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Abstract

Gauge theories are theories that are invariant under a characteristic group of �gauge� trans-

formations. General relativity is invariant under transformations of the diffeomorphism group.

This has prompted many philosophers and physicists to treat general relativity as a gauge theory,

and diffeomorphisms as gauge transformations. I argue that this approach is misguided.

The theories of three of the four fundamental interactions of nature are �gauge� theories. A

central feature of such theories is their invariance under a group of local transformations, i.e.,

transformations which may vary from spacetime point to spacetime point. The characteristic group

of these �gauge� transformations is called the �gauge group.�

The theory of the fourth interaction, gravity, is general relativity. General relativity has its

own invariance group, the diffeomorphism group. Insofar as one understands �gauge theory� to

mean a theory in which �the physics� (more on the ambiguity of this term later) is invariant

under a certain group of transformations, one might be tempted to construe general relativity as

a gauge theory.1 Just such a construal Þgures in recent work of Belot (1996) and Belot & Earman

(1999a,b), who follow many (but not all) physicists in treating the diffeomorphism group as a gauge

group, and who draw implications for the �hole argument.�2 In this paper, I show that general

relativity is not a gauge theory at all, in the speciÞc sense that �gauge theory� has in elementary

particle physics. This issue is of crucial importance to attempts to quantize general relativity,

because in quantum theory, the generators of gauge transformations are emphatically not treated

as observables, while the generators of spatiotemporal (e.g., Lorentz) transformations are in fact

the canonical observables. Thus the discussion in this paper sheds light on the origin of some of the

deep and longstanding difficulties in quantum gravity, including the �problem of time�, a familiar

form of which arises from treating the parametrized time-evolution of canonical general relativity

as a gauge transformation.3

∗Thanks to Arthur Fine, Chris Isham, and Bob Wald for helpful discussions.
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1 What is a gauge theory?

The standard model of particle physics is made up of three gauge theories (or two, depending

on how one counts), corresponding to three of the four known ways in which matter and Þelds

interact. The strong, electroweak, and electromagnetic forces are respectively characterized by the

local (�internal�) symmetry groups SU(3), SU(2)× U(1) and U(1).
The power of the principle of gauge invariance is that it effectively determines the structure

of the various interactions, so that guessing a gauge group is tantamount to guessing a theory.

The theories arrived at through this procedure have led to surprisingly accurate predictions, so not

only does the gauge concept constrain the structure of theories, it actually seems to lead to correct

theories! For our investigation into gravity and gauge, we will want to get a handle on the role of

the gauge group. Let us begin by examining the way in which the postulation of an invariance

under local U(1) transformations leads to Maxwell�s theory. We will shortly place these ideas in

the more general mathematical context of Þber bundles.

Suppose we have a single, free non-relativistic particle described by a wave-function ψ($x).

Multiplying this wave function by a complex number of unit modulus (a member of the group

U(1), e.g., a phase factor of the form eiθ) yields a wave-function that is physically equivalent to the

original. The probability distributions for position and momentum (and thus all other observables)

are the same, and the time-evolution of the probability distributions is the same. So we say that

ordinary quantum mechanics is invariant under a global U(1) transformation, �global� meaning

�everywhere in space at some time.�

Now suppose we want to make a local, position-dependent change in the wave-function, i.e., we

want to allow the phase at one point in space to differ from that at another point. This implies

that we consider transformations of the form ψ0($x) = eiθ(#x)ψ($x). Then the transformed states will
not be equivalent, for although they will have the same probability distribution for position, they

will have a different probability distribution for momentum (because the phase of a wave-function

in conÞguration space effectively encodes the momentum of the particle), and different dynamical

evolution, to wit:

ih̄
d

dt
ψ0($x) = bHψ0($x) (1a)

=
�p2

2m
ψ0($x) (1b)

=
−h̄2
2m

$∇2(eiθ(#x)ψ($x)) (1c)

=
−h̄2
2m

h
($∇2eiθ(#x))ψ($x)) + eiθ(#x)($∇2ψ($x))

i
, (1d)
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whereas

ih̄
d

dt
ψ($x) = bHψ($x) (2)

=
−h̄2
2m

$∇2ψ($x) . (3)

The Þrst term on the right-hand side of (1d) vanishes if and only if $∇θ($x) = 0, i.e., only in the

case of a global phase transformation. In such a case, dψ/dt = dψ0/dt, modulo a global (hence
physically meaningless) phase factor. Otherwise, for local phase transformations ($∇θ($x) 6= 0), we
Þnd that dψ/dt 6= dψ0/dt.

Now the way in which the demand for gauge invariance dictates the dynamics of the theory

is that we require that the Hamiltonian bH be such that bHψ = bHψ0. This is accomplished by a
Hamiltonian of the form bH = 1

2m(−ih̄$∇+ ie $A)2 − eφ, where $A and φ turn out to be, respectively,
the vector and scalar potentials of electromagnetism, and where e is the electromagnetic coupling

constant, the value of which must be determined by experiment.4

Two caveats before we move on. The demand for local gauge invariance is rather undermo-

tivated in the case of a single (or even multiple) particles, and in fact the idea that we perform

local gauge transformations by operating on a single particle wavefunction tends to sidestep the

awkward fact that the wavefunction is a function on conÞguration space, which only in the case

of an unconstrained, single particle happens to coincide with (three-dimensional) physical space.

On the other hand, if one begins with the Klein-Gordon equation or Dirac equation to describe

matter, one begins with the concept of a matter Þeld, which has an inÞnite number of degrees of

freedom (two per point in space). Since the values of the Þeld at spacelike separated points may be

speciÞed independently of one another, it makes sense to conjecture that the phase at each point

be independent.5 Thus a rather arbitrary requirement in the case of a single particle is much better

motivated when one considers a Þeld.

The second caveat is that the demand for gauge invariance does not give us the equations for

the free electromagnetic Þeld�it only gives us the interaction of the Þeld with the charge (hence

the Schrödinger equation for the charge). The requirements of relativistic invariance and renor-

malizability are additional requirements that do, however, uniquely constrain the Þeld equations,

at least in the case of electrodynamics (Schwinger 1953).

To place gauge theory in a more general perspective, it is helpful to consider the Þber bundle

formulation. A Þber bundle is a structure (E,π,M), where E is the �total space�, consisting of

all the Þbers (they form a manifold) and M is the �base space� (also a manifold). The projection

map π : E → M associates each Þber with a point in the base space. The idea in gauge theory

is to consider group bundles, where each Þber is a copy of the relevant internal symmetry group,

and where the base space corresponds to spacetime.6 Thus the inverse π−1 of the projection map
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associates a copy of the internal symmetry group (a Þber) with each point in spacetime. For the

U(1) gauge theory, the Þbers are the group U(1), and each point on a Þber corresponds to a different

element eiθ of U(1). A choice of gauge (i.e. a choice of phase at each point) then corresponds to a

cross-section s of the bundle (Þgure 1).

Figure 1: U(1) Þber bundle

In this Þber bundle picture, the vector potential Aα (in its 4-dimensional version, where the

scalar potential φ = A0 plays the role of the fourth, �time� component) enters as the connection

on the bundle.7 A connection is used to compare vectors at one point with vectors at another, so

that one can meaningfully talk about the rate of change of vectors from one point to another. The

vectors in the U(1) case are just the local phases. If the connection is such that the phase undergoes

a change when moving around a closed loop, this means that the �curvature� Fαβ = ∂αAβ − ∂βAα
of the connection Aα is non-zero in the vicinity of the loop, i.e., that there is an electromagnetic

Þeld there.

Gauge-invariance is realized because, although the connection changes under gauge transfor-

mations, the physical quantities, which are represented by the curvature Fαβ, do not.
8 Suppos-

ing the phase changes by angle θ at each point (i.e., an addition of eiθ), the connection becomes

A0α = Aα − ∂αθ. The curvature of this new connection is the same as that of the old (because
∂α∂βφ− ∂β∂αφ ≡ 0), and so this Þber-bundle formulation nicely embodies the idea of a theory in
which the physics (here encoded in the curvature Fαβ) is invariant under local U(1) gauge transfor-

mations. Notice that what we are saying here is that two vector potentials Aα and A
0
α give rise to
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the same tensor Fαβ, where �same� means �takes the same values at every point of the manifold

M .�9 Fαβ is known as the �Maxwell tensor.�

In the Cartesian coordinate system adapted to an observer whose worldline has tangent vector

uα = (1, 0, 0, 0), the Maxwell tensor is

Fαβ =


0 −E1 −E2 −E3
E1 0 B3 −B2
E2 −B3 0 B1

E3 B2 −B1 0

 . (4)

These quantities are the values of the electric and magnetic Þelds in the observer�s reference frame.

As we have seen, they are gauge-invariant. They correspond to the local observables Ei($x, t) and

Bi($x, t) of classical Maxwell theory, and as one would expect they are represented by self-adjoint

operators �Ei($x, t) and �Bi($x, t) in the canonical quantum theory.10

2 General relativity

General relativity is a theory in which spacetime is represented by a four-dimensional differentiable

manifold (a collection of smoothly connected points) equipped with a Lorentz metric giving the

spatiotemporal distances between points. �Models� thus consist of a manifold, a metric, and

optionally one or more matter Þelds; what makes such a collection a model of general relativity

is that it satisÞes Einstein�s equation. The particular placement of the metric and other Þelds

on the manifold is arbitrary, reßecting the fact that the physical content of the theory consists

in its descriptions of correlations between the various Þelds. Different placements are related by

diffeomorphisms, and the indifference of the physical predictions to diffeomorphisms leads the theory

to be characterized as �diffeomorphism invariant.�11

Perhaps the Þrst thing to note about general relativity is that the diffeomorphism group is not

the characteristic group of a group bundle at all. Recall that in a gauge theory, a copy of the

gauge group sits over each point of the manifold, and gauge transformations induce changes in

the connection (the gauge Þeld) at each point, changes that nonetheless leave the physics at the

point unchanged. Diffeomorphisms are a completely different sort of beast�there is no copy of the

diffeomorphism group sitting over each point of the manifold, nor is the diffeomorphism group the

product G×M of some other internal group G with the manifold M .

Rather than inducing changes in the Þeld at a point, diffeomorphisms map points x to other

points x0, and induce changes in the Þelds (metric tensor, Riemann tensor, etc.) by mapping the
Þelds from one point to another. As a consequence, the value of a Þeld at a given point is physically

meaningless in a diffeomorphism-invariant theory.
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It is clear, then, that the diffeomorphism group is unlike an ordinary gauge group in that it is not

a �local� (in the sense of �at the same manifold point�) transformation. Nonetheless, many physi-

cists and philosophers take the view that there is a relevant analogy between the diffeomorphism

group and gauge groups. Perhaps the clearest expression of this view comes from Wald:

If a theory describes nature in terms of a spacetime manifold, M , and tensor Þelds,

T (i), deÞned on the manifold, then if φ : M → N is a diffeomorphism, the solutions

(M,T (i)) and (N,φ∗T (i)) have physically identical properties. Any physically meaning-
ful statement about (M,T (i)) will hold with equal validity for (N,φ∗T (i)). On the other
hand, if (N,T 0(i)) is not related to (M,T (i)) by a diffeomorphism and if the tensor Þelds
represent measurable quantities, then (N,T 0(i)) will be physically distinguishable from
(M,T (i)). Thus, the diffeomorphisms comprise the gauge freedom of any theory formu-

lated in terms of tensor Þelds on a spacetime manifold. In particular, diffeomorphisms

comprise the gauge freedom of general relativity. (Wald 1984, 438)

The idea is that models that differ by a diffeomorphism encode the same physical predictions, just

as do models of a gauge theory that differ by a gauge transformation. The essential difference, as

we shall see in a moment, is in what sorts of things count as �physical predictions.�

First, though, note that many, many theories, including Maxwell theory and other gauge theo-

ries, can be (and in fact routinely are) formulated in terms of tensor Þelds on a spacetime manifold.

So, on the face of it, Maxwell theory is just as diffeomorphism-invariant as general relativity. How-

ever, we do not tend to treat it as such. That is, we consider quantities such as the components

of the Maxwell tensor at a spacetime point x to be observables (physical predictions of the theory)

even though such quantities are not diffeomorphism-invariant. The reason for this is that spacetime

points x are understood to acquire physical meaning through some implicit background structure.

This is of course possible because of the intimately related facts that (a) there are physical objects

that do not couple to the electromagnetic Þeld (namely, those objects without electric charge), and

(b) the electromagnetic Þeld does not describe the structure of spacetime itself. Thus we can use

non-dynamical (here, uncharged) objects to deÞne a spatiotemporal reference frame. Because these

objects are not dynamical, we do not include them in the theory.

General relativity is different. All objects are sources of gravity, and therefore all objects are

explicit in a theory of gravity. Since the reference system is explicit, the �physically meaningful

statements� of general relativity are fundamentally relational in nature. For example, if we have

a general relativistic model (M,gαβ, Fαβ), where gαβ is the metric tensor and Fαβ is the Maxwell

tensor, then a typical prediction of the model will be of the form �the curvature of spacetime is

so-and-so where the electromagnetic Þeld has such-and-such value�. Because the Þelds all transform
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together under diffeomorphisms, these sorts of predictions are, indeed, invariant under diffeomor-

phisms.

In short, the physical predictions of a gauge theory, classical or otherwise, are predictions about

the values of Þelds at spacetime points speciÞed with respect to a Þxed background spacetime.

These are physically meaningful because it is assumed that one has some structure external to the

model which identiÞes these points. In a diffeomorphism invariant theory such as general relativity,

however, there is no background structure, and so the �physically meaningful statements� take on

a purely relational character.12 The upshot is that when one talks about the physical predictions

being invariant under a gauge transformation, one is talking about a very different sort of thing

than when one talks about the physical predictions being invariant under a diffeomorphism.

In closing, it is worth mentioning another sense in which general relativity can be understood

as a gauge theory. Various authors have attempted to derive general relativity from a gauge-like

principle, involving invariance of physics under transformations of the locally acting (i.e., in the

tangent space at each point) Lorentz or Poincaré group. (See, for instance, Utiyama (1956), Kibble

(1961) and more recently Wilczek (1998).) Though some of these constructions are interesting and

illuminating in their own right, in none of them is the diffeomorphism group a gauge group.

3 Conclusion

The diffeomorphism group is simply not a gauge group in the speciÞc sense this term has in

particle physics. Formally, the distinction is clear enough�the diffeomorphism group is not the

automorphism group of a principle Þber bundle. Physically, though there is a sense in which �the

physics� of a gauge theory and the physics of a diffeomorphism-invariant theory is respectively

invariant under gauge transformations and diffeomorphisms, what is meant by �the physics� is

quite different.

The distinction between the two sorts of invariance is absolutely vital in the context of quantum

theory. We understand how to quantize gauge theories. A primary aspect of this is to represent some

subset of the classical gauge-invariant quantities (classical observables) as self-adjoint operators

(quantum observables) obeying relevant commutation relations. However, it is not at all clear what

it means to quantize a diffeomorphism-invariant theory. One can attempt to turn the classical

diffeomorphism-invariant quantities into observables�this is effectively what one is doing when

one formally treats the diffeomorphism group as a gauge group. However, in addition to leading to

the problem of time in canonical gravity (Isham 1993, Kuchaÿr 1992, Weinstein 1998a, 1999) and

possibly a breakdown of the superposition principle (Weinstein 1998b), this approach leaves one

with virtually no known observables whatsoever for vacuum gravity in the compact case (Torre 1993,

1994). Indeed, it seems premature to apply such techniques to general relativity�one would like to
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see a diffeomorphism-invariant version of a simpler theory (e.g. Maxwell theory) Þrst.13 That this

has only rarely been attempted is perhaps explained by the inclination of many physicists working

in the area to think of the diffeomorphism group as a gauge group, in particular as the special

gauge group characteristic of general relativity. But this is clearly misguided.

Notes
1One can also regard gauge-invariance (or for that matter diffeomorphism-invariance) as a property of the equations

of motion. I.e., a theory is gauge- (diffeomorphism-) invariant if a solution of the equations of motion, when acted on

by a gauge transformation (diffeomorphism) yields another solution. But this rather formal criterion is misleading,

as we shall see in the penultimate section.
2The discussion of the hole argument in the philosophy literature began with Earman & Norton (1987). Stachel

(1994) is a useful starting point for the uninitiated.
3See Isham (1993) or Kuchaÿr (1992) for a review of the problem of time.
4The electromagnetic coupling constant is one of the �free parameters� in the standard model of particle physics.
5It is notable, however, that in a covariant formulation, the phase changes at causally connected (timelike or null)

points are typically regarded as independent, despite the fact that these Þelds are in causal contact.
6The gauge group MU(1) is the set of functions fromM into G, meaning that an element of the group is an object

of the form U(1)×M , which associates an element of U(1) to every point in spacetime. It is the automorphism group

of the principal bundle. (See Göckeler & Schücker (1987).)
7More accurately, it is a correction to the standard �ßat� connection. The standard connection takes one from

a given phase eiφ on one Þber to the same phase eiφ on the neighboring Þber. Baez & Muniain (1994) is a useful

reference.
8Note, however, that the situation is not quite as simple in (non-Abelian) Yang-Mills theory. There, the curvature

of the connection is not invariant under gauge transformations.
9The physics of this theory is not entirely contained in the curvature of the connection. The Aharonov-Bohm

effect is an observable effect in regions where there is no electromagnetic Þeld (Fαβ = 0), though it does rely on there

being a Þeld somewhere. Essentially, one can have a situation in which particles that start at the same place (with

same initial phase), traverse different trajectories through regions in which the connection is �ßat�, but where the

particles are nonetheless out of phase when they meet. This is entirely analogous to the failure of parallel transport on

the surface of a cone. The tip of the cone corresponds to the region of non-zero electromagnetic Þeld. See Bernstein

& Phillips (1981) for an excellent, non-technical exposition.
10Technically, they are operator-valued distributions, which must be smeared by appropriate �test functions� to

produce true self-adjoint operators.
11It is in fact not entirely clear that two models related by a diffeomorphism that is not homotopic to the identity

are indeed physically equivalent.
12The exceptions to this statement are certain �global� quantities (e.g., the �ADM mass�), which are deÞned at

spatial or null inÞnity in asymptotically ßat spacetimes.
13See Rovelli (1995) for an attempt at constructing a diffeomorphism-invariant quantum Þeld theory.
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