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Abstract A shared problem across the sciences is to make sense of correlational data coming 
from observations and/or from experiments. Arguably, this means establishing when correlations 
are causal and when they are not. This is an old problem in philosophy. This paper, narrowing 
down the scope to quantitative causal analysis in social science, reformulates the problem in 
terms of the validity of statistical models. Two strategies to make sense of correlational data are 
presented: first, a ‘structural strategy’, the goal of which is to model and test causal structures that 
explain correlational data; second, a ‘manipulationist or interventionist strategy’, that hinges upon 
the notion of invariance under intervention. It is argued that while the former can offer a 
solution the latter cannot. 
Keywords Causal hypotheses; Causal modelling; Causation; Correlation; Manipulationism; 
Intervention; Mechanism; Recursive decomposition; Structural modelling; Validity. 

1. Introduction 

The sciences try to make sense of correlational data coming from experiments and/or 
from observations. ‘Making sense’ arguably means deciding whether correlations found 
in a data set are causal or not, which is, needless to say, an old and hotly disputed issue. 
The goal of the paper is to reformulate the question ‘when are correlation causal?’, which 
has been given all sort of answers without reaching any definite agreement, in terms of 
the question ‘when is a statistical model built to make sense of correlations valid?’, which, 
on the contrary, has not received the right kind of attention yet. 

In order to do that, I narrow down the scope to quantitative causal analysis in social 
science. Quantitative causal analysis is a tradition of scientific inquiry that traces back to 
the pioneering works of Quetelet (1869) and Durkheim (1895 and 1897) in demography 
and sociology respectively. Blalock (1964) and Duncan (1975) made significant 
improvements, and since then quantitative analysis has shown noteworthy progress. 
Nowadays, there is a variety of statistical models available in demography, sociology, or 
econometrics—see for instance the recent handbook edited by Kaplan (2004). There are 
currently two main traditions in quantitative research: one in economics / 
econometrics—see for instance the works of Hoover (2001) and Heckman (2008)—and 
the other focusing more in graphical methods and appealing to artificial intelligence 
techniques—see for instance the works of Pearl (2000) and of people at Canergie Mellon 
(e.g., Spirtes et al. (1993)). A survey and discussion of this ‘methodological pluralism’ in 
social research is offered in Russo (2006) and Russo (2009a, ch.3).  Although methods 
may vary a great deal in, say, estimation methods, ultimately they all aim to answer the 
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same question—that is to make (causal) sense of correlational data—and, I argue, this is 
a question about the validity of the model.  
 

It is commonly agreed that causal inference in well-designed experiments is more 
reliable than in purely observational contexts. In fact, in laboratory experiments, ideal 
conditions are more often met because uncontrolled variations in the environment are 
much better known. On the contrary, if the social scientist cannot directly manipulate the 
data, how can she infer what is the causal story behind the observed correlations? What 
is peculiar to the social sciences is that they most often deal with observational rather 
than experimental data.1 The usual situation the social scientist is confronted with is 
having a data set coming from surveys, interviews, or censuses, and no possibility to 
directly intervene on the data. Granted, to some extent social scientists do interact with 
subjects, for instance when they give them questionnaires; however, these situations do 
not count as experiments as such. Also, I am not claiming that only the social sciences 
are observational—astronomy also faces the same kind of problems I am concerned with 
in this paper.  

Let me emphasise that the paper does not investigate what is the extra-content to add 
to correlations to make them causal—which is a question about the metaphysics of 
causality. The metaphysics of causality is interested in establishing what causality in fact 
is, and what are the concepts in terms of which causality has to be cashed out. Instead, 
the question here addressed is how do we know or how do we test that correlations are 
(plausibly) causal—which are questions about the methodology/epistemology of causality. 
Thus the methodology and epistemology of causality are concerned with developing and 
implementing successful methods for the discovery and confirmation of causal relations 
and with the notions guiding causal reasoning in these methods.  

The paper tackles the question of evaluating the validity of the model by comparing 
and contrasting two possible strategies: the ‘structural strategy’ and the 
‘interventionist/manipulationist strategy’. The paper is organised as follows. First, it 
considers the ‘structural strategy’. The structural strategy is presented as the broad 
methodological framework embracing various statistical methods. It is argued that in 
quantitative social science, to decide or to establish whether correlations are causal is to 
establish whether a model is valid or not. The intermediate steps are given by the tasks of 
modelling and testing causal structures—i.e. mechanisms—that supposedly explain the 
correlations found in the data. Second, it considers the ‘interventionist/manipulationist 
strategy’. In this approach the key notion is ‘invariance under intervention’, cashed out as 
follows. If the relations are causal, intervening on the cause-variable, would produce 
changes in the effect-variable, and the relation between the cause- and the effect-
variables would remain stable. I point to two types of problems. On the one hand, if the 
project is given a purely metaphysical reading, then it lacks the complementary 

                                                      
1 True, there are areas in social science where experimental methods are becoming increasingly popular. 
Yet, randomised experiments may raise more troubles than the ones they are actually meant to solve. The 
reason is that special care is needed in setting up experiments in social contexts because the intervention 
that is supposed to test a putative causal relation may change the structure altogether. This problem in 
social science is known at least since the so-called Lucas critique (Lucas 1976). For a discussion of 
structure-altering interventions in social contexts, the interested reader may also look at Steel (2008a, ch.8). 
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methodological story of how to evaluate the validity of the causal model, which is instead 
supplied by the structural strategy. On the other hand, if the project is mainly about the 
methodological implications about testing—i.e., it says how things would or must change 
in response to certain interventions—then the interventionist / manipulationist 
framework is insufficient in order to evaluate the validity of the model in observational 
contexts. 

The main reason to reformulate the old question ‘when are correlations causal?’ into 
‘when is a statistical model valid?’ is that the former conveys the misleading idea that a 
condition, or a set of necessary and sufficient conditions, can ensure the inference from 
correlation to causation. More specifically, as the recent literature polarises around the 
‘interventionist strategy’, the notion of invariance under intervention seems to assume 
the role of ‘condicio sine qua non’. 

There are two take-home messages to get from the comparison of the two strategies. 
First, to decide whether correlations are causal is to evaluate the validity of the whole 
model. The evaluation of the validity of the model goes well beyond results of statistical 
tests—background knowledge and an explicit mechanistic interpretation loom large in 
this. Second, and as a consequence from the first, whether correlations are causal cannot 
be decided just on the basis of results of statistical tests, let alone just on the basis of one 
condition, notably the condition of invariance under intervention, which is so much 
acclaimed by manipulationist modellers. 

2. The structural strategy 

The ‘structural strategy’ is the general methodological framework embracing various 
statistical methods, and it provides the general principles of the test ‘set-up’ for causal 
hypotheses. The expression test ‘set-up’ is preferable because, as I shall explain later, 
causal hypotheses cannot be tested by a condition (or a finite set of necessary and 
sufficient conditions). The structural strategy is an account of the model-building and the 
model-testing process through which causal hypotheses are formulated and put forward 
for empirical testing and the whole model’s validity is evaluated. I present the structural 
strategy in four steps. First, I explain that the goal of the structural strategy is to look for 
structures, i.e. for mechanisms. Second, I give the general features of how these 
mechanisms are modelled. Third, I discuss the kind of tests and considerations needed in 
order to (dis)confirm causal hypotheses and thus, fourth, to decide whether the model is 
valid. 

2.1 Looking for structures 

Structural modelling means looking for structures, i.e. for mechanisms. Before qualifying 
this claim in more detail, let me warn the reader of a possible confusion. The 
philosophical and scientific literature on causal modelling often uses ‘structural 
modelling’ and ‘structural equation modelling’ as synonyms. However, these are not 
coextensive terms and their linguistic proximity is the source of misunderstandings. 
Structural equation modelling is a particular type of statistical model used in quantitative 
social science, especially in econometrics. Structural modelling, instead, does not denote a 
particular (statistical) model (e.g., structural equation models, covariance models, 
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multilevel models, etc.) but refers to a general methodological account of model-building 
and model-testing. Structural modelling, thus, is a general methodological framework for 
causal analysis. This distinction between a particular statistical model and a general 
methodological framework is often not clear enough.  

For instance, Woodward (2003, ch.7) devotes a long chapter to ‘structural models’. 
However, what he discusses are, in fact, structural equation models, focussing on 
regression techniques and on the invariance condition. His account does not do justice to 
the variety of statistical models used in quantitative causal analysis, it does not present a 
general methodological framework for causal analysis, and it puts emphasis on the 
counterfactual definition of invariance. However, not all causal models are based on 
counterfactuals, and invariance is not the only feature making them ‘causal’.  

Pearl (2000) also deals with structural models sometimes meaning structural modelling 
and sometimes more specifically structural equation modelling. More recently, Pearl 
(2011) offers a ‘structural theory of causation’, that is a ‘general theory of causation’. I 
take it to mean a ‘general methodological framework’ for causal analysis. In the paper, he 
develops a formalism that is general enough to subsume, as special cases, particular 
models such as structural equation models, potential outcome models, and graphical 
models. The core idea behind the formalism is that information about how the 
probability distributions over a set of variables would differ if external conditions were to 
change is given by causal assumptions; thanks to those assumptions, we can identify 
relationships that remain invariant when external conditions change. Pearl’s approach 
very well complements my arguments, by offering the technical details that I will simply 
evoke later in section 2.2 and 2.3. Nevertheless, what is left unexplained in Pearl’s 
approach is what makes his structural theory structural. This I attempt to do in section 2.1 
and 2.2 in advancing an explicit mechanistic interpretation of structural modelling. Moreover, 
all along his work, Pearl distinguishes three types of queries: (i) about the effects of 
potential interventions (ii) about counterfactuals, and (iii) about direct and indirect 
effects. According to the methodology of structural modelling detailed throughout 
section 2, some structure needs to be identified in order to answer any of the queries 
before. Such structure, or mechanism, is identified by the recursive decomposition, as 
explained in section 2.3. 

Nancy Cartwright has also extensively written on quantitative causal analysis, although 
she tackles questions different from mines. In Hunting Causes and Using Them, Cartwright 
discusses econometric techniques and theoretical models used for the purposes of causal 
analysis in economics. The scope of her discussion is thus much more restricted than 
mine, as the general methodological framework hereby presented also embraces 
disciplines in social science outside economics. Yet, the conclusion of one of her 
arguments indirectly supports mine. Cartwright criticises the idea that controlled 
experiments are the ‘ideal’ test for causal hypotheses. In particular, she is against the 
claim that sometimes we do not need to run the experiment, as Nature does it for us. 
Notice that, by and large, manipulationist modellers to be discussed in section 3 would 
subscribe to this claim too. But Cartwright is concerned that we are very rarely in the 
conditions to use this argument. It is a matter of fact—argues Cartwright—that causal 
hypotheses are difficult to test. Hence, we need reasons that are outside the regime over 
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which the test is conducted in order to draw causal conclusions. As the same worries 
apply to testing hypotheses and drawing inferences in lab setting, Cartwright’s argument 
can be seen as a jolt to the view that experimentalism is the panacea for all problems in 
causal inference, which is indeed the critical target of section 3. The positive argument in 
favour of the idea of ‘testing validity’ developed in section 2.4 is more similar in spirit to 
her discussions on external validity. In addressing question of ‘use’ of causal claims, 
Cartwright (2011) challenges the widespread view that studying invariance properties of 
the probability distribution describing the population under analysis is no guarantee of 
the external validity of causal claims. Simply put, Cartwright is worried that even when 
we can single out very stable and invariant properties of a population, this does not 
ensure that the claim will be valid ‘outside’ the data being analysed. External validity 
requires much more than simply statistics and probability, notably it requires establishing 
what she calls ‘tendency claims’. Section 2.4 offers an analogue argument for internal 
validity. 

Finally, Hoover (2011) takes the goal of quantitative causal analysis to represent causal 
relationships by invariant parametrizations of a system of equations. This, however, does 
not imply endorsing altogether a counterfactual approach, and in fact Hoover criticises 
Woodward for impoverishing the analysis and bestowing too much importance to 
counterfactual manipulability. As it will be clear from the arguments given in section 3, I 
take side with Hoover on that. However, when Hoover presents the structural account as 
based on Herbert Simon’s causal ordering (see, e.g., Simon (1953 and 1954) and Fennell 
(2011)) and on the condition of exogeneity, the question that is left unanswered is, again, 
what makes a structural account structural. 

In the following, I focus on some selected aspects of structural modelling. In 
particular, I am interested in dwelling on the following interrelated ideas: (i) structural 
models model mechanisms, (ii) to model mechanisms means to formulate suitable causal 
hypotheses to put forward for empirical testing, (iii) to decide about the results of tests is 
to decide whether the model is valid. 2  

Two remarks are in order. First, the philosophical and methodological literature has 
devoted some room to the relation between structural (equation) modelling and 
mechanisms, but not in the way the connection between the two is developed here. For 
instance, classical economists such as Adam Smith, David Ricardo, Thomas Malthus and 
John Stuart Mill or the Chicago School of Economics developed the economic theory so 
that the theory dictates, rather than model, what the mechanism is. More recently, in 
Kevin Hoover’s approach, the causal structure represented by a set of structural 
equations is a “network of counterfactual relations that maps out the underlying 
mechanisms through which one thing is used to control or manipulate another” (Hoover 
2001, p.24)—a view that falls under the ‘interventionist/manipulationist strategy’ to be 
discussed later in section 3. Also, in the tradition of statistics and econometrics, it is 
usually said that the goal is to model the data generating process. The specification of the 
data generating process, in turn, depends on the statistical model, and, consequently, the 
assumptions of the model play a decisive role. Freedman (2004), for instance, 
                                                      
2 The reader interested in more technical and formal aspects of structural modelling, especially related to 
the condition of exogeneity and to recursive decompositions, may look at Mouchart et al. (2009) and 
Mouchart and Russo (2010). 
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distinguishes between statistical and causal assumptions and requires interventions to 
grant causal inferences. The crucial assumptions, in his account, are the causal ones, 
which eventually consist in assuming that structural equations give the causal mechanism 
that generate the observed data. However, none of the available approaches explains how 
we get a mechanism out of a statistical model, which is exactly what the ‘structural 
strategy’ hereby presented instead does. 

Second, the philosophical and methodological literature interested in problems of 
testing causal relations (rather than defining causality) has narrowly focused on just one 
condition, i.e. invariance under intervention. It is this narrow focus that I criticise, and, as 
an alternative, I offer the ‘structural strategy’, which instead aims to evaluate the validity of 
the whole model. 

It is worth emphasising that structural modelling aims, from the very start, to go 
beyond mere descriptive knowledge of a phenomenon. It aims, in fact, to unveil—in the 
sense of modelling out—the mechanism that brought it about. It is in this sense that 
structural modelling means looking for structures, in particular, the causal structures or 
mechanisms underlying the correlational data we want to make sense of. Thus the 
mechanism is not simply assumed or imposed by theory. The mechanism is exactly what 
the structural modeller tries to build out of background knowledge and what she tests 
against empirical data—the modelling and testing aspects of mechanisms will be 
discussed later in section 2.2 and 2.3. 

The qualification of this last claim, notice, does not depend on the specific definition 
of mechanism (that is on the metaphysical account of mechanism) one might offer or 
endorse, but rather on the more general—and arguably more widely accepted—position 
that mechanisms carry explanatory power. Thus, to say that structural modelling looks 
for structures is in line with the characterisation of Machamer, Darden and Craver 
(2000), in that the structure being modelled assemblies ‘things’ (entities, in MDC 
vocabulary; variables, in the jargon of statistical models) that interact with and influence 
each other in a specified way (the activities, in MDC vocabulary; the statistical relevance 
relations, in the jargon of statistical models). It is also in line with the characterisation of 
Bechtel and Abrahamsen (2005), who put a lot more emphasis on the structure, 
organisation, and decomposition of the mechanism. However, this ‘mechanistic 
interpretation’ of structural models is at variance with the characterisation of Woodward 
(2003), who conceives of mechanisms as chains of invariance relations. 

Structural modelling makes no ontological commitment as to the (degree of) physical 
existence of mechanisms. In other words, the choice of a particular ontological account 
of mechanisms is perpendicular to the epistemological issue of the explanatory power of 
mechanisms. The understanding of mechanisms in structural modelling is rather 
epistemic—it is more concerned with how we can (causally) make sense of correlational 
data. Structural modelling achieves this goal by offering a story about, or a description of, 
a mechanism. Such epistemic understanding is akin to ‘mechanism schemata’, as 
discussed in Machamer (2004), Machamer, Darden and Craver (2000), and Darden and 
Craver (2002). Simply put, mechanism schemata are abstract and idealised descriptions of 
a type of mechanism; in other words, mechanism schemata are concerned with the 
description of the behaviour of the mechanism. Yet, in looking for mechanisms that 
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explain correlational data, structural modellers do track something real—that is what 
actually happens, rather than what would happen. This brings me to the next point.  

More importantly, this understanding of mechanisms in structural modelling is in the 
tradition of “making sense of causation in terms of ‘what actually happens’ without 
appealing to counterfactuals” (Woodward 2004, p.51), a program that Jim Woodward 
ascribes to Jim Bogen (2004) and Peter Machamer (2004) and, more generally, to what he 
calls the “anti-counterfactualist Pittsburgh tradition” (Woodward 2004, p.43). This last 
remark is important to understand the project I undertake in the remainder of the paper. 
The question being asked is not what is the right definition of ‘causality’ or of ‘causal 
relation’ or of ‘mechanism’. Instead, recall, what I am interested in is the following issue: 
in social science contexts, how can we best make sense of correlational data coming from 
observations? In other words, how do we establish whether there is in fact some causal 
structure in the data?  

Consequently, the question immediately arises as to how one can find out about such 
causal structures or mechanisms. The works of e.g. William Bechtel, Carl Craver and 
Lindley Darden (Bechtel (2008), Craver (2007), Darden (2006)) discuss methods to find 
out about mechanisms in other contexts, notably in neuroscience and biology; instead, 
the structural strategy discussed here, in Russo (2009a) and in Mouchart and Russo 
(2011) is a methodology to find out about mechanisms in social science. 

2.2 Modelling structures 

Modelling structures, or mechanisms, is performed in three stages. In a first stage, causal 
hypotheses are formulated and a statistical model is built. In a second stage, causal 
hypotheses are tested in the statistical model. And, finally, results of tests are evaluated to 
conclude to the validity or invalidity of the model. 

This broad characterisation, however, hinges upon ‘causal hypotheses’ rather than 
mechanisms. Here is how the two are linked. Causal hypotheses formulated in order to 
make sense of correlational data are not simply of the form ‘X causes Y’. The structural 
modeller formulates a whole set of hypotheses and makes a number of different 
assumptions that, altogether, have to be interpreted as hypothesising the mechanism 
explaining the correlations in the data. The assumptions made in a structural model are 
themselves of different types. Some have merely statistical import (e.g., the assumption 
about normality of the distributions of the variables figuring in the equations), whilst 
others have more profound causal meaning (e.g., the non-correlation between the 
putative cause-variables and the errors figuring in the equations). 3  Altogether, the 
assumptions and the causal hypotheses are ‘formally translated’ in what the structural 
modeller calls the ‘recursive decomposition’. 4  I direct the reader interested in the 
technical aspects of the recursive decomposition to Mouchart and Russo (2011), and give 
here the core idea distilled from complicated formulae.  
                                                      
3 A thorough discussion of the assumptions of causal models is given in Russo (2009, ch.4). 
4 Structural modellers try, as much as possible, to build recursive or acyclic models. In simple terms, this 
means that, given a graphical representation of the mechanism by means of a set of vertices and of directed 
edges connecting one vertex to another, we do not run into a loop going through the various possible 
paths in the graph. As a matter of fact, this assumptions of acyclicity is often violated and in fact much 
research in methodology is devoted to develop models that cope with this aspect. 
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The structural modeller is usually provided with a data set containing observations of 
a certain number of variables and with the joint probability distribution over these 
variables—the goal is to dig out the causal structure underlying it. The initial joint 
probability distribution is thus factorised into a sequence of products of marginal and 
conditional components, where the variables to condition upon play the explicit role of 
the causes. The whole recursive decomposition may be interpreted as characterising a 
global mechanism, whereas each conditional distribution within the recursive 
decomposition may be interpreted as characterising a (autonomous) sub-mechanism 
within the global one. Thus, decomposing a global mechanism into a sequence of 
(autonomous) sub-mechanisms is tantamount to disentangling the action of each 
component in a sequence of the sub-mechanisms operating in a global mechanism.  

Two remarks are in order. First, I say that the recursive decomposition may be 
interpreted as a mechanism. Formalisms are usually subject to more than one 
interpretation. For instance, structural equations and the associated decomposition may 
also be interpreted in terms of intervention: a simple structural equation Y = βX + ε is 
typically read by manipulationist modellers as ‘were we to intervene on X, Y would 
change accordingly’. But this isn’t, by all means, the only or the most basic interpretation. 
The structural strategy hereby presented, in fact, does not take the ‘interventionist’ 
reading of the equations and of the recursive decomposition as the primary one. Second, 
many specific modelling tools such as structural equation models or Bayesian Nets 
decompose initial joint probability distributions into sequences of marginal and 
conditional components, exactly in the way I just described. The question is to what 
extent modellers use those tools (i) accompanied by a mechanistic interpretation of the 
decomposition and (ii) having in mind the validity of the whole model rather than one 
particular test condition (invariance for structural equation models and the Markov 
Condition for Bayesian Nets) to make causal sense of correlational data. The whole point 
of adopting the structural strategy is that it does endorse an explicit mechanistic 
interpretation of the decomposition and within this framework correlational data are 
given a causal interpretation if the whole model is valid in the sense explained in section 2.4. 

Here is an example from social science research. López, Mompart, Wunsch (1992) 
conducted a study on regional mortality in Spain. Spain met deep socio-economic 
changes in the mid-Seventies: policy in that period tried to intervene to improve the 
social and economic situation, including sanitary infrastructures. The goal of the analysis 
was to explain an observed lower mortality rate at the time of the study. Background 
knowledge about the Spanish situation around the Seventies and about the types of 
policies implemented supported the choice of distinguishing the supply and demand of 
medical care (that is the infrastructure and its use are distinguished), unlike the majority 
of similar studies. In fact, previous studies in demography and medical geography 
examined the incidence of the health system on regional mortality coming to the 
conclusion that regional differences in mortality could not possibly be explained by 
regional differences in the health system. López, Mompart, Wunsch (1992), instead, 
hypothesised that regional mortality was influenced by the health system which was in 
turn influenced by the social and economic development. 

They decided to model a structure made of the following five variables: economic 
development (X1), social development (X2), sanitary infrastructure (X3), use of sanitary 
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infrastructure (X4), age structure (X5), and mortality (Y). The initial joint probability 
distribution over the whole vector of variables was decomposed into two sub-
mechanisms, where economic development and age structure are exogenous.5 In plain 
English, this means that economic development influences social development and 
sanitary infrastructure, thus creating two distinct causal paths to regional mortality. 
Analogously, age structure influences the use of sanitary infrastructure, which in turn 
influence regional mortality. In the first, ‘economic development’ is the exogenous 
variable influencing mortality through ‘social development’ and ‘sanitary infrastructure’; 
in the second, ‘age structure’ is the exogenous variable influencing mortality through ‘use 
of the medical care system’. The corresponding directed acyclic graph would look like 
figure 1. 

Two remarks are now in order. First, it may be objected that it is arbitrary to choose a 
particular recursive decomposition over another. In other words, why would the acyclic 
graph in figure 1 be a faithful representation of the mechanisms underlying the 
correlational data we want to make sense of? Figure 1 represents the hypothesised 
mechanisms. The mechanism then underwent testing and, based on the results and 
interpretations of testing, it was validated in a sense to be better specified later in section 
2.4. This is to say that there is no a priori way to know whether the arrows in figure 1 
really are causal rather than just correlational. The proof of the pudding, as we say, is in 
the eating. Second, and related to the remark above, it may asked why some variables are 
not linked at all; that is, why does figure 1 exclude that X2 causally act on X4 (or vice-
versa)? Again, there is no principled reason why the two are not (causally) linked in either 
direction. Background knowledge and preliminary analyses of data suggested, in this case, 
that there was no action of X2 on X4. But this is by no means a universal truth. The 
situation may be different in another population. A different analysis of the same data 
may even question such modelling assumption. The question is, again, to what extent the 
mechanism thus modelled is validated in the sense to be further discussed in section 2.4. 

 

Fig. 1. Regional mortality in Spain 

                                                      
5 Exogeneity is a thorny issue for structural modellers. Intuitively, when we say that a variable X is 
exogenous for a variable Y, this means that some conditions about the parameters of X and Y are satisfied 
such that it is legitimate to interpret X as the cause and Y as the effect. It is in this sense that it is 
commonly said that exogenous variables are generated outside the model, i.e. they are not caused by other 
variables in the model. For a discussion, see for instance Mouchart and Russo (2011). 
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It is for the purpose of testing that the whole set of hypotheses and assumptions is 

broken down in smaller pieces, so to speak. For instance, tests may specifically concern 
whether a parameter is significant, or aim to estimate the causal impact of variable X1 on 
variable Y, or aim to test whether the relation between variable X1and Y is invariant, etc.   

Contents and scope of tests are discussed later. The key question, at this stage, is how 
causal hypotheses are formulated. Structural modelling makes prominent use of 
background knowledge.6 Background knowledge is notoriously a hard to define and 
elusive notion. Here is an attempt to specify what qualifies as background knowledge. It 
certainly includes available scientific theories but it may also include general knowledge 
of the socio-political context, knowledge of demographic characteristics of the 
population under investigation, or ‘institutional’ knowledge (i.e., knowledge of the 
functioning and procedures of an institution such as the Central Bank). Background 
knowledge, however, is more than knowledge of ‘the social’. In fact, in areas such as 
epidemiology, we need to include biological variables too, and background knowledge 
will also include biomedical knowledge. It is worth noting that ‘knowledge of the social’ 
and ‘knowledge of the biological’ are not completely or necessarily separated and 
independent. For instance, in many cases background knowledge includes knowledge of 
mixed mechanisms. Simply put, in mixed mechanisms, the social is used to explain the 
biological, and vice-versa. These kinds of ‘mixed’ mechanisms are also one of the 
sounding boards for the evaluation of the validity of the model, as we shall see later in 
section 2.4. 

Evidence is also important for background knowledge. Notably, evidence of the same 
putative mechanism operating in different populations may justify further research, or 
evidence about different mechanisms operating in other populations may justify a 
different modelling strategy. In short, the use of different/similar data and/or models 
also belongs to background knowledge. 

Background knowledge thus participates in the formulation of causal hypotheses 
because it helps with the choice of variables and with the specification of the relations 
between variables. In other words, background knowledge helps in modelling the 

                                                      
6 Philosophers of science have been long debating on the status of models and on their relation to theory 
and to background knowledge. It is widely agreed that models are not tested by empirical data alone and 
that background knowledge and general theories contribute to model-building and model-testing also in 
scientific domains other than the one discussed here. The interested reader may have a look at Frigg and 
Hartmann (2009) and at the references therein, in particular Morgan and Morrison (1999). 
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mechanism. The later stage of ‘testing structures’ is meant to (dis)confirm this 
hypothesised mechanism. 

Since so much importance is bestowed to background knowledge, the objection of 
circularity is around the corner. If causal hypotheses are formulated mainly on the basis 
of background knowledge, what do we actually learn from the structural model that we 
did not already know? Put differently, how does structural modelling take us beyond 
background knowledge? There are two answers to this question.  

One is that (pace classical economists) background knowledge suggests a causal 
mechanism that possibly makes sense of correlational data, but tests are required in order 
to accept what background knowledge suggests—this is to decide whether the model is 
valid. However, background knowledge does not dictate what hypotheses to make, and in 
fact the hypothesis formulation stage also includes preliminary analysis of data—a stage 
that has been also called ‘data snooping’ (Freedman 2005). Notice, however, that this 
liberty of making wise and responsible use of background knowledge is at variance with 
much of scientific practice in economics, where the economic theory gives altogether the 
hypotheses and the model, and all is left is to perform statistical tests to check to what 
extent data conforms to the theory. This trend, however, is the object of critiques (see 
for instance Hoover (1988), Moneta (2007), Chao (2009)).  

The other answer is that structural modelling is a dynamic process in which we 
witness a va et vient between established knowledge and knowledge yet to be established. 
Thus, background knowledge is essential in order to formulate causal hypotheses, but, in 
turn, results of tests may question and even discard background knowledge, thus 
triggering further research. That is to say, structural modelling does not establish 
immutable and eternal (causal) truths. 

2.3 Testing structures 

The next stage is ‘testing the structure’. In quantitative social science making use of 
statistical models, important tests concern goodness of fit and significance of parameters. 
Leaving technicalities aside, tests for goodness of fit indicate how well the equations in 
the statistical model provide an accurate description of the data. It may happen, in fact, 
that the hypothesised causal mechanism be theoretically plausible, but the equations 
poorly describe data due to, for instance, problems of confounding. This typically 
happens, to put it roughly, when a variable Z is a common cause of both the putative 
cause X and of the effect Y, thus ‘confounding’ the relation between X and Y.7   

Nevertheless, what I am most concerned with is the so-called condition of invariance 
or stability. Standard quantitative social science methodology requires that, in order to 
interpret correlations causally, the relations between variables described by the equations 
in the model be stable in a sense to be specified. In experimental contexts, this would 
turn out to be a relatively easy task. If we want to know whether X causes Y, we wiggle 
X holding fixed everything else around X and then see what happens to Y. However, in 
purely observational contexts, this isn’t possible. We are provided with a data set on 
which we cannot directly intervene manipulating and changing the values of the 

                                                      
7 See for instance Bollen (1989) and Wunsch (2007). 
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variables. And even when ‘social’ interventions are performed, i.e. a ‘policy experiment’ is 
carried out, such interventions may raise difficulties in the stability of the system, a 
problem pointed out by Lucas as early as 1976. 

The way out, then, consists in seeing whether the relation between the cause- and 
effect-variable(s) holds stable in different partitions of the data set or in different panel 
data used in the study. An invariance test, then, is not about whether the relation 
between X and Y would remain stable were we to wiggle X. Instead, the test is whether the 
relation actually remains stable when we consider different portions of the data set, or 
different data sets with observations from different populations or different time periods. 
This is how, in the spirit of the ‘anti-counterfactualist Pittsburgh tradition’, the structural 
modeller makes sense of what actually happens. 

It is worth emphasising that invariance is a test to check whether correlations satisfy 
certain conditions that warrant the causal interpretation. According to the structural 
strategy, invariance is not an identity conditions for causal relations, nor does it exhaust 
the question of making causal sense of correlational data. I shall get back to this point in 
next section, but let me anticipate what I think are the issues at stake. I am not denying 
that invariance play a role in modelling. Indeed it does, but (i) it is not implied by the 
structural strategy that causality is metaphysically cashed out in terms of invariance, and 
(ii) invariance is but one among the tests. 

2.4 Validity 

The final stage is to decide whether the model is valid. To state it in non-formal terms, 
this means to decide whether the story about the mechanism supposedly making sense of 
correlational data provides a plausible enough explanation about what is really going on 
in the world. 

In the social science literature, the locus classicus is the work of Cook and Campbell 
(1979).  Cook and Campbell (1979) borrow from Campbell and Stanley (1963) the terms 
‘internal’ and ‘external’ validity, which refer to the best available approximation of the 
truth of causal statements. They present quasi-experimental designs to be applied in a 
variety of research settings. In their view, the design is meant to probe causal hypotheses 
and to this end it has to be evaluated with respect to four types of validity: statistical, 
internal, construct, and external validity. Simply put, given a particular study, this will be 
statistically valid if statements about covariation can be made with reasonable confidence, 
internally valid if a causal relation is confirmed within the specific population at hand, 
constructively valid if alternative constructs for cause- and effect-variables deliver 
consistent results, and it will be externally valid if the results can be generalised to other 
populations. Each type of validity raises issues that are equally important, but I shall 
concentrate here on internal validity.8 

Cook and Campbell offer a thorough discussion of the threats to internal validity. 
They mention, in particular, knowledge of time ordering, sources of random error, and 

                                                      
8 A general discussion of validity in causal analysis in social science is given in Russo (2009, ch.3). The 
reader interested in external validity—an emerging topic in the philosophical debate—may also have a look 
at Guala (2005), Steel (2008a), at their two contributions at the PSA 2008 (Guala 2008 and Steel 2008b) 
and at Jiménez and Miller (2010). 
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the appropriate use of statistics and of statistical tests. There is, however, an aspect 
overlooked in their account, namely congruence with background knowledge and 
explanatory power. I want to argue, in fact, that to decide whether a model is valid or 
not, goes beyond ‘statistical’ considerations. Given that the goal, recall, is to make sense 
of correlational data, we have to make sure that the story being told takes into account 
where the data comes from (background knowledge) and that the story actually is a 
plausible (mechanistic) explanation of the correlations found in the data. Let me clarify 
this idea further. 

Of course, there is no ready-made recipe. However, the structural strategy here 
presented, recall, aims to make sense of correlations by hypothesising and testing a 
mechanism that thus explains a given phenomenon. This means that, besides the 
‘statistical considerations’ emphasised by Cook and Campbell, validity is a matter of 
assessing the goodness of explanation. 

Such evaluation is certainly concerned with statistics, to some extent. In statistics 
textbooks, in fact, explanatory power is (statistically) measured by a coefficient (called 
coefficient of determination) quantifying the amount of variability of the ‘effect-variable’ 
that is taken into account by including the chosen ‘cause-variables’ in the model. 
However, this coefficient should be seen as a measure of goodness of fit rather than of 
explanatory power. Whether the model convincingly makes (causal) sense of correlations 
ought to be assessed on more theoretical grounds. Those theoretical grounds concern (i) 
‘congruence with background knowledge’ on the one hand, and (ii) ‘ontological 
homogeneity’ in the mechanism on the other hand.  

First, as mentioned above, the hypothesis formulation stage quite importantly depends 
on background knowledge. But I also said that background knowledge suggests, rather 
than dictates, the hypothesised mechanism. We started with background knowledge and 
we have to go back to it. Thus, the structural modeller has to answer a number of 
questions. For instance, does the model give a causal story congruent with what we know 
or it doesn’t? If not, is it more plausible to reject the model or to question background 
knowledge? Background knowledge plays the role of an additional sounding board for 
the model, but we have to be prepared to question background knowledge too.  

Second, if ontological homogeneity between the variables acting in the mechanism is 
lacking, it may be desirable to identify and justify indirect paths from the causes to the 
effect. Let me explain this idea. In many domains of social science, for instance 
demography or social epidemiology, to make sense of correlational data modellers may 
need to include variables of very different nature. For instance, Mosley and Chen (1984) 
explain child survival in developing countries by means of both social and biological 
factors. This means modelling a mechanism that is ‘mixed’, so to speak. Now, to say that 
a social factor such as maternal education influences a health variable such as child 
survival has theoretical plausibility only if we can specify how this is possible, namely by 
identifying indirect paths from the cause(s) to the effect. The identification of indirect 
paths is of course dependent on available background knowledge, data, and modelling 
tools. That is to say, the more we can specify the mixed mechanism, the better for 
explanatory purposes. The interested reader may look at Russo (2009a, ch.6), Russo 
(2009b), and Mouchart and Russo (2011) for further details.  
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The case study on regional mortality in Spain discussed earlier well illustrates the two 
theoretical aspects to be considered in evaluating the validity of the model. In fact, 
systematic confrontation with background knowledge, both at the hypothesis-
formulation and at the testing stage, bear out the plausibility of the mechanism. Also, 
although there are more blatantly cases of mixed mechanisms, the one modelled by 
López, Mompart, Wunsch (1992) involves variables that are heterogeneous enough (e.g., 
age structure and social or economic development) to illustrate my point. Without those 
considerations, positive results of statistical tests on the decomposition (including 
invariance tests) are insufficient to establish whether the hypothesised mechanism 
causally makes sense of the correlational data the researchers had to analyse. 

 
In sum, the social scientist adopting the structural strategy will make sense of 
correlational data in the following way. Out of background knowledge, including field 
knowledge and previous studies, and of preliminary analyses of data she will first 
hypothesise a mechanism to be (dis)confirmed by means of empirical testing. The main 
test concerns the actual (rather than counterfactual) stability or invariance of the relation 
between the cause- and the effect-variable(s). However, to decide whether the 
mechanism provides a good enough causal story for the correlations found in the data 
set is to decide whether the whole model is valid or not. The evaluation of validity, in turn, 
goes beyond mere statistical considerations about, say, sources of random error, but also 
has to invoke theoretical considerations about congruence with background knowledge 
and about the ontological homogeneity of the mechanism. 

3. The interventionist/manipulationist strategy 

Let me now present and discuss an alternative strategy to make sense of correlational 
data. This is the interventionist or manipulationist account. Mainly defended by Jim 
Woodward (1997, 2000, 2002, 2003, 2004), the approach is also advocated, among 
others, by Hausman (1986, 1997), Hausman and Woodward (2004), Woodward and 
Hitchcock (2003), or Pearl (2000), and, in the social science literature, by Heckman 
(2008) or Morgan and Winship (2007).  In a nutshell, this is an account of causality and 
of causal explanation that hinges upon the notion of invariance under intervention, 
which is, in turn, counterfactually defined. I begin by spelling out the notion of invariance 
under intervention as it is the hub of the interventionist/manipulationist strategy. I then 
discuss the role of experiments in manipulationism to assess whether and to what extent 
this strategy offers a solution to the problem of making (causal) sense of correlational 
data in social contexts where data is most often observational. Finally, I point out that 
even a staunch supporter of manipulationism such as Jim Woodward needs to develop a 
notion of invariance under intervention for observational studies that is not 
manipulationist in character. 

3.1 Invariance under intervention 

‘Invariance under intervention’ is invoked by interventionist modellers because it 
provides a definition of causality, or it bestows empirical generalisations explanatory 
power, or some combination of the two. 
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In the Woodward-Hitchcock approach, in particular, conceptual and explanatory 
considerations intertwine. Here is an example of the conceptual considerations: 
invariance is what makes a generalisation causal rather than accidental. 

The notion of invariance is closely related to the notion of an intervention. A generalization 
G (relating, say, changes in the values of X to changes in the values of Y) is invariant if G 
would continue to hold under some intervention that changes the value of X in such a way 
that, according to G, the value of Y would change—“continue to hold” in the sense that G 
correctly describes how the value of Y would change under this intervention. […] The 
notion of invariance under intervention is intended to do the work (the work of distinguishing between 
causal and merely accidental generalizations) that is done by the notion of a law of nature  in other 
philosophical accounts. (Woodward 2003, p.15-16, emphasis added) 

Invariance under intervention, however, requires some further clarification, notably 
about the fact that, under an intervention, the generalisation “would continue to hold”. 
That is to say, invariance is counterfactually characterised: 

We are now in a position to characterize the notion of invariance: a relationship R between 
variables X and Y is invariant if it would continue to be true (or approximately true) in at 
least some hypothetical situations or possible worlds in which the value of X is changed as 
the result of an intervention. That is, there must be some non-actual value x of X such that the 
following counterfactual is true: ‘if X were equal to x, then the values of X and Y would stand 
(approximately) in the relation R’. (Woodward and Hitchcock 2003, p.15, emphasis added) 
 
As I have emphasized, the notion of invariance is a modal or counterfactual notion: it has to 
do with whether a relationship would remain stable if, perhaps contrary to actual fact, 
certain changes or interventions occur. (Woodward 2003, p. 279) 

Now, all this becomes relevant for explanation. In the Woodward-Hitchcock approach, 
in fact, there is a shift from from nomothetic laws (typical of the deductive-nomological 
model) to empirical generalisations that have the ability to support a particular kind of 
counterfactuals in virtue of their being invariant. And this is what gives empirical 
generalisations explanatory power: 

Explanation has to do with the exhibition of counterfactual dependence describing how the 
system whose behaviour we wish to explain would change under various conditions. As we 
will see, whether a generalization can figure in such a pattern of dependence and hence can 
be used to explain has to do with whether it is invariant, rather than with whether it is 
lawful. (Woodward and Hitchcock 2003, p.2) 

Let us step back now. We started with a problem that is widespread across the sciences: 
to make sense of correlational data coming from observations or experiments. I then 
suggested focusing on quantitative social science, where data most often comes from 
observations and therefore cannot be manipulated. How does the 
interventionist/manipulationist strategy fare with this challenge? 

3.2 Manipulationism and experiments 

The interventionist/manipulationist modeller would answer by saying that what is 
required is that correlations found in the data set be sufficiently stable under 
intervention, in the sense explained above. The question then arises whether, since what 
is required is invariance under intervention, the manipulationist approach presupposes an 
experimentalist stance. The question is legitimate since, if it does, manipulationist 
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strategies are in a hard position for making sense of correlational data in observational 
contexts.  

So we first have to assess whether and to what extent manipulationist modellers 
appeal to experiments. At times, there seems to be a strong reliance on experiments: 

[…] the kind of counterfactuals that are relevant to understanding causation are connected 
to experiments—either actual or hypothetical. […] counterfactuals are understood as claims 
about what would happen if a certain sort of experiment were to be performed. (Woodward 
2002, p.4, emphasis in the original) 

What is the real weight of experiments in the manipulationist approach, then? In order to 
respond this question, we have to consider the status of the project itself. I shall consider 
below two possibilities: (i) the manipulationist project is essentially conceptual, i.e., it 
aims to provide a metaphysical account of causation and explanation, and (ii) the 
manipulationist project is not entirely conceptual—it rather aims to provide an account 
of how manipulation and experiments enlighten explanatory tasks. It is worth discussing 
both variants of manipulationism for several reasons.  

One reason is that it is controversial whether manipulationist modellers, and in 
particular Woodward, support either version, in spite of the claims they make in various 
places. A number of authors read the project as a contribution to the metaphysics of 
causality (Campaner 2003 and 2006, Galavotti 2001, Strevens 2007 and 2008). In 
particular, Strevens argues that the metaphysical reading is the only cogent way to make 
sense of the manipulationist programme, and yet Woodward (2008) vehemently rebuts 
casting doubts on the sole and main metaphysical import of the manipulationist 
approach and reinforces the methodological import of the programme. Given the 
disagreement on the status of the project, it is worth examining both options. 

Another reason is that choosing either version has consequences for my argument. 
On the one hand, structural modellers may well live with conceptual manipulationism 
and supply the methodology of model-building and model-testing that conceptual 
manipulationists lack, but this would imply that metaphysics and methodology are quite 
unrelated. Arguably, this is not a desirable situation. On the other hand, the 
methodological story about model-building and model-testing offered by explanatory 
manipulationists proves wanting in the contexts analysed in this paper, and this is where 
structural modellers take over. 

Finally, because the interventionist approach is advocated by some methodologists in 
social science too (see, e.g., Morgan and Winship 2007), it is important to decide whether 
they are proposing too narrow a strategy, unable to make sense of correlational data in 
observational contexts. 

Conceptual manipulationism 

Let us consider the first possibility. The project is conceptual, i.e. it is about the nature of 
causation. This means that the account aims to say what is the extra content of causation 
with respect to correlation and to give identity conditions for causal relations. 

If this reading of the manipulationist approach is right, then presupposing 
experimentalism is not a problem directly relevant for the task of making sense of 
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correlations in observational contexts, because it aims to say what causality is, not how 
causal relations are to be established (which is the problem of this paper). Causality, in 
this approach, lies in manipulability. So, in an experimental context, something is a cause 
if, were we to intervene on it, the effect would change accordingly. But the setting needs not 
be necessarily experimental. Even in an observational context one might support a 
metaphysical view according to which something is a cause if, under manipulation, it 
would yield changes in the effect(s). 

One line of counter-argument that I will just mention in passing without further 
elaboration is that causation does not lies in counterfactuality. Here is as Jim Bogen 
(2005, p. 415) puts it: 

How can the chemicals in birth control pills cause non-pregnancy in fertile females, when 
they can’t prevent non-pregnancy for males? Counterfactualists say it’s because an invariant 
counterfactual obtains between non-pregnancy and interventions that introduce those 
chemicals in the female, but not in the male bloodstream (Woodward 2003, pp. 154ff., 172-
173, 198-220). Counterfactual reasoning can be epistemically important to the discovery of 
causal structures. But Counterfactualism is not an epistemological idea. It is an ontological 
idea, or a piece of conceptual analysis to the effect that there is no causality without 
counterfactual regularities. 

Another line of counter-argument that instead I want to pursue is the following. 
Arguably, a manipulationist metaphysics needs to be accompanied by a story about testing 
too. The reason for this would be that once we have an account of what causality is 
(identity conditions), it helps a great deal to provide an account of how to ascertain 
whether a relation is causal (test conditions). However, conceptual manipulationism lacks 
a sensible methodological story, which is instead supplied by the structural strategy.  

The interventionist modeller might say that this is the stage where experimental design 
enters, in order to operationalise the variables and to perform experiments to test that 
relations between variables are invariant under intervention. Nonetheless, the problem 
with the interventionist strategy arises exactly at this point. Arguably, test conditions are 
different in experimental and observational contexts. In particular, as in observational 
contexts we cannot manipulate the variables to check out what changes would occur, we 
need an alternative test for invariance. Additionally, establishing causal relations requires 
more than testing a condition (or a finite set of conditions), but it calls for the evaluation 
of the validity of whole model, which includes confrontation with background knowledge, 
as discussed earlier in section 2.4. 

Explanatory manipulationism 

The second possibility is that the manipulationist project be not entirely conceptual. The 
focus would rather be explanation, namely how a phenomenon would change after certain 
interventions. 9  Here, there is very tight a knot between how- and why-questions. 
Invariance under intervention is first needed to distinguish accidental from causal 
generalisations. Then, the extra bonus we gain with invariance is that it also confers 
empirical generalisations explanatory power. In fact, invariant (under intervention) 
generalisations can then be used to ask counterfactual questions about the conditions under 

                                                      
9 ‘Explanatory manipulationism’ is a coinage, as far as I know, of Strevens.  
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which the explanandum would have been different: these are Woodward’s withbd-
questions, i.e., what-if-things-had-been-different-questions. 

Withbd-questions serve the role, in Woodward’s account, to ensure that correlations 
are causal. The stock example is that of Mr Jones taking birth control pills and never 
getting pregnant. According to Woodward, we exclude that this relation is causal because 
to the question ‘What would happen if Mr Jones hadn’t taken birth control pills?’ we still 
answer that he would have not got pregnant. That is to say, manipulating the cause-
variable (taking birth control) does not lead to any change in the effect-variable (getting 
pregnant).10 

Thus, there is a sense in which why-questions, in the manipulationist account, receive 
an answer through the ‘how’: why does X cause Y? Because the empirical generalisations 
between X and Y is invariant under intervention, and this allows us to ask counterfactual 
questions about what would happen to Y, were X be different. The extent to which this 
account would be favourably viewed by contemporary ‘mechanistas’ (see especially 
Bechtel’s work)—who put so much emphasis on explaining a phenomenon by 
decomposing it—is beyond the scope of the present work. 

If the ‘explanatory’ reading of manipulationism is correct, then experimentalism does 
play a decisive role for the problem raised in this paper. This central role of experiments 
is recognised by manipulationist theorists themselves (Woodward 2002, 2006), and by a 
number of commentators (Galavotti 2001, Psillos 2004, Strevens 2007 and 2008). But, if 
experiments are the keystone of explanation, then, I contend, explanatory 
manipulationism cannot be successfully applied to observational contexts.  

Granted, manipulationists modellers do offer a story that suits experimental contexts. 
In particular, there is a sense in which the use of counterfactuals is pretty straightforward: 

My views about the use of counterfactuals in connection with understanding causal claims 
and problems of causal inference are grounded in pragmatic considerations, not apriori 
metaphysics. For it to be legitimate to use counterfactuals for these purposes, I think that it 
is enough that (a) they be useful in solving problems, clarifying concepts, and facilitating 
inference, that (b) we be able to explain how the kinds of counterfactual claims we are using can be tested 
or how empirical evidence can be brought to bear on them, and (c) we have some system for 
representing counterfactual claims that allows us to reason with them and draw inferences in 
a way that is precise, truth-preserving etc. I think that these conditions are met in many 
scientific contexts in which counterfactuals are used. (Woodward 2002, p. 4, emphasis 
added) 

Consider a stock example of manipulationist modellers. Ohm’s law states that the 
voltage E of a current is equal to the product of its intensity I times the resistance R of 
the wire. Consider now the two following counterfactuals: 

(1) If the resistance were set to R=r at time t, and the voltage were set to E=e at t, then the 
current I would be i=e/r at t; 
(2) If the resistance were set to R=r at time t, and the voltage were set to E=e at time t, then 
the current I would be i* ≠ ( is not equal to) e/r at t. 

                                                      
10 The question arises whether we really need the whole manipulationist machinery in cases like this. It may 
be argued, in fact, that in such cases background knowledge is sufficient to exclude spurious causal 
relations. For a discussion of the explanatory import of manipulationism, see also Russo (2009b). 
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Non-trivial truth-values can be given to those counterfactuals “as long as we can describe 
how to test them” (Woodward 2004, p. 45). In experimental setups, it will suffice to 
make further measurements (if t is in the future) or to appeal to previous results (if t is in 
the past) in order to test the counterfactuals above. It might be argued that once we 
make an experiment to test the counterfactual, we appeal to factual evidence. So it seems that 
the counterfactual element dissolves anyway. But I will not enter this quarrel here. The 
interested reader might refer to the thrust and counter-thrust between Bogen (2004) and 
Woodward (2004). 

The manipulationist strategy apparently suggests that once you test for invariance the 
job is completed. But this is a wrong picture of scientific practice. First, as discussed in 
section 2.3, there are many tests to perform, even though invariance is arguably the most 
important one. Second, as discussed in section 2.4, to decide whether there is plausible 
causal story that makes sense of correlational data we have to evaluate the validity of the 
whole model. This is exactly what the structural strategy discussed above offered. 

Manipulationist modellers may still play the card of ideal experiments. What is 
required is not to actually perform experiments, but to evaluate counterfactuals that 
evaluate ideal experiments describing hypothetical interventions. This move, however, 
begs the question and reintroduces the problem mentioned in ‘conceptual 
manipulationism’: even if we accept it as a conceptual analysis of causation, a story about 
evaluating the validity of a model to make (causal) sense of correlational data is missing.  

At best the interventionist/manipulationist strategy can offer a test condition for 
experimental contexts. But as I tried to show earlier, making sense of correlations 
involves more than simply satisfying a condition of invariance. Instead, it involves 
deciding about the validity of the whole model. So even ideal experiments are insufficient 
to this end. What is more, the manipulationist strategy misses a story about testing for 
the particular data I am concerned with: those on which we cannot intervene. In other 
words, the manipulationist/interventionist strategy fails to offer a separate account for 
observational contexts. As a consequence, explanatory manipulationism is not an option 
for observational contexts, whilst the structural strategy discussed earlier is.  

It is worth emphasising that, of course, one can support the metaphysics she likes, but 
the chosen metaphysics is useless if there are no implications for testing. A structural 
modeller could indeed hold a manipulationist metaphysics, but then either she is left with 
no indication whatsoever as to how to test causal relations, or she has to hold the 
questionable view that metaphysics and methodology are completely unrelated. As 
mentioned in section 2.1, the structural strategy is not committed to any particular 
metaphysics, while the trouble with the manipulationist strategy is twofold: (i) conceptual 
manipulationism is a particular metaphysics that is unrelated to large part of scientific 
practice, notably to observational social science, and (ii) explanatory manipulationism 
provides a story about testing that is of no use to scientists that cannot intervene on data. 

3.3 Observational data and ‘weak invariance’ 

A way to go round the stumbling block of observational data is to say that in such cases 
we don’t perform any experiment, but Nature does the experiment for us. Fair enough, but 
we are left with the same problem as before: analysing a data set, the hard job is to figure 
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out whether or not Nature performed an experiment from which to draw the conclusion 
that correlations are invariant enough to be deemed causal. How do we do that? I 
presented before the structural strategy. In a nutshell, we model and test structures, i.e. 
mechanisms, that explain correlational data; the plausibility of such a story is a matter of 
evaluating the validity of the whole model, and confrontation with background knowledge 
at the various stages looms large in this. Let us now consider the solution of one of the 
most strenuous manipulationists. 

Beside invariant empirical generalisations, Woodward also discusses the concept of 
‘possible-cause’ generalisation (chapter 5.8 of his 2003), for which ‘weak invariance’ has 
to hold (chapter 6.15 and 7.8). Possible-cause generalisations, following his presentation, 
are the kind of generalisations that are established by means of structural equation 
models in social science, and weak invariance is not to test whether the generalisation 
would remain stable were we to intervene, but whether the generalisation is stable across 
subpopulations or different partitions of the data set. 

In his long and detailed chapter on invariance, Woodward discusses Cornfield et al. 
(1959) paper on the relations between smoking and lung cancer. Woodward (2003, 
p.312) correctly notices that this paper was written in 1959, when detailed knowledge 
about the biochemical mechanism through which smoking produces cancer was still 
lacking. Consequently, scientists largely relied on epidemiological evidence—that is on 
observational data—and only to a lesser extent on experimental studies of laboratory 
animals. Woodward then points out that the scientists do not aim to formulate 
‘exceptionless generalisations’, i.e. laws; instead, they establish a causal link between 
smoking and lung cancer because the relation turns out to be invariant. What kind of 
invariance is Woodward referring to? Let us read the full passage: 

For example, the authors note that some association appears between smoking and lung 
cancer in every well-designed study on sufficiently large and representative populations with 
which they are familiar. There is evidence of a higher frequency of lung cancer among 
smokers than among nonsmokers, when potentially confounding variables are controlled 
for, among both men and women, among people of different genetic backgrounds, across 
different diets, different environments, and different socioeconomic conditions […]. The 
precise level and quantitative details of the association do vary, for example, the incidence of 
lung cancer among smokers is higher in lower socioeconomic groups, but the fact that there 
is some association or other is stable or robust across a wide variety or different groups and background 
circumstances. […] Thus, although Cornfield et al. do not exhibit a precise deterministic or 
probabilistic generalization that is invariant across different circumstances [meaning: across 
interventions] the cumulative impact of their evidence is to show that the relationship 
between smoking and lung cancer is relatively invariant in the weak sense described above 
[i.e., chapter 5.8]. (Woodward 2003, p.312, emphasis and brackets added) 

The kind of invariance invoked here is not the kind of counterfactual invariance under 
intervention presented in section 3.1. Rather, as discussed in the structural strategy 
(section 2.3), invariance is tested across partitions of the data set. This prompts a number 
of remarks.  

A charitable interpretation of Woodward’s notion of ‘weak invariance’ is that, after all, 
we don’t disagree that much. Perhaps all this emphasis on manipulation and intervention 
is ‘just’ misplaced. Unfortunately, misplacing manipulation and intervention has the 
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serious side effect of overshadowing that making sense of correlational data is a matter 
of evaluating the validity of the whole model, not of evaluating a single condition. Testing 
invariance, be it ‘counterfactual’ or ‘weak’, is but a part of the more ample story about 
validity. 

There is however a stronger point to be made. Weak invariance may solve the 
problem of testing invariance in contexts where we cannot directly intervene on the data. 
That is to say, it is a workable alternative to the kind of counterfactual invariance advocated 
by manipulationist modellers. Yet, the problem of confusing testing a condition and 
evaluating the validity of the whole model arises again, because in observational contexts, 
where the goal is to establish possible-cause generalisations (in Woodward’s terminology) 
we don’t just test various conditions of weak invariance one by one. Thus, the 
manipulationist/interventionist strategy, both in its strong form adapted to experimental 
contexts and in its ‘weak’ form adapted to observational contexts, can be subsumed 
under the more general framework of the structural strategy. The structural strategy 
offers a broad methodological framework, namely it is an umbrella for various particular 
modelling tools. Manipulationist strategies in the ‘strong’ and ‘weak’ versions are exactly 
specific tools in this sense. 

Let me emphasise that this is more than a philosophy of science point. This is a point 
about methodology too. Even armed with ‘weak’ invariance besides ‘counterfactual’ 
invariance, the manipulationist modeller wouldn’t be able to reproduce the explanatory 
machinery that structural modellers such as López, Mompart, Wunsch (1992) put in 
motion to explain the low mortality rate in Spain in the early Nineties. The reason is that 
manipulationism discriminates between correlations and causal relations on the basis of 
just one condition, i.e. invariance. More importantly, manipulationism is not accompanied 
by a mechanistic interpretation of the recursive decomposition—this is what does the 
explanatory job. To conceive of mechanisms simply as chains of invariance relations 
does not shed any light on why the decomposition represents a mechanism and on why 
such formal tool can be explanatory. This is instead provided by the structural strategy, 
as argued in section 2.1 and 2.2, and in Mouchart and Russo (2011). Thus, 
manipulationist modellers lack a ‘global view’ of modelling, where the notion of validity 
of the model is vital. This includes confrontation with background knowledge at all 
stages and does not reduce testing causal hypothesis to checking a single condition. 

4. Conclusion 

Making sense of correlational data coming from observations or experiments is a shared 
problem across the sciences. What this ‘making sense’ arguably means is whether 
correlations are causal or not. If we could always perform experiments, this would be a 
relatively easy task: wiggle the putative cause, hold fix the rest, and see what happens to 
the putative effect. Unfortunately, we can’t. There are in fact contexts—I have in mind 
many social science domains—in which no manipulation on the data can be performed. 
The scientist is provided with a data set and her task is to tell a story—a causal story—
that accounts for the correlations found in the data. 

This paper suggested that a way to tell causal stories in order to make sense of 
correlations: the ‘structural strategy’. I presented the structural strategy as a general 
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methodological framework rather than as a particular model, such as structural equation 
models, covariance models, or hierarchical models. The main idea behind this structural 
approach is to look for structures, that is for mechanisms, that are able to explain why we 
observe the correlations we do. Once a mechanism is hypothesised, it is put forward for 
empirical testing and, finally, the validity of the model will be evaluated on the basis of 
results of empirical testing and of other theoretical considerations. Thus, the structural 
strategy is not offering an answer to the old question of what is the extra content that 
correlations must have in order to be causal. The structural strategy locates in the domain 
of epistemology and methodology of causality and reformulates the old problem ‘when 
are correlations causal’ into ‘how do establish the validity of a causal model’. 

I then turned the attention to another possible strategy: the manipulationist or 
interventionist strategy. I argued that this account, based on the notion of invariance 
under intervention, cannot solve the problem of making sense of correlational data when 
manipulations are not possible. On the one hand, if the manipulationist account is given 
a purely metaphysical reading—that is it aims to tell what causality is—then a story about 
testing is missing and consequently there is no possible answer to the problem of the 
paper. On the other hand, if the manipulationist account is given a more epistemological 
and methodological reading—that is it gives an account of testing how things 
would/must change in response to certain interventions, then the story told is not 
suitable for purely observational contexts, exactly because too much importance is 
bestowed on experiments.  
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