

the fact that it is the covariant, not the ordinary derivative that appears in the equation. 

One way to get rid of this impediment is to go to the special case of the flat Minkowski 

metric gµν = ηµν , in which there are global (inertial) coordinates such that ηµν ,λ = 0, or 

equivalently, such that partial and covariant derivatives coincide. The Noether condition 

(7) now reduces in these coordinate systems to the desired form 

 

        jν,µ
µ = Tν,µ

µ = 0.                (12) 
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 What does this example illustrate? First, that it is not enough that certain ‘global’ 

transformations of the dependent and/or independent variables are Noether symmetries—

i.e. ones under which the action is invariant up to a surface term—for there to be a 

conservation principle, or even a continuity equation. (An analogous situation holds for 

the ‘local’ symmetries like general covariance that feature in Noether’s second theorem, 

as we shall see.) What more is needed? Trautman3 long ago recognised the importance of 

this question and emphasised that unless all the Euler expressions vanish on the LHS of 

the Noether condition—a necessary but not sufficient condition for all the associated 

fields to be dynamical4— a conservation principle need not ensue. But he also 

emphasised the relevance of the possible existence of “motions” (isometries) in the 

spacetime in cases like ours where the metric field is non-dynamical. Recall that in the 

above example, the conservation principle holds perfectly well, and is only interesting, 

when the Euler expression associated with gµν —which is essentially Tµν —does not 

vanish. What secures the conservation principle, besides the vanishing of the remaining 

Euler expression associated with , is the condition that gAµ
µν  is an absolute background 

geometry of a special kind: it is flat. (Actually, conservation laws exist more generally 

whenever the spacetime has constant curvature.) 

 Secondly, it is the flatness of the background geometry that permits the Noether 

symmetries, which involve certain, special transformations between global coordinate 

systems, to have an active interpretation. It is not enough for the symmetries themselves 

to be 'global' in the other sense that they do not depend on the coordinates. We return to 

this point in section VIII. 

 Thirdly, the example exhibits a connection between the Noether current and the 

variationally-defined stress-energy tensor (4). This connection is a consequence of a 

generic structural feature of generally covariant theories of matter, which is captured in a 

Noether-type theorem that was first demonstrated by Felix Klein in 1918. Discussion of 

this issue will be found in section VI. 

                                                 
3 See Trautman (1962), sections 5-2 and especially 5-3. 
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 Fourthly and finally, let us not forget the 1917 lesson of E. Kretschmann5, which 

in this context is that the original Maxwell theory in Minkowski spacetime is no different 

from any theory in being susceptible to a generally covariant formulation. It is a 

commonplace that at the level of the field equations, the price of the move to general 

covariance in Minkowski spacetime is the explicit appearance of  previously implicit 

geometric structure (in particular the affine connection coefficients) in (2): 

 

   Fµν
;µ = Fµν

, µ + Γαµ
µ Fαν + Γαµ

ν Fµα = 0 .     (13) 

 

But  implementing a generally covariant formulation of the theory adds nothing new to its 

empirical content. As Ohanian and Ruffini write6, "We will obey this commandment 

[general covariance] for the best of all reasons—it costs us nothing to do so." And yet the 

fact that there is no cost is itself non-trivial. For, as we shall see in section IV, the move 

to general covariance immediately raises the spectre of underdetermination. It might 

seem odd that a mere reformulation of a well-behaved dynamical theory, such as 

Maxwell theory in Minkowski spacetime, should complicate the issue as to whether it has 

a well-defined initial value problem. Indeed, realisation that the complication in this case 

must be a mere artifact of the new generalised presentation, i.e. that it must be innocuous, 

forces one to make a crucial decision. One must accept either that a privileged class of 

global coordinate systems—the inertial systems— is required in the process of prediction, 

or one must embrace the ‘Leibniz equivalence’ of diffeomorphically related versions of 

the world.  

As for the first option, the inertial coordinate systems clearly are privileged in 

Minkowski spacetime, but the question is whether they are essential for the purposes of 

prediction in Maxwell theory. If they are, there is hardly any point to imposing general  

covariance. But it seems at any rate more natural to adopt the second option. One 

                                                                                                                                                  
4 An apparent example of a non-dynamical field that is nonetheless subject to Hamilton's 
principle is found in Sorkin (2001). 
5 An excellent, detailed analysis of Kretschmann's famous paper (Kretschmann 1917) is 
found in Rynasiewicz (1999); see also Norton (1993) in this connection. 
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amongst several possible reasons for this is that an analogous threat of 

underdetermination in the formulation of electromagnetism involving the 4-potential 

—which arises because the equations are covariant under local gauge transformations 

of the —is removed once it is realised that the empirical content of the theory is 

gauge-independent. (In section VI we will see a connection of sorts between the existence 

of gauge invariance of this sort and the requirement of general covariance for equations 

for vector matter fields.) Einstein’s struggle from 1913 to 1914 with the implications of 

the "hole argument"

Aµ

Aµ

7 in GR leads one to surmise that until that period he had not properly 

considered either the question as to whether special relativity has a generally covariant 

formulation, or the significance of the gauge structure of Maxwell theory.8 

 
III. General covariance vs. coordinate generality. 

 

We saw in the previous section that the invariant action (1) must be supplemented 

with a further term if gµν  is to play a valid dynamical role in the theory. Suppose we 

require that the ensuing equations of motion, both for gµν  and , are generally 

covariant. What kind of restriction on the action is this? 

Aµ

A brief look at the early history of the action principle in GR is enlightening in 

this respect. In 1915 D. Hilbert had proposed a pure gravitational action whose lagrangian 

density is the scalar curvature density R −g . This action is clearly invariant under 

arbitrary diffeomorphisms. But in 1915 and 1916, Einstein proposed two versions of what 

                                                                                                                                                  
6  See Ohanian and Ruffini (1994), p. 373. 
7 Recent discussions of the hole argument can be found in, e.g., Norton (1993), 
Rynasiewicz (1999), and Saunders (2001). 
8 It was Einstein’s belated insight that different spacetime structures related by 
diffeomorphisms are nothing other than different representations of the same reality that 
solved the undertermination problem in GR. Now, diffeomorphisms end up having a 
much more interesting creative role within the "best-matching" (Machian) approach to 
gravitational dynamics defended by Barbour. Here, they are essential in the process of 
comparing, not two representations of a given geometry, but two distinct geometries in 
order to capture what their intrinsic difference is. Further details can be found in Barbour 
(2001) and the works cited therein. 
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is sometimes called the "Γ -Γ " action. The first contained a lagrangian density of the 

form gµν Γµβ
α Γνα

β , and was defined only in relation to special coordinate systems for which 

−g =1

Γµβ
α Γνα

β − Γµν
β(

. (It is remarkable that despite his commitment to general covariance, for a 

period in 1915 and 1916 Einstein thought that restriction to such special coordinates 

would lead to a significant simplication of gravitational physics. We return to this issue in 

section VII.) The second version of the action contained the lagrangian density 

gµν Γαβ
β −) g , defined now for an arbitrary coordinate system (and reducing 

to the first version for the mentioned special coordinates, since when ∂σ −g( )= 0 then 

Γαβ
β = 0 ).9 What is interesting for our purposes is that the latter version of the Γ -Γ  action 

is clearly not invariant with respect to arbitrary coordinate transformations, although it 

leads to the same generally covariant field equations for gµν  as Hilbert's. 

 The fact that it is sufficient but not necessary that the first-order variation in the 

total action S strictly vanish under arbitrary infinitesimal diffeomorphisms in order for the 

Euler-Lagrange equations to be generally covariant is today no secret, but its 

acknowledgement in modern texts on GR is not guaranteed10. To see what is going on 

technically, recall that Hilbert's invariant action has a curious property. Despite being of 

second order (i.e. dependent on first and second derivatives of gµν ) it somehow gives rise 

to only second-order, rather than fourth-order, Euler-Lagrange field equations. The 

Einstein Γ -Γ  action, which is first-order, demonstrates how this magic occurs. 

Subtracting Einstein’s lagrangian density from Hilbert’s, one is left with a term that takes 

the form of a total divergence of a first-order functional of gµν . This term contains all the 

second-order quantities in the Hilbert action. But it is known from the calculus of 

variations that to any Lagrangian density can be added a total divergence without 

affecting the Euler-Lagrange equations. So the Hilbert and Einstein actions are 

                                                 
9 The abbreviated form of the action appeared in Einstein (1915, 1916a), and the full form 
in a footnote in Einstein (1916b). Note that Einstein’s connection coefficients were the 
negative of the usual Christoffel symbol. 
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effectively the same—as Einstein fully appreciated. (Actions of the Γ -Γ  kind, which are 

invariant under general coordinate transformations up to a surface term, are sometimes 

said to be “quasi-invariant”, or, perhaps regrettably, “covariant”. Interesting quasi-

invariant actions arise not just in GR of course; the standard action of the free Newtonian 

particle is quasi-invariant relative to Galilean boosts. It is noteworthy that Noether herself 

did not take into account such cases in her general treatment of the variational problem.)  

 Now in Lovelock (1969) we find the following result. In a spacetime of four or 

less dimensions, any strictly invariant, second-order gravitational action that gives rise to 

second-order field equations must be associated with a lagrangian density which is a 

linear combination of the Hilbert lagrangian density and a cosmological term: 

 

        Sgrav = aR g + b g( )Ω∫ d4 x            (14) 

 

where R is the curvature scalar. (Note that |g| appears rather than the usual -g, because 

Lovelock made no assumptions about the signature of gµν .) A strengthened version of 

this result was reported in Grigore (1992), concerning the class of first-order, quasi-

invariant gravitational actions. Grigore’s result, the proof of which is especially 

complicated, states that independently of the dimensionality of spacetime, the lagrangian 

density appearing in this action must take the form of a linear combination of the 1916 

Einstein Γ -Γ  lagrangian density11 and a cosmological term: 

 

      Sgrav = agµν Γµβ
α Γνα

β − Γµν
β Γαβ

β( ) g + b g{ }Ω∫ d4 x .       (15) 

 

The Lovelock-Grigore theorems are evidently highly non-trivial and they share 

the premiss that the Euler-Lagrange equations must be generally covariant. But it is worth 

                                                                                                                                                  
10 In Misner, Thorne and Wheeler (1973), p. 503, for instance, one reads that: “… the 
action integral … is a scalar invariant, a number, the value of which depends on the 
physics but not at all on the system of coordinates in which that physics is expressed”.  
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emphasising that the mere requirement that diffeomorphisms are Noether symmetries is 

far too weak to engender anything like these results. Indeed we have seen that both 

results explicitly require in addition that the Euler-Lagrange equations are no higher than 

second-order. We recall, however, that the generally covariant Brans-Dicke (1961) theory 

of gravitation also contains second order equations in gµν , but its second-order 

gravitational action is not Hilbert's. Consider, in the same spirit, the following two first-

order actions: 

 

S grav = gµρ∫ gνσ Bµ ;ν Bρ ;σ g d4 x ; ˜ S grav = gµα∫ Γνλ
µ − Γ νλ

µ( )gνβ gλγ Γβγ
α − Γ βγ

α( ) gd4 x      (16) 

 

where Bµ  is some vector field, Γνλ
µ  is the usual metric-compatible connection (Christoffel 

symbol), and Γ νλ
µ  is some distinct connection. These actions too are invariant under 

diffeomorphisms , so they might appear at first sight to satisfy the Grigore conditions, 

even though each is quite different from the Einstein 1916 action. Of course the reason 

that these three cases circumvent the Lovelock-Grigore results is that each introduces a 

geometric object field over and above gµν  (in the Brans-Dicke case a scalar field). Both 

Lovelock and Grigore are assuming that the gravitational lagrangian density is 

constructed out of the gµν  field and its derivatives, alone. This assumption is, like the 

previous one regarding the second-order nature of the field equations, quite independent 

of the requirement that the Euler-Lagrange field equations be generally covariant. 

 That the gravitational interaction in GR should be associated with the existence of 

a metric field with Lorentzian signature finds its motivation in all those empirical results 

that are related to the equivalence principle, as long as the trajectories of freely falling 

test particles are taken to correspond to time-like geodesics. The strong version of the 

principle presupposes that no more than the metric field is needed to account for the 

                                                                                                                                                  
11 Grigore does not mention Einstein’s 1916 lagrangian density, but his expression is 
equivalent to it. 
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gravitational potential.12 In particular, there is no need to introduce any geometrical 

objects into the gravitational action that are absolute, in the sense of not being subject to 

Hamilton's variational principle (i.e. in the sense of acting but not being acted upon). The 

significance of this point will be discussed in section VII below. In the meantime, the 

point we wish to reiterate—the point that Anderson (1964, 1966, 1967) and Trautman 

(1966) went to such pains to emphasise— is that general covariance, puny though it is as 

a constraint on the equations of motion per se, leads to highly non-trivial conditions when 

combined with further demands. The demand we are interested in here is consistency 

with the strong equivalence principle—or at any rate with the principle that nothing other 

than the dynamical gµν  field is necessary in order to account for gravity. (This last 

principle has itself occasionally been referred to in the mainstream literature, for better or 

for worse, as "the principle of general covariance".13 In order to avoid any confusion, we 

shall sometimes use the term "coordinate generality" when we particularly wish to 

emphasise that we mean general covariance in the weak, Kretschmann sense.)14 

. 

IV. Noether’s second theorem 
 
 

In the book based on his 1970s Florida lectures on GR15, P.A.M. Dirac 

emphasised a particular feature of the coupling of gravity with matter fields: that the 

Euler-Lagrange equations, obtained by varying the total action with respect to each of the 

distinct dynamical fields and using Hamilton’s stationarity principle, are not all 

                                                 
12 For a particularly good discussion of the strong equivalence principle, see Ehlers 
(1973). Note that the Brans-Dicke theory, which postulates a scalar field as well as gµν , 
satisfies the "medium-strong" or "semistrong" version of the equivalence principle. For a 
discussion of this distinction, see Rindler (1977), section 1.20. It should be stressed that 
in all these versions of the principle, it is being assumed that the geodesic deviation 
associated with tidal gravitational effects are curvature-related. In the so-called 
teleparallel approach to GR, it is not affine curvature that gives rise to geodesic deviation 
but torsion; for a brief review see Blagojevic (2002), pp 68-72. 
13 See Wald (1984), p. 57. 
14 Coordinate generality as we have defined it corresponds to what Saunders (2001) refers 
to as “diffeomorphism covariance”. 
15 Dirac (1996), section 29. 
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independent of one another. Dirac considered the specific case of a continuous 

distribution of charged matter, interacting with the electromagnetic field, with both 

‘fields’ coupled to gravity. He showed that the equations of motion of the elements of 

matter (incorporating the Lorentz force law) are not only derivable directly by varying the 

given action with respect to the appropriate matter variables. They are also a consequence 

of the Einstein field equations (obtained of course by varying with respect to gµν ) 

together with the covariant form of Maxwell’s equations (obtained by varying with 

respect to the electromagnetic four-potential ). Dirac realised that this interdependence 

of the equations of motion is a consequence of the fact that arbitrary diffeomorphisms are 

dynamical symmetries. (By “interdependence” we mean that not all the equations of 

motion are independent.) 

Aµ

 Dirac did not mention it, but the issue he was highlighting dates back to the 

investigations, between 1915 and 1918, involving David Hilbert, Felix Klein, Hermann 

Weyl and Emmy Noether, concerning the role of coordinate generality in the variational 

approach to geometric theories of gravitation of the sort suggested by Einstein.16 It was 

Hilbert in 1915 who apparently first realised that the interdependence of the Euler-

Lagrange equations was a consequence of general covariance—even in the absence of 

matter fields—, and Noether in 1918 who succeeded in treating this and related issues 

with rigour and (almost) complete generality. It is interesting that these considerations 

represent the flipside of the underdetermination problem that had caused Einstein such 

headaches before he arrived in late 1915 at the final triumphant form of his gravitational 

field equations—the “hole argument”  mentioned earlier. In a sense they are one and the 

same problem. If the Euler-Lagrange equations associated with the Hilbert gravitational 

action, say, were all independent, then one could determine uniquely for a given 

coordinate system (xσ )  the value of gµν (xσ ) throughout spacetime, given the values of 

the gµν  and their first derivatives on a given spacelike hypersurface. But consider a 

different coordinate system ( ′ x σ ) that happens to coincide with the first one only in the 

                                                 
16 A useful historical account is found in Rowe (1999), although we are not in agreement 
with some of the technical analysis therein.  
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vicinity of the 'initial value' hypersurface. Then because of the general covariance of the 

matter-free field equations, at an arbitrary point far from the hypersurface, g ′ µν ( ′ x σ )  

must be the same function of the variables ( ′ x σ ) as gµν (xσ ) is of (xσ ) . But this is 

inconsistent with the rules of tensor transformation. Thus, the equations are not all 

independent, and the predictions appear to be underdetermined.17 

φ

gµσ E(
;σ

+ ( ),σi∑

δL δφ i αi αi
µ

φ i

Noether’s second theorem—again in a generalised version— involves the 

determination of a necessary condition on the form of the lagrangian density L in order 

that the first-order variation of the action vanish (up to a possible surface term) under 

infinitesimal transformations of the dependent and/or independent variables which 

depend on arbitrary functions of the coordinates. We are interested specifically in the 

arbitrary (generally non-rigid) coordinate transformations (5). The resulting "Noether 

identity" demonstrates, not surprisingly, a dependence between the Euler expressions 

generated by these transformations. Let us suppose that the lagrangian density is some 

functional of the gµν  field and a collection of matter fields i  —not necessarily scalar 

fields but presumably components of tensor fields—and their derivatives. Then the 

Noether identity can be shown to take the following form: 

 

    −gµν
;α Eµν + aiα Ei

i∑ = 2 µα) biα
σ Ei   (17) 

 

where Eµν  and Ei  are the Euler expressions associated with (induced) variations in gµν  

and φi  respectively: Eµν = δL δgµν ; Ei = . The coefficients a   and b   are 

determined by the form of the Lie drag of the fields   (in a coordinate-dependent way). 

                                                 
17 The Euler-Lagrange equations will have unique solutions to the Cauchy initial value 
problem for an appropriate initial data hypersurface if they take the “normal form” 
defined by Cauchy and Kovalevskaya. However, it can easily be shown that the condition 
(“identity”) associated with Noether’s second theorem rules out the normal form holding 
for generally covariant equations. A useful discussion of the underdetermination issue 
and its connection with Noether’s second theorem is found in Anderson (1967), sections 
4-6, 4-7. See also  Brading and Brown (2001). 
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(i) Before we return to Dirac's example, let us first briefly rehearse the more-or-

less familiar application of Noether's second theorem to matter-free GR. Here the 

lagrangian density can be written either in the usual Hilbert form R −g , or in the 

Einstein Γ -Γ  form. In both cases we get the familiar Einstein tensor Gµν  appearing in the 

Euler expression: 

 

         Eµν = Gµν −g = Rµν −
1
2

Rgµν
 
 

 
 −g    (18) 

 

where Rµν  is the Ricci tensor. Then, using the fact that the metric is compatible with the 

connection gµν
;λ = 0( ), we get from (17) the (twice-) contracted Bianchi identity: 

 

   Gα;σ
σ = 0.     (19) 

 

There are two aspects of this result we wish to comment on. 

 First, the result does not depend on the form of the gravitational action, in the 

sense that in the absence of matter, metric compatibility gµν
;λ = 0( ) allows us to infer 

from (17) that Eα ;σ
σ = 0 , as long as removing the matter part from the total action does not 

affect its invariance properties. The point of mentioning this is that it sheds light on a 

question posed in 1973 by Ehlers18. The question was whether a "reasonable" alternative 

to the Einstein field equations could exist which would still take the generic form 

Vµν gρσ ,gρσ
,λ , gρσ

, λγ =( Tµν)  but in which Vα;σ
σ = 0  need not hold identically in gµν . (It is 

still being taken for granted that Tα ;σ
σ = 0  is a consequence of the matter equations of 

motion.) Noether's second theorem implies that this cannot be the case if the purely 

gravitational part of the action—for which V  is the Euler expression—is itself quasi-

invariant or invariant.  

µν

                                                 
18 Ehlers (1973), p. 42. 
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 Second, (19) is a mathematical identity in its own right: it is a consequence (for 

the metric-compatible connection) of the ordinary Bianchi identity. Its validity does not 

depend on any properties of the gravitational action!19 It may be interesting here to 

consider the case of the Palatini procedure of treating the connection and metric as 

independent in the Hilbert action: 

 

      R −g
Ω

d4 x = Γµν ,σ
σ − Γµσ ,ν

σ + Γλσ
σ Γµν

λ − Γλν
σ Γµσ

λ( )
Ω∫ gµν −g∫ d4 x .                  (20) 

 

It is well-known that metric compatibility gµν
;λ = 0( ) is now a consequence of the field 

equations generated by varying with respect to the connection. In this case, Noether's 

second theorem does not lead to the contracted Bianchi identity (19). We note that G. 

Svetlichny has recently shown that the Noether identities for the Palatini procedure take 

the covariant form: 

 

Rνλρ
µ Eµ

νλ − Eρ;νλ
νλ − gµν

;ρ Eµν − 2 Eµ ρg
µν( )

;ν
= 0         (21) 

 

where Rνλρ
µ is the Riemann tensor, Eµ

νλ  is the Euler expression defined with respect to 

variations of the connection µ
νλΓ , and Eµν  is defined as above. We see that if the 

connection is not varied independently we return to the special case of (17) in which the 

matter fields φi  vanish.20  

                                                 
19 We make this point in case Wald's claim that "the contracted Bianchi identity may be 
viewed as a consequence of the invariance of the Hilbert action under diffeomorphisms" 
(Wald 1984, p. 456) is taken too literally. 
20 In the same work, Svetlichny has also shown that in deriving metric compatibility 
gµν

;λ = 0( ) via the Palatini procedure, the usual assumption of symmetry for the 
connection (vanishing torsion) is not sufficient in the case of two-dimensional spacetime. 
Furthermore, if torsion does exist, for spacetimes with two or more dimensions, the field 
equations for the metric field are the usual Einstein ones, so that the spacetime objects 
characterising the torsion are uncoupled from the metric. See Svetlichny (2001). 
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 (ii) Let us return to the condition (17). Suppose that amongst the matter fields φi  

there is at least one scalar field ϕ . Because of the nature of the Lie drag of scalar fields, 

the b-coefficient associated with it in (17) vanishes. It follows that if the Euler 

expressions associated with all the remaining matter fields as well as gµν  vanish—i.e. if 

the equations of motion of all fields but ϕ  are assumed to hold—then (17) reduces to the 

form aϕα Eϕ =ϕ ,α Eϕ = 0 . Since the gradient of ϕ  is arbitrary at any spacetime point, the 

only solution is Eϕ = 0 , meaning that the equation of motion of the scalar field must also 

hold, if those for all the other fields do.  

 This simple result based on general covariance is reminiscent of the Dirac 

example mentioned at the beginning of this section. We should stress however that 

Dirac's continuous distribution of charged matter, whose equation of motion involves the 

Lorentz force law, is not represented by a scalar field. It is not clear to us whether Dirac's 

result can be given a similarly simple underpinning with the use of the general Noether 

condition (17). 

 
V. Noether's second theorem and the 'response equation'. 

 

 But Dirac himself was keen to further clarify the connection between the 

interdependence of the equations of motion and general covariance. To do so he 

proceeded, in his Florida lectures, to consider arbitrary matter fields constrained only by 

the requirement that their contribution to the total action is, like the (Einstein-Hilbert) 

gravitational action on its own, invariant under diffeomorphisms. Dirac claimed to show 

that in this case the covariant divergence of the symmetric stress-energy tensor Tµν , 

defined as above in terms of the variational derivative of the matter action, vanishes. 

(Since this relation Tν
µ

;µ = 0 determines the re-action of the metric field on its sources—

the possibility of which is secured by the non-linearity of the theory—it is sometimes 

called the 'response equation'.) It is on account of this relation, said Dirac, that the 

gravitational field equations are not all independent of the matter field equations. 
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 We find Dirac’s  derivation of Tν
µ

;µ = 0 hard to follow21, and so we will now 

sketch a reconstruction of it. The result is consistent with the standard account of 

"conservation" principles in GR,  but it is stronger than the usual textbook derivation of 

Tν ;µ
µ = 0 , as we shall see.  

We met in the previous section the general Noether condition (17) on the 

lagrangian density which depends on both gµν  and arbitrary matter fields φi , in order for 

the action to be invariant (up to a possible surface term) under arbitrary coordinate 

transformations leaving the bounding surface of integration unchanged. Rearranging (17), 

we get 

 

      ( ){ } ( ) ;
, ;

2 .i i
i ii

E a E b E g g Eσ σµ µ
α

ν
α α µασ σ

− = +∑ µν

,

        (22) 

 

Following Dirac, we further consider the Noether identities following from the (quasi-) 

invariance of the matter part of the action. We obtain, again after rearranging terms: 

 

    ( ){ } ( ) ;
, ;

2i i
i ii

E a E b N g g Nµ σµ µν
αα α µαµ σ

− = +∑ µν               (23) 

 

where  Nµν   is the Euler expression associated with the matter action in respect of 

variations in gµν . That is, Nµν = δLM δgµν = − −g 2( )Tµν , where LM  is the matter 

lagrangian density, and Tµν  is the stress-energy tensor (see above). 

 Metric compatibility gµν
;λ =( 0) allows us now to infer from (22) and (23) that  

 

                                                 
21 A reader of the relevant section (Dirac 1999, section 30, particularly p. 60) might be 
forgiven for thinking that the result is obtained without appeal to Hamilton’s principle, 
i.e. to any equations of motion! This would make it, in the modern parlance, a “strong” 
principle. Less importantly, but still significantly, it is also obtained without specifying 
the form of the gravitational action, although it seems to require non-trivial constraints on 
the matter fields. We leave it up to the reader to decide whether the proof we give below 
is what Dirac really had in mind. 
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     Eµα − Nµα{ }gσµ( )
;σ

= 0 .         (24) 

 

So we reach the desired result 

 

        Nα;σ
σ = Tα ;σ

σ = 0                (25) 

 

only when we assume the validity of the gravitational field equations Eµν = 0 . The salient 

difference between this argument and the usual derivation of the response equation 

Tα ;σ
σ = 0  in GR involving the Einstein field equations Gµν =κTµν  and the contracted 

Bianchi identities Gν; µ
µ = 0 ,22 is that the derivation here does not depend on the form of 

the action apart from the invariance properties (which now encompass quasi-  as well as 

strict invariance) of both the gravitational and matter-related parts.23 

 So we see that the combination of (a) what we might call the double invariance 

condition (namely, that both the gravitational and matter parts of the action are 

individually invariant or quasi-invariant) and (b) the validity of the gravitational field 

equations leads to the conclusion that the matter fields cannot be other than dynamical. 

(In some cases, the response equation implies, without further ado, the full equations of 

motion of the matter fields. This is so for perfect fluids and hence for dust. The somewhat 

more complicated situation for more general sources has been the subject of considerable 

study24; the details need not concern us here.) But this conclusion depends of course on 

the appearance of gµν   (and possibly its derivatives, if we overlook the minimal coupling 

requirement) in the matter part of the action. And again it is the requirement of invariance 

                                                 
22 It is remarkable that when he arrived at the field equations in 1915, Einstein was 
unaware of the contracted Bianchi identity and viewed Tα ;σ

σ = 0  as a constraint on the 
equations. See Pais (1982), p. 236. The suggestion made by Ehlers (see above and 
footnote 15) is then in the spirit of Einstein's 1915 interpretation of his field equations. 
23 The derivation above of the response equation is a special case of what we elsewhere 
call the Weyl strategy (Brading and Brown 2001). For a treatment of its origins in Weyl's 
1918 unified field theory, see Brading (2002). 
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or quasi-invariance that makes it at best difficult to construct this part purely out of the 

matter field variables—as Anderson stressed, the fact that "there are no free particles in 

general relativity" is tied up with general covariance.25  

 

VI. General Covariance and the Boundary theorem. 

 

We turn our attention now to another theorem in lagrangian dynamics whose roots go 

back to Noether herself, and in particular to the contemporary work of F. Klein (1918), 

who was exploring the general covariance properties of GR with Noether’s assistance. In 

its generalised form we call this little-known result the Boundary theorem.26 

Both Noether’s second theorem and the Boundary theorem apply to any action 

invariant up to a surface term under a local transformation of the dependent and/or 

independent variables, where, to repeat, by local transformations we mean 

transformations that depend on arbitrary functions of space and time. The general 

solution to this variational problem is the vanishing of a certain integral, where that 

integral consists of two terms, a ‘bulk’ or interior term (depending on values of the fields 

in the interior of the region of integration), and a boundary or surface term. Since these 

functions are arbitrary, we must allow for the possibility of their vanishing on the 

boundary. This means that the interior and surface contributions to the general solution 

must vanish independently, and the vanishing of the interior contribution leads to 

Noether’s second theorem. The Boundary theorem follows from the vanishing of the 

boundary contribution, and it leads to  three identities. 

Now let us imagine again an action that contains a pure gravitational part 

(depending on gµν  and its derivatives) and a matter part (depending on both gµν  and the 

                                                                                                                                                  
24 Excellent surveys of this issue are found in Ehlers (1973) and Torretti (1983), section 
5.8. 
25 Anderson (1967), p. 438. 
26 This or related results have appeared in various places in the literature since 1918, 
apparently largely independently. We draw special attention to Utiyama (1956, 1959), 
containing (we believe) the first general treatment . A detailed discussion of the 
Boundary theorem is found in Brading and Brown (2001). 
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fields, and their derivatives), the 'double invariance' condition of the previous section  

being assumed to hold. The tensor Tµν  is as usual defined in terms of the variational 

derivative of the matter lagrangian density in respect of gµν . The second identity of the 

Boundary theorem, arising out of the quasi-invariance of the matter action alone, takes 

the form 

= jα
σ + bi

σ

µν

E

µνσ

∂g
= 0

 

     −gTα
σ + biα

σ Ei − ∂ρ bα
µνσ ∂L

∂gµν
, ρ

α
∂L

∂φ i,ρ

 
 
 

  

 
 
 

  
,  (27) 

 

where jα
σ  is the Noether current familiar from Noether’s first theorem (associated with 

the "canonical" stress-energy tensor), and as above the two b-coefficients depend on the 

form of the Lie drags of the φi  and g  fields. We see immediately that when the 

equations of motion for all the matter fields are satisfied ( i = 0), whatever those fields 

may be, −gTα
σ  differs from jα

σ  by a divergence term. Now from the third identity of the 

Boundary theorem, which is an antisymmetrisation condition, we can derive: 

 

     ∂σ ∂ρ bα
∂L

µν
,ρ

+ biα
σ ∂L

∂φi ,ρ

 
 
 

  

 
 
 

  
,        (28) 

 

so the divergence of jα
σ  vanishes if and only if the divergence of −gTα

σ  does. (Of 

course, in the case of flat spacetime and inertial coordinates, we may replace " −gTα
σ " 

by "Tα
σ " in the last sentence.) Returning to the particular case of SEM  discussed in section 

II, we recover (10) from (27), using Maxwell equations (2) and the fact that the second b-

coefficient takes the form δµ
σ Aα . 

 There is another remarkable consequence of the third (antisymmetrisation)  

identity related to the Boundary theorem which was effectively pointed out by Hilbert in 
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191527 and noted more recently in Barbashov and Nesterenko (1983). Suppose the 

lagrangian density LM  for matter is a functional of a vector field Bµ , its first derivatives 

and gµν , and suppose furthermore that the matter-related part of the action is strictly 

invariant under arbitrary diffeomorphisms. Then the third identity yields 

 

      
∂LM

∂Bµ,ν

+
∂LM

∂Bν ,µ

= 0 .    (29) 

 

This implies that the derivatives of Bµ  can only appear in LM  in the combination 

Bµ,ν − Bν,µ . Barbashov and Nesterenko stressed that this requirement is natural given the 

requirement of general covariance and the fact that the tensor Bµ,ν − Bν,µ  is unaffected 

when the derivatives therein are replaced by covariant ones. But suppose that we 

introduce the further requirement that LM  be a functional only of gµν  and the first 

derivatives of Bµ , and not of Bµ . Then the covariance of the matter equations of motion 

under the local gauge transformation Bµ → Bµ
′ = Bµ + ∂µθ , for an arbitrary scalar field 

θ , is assured. Under certain conditions then, we see the emergence of a connection 

between general covariance and local gauge symmetry. Indeed, the simplest invariant 

action consistent with these conditions is arguably (1)! 

 

VII. Einstein's struggle with general covariance 

 

Einstein's own struggle with general covariance had two main components. The first was 

overcoming the threat of underdetermination which arose in the hole argument—an 

episode well-rehearsed in the historical and philosophical literature. We will say no more 

about it except to mention, a little later, that its solution seems to have provided for 

Einstein not just the removal of a conceptual obstacle related to general covariance but a 

                                                 
27 Hilbert (1915). In this connection, see the useful discussion in Sauer (1999), section 
3.3. 

 22



positive, extra motivation for the principle. The second component was overcoming the 

challenge of Kretschmann, and specifically the vacuity charge. It is well-known that 

Einstein (1918) addressed this issue, and argued that there is good reason why general 

covariance had proved to have "considerable heuristic force" in his own work on 

gravitation. This reason has to do, once again, with an interpretation of the principle that 

transcends Kretschmann's concerns. The principle for Einstein, which he reiterated 

decades later in his Autobiographical Notes28, was not just that a theory should have a 

coordinate general formulation, but that it be such that this formulation is the “simplest 

and most transparent” one available to it.  

 There has been debate in the literature as to precisely what Einstein meant here.29 

When he proceeds to cite the case of Newtonian mechanics and gravitation as being ruled 

out “practically if not theoretically” by this principle, it seems that the damage is being 

caused in the theory by the absolute nature of the flat affine structure of spacetime as well 

as of the metric structure of both space and time, all of which allows for significant 

simplification of the dynamical description when restricted to global inertial coordinate 

systems. Was then Einstein essentially ruling out the existence of absolute objects—

entities which act on other objects but which are not acted back on—of a kind that would 

open up the possibility of  preferred coordinate systems relative to which some or all the 

laws of physics would take an especially simple form? Explicit rejection of absolute 

objects would certainly become a feature of his 1920s writings.30 If this was the core of 

Einstein’s response to Kretschmann in 1918, it was essentially an anticipation of the view 

of Anderson and Trautman that has already been referred to in this paper, and that was 

also defended in the texts by Misner, Thorne and Wheeler, by Wald and by Ohanian and 

                                                 
28 Einstein (1970), p. 69. 
29 For a helpful discussion see Norton (1993), sections 5.2 and especially 5.5. 
30 See particularly Einstein (1924), pp. 15-16 of the English translation. For further 
discussion of Einstein’s commitment to the action-reaction principle, see Anandan and 
Brown (1995). Ohanian and Ruffini (1994), p. 374, make a useful distinction between 
absolute entities which vary under coordinate transformations and those that don't—it 
being only the former that are ruled out. 
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Ruffini.31 (J. Barbour, who extolls Einstein's reply to Kretschmann32, has made a 

compelling case for the prima facie startling claim that Newtonian theory itself is, when 

formulated generally covariantly, several distinct theories, depending on the constant 

numerical values assigned to the energy and angular momentum of the entire universe. 

These different theories have differing degrees of simplicity, the greatest simplification 

by far being obtained when the mentioned constants are zero. It is however far from clear 

to us whether even this version of Newtonian theory —whose conceptual merits were 

illuminated so brilliantly by Barbour and Bertotti (1982)33—would have satisfied 

Einstein’s 1918 principle above.) 

But there may have been more to Einstein’s reasoning than this. Is it conceivable 

that a violation of the simplicity and transparency criterion might also be caused by 

something other than the existence of absolute objects? Einstein appears to have thought 

so until late 1916. 

 We mentioned in section III that the first abbreviated version of the Γ -Γ  action 

that Einstein proposed for gravity was defined relative to those special coordinate 

systems for which −g =1. In his important 1916 review paper, Einstein promised an 

“important simplification of the laws of nature” produced by the choice of these 

coordinates, and towards the end of the paper he considered that he had indeed achieved a 

“considerable simplification of the formulae and calculations”, and all in a manner 

consistent with the principle of general covariance.34 Had Einstein stuck to this line, he 

could not have consistently answered Kretschmann in the way that he did in 1918. But he 

did not stick to it. In November 1916, Einstein wrote to Weyl saying he had come to the 

view that no restrictions on the choice of coordinates should be used in the action 

principle approach to GR.35 The reasons he gave were ease of calculation and the 

transparency of the connection between general covariance and the conservation laws in 

                                                 
31 See Misner, Thorne and Wheeler (1973), section 12.9; Wald (1984) p. 57; Ohanian and 
Ruffini (1994), section 7.1. 
32 See Barbour (2001). 
33 For  a recent philosophical analysis of this paper, see Pooley and Brown (2002). 
34 See Einstein (1916a), pp. 130, 156 of the English translation. 
35 See Einstein (1998). 
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GR. This switch of thinking on Einstein's part deserves more analysis36, as it suggests that 

the criteria of simplicity and transparency that he used in his 1918 reply to Kretschmann 

may have been more subtle than is commonly thought.37   

 

VIII. General covariance as a gauge-type symmetry 

 

 Our final remarks, however, are stimulated by other aspects of Einstein's 

treatment of the principle of general covariance in the mentioned 1916 paper. First, any 

reader must be struck by the multiplicity of reasons that Einstein adduces in favour of the 

principle. He cites Mach's principle and the weak equivalence principle in section 2,  the 

non-operational significance of coordinate differences for rotating frames as well as the 

coordinate-independence of physical happenings (the 'point-coincidence' argument 

familiar from his treatment of the hole problem) in section 3—all in justification of 

general covariance. Einstein's instinctive feel for the importance of the principle was still 

clearly outstripping his ability to articulate its fundamental motivation. Secondly, despite 

the multiplicity of arguments, it appears that Einstein is consistently viewing the principle 

as an “extension” of the relativity principle shared (as he correctly says) between classical 

mechanics and the special theory of relativity (SR). This view in particular has attracted 

considerable criticism—even, later, from Einstein himself.38 

 One such critic was Roberto Torretti, who in his monumental Relativity and 

Geometry stressed that there are “considerable differences of meaning and motivation” 

                                                 
36 Some useful remarks concerning Einstein’s use of coordinates satisfying the above 
determinant condition are found in Janssen (1997), pp. li-lii. 
37 Einstein’s initial flirtation with privileged, simplifying coordinate systems in GR is a 
precursor of V. Fock's defence, forty years later, of the special status of what he called 
“harmonic” coordinate systems, i.e. those satisfying the de Donder relations 

−ggµν( )
, µ

= 0  and relative to which the Einstein field equations take the “reduced” 

form (c.f. Wald 1984, p. 261). Details of Fock’s argument and its critical reception are 
found in Norton 1993, section 9.1. This issue deserves more discussion in the 
philosophical literature. 
38 Torretti cites a draft letter of Einstein to Sommerfeld of 1926 to this effect (Torretti 
1983, note 4 , p. 316). 

 25



separating general covariance from the relativity principle.  Torretti argued that the 

former can not be a constraint on theories in the manner of Lorentz covariance, on a 

number of technical grounds. But his principle argument was that the inertial coordinate 

systems involved in SR have a “fixed metrical meaning” and the invariance group of 

transformations is “a representation of the group of motions of the underlying flat 

spacetime”. The structure of the set of spacetime coordinate transformations involved in 

general covariance, on the other hand,  

betokens only the differentiable structure of the spacetime manifold, but has nothing 
to say about the spacetime metric or its group of motions (which if the Riemann 
tensor varies freely from point to point, is probably none other than the trivial group, 
consisting of the identity alone).39 
 
Now it is surely a sign of the confusing nature of this whole issue that Anderson used 

essentially the same point to argue in favour of the view that general covariance is a 

symmetry in the same mould as Lorentz covariance! In SR, Lorentz transformations are 

'symmetries' for Anderson in the sense that they preserve the absolute spacetime 

structure—the Minkowski metric. As the absolute structure is removed in the transition to 

GR, the symmetry group defined in this way now coincides with the covariance group.40 

(This accounts for Anderson referring to the principle as "general invariance", rather than 

"general covariance"41 ; it has of course gone beyond mere coordinate generality, as we 

have seen.) Again, what is going on here is essentially the same as what part of Einstein's 

reply to Kretschmann may have been: just as the relativity principle prohibits the 

existence of a proper subset of the inertial frames in SR relative to which the fundamental 

laws of the non-gravitational interactions take an especially simple form, so the absence 

of absolute objects in GR prohibits the existence of privileged simplifying coordinate 

systems (locally inertial or otherwise) for gravitational physics. 

 But our instincts are more with Torretti. Our reason this time is not connected 

with the Noether theorems. If anything, these treat Lorentz transformations in SR and 

                                                 
39 Torretti (1983), p. 154. 
40 See Anderson (1967), p. 87. 
41 See Anderson (1967) section 10-3. Anderson’s terminology is also used by Trautman 
(1966) and Ohanian and Ruffini (1994), p. 374.  
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diffeomorphisms in GR essentially on a par: as Noether symmetries of a given action. But 

before we go on, a word of clarification is in order. 

We should not be comparing general covariance in GR with the relativity 

principle, say, in SR with its flat spacetime. We should be comparing general covariance 

with the familiar symmetries that emerge in the special relativistic limit of GR, i.e. the 

local structure of GR that is perfectly consistent with the existence of curvature. In this 

case, we immediately see a difference between the ‘symmetries’ under discussion. 

General covariance is an exact symmetry of gravitational physics; the traditional 

spacetime symmetries like the relativity principle are not. They hold approximately: more 

specifically they are concerned with the form of the laws of the non-gravitational 

interactions appropriate to ‘small’ regions of spacetime in which curvature can be 

neglected. But this is not the distinction we are after. 

What in our view is lacking in many of the discussions of general covariance is 

recognition of a fact that does not appear directly in the relevant mathematical analysis. 

The essential difference between gauge-type symmetries (of which general covariance is 

an instance) and the usual continuous symmetries associated with the tangent space 

structure of spacetime (such as  the relativity principle and the homogeneity of space and 

time) is that only the latter have an active interpretation in terms of isolated subsystems 

of the universe.  

 We hasten to clarify that the literature on the hole argument is full of reference to 

“active” diffeomorphisms, where it is the arrangement of the fields on the spacetime 

manifold that is altered, rather than the assignment of coordinate labels to events. Indeed 

the hole argument can hardly be formulated without such a notion. But the fundamental 

lesson of the hole argument is that this notion of “active” is purely mathematical.42 What 

we have in mind, in contrast, is in the spirit of the Galilean ship experiment, where a 

laboratory is physically boosted in relation to some fixed part of the environment. So one 

essential aspect of this experiment is that not everything in the universe is being 

‘dragged’ by the transformation. The result is a 'selective' transformation—but one that 
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can be seen, and which may in principle affect the form of the laws of non-gravitational 

physics pertaining to processes occurring in the laboratory. The other important aspect is 

that the relativity principle etc. involve rigid transformations, which when the spacetime 

region of interest is approximately flat are actively implementable in practice.  

The case for viewing the traditional symmetries as tied up with the possibility of 

rigidly translating, rotating, boosting etc. isolated ‘laboratories’ —proper subsystems of 

the universe—containing further subsystems undergoing mutual interaction has been 

made in detail elsewhere43 so we will not elaborate further here. 
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