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Abstract 
 
A re-evaluation of the concept of vacuum in quantum electrodynamics is presented, focusing on the 
vacuum of the quantized electromagnetic field. In contrast to the ‘nothingness’ associated to the idea of 
classical vacuum, subtle aspects are found in relation to the vacuum of the quantized electromagnetic 
field both at theoretical and experimental levels. These are not the usually called vacuum effects. The 
view defended here is that the so-called vacuum effects are not due to the ground state of the quantized 
electromagnetic field.  
 
 
1 Introduction 
 

There is a widespread idea that we can associate with the concept of quantum 
vacuum important measurable consequences, even, like in the case of the commonly 
accepted interpretation of the Casimir effect, clear dynamical effects. To better address 
the problematic of what vacuum concept we really have in quantum electrodynamics, I 
start in section 2 with a brief presentation of the quantized electromagnetic field. The 
quantized electromagnetic field’s vacuum or ground state is the state with the lowest 
energy, corresponding to no (transverse) photons present.  

Due to the quantization, in all the quantum electromagnetic field states 
corresponding to a defined number of quanta, the variance of the electric and magnetic 
fields is not zero.1 This situation also occurs in the ground state (or vacuum state). This 
has measurable consequences. This is in clear contrast to the classical counterpart where 
the vacuum state corresponds to a null electromagnetic field in some region of space. 
Also, there are more formal aspects differentiating the classical and quantum vacuum. 
In section 3, to clarify things, first I address the quantum electrodynamical description 
of the interaction of radiation and matter. In particular I consider the problem of the 
divergence in the perturbative calculations within quantum electrodynamics as first 
noticed by Freeman Dyson in 1951. We will see that this result has implications in 
relation to the definition of the concept of vacuum in quantum electrodynamics. 

In this section, I will focus on the properties of the ground state of the quantized 
electromagnetic field. Following Peter Milloni I will make a case for an interpretation of 
the Casimir effect that does not rely on zero-point energy fluctuations. This does not 
mean that the vacuum of the quantized electromagnetic field can be disposed of. 
Contrary to the classical case where it is possible to consider charged matter in an 
empty region of space – where there is no external electromagnetic field but only the 

                                                
1 In section 3.3 I will make the case for an interpretation of the variance in terms of a statistical spread 
(distribution) in the results of independent measurements made on identically prepared systems. This 
interpretation is made within the broader framework of the ’ensemble’ interpretation of quantum 
mechanics. 
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field of the charged matter itself –, in the case of quantized fields this is no longer 
possible. For the formal consistency of the theory we must consider that a charged 
particle is always interacting with an external quantized electromagnetic field even if 
just in its ground state when considering the charged particle in a empty region of space. 
In this way, together with charged matter, we must always consider at least an ‘empty-
space’ or ‘space-vacuum’ field in its vacuum or ground state with its associated non-
zero variance, which can be related to experimental results. In fact using the balanced 
homodyne detection method it is possible to obtain experimental results corresponding 
to the non-vanishing variance of the vacuum state.  

It seems then that we cannot recover the ‘nothingness’ of the classical notion, but, 
nevertheless, the physical properties we can really associate with the vacuum concept 
are much more subtle than usually thought, and do not present any experimental 
particularities that are not found in all quantum states corresponding to a defined 
number of quanta: the non-vanishing variance is a common characteristic of all these 
states, not only the ground state. In this way, in this paper, I will be making a case for a 
statistically empirically demonstrable notion of the vacuum in quantum electrodynamics 
independent of dynamical fluctuations.  
 
2 The quantization of the electromagnetic field 
 

In simple terms, the quantization of the electromagnetic field can be seen as follows. 
In the case of an electromagnetic field in a region free of charges, The Maxwell-Lorentz 
equations are: 
 

0 E                          (2.1) 
 

tc
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EB                (2.2) 

 
0 B               (2.3) 

 

tc
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
BE               (2.4) 

 
From these equations we see that the electric and magnetic fields (strenghts) can be 

defined in terms of a scalar and vector potentials (x, t) and A(x, t):  
 

AB                (2.5) 
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This enables to write down Maxwell-Lorentz equations for free space in terms of the 

scalar and vector potentials.  In a four-vector notation we have that the Maxwell-
Lorentz equations become 
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The potentials are not uniquely determined, since it is possible to leave the fields 
unaltered when doing the following transformation  
 


 




x
(x)AA'A              (2.8) 

 
(where (x) is an arbitrary function). This means the theory is invariant regarding what 
is called a gauge transformation (of the second kind). The Maxwell-Lorentz equations 
in free space can be simplified in a manifestly covariant way by taking the potential to 
satisfy the so-called Lorentz condition A(x) = 0. In this case the Maxwell-Lorentz 
equations reduce to the wave equation A = 0 (the d’Alembert equation in the free 
charge case). 

In the quantization of the electromagnetic field we take initially the components of 
the four-vector-potential to be independent, that is, we disregard the Lorentz condition. 
We then make a Fourier expansion  (in terms of a complete set of solutions of the wave 
equation) of the free electromagnetic field (as given by the four-vector potential) (x): 
 
(x) = (x) + –(x)            (2.9) 
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For each k there are four independent mutually orthogonal unit vector or 

‘polarizations’. It is useful to choose the vectors as given by k) 
andrk) rk)withr = 1, 2, 3, where 1k)and 2k) are mutually 
orthogonal unit vector also orthogonal to k, and 3k) is a unit vector longitudinal to 
k.With this choice, the vector-potential dependent on 1k)and 2k) refers to 
transversely polarized light; the vector-potential dependent on 3k) refers to a 
longitudinal polarization; and the vector-potential dependent on k) refers to a so-
called scalar or ‘time-like’ polarization (Bogoliubov and Shirkov 1959, 55-57; Källén 
1972, 19). 

Up till now we are still at the classical realm. By imposing equal time canonical 
commutations on the vector potentials, the Fourier expansion coefficients become 
operators satisfying the commutation relations 
 
[ar(k), a*

s(k’)] =  rrskk          (2.12) 
 
[ar(k), as(k’)] = [a*

r(k), a*
s(k’)] = 0         (2.13) 

 
where r = 1 for r =1, 2, 3 and 0 = – 1 for r = 0. Following the Gupta-Bluerer approach 
(Schweber 1961, 245-251), a*

r(k) are taken to be creation operators and ar(k) as 
absorption operators, even if in the case r = 0 their role seems to be interchanged due to 
the minus signal sign. This would mean that A0(x) is an anti-Hermitian operator. In the 
Gupta-Bluerer method this problem thus not arise due to the use of an indefinite metric. 
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The number operators are defined as Nr(k) = ra*
r(k)ar(k), implying  that the total 

energy operator is given by  
 

))aa H r
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With this choice of absorption and creation operators, and corresponding definition 

of number and energy operators there is a consistent interpretation of these operators, 
because we do not have any negative number of photons or energy appearing (due to the 
scalar photons). However there would be a problem of having states of the quantized 
field with negative norm. Still we must recall that we are taking the creation and 
absorption operators to be independent, and that cannot be the case, since we must take 
into account the Lorentz condition. In the Gupta-Bluerer method it is made use of a 
Lorentz condition ((x) = 0) which is less stringent than its classical counterpart. 
This is necessary to have no contradiction with the commutation relations. The 
subsidiary condition selects the physically realizable states, all with a positive-defined 
norm, in which we have [a3(k) – a0(k)] = 0. This implies that the physical states have 
an admixture of longitudinal and scalar photons. As a result of this constraint regarding 
longitudinal and scalar photons, all observable quantities of the field in free space will 
depend only on the transverse photons. For example the expectation value of the energy 
is given by 

 


))aa H r
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1r

kk
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This does not mean that the longitudinal and scalar photos are irrelevant. In reality 

they cannot be seen as independent dynamical degrees of freedom of the field as the 
transverse part is. When considering for example the electron-electron scattering the 
longitudinal and scalar photons represent (in a covariant way) the Coulomb interaction 
between the electrons (Landau and Lifshitz 1971, 124-125; Björken and Drell 1965, 78-
81). 

With this approach it is guaranteed that the Hamiltonian (energy) operator cannot 
have negative values. This means that we have a lower bound to the energy of the 
quantized electromagnetic field. Since in the admissible physical states the contribution 
to the total energy and momentum of the field due to the time-like and longitudinal 
photons cancels, the ground state corresponds to a state with the lowest contribution 
from the transverse photons, that is, it is a state that does not contain any transverse 
photons. This does not impose any restriction on the number of time-like and 
longitudinal photons in this ground state (besides the one provided by the subsidiary 
condition that implies there is an equal number of them in the allowed states). However 
states with different admixtures of time-like and longitudinal photons correspond to a 
particular choice within the Lorentz gauge, since the Lorentz condition does not specify 
the potential uniquely (Mandl and Shaw 1984, 89). This means that there really is no 
physical difference between ‘different’ ground states with different admixtures of non-
transverse photons (Schweber 1961, 251; Källén 1972, 42). In this way, we may simply 
characterize the ground state (without choosing a particular Lorentz gauge) by requiring 
the occupation number for the transverse photons to be zero (Jauch and Rohrlich 1976, 
47). The classical counterpart of this ground state is simply the space vacuum: a region 
of space without any electromagnetic field.  
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3 From the quantum electrodynamical vacuum to the quantum electromagnetic 
vacuum 
 

The more basic and fundamental elements of quantum electrodynamics are already 
present in Paul Dirac’s 1927 non-relativistic treatment of the interaction between a 
quantized radiation field and an atomic system (Dirac 1927). In it, initially, the 
electromagnetic field and matter are described by classical Hamiltonians. A further term 
gives the interaction between the field and matter. All this can be developed within a 
correspondence approach with classical mechanics and field theory, that is, this type of 
Hamiltonian can be put to use in the Maxwell-Lorentz classical electrodynamics or a 
classical theory of fields in interaction (Barut 1964, 138; Bogoliubov and Shirkov 1959, 
84). Then a second ‘layer’ is put on top of the classical description through which the 
quantization of the individual fields is achieved. That is, the generalized coordinates 
(and conjugate momenta) of each field are submitted to commutation or 
anticommutation relations, and the terms in the Hamiltonian for each field become 
operators, as is also the case for the term describing the interaction between the fields. 
But it is important to notice that the fields are quantized as free non-interacting fields, 
each by itself. Then we are into the game. For practical purposes Dirac makes use of 
perturbation theory to treat the interaction of radiation and matter.2 So it was then, and it 
still is now.  
 
3.1 The Divergence of the S-matrix series expansion and the concept of vacuum 
state 

 
For the purpose of this paper it will not be necessary to address the quantum 

electrodynamical treatment of the electromagnetic field in interaction with the electron-
positron field. It will suffice to consider the quantum electrodynamical description of 
the interaction of the electromagnetic field with a linear dipole oscillator. However there 
is one result that is fundamental for the ideas to be proposed. In quantum 
electrodynamics, the majority of its applications are made using the S-matrix formalism. 
This formalism is particularly tailor-made for the description of scattering processes but 
is also applicable to bound-state problems (Veltman 1994, 62-67). I follow Dyson’s 
presentation of a typical scattering process as described within quantum 
electrodynamics: 

 
The free particles which are specified by a state A in the remote past, converge and interact, and other 
free particles emerge or are created in the interaction and finally constitute the state B in the remote 
future. (Dyson 1952a, 81) 
 
Dyson calls attention to the fact that:  
 

                                                
2 The use of perturbative methods has a long history in celestial mechanics. One example is the 
development of an analytical perturbation theory for the three-body problem: the Sun-Earth-Moon system 
(Hoskin and Taton 1995, 89-107). From the planets, perturbative methods went to the planetary models of 
atoms, being a calculational tool present in the so-called old quantum theory (Darrigol 1992, 129 and 
171). Also it became fundamental in the creation of matrix mechanics, as it was from the perturbative 
study of the anharmonic oscillator that Werner Heisenberg developed his quantum-theoretical approach 
(Darrigol 1992, 266-267; Paul 2007, 4-5). Soon after, Heisenberg and Max Born put together a 
perturbation theory within the formalism of quantum mechanics recently developed (van der Waerden 
1967, 43-50; see also Lacki 1998). 
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The unperturbed states A and B are supposed to be states of free particles without interaction and are 
therefore represented by constant state-vector A and B in the interaction representation. The actual 
initial and final states in a scattering problem will consist of particles each having a self-field with which 
it continues to interact even in the remote future and past, hence A and B do not accurately represent the 
initial and final states. (Dyson 1952a, 81) 
 
Dyson presents what can be considered an operational justification for using the states 
of free particles (usually referred to as bare states) in the calculations, by taking into 
account how scattering experiments are really done (see also Falkenburg 2007, 129-
131): 
 
In an actual scattering experiment the particles in state B are observed in counters of photographic plates 
or cloud-chambers and the time of their arrival is not measured precisely. Therefore it is convenient to use 
for B not the state-function B(t) but a state function B which is by definition the state-function 
describing a set of bare particles without radiation interaction [(that is without self-interaction with its 
own field)], the bare particles having the same momenta, and spins as the real particles in state B. (Dyson 
1952a, 94) 
 
The transition amplitude of the scattering process is given by SAB = (*

BSA), where S is 
the so-called S-matrix.   

One of the major achievements of Dyson in the development of quantum 
electrodynamics was showing that the perturbative expansion of the S-matrix is 
renormalizable to all orders. Quantum electrodynamics (QED) had tremendous 
problems of divergent integrals that made impossible but a few lower order calculations 
(Pais 1986, 374-376). This problem was circumvented by the procedure of mass and 
charge renormalization. Dyson showed, in a paper published in 1949, that the 
renormalization procedure could be applied to all orders of the perturbative expansion 
of the S-matrix in power-series of e2, where e is the electric charge (Schweber 1994, 
527-544). Dyson even considered that “all QED was the perturbative series” (quoted in 
Schweber 1994, 565). This view by Dyson has been vindicated by Damiano Anselmi, 
how wrote that 

 
To describe the interaction between quanta it is compulsory to proceed perturbatively. 

Perturbation theory is the iterative procedure by which the elementary interactions are composed into 
complex interactions. Perturbation theory is not just a tool for making calculations: it is the very same 
formulation of quantum field theory. In classical mechanics well-defined differential equations describe 
the evolution of a system subject to forces of various types. Solving those equations is in general very 
difficult. Therefore we approximate. In quantum mechanics the situation is similar, given that the forces 
are anyway external, therefore classical. Still one has well-defined equations, which can be treated with 
the method of approximations when the exact solutions are not available. In quantum field theory, 
however, writing the equations themselves is difficult, not only solving them. So . . . we approximate. 

Approximate what? One understands the idea of approximation in a relative sense, when the exact 
solution is unaccessible, but can be approached with arbitrary precision. In quantum field theory the idea 
of approximation becomes absolute: we just approximate, we do not approximate something. (Anselmi 
2003, 311) 

 
The possible problem with this view is that in the summer of 1951, soon after he 
presented his S-matrix formulation of quantum electrodynamics, Dyson came out with a 
physical argument that strongly suggested that, after all, “all the power-series 
expansions currently in use in quantum electrodynamics are divergent after the 
renormalization of mass and charge” (Dyson 1952b, 631). According to Dyson the 
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series could at best be an asymptotic expansion. This situation led Dyson to consider 
that “you didn’t really have a theory” (quoted in Schewber 1994, 565).3  

I consider that this drastic conclusion by Dyson can be avoided, by following 
Dyson’s own intuition regarding quantum electrodynamics. The fact we are facing in 
quantum electrodynamics is that it is not possible to treat radiation and matter as one 
closed system. This results from the type of equations we have in the theory: 

 
these equations [(the coupled Maxwell-Lorentz and Dirac equations)] are non-linear. And so there is no 
possibility of finding the general commutation rules of the field operators in closed form. We cannot find 
any solution of the field equations, except for the solutions which are obtained as formal power series 
expansions in the coefficient e which multiplies the non-linear interaction terms. It is thus a basic 
limitation of the theory, that it is in its nature a perturbation theory starting from the non-interacting fields 
as an unperturbed system. Even to write down the general commutation laws of the fields, it is necessary 
to use perturbation theory of this kind. (Dyson 1952a, 79) 
 
In my view, this indicates that Anselmi’s argument is still valid when accepting that the 
power series expansion of the S-matrix, can “only be an asymptotic series” (Schweber 
1994, 565). The type of equations of the theory imposes the need for a perturbative 
approach. Now, the fact that we only have an asymptotic series means that there is no 
‘exact’ solution (even if just as a power series). This gives a stronger argument for 
Anselmi’s view that “in quantum field theory the idea of approximation becomes 
absolute: we just approximate, we do not approximate something” (Anselmi 2003, 311), 
and that “perturbation theory is not just a tool for making calculations: it is the very 
same formulation of quantum field theory” (Anselmi 2003, 311). It is because of this, 
that, contrary to Dyson’s conclusion, I still feel that quantum electrodynamics is the 
perturbative series, as Dyson originally defended (and as Anselmi defends).4  

This de facto situation has immediate consequences regarding the interpretation of 
the mathematical formalism of the theory. The situation we are facing is that even if 
looking solely into the mathematical formalism of the theory we can talk about the 
Hilbert space of the physical states of the full Hamiltonian of the two fields and their 
interaction, in quantum electrodynamics we cannot build these interacting states. The 
interacting states would be constructed (by an iteration procedure) from the Fock states 
of each field (Schweber 1961, 322). Since the S-matrix series expansion is divergent we 
know that we cannot obtain these interacting states (Scharf 1995, 314-318). This 
implies in particular that there is no physical meaning within quantum electrodynamics 
to the ground state of the interacting fields. It is usually thought that the coupled fields 
vacuum state can be “formally expanded as a superposition of 0” (Redhead 1982, 86; 
Schweber 1961, 655), where 0 are the vacuum states of the free fields. This is not 
possible to do in quantum electrodynamics. However, this does not imply that the 
concept of vacuum is not relevant in the theory, as a closer look at the quantized 
electromagnetic field reveals (I will not consider here the ground state of the electron-
positron field). 
 
3.2 The Casimir effect and formal aspects related to the vacuum state 
                                                
3 Even if strict mathematical proof of the divergence of the S-matrix does not exist, further strong 
evidence in favour of Dyson’s claim has been given in the last decades. (Aramaki 1989, 91-92; West, 
2000, 180-181; Jentschura, 2004, 86-112; Caliceti et al. 2007, 5-6) 
4 This brings the philosophical question of what to make of a ‘theory’ that seems to provide only an 
approximate scheme for calculations. As Meinard Kuhlmann remarked (in a more broader context), 
quantum electrodynamics seems more like “a set of formal strategies and mathematical tools than a 
closed theory” (Kuhlmann 2006). This is an important question, but it would go beyond the scope of this 
paper to address it here. 
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Contrary to the classical case, the ground state of the (free) quantized 

electromagnetic field is presented as having quite a few very ‘visible’ physical effects, 
in particular the so-called Casimir effect. In the usual interpretation of the Casimir effect 
the ground state of the electromagnetic field could have a dynamical effect on 
macroscopic conducing plates located face to face in the form of an attractive force 
between the plates. Another so-called (electromagnetic) vacuum effect would be the 
spontaneous emission of radiation by atoms in an excited state without radiation present 
(Aitchison 1985, 342-345; Milonni 1994, 79-111). A different physical interpretation 
can be given to these (and other) so-called vacuum effects without explicit resort to the 
ground state of the field (e.g. Milonni 1994, 115-138; Zinkernagel 1998, 48-60). I will 
look only into the case of the Casimir effect. 

When considering the quantization of the electromagnetic field (or even a simple 
harmonic oscillator) the canonical quantization procedure does not enforce a specific 
choice of the ordering of the creation and absorption operators appearing in the field 
operators, energy operators, momentum operators, etc. Following Dirac (1958, 84-88) 
we may recall that in classical mechanics a dynamical system can be described in terms 
of generalized coordinates qj and momenta pj. Let u and v be two dynamical variable 
functions of qj and pj. The Poisson bracket of these two functions is 
 

  
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uvu,             (3.1) 

 
In the canonical quantization procedure a quantum equivalent of the Poisson bracket 

is introduced 
 
uv – vu = iћ[u, v]             (3.2) 
 
where u and v are now taken to be operators. This method is the one used in the case of 
the quantization of the electromagnetic field. Looking into the case of the quantization 
of one field mode (mathematically equivalent to the quantization of the harmonic 
oscillator), in terms of creation (a*) and absorption (a) operators, we have 
 

 aaaa
2

** 



              (3.3) 

 
Since [a, a*] = 1, we can write the previous expression as 
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2
1aa*              (3.4) 

 
In here we see a term ћ corresponding to the so-called zero-point energy of the 

field mode. This would imply that the electromagnetic field when in its vacuum state 
would have an energy different from zero (formally infinite). This zero-point energy can 
be dealt with by recalling (with Dirac) that energy measurements are made in relation to 
the ground state energy, which enable us to set it to zero: 
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A different way of addressing this question is to take away any physical meaning to 

it and to see the term ћ as resulting simply from an imprecision in the quantization 
procedure (e.g. Teller 1995, 129-131). In fact at a classical level there is no difference 
between ћ(aa* + a*a) and ћa*a. This means that there is an ambiguity in the 
ordering of the operators, since depending on our starting classical expression we obtain 
a different quantum Hamiltonian. In this way we can consider the zero-point energy as 
an artifact of an improper application of the quantization rule, and use the so-called 
normal ordering in which we have the operator H = ћa*a, where there is no zero-point 
energy (this is the ordering adopted in the previous section). Contrary to this view, 
Hendrik Casimir presented in 1948 a calculation sustaining that there were dynamical 
consequences of this zero-point energy (Casimir 1948). 

In the quantization of the electromagnetic field it is (for practical purposes) 
considered the space to be divided in ‘boxes’ with a volume V = L3, and to impose on 
the field the periodic boundary conditions A (x + L, y + L, z + L, t) = A (x, y, z, t). This 
implies (since A  ~ exp ikr) that (kx, ky, kz) = /L (l, m, n), where l, m, n are integers. 
It is considered that “this artificial periodic boundary condition will be of no physical 
consequences if L is very large compared with any physical dimensions of interest” 
(Milonni 1994, 44). If we take there to be two (infinite) parallel conducting plates 
located, say, at z = 0 and Z = d, Casimir made the heuristic move of considering that 
this changed the set of modes describing the quantized electromagnetic field who would 
not be anymore simply given by free-space plane-wave modes. This would mean that 
matter would affect radiation by simply changing its quantization boundary conditions. 
According to Casimir since we are considering perfect conductors, the tangential 
component of the electric field must vanish on the walls of the conductors. This implies 
that  
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In this way the allowed frequencies will be 
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The zero-point energy is given by 
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(in the summation a factor of 2 must be considered due to the polarization, when l, m, n  
 0). The difference of the zero-point energy of the field with and without plates U(d) = 
E(d) – E() is taken to be the potential energy of the system plates + vacuum field. That 
is U(d) is now taken to be the energy required to bring the plates from a large distance 
to d. From the previous expression it is derived the expression for the force per unit area 
F(d) =  – U’(d) between the plates: 
 



 10

4

2

240d
cF(d) 

            (3.10) 

 
This is, we might say, the conventional derivation of the Casimir effect as a vacuum 

effect. However, as Peter W. Milloni and Mei-Li Shih(1992) have shown, it is possible 
to arrive at the Casimir force between the plates without having to consider any vacuum 
field in the calculation. This is done simply by adopting the normal ordering of the 
operators and by taking explicitly into account that the conducting plates are not 
mathematical boundary conditions but must be considered as constituted by matter. We 
will consider two semi-infinite dielectric slabs with dielectric constants 1 and 2 at a 
distance d separated by a layer with dielectric constant 3. To derive the Casimir result it 
will be considered the limiting case of a perfect conductor. There is an induced dipole 
moment in each atom of the slabs induced by source fields. In the Milonni and Shih 
calculation the approximation was made that “each dipole interacts, in effect, only with 
its own field; this field is modified from its free-space form by the presence of all the 
other dipoles” (Milonni and Shih 1992, 4245). The energy of this system (of two 
dielectric slabs separated by a medium) is given by  
 

  t),(t),(rd
2
1E 3 rErP          (3.11) 

 
where P(r, t) is the polarization due to the dipoles and E(r, t) is the electric field 
present. The electric field can be written as E(r, t) = E0(r, t) + Es(r, t), where E0(r, t) is 
the source-free (or vacuum) part of the electric field and Es(r, t) is the part due to the 
dipoles present. By using a normal ordering of the field operators we have 
 

   t), t),rd
2
1E s
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in which we have only source fields. Milonni and Shih then calculated the change in the 
energy due to an infinitesimal change d in d, and from this the force between the 
dielectric slabs. The general expression is 
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I will not go into the details of this expression, but simply consider what force this 

approach predicts in the same case as the one considered by Casimir. We have empty 
space between the slabs, which means that 3 = 1; also we must consider the case of two 
perfectly conducting plates, which implies taking 1,2  . Under these conditions the 
previous expression reduces to 
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            (3.14) 

 
which is the Casimir force. In this way, Milonni and Shih shown that “the Casimir 
effect can be understood in terms of source fields in conventional quantum 
electrodynamics, with no explicit reference to the zero-point energy” (Milonni and Shih 
1992, 4241). 

A different view was given by Simon Saunders, who wrote: “I do not think we can 
do without appeal to the zero-point energy in explaining the Casimir effect” (Saunders 
2002, 23). Saunders develops his argumentation without taking into account Milonni’s 
work. He mentions for example Lifshitz macroscopic theory, concluding that “Lifshitz’s 
methods are perfectly consistent with the interpretation of the effect in terms of vacuum 
fluctuations” (Saunders 2002, 19). This is highly doubtful. As we have seen, according 
to Milonni & Shih, the Casimir force can “be calculated in terms of source fields, with 
no explicit reference to zero-point-field energy” (Milonni and Shih 1992, 4241). Also 
they show that “the general Lifshitz expression, and therefore the Casimir force in 
particular, may be derived in terms of sources alone in conventional QED” (Milonni 
and Shih 1992, 4243).  

Even when agreeing with Milonni’s interpretation, this does not mean that the 
ground state of the quantized electromagnetic field becomes a sort of ‘nothingness’ 
without any physical relevance, as it is the case when we consider the classical 
electromagnetic vacuum. That is not the case. As Milonni has remarked, “the vacuum 
field is absolutely necessary in the quantum theory of radiation, if only to preserve 
commutation relations and the formal consistency of the theory” (Milonni 1994, 138). 
In the classical case we can conceive a sole dipole in empty space. In this case “the only 
field acting on the dipole is its own radiation reaction field” (Milonni 1994, 52). The 
difference from the classical case is that when considering the quantized 
electromagnetic field “there is an ‘external’ field, namely, the source-free or vacuum 
field” (Milonni 1994, 52). Milonni shows that, in contrast to the classical case, the 
ground state of the free electromagnetic field cannot be disregarded as soon as a charged 
body (which can be seen as a source of electromagnetic field) is considered, as it is 
necessary to take into account the source-free field variables for the preservation of the 
commutation relations (Milonni 1994, 53).  

Let us look at this in more detail. The Hamiltonian for the dipole oscillator in 
interaction with the quantized electromagnetic field can be written as 
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where HF is the field Hamiltonian, x is the operator corresponding to the classical 
coordinate of the oscillator, p is the operator for the dipole momentum, and  is the 
frequency of oscillation of the dipole. In the Heisenberg representation we have (in the 
electric dipole approximation): 
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(where ak and a*

k are respectively the photon annihilation and creation operators for 
the field mode (k, ), ek are the polarization vectors, and E is the electric field 
operator). In this way the Heisenberg equation for the operator x can be written as: 
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where we have 
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According to Milonni, “ E0(t) is the free or zero-point field acting on the dipole. It is 

the homogeneous solution of the Maxwell-Lorentz equation for the field acting on the 
dipole, i.e. the solution, at the position of the dipole, of the wave equation [2 – c–2 
2/t2]E = 0 satisfied by the field in the (source-free) vacuum. For this reason E0(t) is 
often referred to as the vacuum field … ERR(t) is the source field, the field generated by 
the dipole and  acting on the dipole” (Milonni 1994, 52). 

Considering equation 3.18 that can be written as 
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(where E0(t) is, as mentioned,  the vacuum electric field operator and  = 2e2/3mc3), and 
the corresponding equation for the momentum operator p, we have the following 
commutation relation (in the z-direction) between the two operators 
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as is expected according to general quantum mechanics rules. Now if we had not 
considered the vacuum field E0(t), then in the operator equation for x, “the operator x(t) 
would be exponentially damped, and commutators like [z(t), pz(t)] would approach zero 
for t >> (

)–1” (Milonni, 1994, p. 53). Because of this Milonni concludes that “the 
free field is in fact necessary for the formal consistency of the theory” (Milonni 1994, 
53). 

This result and Milonni’s derivation of the Casimir effect in the context of standard 
quantum electrodynamics has been questioned. In Rugh, Zinkernagel and Cao (1999, 
129) two critical remarks are made on Milonni’s (and his collaborators) approach. One 
point is that Milonni’s approach regarding the derivation of the Casimir effect as due 



 13

only to source fields is not conclusive, because in higher orders of perturbative 
calculations we will have contributions to the vacuum energy from the so-called 
vacuum blob diagrams. But this is the case only when considering the ‘interacting’ 
vacuum (e.g. Rugh and Zinkernagel 2002, 675), it has nothing to do with the quantized 
source-free electromagnetic field even if in its vacuum or ground state. The other point, 
also made in Rugh and Zinkernagel (2002, 683, footnote 50), is that Milonni uses the 
so-called fluctuation-dissipation theorem for linearly dissipative systems to arrive at his 
result that the source-free field is necessary for consistency reasons (i.e. the preservation 
of commutation relations), and this is not a sound approach. That is not the case, even if 
Milonni presents his results as an example of the theorem (e.g. Milonni 1988, 106). The 
need for the source-free field for the preservation of the commutation relations follows 
simply from the formalism of quantum electrodynamics (Milonni 1984, 342; 
Milonni1988, 106; Milonni 1994, 50-54). That is, even if the interaction of radiation 
and matter can be treated only with approximate procedures, in all cases, we must have 
simultaneously with a system consisting in charged matter a different system 
corresponding to the quantized free electromagnetic field, even if only in its ground 
state (when considering charged matter in empty space).  
 
3.3 The physical meaning of variance  
 

We can consider that the necessity of taking into account the ground state of the 
quantized electromagnetic field goes beyond its more formal aspects. As is well known, 
in the ground state of the quantized electromagnetic field the expectation value of the 
electric and magnetic fields vanishes (that is 00000  ΒΕ ), but not its variance 

since 00 2Ε and 00 2Β are non-zero in the ground state. What to make of this 
result? There is a tendency in the literature to refer to the non-vanishing variance as 
‘fluctuations’ of the vacuum state (Sakurai 1967, 32-33; Aitchison 1985, 246-247). For 
example, according to I. J. R. Aitchison “the vacuum can now be thought of as a state in 
which the fields are all in their ground states, but executing random fluctuations (even at 
T = 0) about their zero average values” (Aitchison 1985, 347). We must take some care 
in adopting this type of terminology. As has been mentioned, we cannot associate the 
non-vanishing variance of the ground state of the quantized electromagnetic field to 
some sort of fluctuation in time: “there is no time evolution of this vacuum state” (Rugh 
and Zinkernagel 2002, 673). I will defend here that the mathematical result of a non-
vanishing variance of the quantized electromagnetic field can be given an interpretation 
that has a clear experimental meaning. 

According to the interpretation of quantum mechanics adopted here, the non-zero 
variance (or its square root, the standard deviation) is determined by considering a large 
(ideally infinite) number of measurements performed in similarly prepared systems 
(Isham 1995, 80-81; Peres 1995, 24-26; Ballentine 1998, 225-227, Falkenburg 2007, 
205-207). According to what Christopher J. Isham called the minimal interpretation of 
quantum theory: 
 
Quantum theory is viewed as a scheme for predicting the probabilistic distribution of the outcomes of 
measurements made on suitably prepared copies of a system. 
 
The probabilities are interpreted in a statistical way as referring to the relative frequencies with which 
various results are obtained if the measurements are repeated a sufficiently large number of times. (Isham 
1995, 80) 
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Asher Peres’s view is that 
 
A quantum system is a useful abstraction … defined by an equivalent class of preparations. For example 
there are many equivalent macroscopic procedures for producing what we call a photon, or a free 
hydrogen atom, etc. The equivalence of different preparation procedures should be verifiable by suitable 
tests…. While quantum systems are somewhat elusive, quantum states can be given a clear operational 
definition, based on the notion of test. Consider a given preparation and a set of tests … if these tests are 
performed many times, after identical preparations, we find that the statistical distribution of outcomes of 
each test tends to a limit.  Each outcome has a definite probability. We can then define a state as follows: 
A state is characterized by the probabilities of the various outcomes of every conceivable test…. Before 
we examine concrete examples, the notion of probability should be clarified. It means the following. We 
imagine that the test is performed an infinite number of times, on an infinite number of replicas of our 
quantum system, all identically prepared. This infinite set of experiments is called a statistical ensemble. 
… In this statistical ensemble, the occurrence of event A has relative frequency P{A}; it is this relative 
frequency which is called probability. (Peres 1995, 24-25) 
 
Under this view we cannot associate for example the Schrödinger wave function to one 
sole system. We must consider a large number of identical ‘quantum systems’ prepared 
in the same way and then subjected to the same measurement procedure. From the wave 
function we can calculate the relative frequencies (probabilities) of particular outcomes 
of experiments, e.g. of scattering events of a given type.  

As is well known the wave packet collapse is a central aspect of the so-called 
Copenhagen interpretation of quantum mechanics. In his “Who invented the 
‘Copenhagen interpretation’? A study in mythology”, Don Howard (2004) calls the 
attention to the fact that Bohr’s interpretation, “makes no mention of wave packet 
collapse or any of the other silliness that follows therefrom, such as a privileged role for 
the subjective consciousness of the observer” (Howard 2004, 669). This view had 
already been anticipated by Paul Teller in his “The projection postulate and Bohr’s 
interpretation of quantum mechanics”. Teller starts with the question: “Why does Bohr 
nowhere discuss the projection postulate?” (Teller 1980, 201). His answer is: 

 
My position is very simply that Bohr gives the state function a statistical interpretation and a statistical 
interpretation has no need of the projection postulate [i.e. the collapse of the wave function during 
measurement]. (Teller 1980, 211) 

 
Teller’s view is that to Bohr 

 
The state function must be taken as a purely symbolic device for calculating the statistics of classically or 
commonly described experimental outcomes in collections of phenomena grouped by shared 
specifications of experimental conditions. (Teller 1980, 206) 

 
Accordingly, 

 
On Bohr’s view the state function describes not one individual case, but a whole ensemble of cases with a 
common preparation characterized in the language of classical physics or daily discourse. (Teller 1980, 
213) 
 
I agree with Teller’s reading or ‘interpretation’ of Bohr. This means that what we 
nowadays call the statistical or ensemble interpretation (i.e. Isham’s minimal 
interpretation) was basically the interpretation of Bohr, or at least we can see it as an 
interpretation compatible with what we know about Bohr’s views on quantum theory, 
i.e. a Bohrian interpretation. It is this Bohrian interpretation that is being followed in 
this work. 
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Now we can address the meaning of having 00 2Ε   0. We must consider a 
particular experimental setup that will enable us to make measurements on a quantum 
electromagnetic field. We can consider successive measurements made on a field, 
which can be taken to be in the same (initial) state at each successive measurement, or 
we may think in terms of different identical experimental setups being used at the same 
time to make measurements on identically prepared fields (in this case all in the vacuum 
state). Then on each of a large number of similarly prepared systems a measurement is 
made on the electric field. According to the interpretation of the theory, there will be a 
statistical spread (distribution) in the results of independent measurements according to 
a standard deviation of 00 2Ε  from the value corresponding to no field. That is, it 
will be measured sometimes an electric field different from zero even if the 
electromagnetic field is in its ground state. Is this again a formal aspect of the theory, 
even if a formal aspect of its interpretation? Or are there any real experiments where a 
measurement is made on the vacuum field and results are obtained corresponding to a 
statistical distribution of results deviating from ‘nothingness’?  
 
3.4 Experimental results on the vacuum state using the balanced homodyne 
detection method 

 
 
In experiments using the method known as balanced homodyne detection it is 

possible to determine what can be interpreted as quadrature fluctuations of the vacuum 
or simply vacuum noise that corresponds to the non-zero standard deviation predicted 
by the theory (Leonhardt 1997, 23, 47 and 84-88).   

In the balanced homodyne method, the signal (under study) is sent into one of the 
ports of a beam splitter. In the present case since we are making a measurement of the 
vacuum electromagnetic field, the port is left unused, that is, there is no external field 
present. The other port receives a strong coherent laser field (called the local oscillator), 
which will provide the phase reference for measuring the quadrature statistics of the 
signal field, which in this case is the vacuum.  

We can write the quantum field operator Ex for a single-mode field (assumed to be 
polarized along the x-direction) as 
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where  is the frequency of the mode and k is the wave number related to the frequency 
according to k =  /c. Defining the so-called quadrature operators 
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the field operator can be written as 
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t))sin(pt)cos(sin(kz)(qε2E 0x          (3.27) 
 

The balanced homodyne detection makes it possible to make a measurement of 
these quadrature components of a quantum field. 

The beam splitter will combine the incoming fields. Taking, for simplicity, each 
incoming field to be described by the mode operators a and b, the output modes are  
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2

1c            (3.28) 

 

 iab
2

1d            (3.29) 

 
After this optical mixing of the signal and the local oscillator, each beam is directed 

towards a photodetector, which enables a measurement of the field intensities. The 
photodetectors responds to the intensity of the incident light, generating the 
photocurrents Ic = cc*  and Id = dd* . By assuming that the photocurrents are 
proportional to the photon numbers nc and nd of the beams striking each detector, we 
have that the difference I = Ic – Id is proportional to the difference photon number  
 


  q2nnn 21

dc           (3.30) 
 
where 2

 is the intensity of the coherent field (local oscillator), and q is a quadrature 
component of the vacuum field (signal). By changing the phase of the coherent field it 
is possible to measure an arbitrary quadrature of the signal field. In particular if the 
phase was initially chosen so to measure q by changing the phase by /2 it is possible to 
measure p; in this way a balanced homodyne detector enables to measure the quadrature 
components defining the quantum state of the field (Gerry and Knight 2005, 167-168). 
We have then an experimental procedure that makes possible the experimental study of 
quantum states of light, like the vacuum state.  

Let us see in more detail what the experiment tells us about the vacuum state. First 
we must recall the interpretation of the quantum formalism. If we use the balanced 
homodyne detector to make one measurement of a quadrature component that by itself 
does not afford us any valuable result: 

 
It must be distinguished between an individual (single) and an ensemble measurement (i.e. in principle, 
an infinitely large number of repeated measurements on identically prepared objects). Performing a single 
measurement on the object, a totally unpredictable value is observed in general. (Vogel et al. 2001, 225) 

 
In this way we need an experimental procedure affordig us to obtain the relative rate at 
which a particular value for a quadrature component q is observed, i.e. the probability 
distribution pr(q, ), where  is the relative phase between signal and local oscillator. 
Thus, making a large number of measurements of the observable qyields pr(q, ), i.e. 
the probability distribution of its eigenvalues. In general the experimental procedure 
goes as follows: 
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The phase  can be easily varied using a piezo-electric translator. To measure quadrature 
distributions, we may fix the phase angle  and perform a series of homodyne measurements at this 
particular phase to build up a quadrature histogram pr(q, ). Then the [local oscillator] phase should be 
changed in order to repeat the procedure at a new phase, and so on [, in a way that we obtain results for a 
set of different phase angles between 0 and ]. (Leonhardt 1997, 99) 
 
The probability distribution pr(q, ) is equal to q)(U)U(q *  , where  is the 
density operator (which provides the most general description of a quantum state), and 
U() = exp(–in) is the phase-shifting operator (where n is the photon number operator). 
From the experimentally obtained probability distribution pr(q, ), it is possible to 
reconstruct the so-called Wigner function W(q, p), which is closely related to the 
density operator. In reality both can be seen as “one-to-one representations of the 
quantum state” (Leonhardt 1997, 40). The interesting part comes now. In the case of the 
vacuum field (like in all others), we have a good agreement between the experimentally 
reconstructed Wigner function and the theoretical Wigner function (Leonhardt 1997, 
46-47). In particular, if we consider the quadrature wave function of the vacuum state 
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the measured quadrature probability distribution 2

0 q  “is approximately Gaussian 
and already follows the theoretical expectation” (Leonhardt 1997, 23).  

In general there is a good agreement between the theoretical predictions for several 
quantum states of light (e.g. single-photon Fock states and squeezed states) and the 
experimental results (e.g. Breitenbach et al. 1997; Bertet et al. 2002). This gives 
assurance that the results obtained in the case of the vacuum state can be taken to be a 
property of the vacuum state and not as resulting from some other physical origin, for 
example, from the material of the photodetectors. I mention this because in these 
experiments we are considering a high intensity field that is treated, by correspondence 
arguments, as a classical field that interferes with the vacuum field, producing two 
different beams. As I said, each beam is directed to a photodetector. Ideally each of the 
two photodetectors will produce a photocurrent that is proportional to the number of 
photons of the beams striking each one. It would seem that we are detecting 
individuated photons due to the vacuum field, which would imply that the 
photodetectors are receiving momentum and energy from the vacuum. However we 
must recall that what is being detected are the beams resulting from the interference of 
(what can be considered) a classical field and the vacuum field. The possible ‘photons’ 
from the vacuum are not ‘differentiated’ from the ‘photons’ from the classical field. We 
must take into account the usual identification of a classical field with a quantum 
coherent field with a large expectation value of the photon number operator. The 
coherent state does not have a definite number of photons. In fact it can be defined by 
an infinite expansion in terms of photon number states, that is, by taking into account 
photon states corresponding to an infinite number of photons.  Due care is needed in the 
physical interpretation of this situation, in particular in what concerns the possibility of 
detection of photons in the ground state, which I consider not to be possible (and 
theoretically is nonsense), and this makes the usual quantum theory of the 
photodetectors based on the idea of photon absorption problematic (Vogel et al. 2001, 
169-190). 
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More than questioning the experimental results regarding the vacuum 
electromagnetic field, this indicates a need to revise the theoretical treatment of the 
interaction of photodetectors with the quantized electromagnetic free field. However, I 
believe that there is no final and conclusive approach to address this problem. In 
quantum electrodynamics we face an ‘intrinsic’ limitation in the description of the 
interaction of radiation and matter (since we are only able to make approximate 
calculations) that lead me to consider that we cannot go beyond a ‘model’ level of 
description of the interaction between the quantized electromagnetic field and the 
photodetectors. However, this problem is well beyond the scope of the present paper.  

As I said, what gives me confidence on the interpretation of the experimental results 
for the quantum electromagnetic vacuum is the coherence between the interpretation of 

00 2Ε and the experimental results obtained for different quantum states of light, 
including the vacuum state. 
 
 
 
 
4 Further remarks  

 
In this work I am more interested in a tentative clarification (or at least in a 

contribution towards it) of the concept of vacuum in quantum electrodynamics than in 
possible philosophical ramifications of the view presented. The lengthy, but necessary, 
technical discussions presented show that there are intricate aspects that make it very 
difficult to have any strong metaphysical commitment regarding the concept of vacuum 
(e.g. of an ontological nature); more than explore possible metaphysical consequences 
of the conceptual analysis being presented, the intention here is to provide a ‘frame’ 
within which to make clear what we should not attribute to the concept of vacuum and 
what we might attribute to it even if with some reservations. 

We have seen that there are subtle theoretical and experimental aspects related to the 
ground state of the quantized electromagnetic field, which represent a clear departure 
from the ‘nothingness’ of the classical concept of vacuum. However, we must be careful 
not to ascribe too much to the ground state of the quantized field. One difference with 
the classical theory is that when considering a charged particle we must consider it to be 
at least in ‘interaction’ with the ground state of the quantized electromagnetic field. In a 
certain sense the quantized radiation and matter need a more integrated description. As 
Milonni stressed, “without [the source-free field] the whole quantum theory of a 
charged particle in vacuum becomes inconsistent” (Milonni 1994, 125).  

As we have seen the other aspect in which the quantum concept of vacuum has a 
clear departure from the classical ‘nothingness’ is at the experimental level. We see 
experimental results that for their interpretation it is necessary to take into account the 
concept of quantum vacuum. The view defended here is that we can deflate the so-
called experimental vacuum effects to a simple aspect common to any n-photon state of 
the field: a non-vanishing variance of the electric and magnetic fields.5 That is, there are 

                                                
5 We must recall that this variance is related with measurements made on identically prepared systems not 
one individual system. As mentioned, there is a tendency in the literature to refer to the non-vanishing 
variance as ‘fluctuations’ of the vacuum state (Sakurai 1967, 32-33; Aitchison 1985, 346-247). This view 
is misleading since the non-zero variance of the ground state of the quantized electromagnetic field 
cannot be related to a fluctuation in time: “there is no time evolution of this vacuum state” (Rugh and 
Zinkernagel 2002, 673). Considering measurements made on equally prepared systems, they will show 
fluctuations in the results of the successive observations – according to the interpretation of the theory 
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no dynamical effects of the vacuum state. In this way the formal considerations 
(pointing to the need of an external ‘independent’ quantized electromagnetic field even 
if in its ground state) and the experimental results (giving observational meaning to the 
mathematical expression of the variance even in the case of the vacuum state) are 
consistent with each other and point to a concept of vacuum that has theoretical and 
experimental relevance. However the only experimental results we can attribute with 
relative security to the vacuum state relate to a non-vanishing variance and not some 
spectacular dynamical effects. This implies that we cannot attribute any feature to the 
vacuum state that makes it ‘special’ when compared with other states of the quantized 
electromagnetic field. In this way whatever metaphysical ramifications might there be 
related to the concept of vacuum they do not go beyond the ones we might endorse in 
relation to any other state of the quantized electromagnetic field, which is not an 
unexpected result since the quantized electromagnetic field is a more fundamental 
concept than the particular state it might be in. Looking from this perspective, if it was 
the case that the vacuum state appeared simply as an artifact of the theory (not being 
possible to give an observational meaning to its variance) this would create an awkward 
situation regarding the concept of quantum field. We would be in a situation in which 
the physical-mathematical structure of the theory would be inconsistent with the 
experimental results. On one side, for example a one photon state of the quantized 
electromagnetic field would have experimental significance (and we could relate the 
variance to observed outcomes of measurements made on the electromagnetic field in 
this state) while on the other side, another state of the field, the ground state, would be 
an artifact (and in this case the variance would be a physically meaningless 
mathematical expression). That is not the case.  
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