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Abstract  
 

In this article the Dirac equation is used as a guideline to the historical emergence of the concept of 
quanta, associated with the quantum field. In Pascual Jordan’s approach, electrons as quanta result from 
the quantization of a classical field described by the Dirac equation. With this quantization procedure – 
also used for the electromagnetic field – the concept of quanta becomes a central piece in quantum 
electrodynamics. This does not seem to avoid the apparent impossibility of using the concept of quanta 
when interacting fields are considered together as a closed system. In this article it is defended that the 
type of analysis that leads to so drastic conclusions is avoidable if we look beyond the mathematical 
structure of the theory and take into account the physical ideas inscribed in this mathematical structure. In 
this case we see that in quantum electrodynamics we are not considering a closed system of interacting 
fields, what we have is a description of the interactions between distinct fields. In this situation the 
concept of quanta is central, the Fock space being the natural mathematical structure that permits 
maintaining the concept of quanta when considering the interaction between the fields.  

 
 
1. Introduction 
 

Once upon a time, Richard P. Feynman wrote that “we know so very much and then 
subsume it into so very few equations that we can say we know very little (except these 
equations – Eg. Dirac, Maxwell, Schrod.). Then we think we have the physical picture 
with which to interpret the equations. But these are so very few equations that I have 
found that many physical pictures can give the same equations” (quoted in Schweber, 
1994, p. 407). He wrote this having in mind, in particular, the Dirac equation: 

 mi   (Feynman, 1961, p. 57).  
In this article the Dirac equation will be used as a guideline to introduce the concept 

of quanta and to reveal its importance in the description of interactions in quantum 
electrodynamics. To this end the historical evolution and interpretation of the Dirac 
equation is considered. In section 2, I present the evolution of the Dirac equation from 
its first formulation as a relativistic wave equation for an electron, to a classical field 
equation from which an electron-positron quantum field is obtained. In this transition, 
the Dirac equation went from being a relativistic ‘update’ of the Schrödinger equation in 
the calculation of energy levels in atoms (basically of hydrogen) to becoming one of the 
cornerstones of the most successful quantum field theory: quantum electrodynamics. In 
section 3, I will try to clarify the relation between the different interpretations of the 
Dirac equation. In this way the results provided by Dirac’s equation as a relativistic one-
electron equation are reinterpreted from the perspective of the quantized Dirac field. 
Doing this, the importance of the concept of quanta in the description of bound states 
becomes clear. By contrast, bound states are usually only described at the level of the 
one-electron interpretation of the Dirac equation, which gives a distorted idea of the 
physical description of bound states that should be described from the perspective of 
quantum fields. In particular, an analysis of a two-body description of the hydrogen 
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atom reveals a distinctive feature of quantum electrodynamics: the interaction between 
fermions described as an exchange of photons.  

In section 4, I will consider possible problems to the previous view. According to 
John Earman and Doreen Fraser, the Haag theorem seems to imply the mathematical 
inconsistency of the usual treatment of interactions in quantum electrodynamics using 
perturbative methods (Earman & Fraser, 2006), in which the concept of quanta is 
central. Fraser presents the idea that “once infinite renormalization counterterms are 
introduced … it is no longer possible to prove Haag’s theorem” (Fraser, 2006, p. 2). I 
shall argue that simply calling attention to the fact that renormalization “renders the 
theory mathematically not well-defined” (Fraser, 2006, p. 171) does not provide any 
answer to the question: “why perturbation theory works as well as it does” (Earman & 
Fraser, 2006, p. 307). This is not an unimportant question, since we are facing the 
puzzling situation that the predictions of quantum electrodynamics are so accurate, 
while the theory from which they are derived appears to be mathematically inconsistent. 
In this section I will try to provide an answer to this question. In the process I will try to 
show that Earman & Fraser’s conclusion that “Fock representations are generally 
inappropriate for interacting fields” (Earman & Fraser, 2006, p. 330) or Fraser’s related 
conclusion that “an interacting system cannot be described in terms of quanta” (Fraser, 
2008, p. 842), are not valid ones in quantum electrodynamics: we do not have an 
interacting system but two weakly interacting fields (systems), and their interaction is 
described in terms of quanta. 

In a nutshell my argument will be as follows: it turns out that quantum 
electrodynamics, because the series expansion of the S-matrix is divergent, is unable to 
treat radiation and matter as one closed system, and can only give an approximate 
description (using a perturbative approach) of their interaction as distinct systems. If we 
try to close the gap and treat radiation and matter as one closed system, corresponding 
to an exact solution of the coupled non-linear Maxwell-Lorentz and Dirac equations, 
our perturbative approach fails. My view is that there is a one-to-one correspondence 
between having meaningful mathematics results and the physical assumptions used to 
set up the theory (in quantum electrodynamics I take part of the input physical concepts 
to be radiation and matter taken to be independent systems that are independently 
quantized due to the weak interaction between then). This is so, because the physical 
concepts are defined with their mathematical ‘support’, not beyond or independently of 
maths. In a situation where we have an infinity popping out we cannot have a well-
defined use of the physical concepts involved. In the case of quantum electrodynamics 
this situation occurs when trying to give a full description of the (weak) interaction 
between matter and radiation, which would correspond to treat them as one closed 
system. I see the divergence of the S-matrix series expansion as a fingerprint of a 
tentative application of the mathematics of the theory beyond its physical content. 

By focusing on the basic physical concepts used to set up the theory, and not solely 
on the (ill-defined) mathematical structure of the theory, we can make sense of the 
success of quantum electrodynamics (independently of the Haag theorem). This 
provides a different perspective than the one adopted by Earman & Fraser that not only 
contradicts several of their conclusions, but also, in my view, makes quantum 
electrodynamics more intelligible.  
 
2. Different views on the Dirac equation 
 
2.1. Dirac’s equation as a one-electron equation 
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In the early days of 1928, Paul Dirac published a paper which presented what he 
considered to be a relativistic wave equation for one electron. The main guideline for 
obtaining Dirac’s equation was, besides the requirement of being relativistic, to conform 
to the mathematical scheme of transformation theory. This implied an equation that is 
linear in the time derivative d/dt. Dirac also felt that “an appropriate formulation of 
quantum mechanics will only be possible when we succeed in treating space and time as 
equal to one another” (quoted in Kragh, 1990, p. 54). This means that space and time 
must appear in the equation on equal footing, as the coordinates of a Minkowski space-
time.  

Dirac ended up with a relativistic equation for a four-component wave function 
(Dirac, 1928, p. 615): 

0mc]ψρ),(ρ[p 310  pσ , 
 
where p0 = iħ /(ct) and ppppwherepr = –iħ /(cxr) with r = 1, 2, 3; 
is a vector formed with 4  4 matrices that are an extension of the 2  2 
Pauli matrices, and the 4  4 matrices  and  are also obtained from the Pauli 
matrices (Dirac, 1928, pp. 613-615). Spin could explain the existence of two of the four 
components of the wave function solution of the Dirac equation, but there were another 
two that had to be accounted for. 

In the simplest case of a free electron, four independent solutions exist: two 
corresponding to electron states with positive energy and two states with negative 
energy. Dirac’s first attitude was to reject these negative-energy solutions because they 
referred to a charge +e of the electron (Dirac, 1928, p. 618). This was possible in a first-
order approximation. Looking at the exact solution we can see that the situation is far 
from that simple. The Dirac equation can be written as a set of two coupled differential 
equations for a pair of two-components wave functions  and . These two wave 
functions are essential in the solution of Dirac’s equation and cannot be disregarded in 
the calculation of the energy levels. What happens is that the lower two-components 
() are smaller that the upper two-components (), roughly by a ratio of /2c, where 
 is the ‘velocity’ of the orbiting electron in Bohr’s theory. Now, when considering the 
solution of Dirac’s equation for a free electron with momentum p, we see that there are 
two solutions corresponding to electron states with momentum p and energy Ep, and 
two solutions corresponding to states with momentum –p and energy –Ep, or as Dirac 
mentioned to an electron with charge +e (and positive energy Ep). In the case of the 
exact solution for an electron in an external electromagnetic field, we have a four-
component wave function (e. g. Sakurai, 1967, pp. 122-129), which, we can take to 
‘have’, by resorting to the free electron case, positive and negative energy components, 
or as Dirac mentions, solutions referring to a charge –e and +e (according to Dirac “it is 
not possible, of course, with an arbitrary electromagnetic field, to separate the solutions 
of [the relativistic wave equation] definitely into those referring to positive and those 
referring to negative values [of energy], as such a separation would imply that 
transitions from one kind to the other do not occur” (Dirac, 1958, p. 274)). In this way 
we must take, as Dirac did, the reference to positive and negative energy components as 
a “rough one, applying to the case when such a separation is approximately possible” 
(Dirac, 1958, p. 274). When taking the non-relativistic limit of Dirac’s equation, the 
equation for the upper two-components, takes the form of the Schrödinger-Pauli two-
components wave equation (corresponding to a negative energy state), and as 
mentioned, the lower components are smaller than the upper components and can be 
disregarded. That is, we can only disregard two of the components of the four-
component wave function in the non-relativistic limit.  
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Dirac’s not very consistent idea of neglecting the negative-energy solutions was 
soon challenged when Oscar Klein showed that the simple case of a positive-energy 
wave incident on a potential barrier could give rise to a transmitted negative-energy 
wave, a result known as the Klein paradox (Mehra & Rechenberg, 2000, pp. 309-311). 
More importantly, to obtain the Klein-Nishina relativistic formula for the photon-
electron scattering, the negative-energy solutions had to be considered. In Niels Bohr’s 
words: “the striking confirmation which this formula has obtained became soon the 
main support for the essential correctness of Dirac’s theory when it was apparently 
confronted with so many grave difficulties” (quoted in Kragh, 1990, p. 89). So, the 
existence of negative-energy solutions in the Dirac equation had to be properly 
addressed. 

Dirac himself did this. He recognized the problem that “in the general case of an 
arbitrary varying electromagnetic field we can make no hard-and-fast separation of the 
solutions of the wave equation into those referring to positive and those to negative 
kinetic energy” (Dirac, 1930, p. 361), and proposed as a solution that “all the states of 
negative energy are occupied except perhaps a few of small velocity. […] We shall have 
an infinite number of electrons in negative-energy states, and indeed an infinite number 
per unit volume all over the world, but if their distribution is exactly uniform we should 
expect them to be unobservable” (Dirac, 1930, p. 362). In this first version of his 
negative-energy electron sea, the ‘holes’ in the ocean were identified as protons (Dirac, 
1930, p. 363). A few months latter, a note by J. Robert Oppenheimer (1930) was 
published in which the author calculated the transition probability for the annihilation of 
an electron and a proton that corresponds to the filling of a hole in the sea. The result 
was not very promising. Oppenheimer obtained a mean lifetime of a free electron in 
matter that was too low (Kragh, 1990, pp. 101-102). 

What turned out to be more important was Hermann Weyl’s demonstration that 
“according to Dirac’s own theory of the electron the hole must necessarily have the 
same mass as an ordinary electron” (Kragh, 1990, p. 102). This paved the way to a 
second version of Dirac’s sea in which “a hole, if there is one, would be a new kind of 
particle, unknown to experimental physics, having the same mass and opposite charge 
to an electron. We may call such a particle an anti-electron” (Dirac, 1931, p. 61). 

The reception of the ‘hole’ theory was not very warm. Some compared the negative-
energy sea with the unobservable ether, others referred to the negative-energy electrons 
as donkey electrons because of their unusual ‘dynamical’ behaviour, and Wolfgang 
Pauli – not restrained by Dirac’s views on the importance of the transformation theory – 
worked out with Victor F. Weisskopf a quantum field theory based on the Klein-Gordon 
equation, in which there was no need for a sea to take care of the concept of anti-
particles (Kragh, 1990, pp. 111-114). In this work they followed recent approaches 
where the electrons and the anti-electrons (positrons) were described in the formalism of 
the theory on the same footing in a completely symmetrical way (e. g. Rugh, 
Zinkernagel & Cao, 1999, pp. 112-113).  

This symmetrical treatment of the electrons and the positrons solved the newly 
created interpretation problem of Dirac’s equation. Dirac’s solution of the negative-
energy difficulty makes it impossible to maintain a single electron interpretation of his 
equation, as can be seen in the derivation of the Klein-Nishina formula using the hole 
theory: In the scattering of a photon by a free electron, intermediate states with a 
negative-energy solution must be considered. For example, an intermediate state must 
be taken into account when a negative-energy electron absorbs the incident photon and 
makes a transition to a state of positive-energy, leaving a hole present (that is seen as a 
positron). Then the free electron “drops into the hole and fills it up” (Dirac, 1930, p. 
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363), and emits the outgoing photon. In the intermediate state we have three particles 
present (Sakurai, 1967, pp. 134-138), which means that the one-electron interpretation 
of Dirac’s equation is not feasible.  
 
2.2. The (classical) Dirac equation and the quantization of the Dirac field 
 

When in 1927 Dirac developed a quantum treatment of the electromagnetic field he 
did this from two different approaches, which at the quantum level gave the same 
mathematical result. In the final part of his paper Dirac extended Jordan’s initial work 
on the quantization of the electromagnetic field (Schweber, 1994, pp. 9-11), but the 
main aspect of Dirac’s work was not the quantization of a wave; on the contrary his 
paper is mainly a treatment of an assembly of identical quantized particles. It seems that 
Dirac got to this approach by “playing about with Schrödinger equation” (quoted in 
Darrigol, 1986, p. 226). For Dirac this method, later called ‘second quantization’, turns 
out to be simply a different procedure to impose the Bose-Einstein statistics on the 
particles. He could instead have simply selected symmetrical wave functions as the 
physically admissible wave functions for this type of particle (Dirac, 1926, p. 672).  

Dirac started with an assembly of N similar independent particles (subject to an 
interaction with an atomic system), whose wave function, solution of the Schrödinger 
equation, is = rarr (where r is the eigenfunction of a particle in the state r).  Dirac 
took the expansion coefficients ar to be canonical conjugates. Working with the 
canonical variables br = ar e

-iwrt/ħ and br* = ar* eiwrt/ħ (where wr is the energy of a particle 
in the state r), Dirac assumed that these variables were “q-numbers satisfying the usual 
quantum conditions instead of c-numbers” (Dirac, 1927, p. 251). This gives the false 
impression that an additional quantization scheme is being used, but what is being done 
is changing from a configuration space representation to an occupation number 
representation (Cao, 1997, pp. 166-167). The commutation relation [br, bs*]= rs holding 
between br and br* serves to impose the symmetrization of the wave functions. This 
implies that the particles obey Bose-Einstein statistics (Dirac, 1927, pp. 252-255; 
Schweber, 1994, p. 28).  

As mentioned previously, in the final part of his work Dirac considered the 
quantization of a classical electromagnetic wave. Starting with the classical Hamiltonian 
describing an atom in interaction with radiation, the field was described by canonical 
variables, which in the quantization procedure where taken to be q-numbers satisfying 
the usual quantum commutation relations. With this procedure Dirac obtained a 
Hamiltonian for the quantized system, which was, according to his view, consistent with 
the Hamiltonian obtained using the particle view (Dirac, 1927, p. 263). Dirac 
considered that this work demonstrated the equivalence between a quantized 
electromagnetic wave and a system of bosons (light-quanta). Implicit in this conclusion 
is the identification of the quanta of energy with the particles (light-quanta). In order to 
get this result, a particle cannot cease to exist when it is apparently absorbed, or created 
when it is emitted. It is therefore necessary to have an infinite sea of light-quanta 
(photons), in a state in which their momentum and energy are zero, from which the 
particle can jump from or into (Cao, 1997, pp. 163-164; Dirac, 1927, p. 261). The fact 
that Dirac considers that there is “a complete harmony between the wave and light-
quantum description” (Dirac, 1927, p. 245), does not mean that he takes over this 
equivalence to the case of the electrons. In fact, as Dirac clearly states in this article, he 
makes a clear distinction between the case of electromagnetic radiation and matter. For 
Dirac there simply is no real de Broglie wave which, after quantization, permits the 
description of the electrons (Dirac, 1927, p. 247). 
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Strongly influenced by Louie de Broglie’s views, Jordan made a very personal 
reading of Dirac’s work. Jordan considered the method presented by Dirac as a 
legitimate procedure to obtain quantized waves, which could be applied to the case of 
de Broglie waves. That is, for Jordan, Dirac’s method meant a first quantization of a 
classical wave. Jordan extended Dirac’s approach to the case of matter (described by a 
‘classical’ Schrödinger equation), and worked out a quantization procedure that could 
be applied in the case of Fermi-Dirac statistics (the statistics of the quantized particles, 
corresponding to antisymmetrical wave functions). Already in his first (incomplete) 
treatment of quantized matter waves, Jordan felt confident to state: 
 
The results we have reached hardly leave any doubt that … a quantum-mechanical wave theory of matter 
can be developed that represents electrons by quantized waves in the usual three-dimensional space. The 
natural formulation of the quantum theory of electrons will be attained by conceiving light and matter as 
interacting waves in three-dimensional space. The basic fact of electron theory, the existence of discrete 
electric particles, appears in this context as a characteristic quantum phenomenon; indeed it means 
exactly that matter waves  occur only in discrete quantum states (quoted in Darrigol, 1986, p. 232). 
 

The work of Jordan (and his collaborators) was extended by Werner Heisenberg and 
Pauli in the development of a relativistic quantum theory of fields in which the 
electromagnetic and matter fields were described by a classical Lagrangian and 
quantized by a new method (Miller, 1994, p. 31). The difficulties in the quantization of 
the Maxwell equations delayed for more than a year the completion of their work. When 
finally Heisenberg managed “to eliminate the difficulties by means of a formal trick” 
(quoted in Pais, 1986, p. 343), Dirac had already published his equation, and 
Heisenberg and Pauli adopted it in their quantum field treatment of the interaction of 
matter and the electromagnetic field. 

After a subsequent refinement, mentioned above, the quantum field approach gave a 
different view on the negative-energy solutions without need for the hole theory. Taking 
the Dirac equation and its adjoint equation as classical field equations derived from a 
classical Lagrangian, an arbitrary field can be expanded in terms of the complete set of 
free-particle solutions (Schweber, 1961, pp. 222-223):  
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The quantization scheme consists in replacing the expansion coefficients by operators 
satisfying the anticommutation relations [bn, bm]+ = [bn*, bm*]+ = 0 and [bn, bm*]+ = nm. 
With this procedure x and the adjoint spinor field *(x become operators that act on 
state vectors of a Fock space;1 and br(p) and br*(p) are interpreted as the annihilation 
and creation operators of an electron in the state (p, r). Redefining the operators for the 
negative-energy states as br+2(-p) = dr*(p) and br+2*(-p) = dr(p) with r = 1, 2, these 
operators can be interpreted as the creation and annihilation operators for a positive-
energy positron (Schweber, 1961, p. 223; Miller, 1994, p. 56), and the expansion of the 
x operator is now given by 
 

                                                
1 Considering the vacuum state, which is the state with no quanta, an n-quanta Hilbert space can be 
defined by n applications of creation operators. The Fock space is the (infinite) product of the n-quanta 
Hilbert spaces: H(0)  H(1)  H(2) … (Schweber, 1961, pp. 134-137; Gross, Runge & Heinonen, 1991, p. 
21). 
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With this formulation there are no negative-energy states (identified as the positive-
energy positrons), and so no need for the infinite sea of negative-energy electrons. Also 
in the field operators x and *(x we have simultaneously components related to 
electrons and positrons.  

Let us consider the energy-momentum operator  
 

)](n)([nppd)]()b(*b)()a(*[appdP µ3

r
rrrr

µ3µ pppppp    , 

 
and the total charge operator 
 
                )](n)([npd)]()b(*b)()a(*a[pdQ 3

r
rrrr

3 pppppp , 

 
where n-(p) is the number of the quanta identified as electrons and n+(p) is the number 
of quanta identified as positrons (Jauch & Rohrlich, 1976, p. 64). As Jordan proposed, 
the quantization of charge and subsequent emergence of a particle-like concept of an 
electron can be seen as a result of the quantization of the classical field.  

In Heisenberg and Pauli’s work, using the Lagrangian formalism, the system of 
interacting Dirac and Maxwell fields is described by a Lagrangian L = L0(A) + L0() + 
LI(, A), where L0() and L0(A) are the Lagrangian for the free Dirac and Maxwell 
fields, and LI(, A) = µ

µ ψAγψe  is the interaction term. The variation of the Lagrangian 
with respect to the field operators results in a set of coupled equations. In this case, the 
Dirac equation in the presence of the electromagnetic field is given by 

 m)Ae-(i  (Feynman, 1961, p. 56). This apparently integrated treatment of the 
Dirac and Maxwell fields must not make us forget that the fields are quantized as free 
fields. From the quantization of each field it will turn out that the Lagrangian (or 
Hamiltonian) for each field and the interaction term become operators. It is important to 
keep in mind that quantum electrodynamics, as an interacting field theory, is developed 
as a theory that describes the interaction between distinct fields. Quantum 
electrodynamics was developed by considering two clearly separated fields from the 
start, which corresponds to having in the Lagrangian (the mathematical core of the 
theory) two separated pieces exclusive of each field. The relations between the two 
fields are determined by an interaction term that couples the Maxwell and Dirac 
equations.  
 
3. Combining results from the different views on Dirac’s equation 
 
3.1. A quantized electron-positron field view on the solutions of the Dirac equation as a 
relativistic one-electron equation 
 

When considering the exact solution of the one-electron Dirac equation in a central 
potential (the hydrogen atom) we have a four-component wave function. In simple 
terms we can say that in the four-component wave function we have components that, 
from a quantized field perspective, are related to both electrons and positrons.  As we 
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have seen, the quantized field perspective relates the (free) positive-energy solutions to 
the electrons and the (free) negative-energy solutions to the positrons. If we want, 
taking into account this perspective, a simple model for the hydrogen atom with only 
one electron, while using the Dirac equation as a relativistic one-electron equation, we 
must develop a model that uses only two-component positive-energy wave functions to 
describe the electron. This approach is also important if we want to make a clear 
connection between the relativistic and non-relativistic equations, that is, between the 
Dirac and the Schrödinger equations.   

Considering the four-component solutions of the Dirac equation in the presence of 
electromagnetic coupling = ( ), in the non-relativistic limit the lower two 
components  are smaller than the upper two . When calculating matrix elements 
like (, 4) = 

* – 
*, neglecting terms of order (v/c)2, we obtain an 

expression only in terms of the large components 
* reducing the matrix element to 

its non-relativistic form in terms of two-component wave functions (Mandl, 1957, pp. 
214-215). In the non-relativistic limit the large components can be seen as the solution 
of the Schrödinger-Pauli two-component wave equation. 

Concerning this approach to the problem of the non-relativistic limit of the Dirac 
equation, Leslie Foldy and Siegfried Wouthuysen argued that “the above method of 
demonstrating the equivalence of the Dirac and Pauli theories encounters difficulties 
[…] when one wishes to go beyond the lowest order approximation” (Foldy & 
Wouthuysen, 1949, p. 29). Foldy and Wouthuysen proposed a new method (using a 
different representation than Dirac’s original one) which would not only provide better 
results for higher-order approximations but also the definition of new operators for 
position and spin “which pass over into the position and spin operators in the Pauli 
theory in the non-relativistic limit” (Foldy & Wouthuysen, 1949, p. 29). 

In the case of the Dirac equation for a free electron it is possible to perform a 
canonical transformation on the Hamiltonian that enables the decoupling of the positive- 
and negative-energy solutions of Dirac’s equation, each one becoming associated to a 
two-component wave equation. This means we get two independent equations for two-
component wave functions, and that we can identify the equation with positive-energy 
solution as the Schrödinger-Pauli equation. The case of an electron interacting with an 
external electromagnetic field is more involved. The trick is to consider the 
electromagnetic field as a perturbation and to make a sequence of transformations to 
obtain the separation of negative- and positive-energy solutions. In the non-relativistic 
limit, like in the previous method, the Schrödinger-Pauli equation is obtained.  

It is then possible to rework the relativistic Dirac one-electron equation in a way in 
which only positive-energy solutions are considered. Foldy and Wouthuysen applied 
their method to the case where a Dirac electron interacts with an external 
electromagnetic field.  By making three canonical transformations and using only terms 
of order (1/m)2 they obtained an Hamiltonian (incorporating relativistic correction to 
this order) that enabled a clear separation of positive- and negative-energy solutions. 
With this method the non-relativistic limit of Dirac’s equation results in two uncoupled 
equations one with positive-energy solutions and the other with negative-energy 
solutions.  With their three canonical transformations Foldy and Wouthuysen were able 
to obtain the same wave equation as in the Pauli theory. 
 
3.2. A Dirac field approach to the hydrogen atom 
 

In the previous method we are not taking into account directly the quantized Dirac 
field, and we are basically maintaining the inconsistent one-electron interpretation of 
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Dirac’s equation. Also, Foldy and Wouthuysen definition of the positive-energy 
solutions was made by taking into account the classical limit, and this is not the only 
possible definition (Foldy & Wouthuysen, 1949, pp. 33-34). As we have seen the 
quantization of the (free) Dirac field leads to an association of the quanta to individual 
terms of a plane-wave expansion of the field corresponding to either positive or 
negative energy eigenvalues, which implies choosing another definition of positive-
energy solutions. 

This leads us to the necessity of taking a quantum field approach to the case of the 
hydrogen atom. One possibility is to use the so-called Furry, or bound interaction, 
representation within the external field approximation. This gives a method for 
calculating corrections to the energy levels of a bound electron determined by the Dirac 
equation as a relativistic one-electron equation (Berestetskii, Lifshitz & Pitaevskii, 
1982, p. 487). But the starting point is the field operator defined by 

 
tt ebveaux rr iE
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r
r

r )()()ψ( *xx   , 

 
where ur(x) and vr(x) are obtained by solving the Dirac equation for a positive-energy 
particle representing the electron, and a negative-energy particle representing de 
positron: Hua(x) = Eaua(x) and Hvb(x) = –Ebvb(x), where H = i0 e0i0m, 
with  a static external field (Jauch & Rohrlich, 1976, p. 313). The first equation is 
exactly the one solved in the case of the one-electron interpretation of the Dirac 
equation. This means that Ea gives the energy levels obtained by this method, and that in 
spite of identifying ua(x) as the electron’s wave function, it contains both positive- and 
negative-energy components (Schweber, 1961, p. 566). 

Now, what is needed is a method in which the free particle positive-energy 
characteristic of the electron is maintained during the interaction with no mixing of 
positive- and negative-energy components.  

The main working tool in quantum electrodynamics, the S-matrix, was designed for 
scattering problems where we have free particles in the beginning and free particles in 
the end of an interaction (scattering). This means that the S-matrix is not very 
appropriate to deal with the case of a bound particle, at least not in a direct way. 
Moreover, one of the most important characteristics of quantum field methods is that 
the interaction between fermions is represented by the exchange of photons: quanta of 
the electromagnetic field (e. g. Carson, 1996, pp. 127-129). If we make a model of the 
atom in which a classical Coulomb field gives the effect of the nucleus, this quanta view 
is lost (as in the external field method previously discussed). A way to overcome these 
difficulties is to address directly the two-body problem using the Bethe-Salpeter 
equation. In this method, the two-body problem is addressed by considering directly the 
two-particle propagator for an electron and a proton (which in the calculations is taken 
to be a ‘big’ positron with the same mass as the proton).2 Considering a power series 
expansion of the two-particle propagator, the binding energy between a proton and an 
electron is basically calculated using what is known as the ladder approximation 
(Schweber, 1961, p. 713). Concerning this approximation, Hans Bethe and Edwin 
Salpeter remarked that “although the probability for the exchange of a quantum during a 
small time interval is fairly small, during the infinite time of existence of the bound 
                                                
2 There is an indirect method to calculate the energy levels of bound states from the S-matrix, which 
consists in determining the poles of the exact scattering amplitude. But in practice this approach leads to 
a summation of an infinite series of diagrams that corresponds to solving the Bethe-Salpeter equation 
(Berestetskii, Lifshitz & Pitaevskii, 1982, p. 554). 
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state an indefinite number of quanta may be exchanged successively. It is just such 
processes that the ladder-type graphs deal with” (Salpeter & Bethe, 1951, p. 1234). 
Thus, in the quantum field theory approach, the binding of the electron in the atom is 
achieved by an exchange of photons with the proton. We see that from a quantum field 
theory perspective, the description of the hydrogen atom (as a two-body problem) leads 
to a physical picture of the process going on in the atom quite different from the one 
obtained when using the Dirac equation as a one-electron equation. That is, we see, 
when going from a central potential approach to a two-body treatment of the hydrogen 
atom, the importance of the quanta concept in the description of interactions in quantum 
electrodynamics. The exchange of quanta is a basic characteristic of the description of 
physical processes in quantum electrodynamics.  
 
4. From a theory of interacting fields to a theory describing the interaction 
between fields 
 

The description of the interaction between the Dirac and Maxwell fields makes use 
of the Fock space of each field. In this section, I will restrict attention to scattering 
problems in which particles can be considered in a non-interacting state before and after 
the scattering process is over. The initial and final states of the scattered particles are 
states of the free-particle Fock space. The interaction process is described by the S-
matrix perturbative approach in which only Fock states are considered. In the S-matrix 
approach we can use the interaction representation that enables an easy treatment of the 
interaction term as a perturbation to the free states of the fields. Let us consider, for 
example, the quantum electrodynamical treatment of the two-photon annihilation of an 
electron and a positron (Sakurai, 1967, pp. 204-208). The second-order S-matrix 
element is given by  
 
            0xx2xdxdeS 212

4
1

42
fi  

                                         









 21

-
2121 tteexxxx0  

                                        









 12

-
2112 tteexxxx0 . 

 
I will not go into the details of this expression but only address some relevant features 
for the case I am presenting. The expression is an example of the perturbative quantum 
electrodynamical treatment of the interaction between the Maxwell and Dirac fields. In 
it we have the description of the propagation of quanta between two space-time points 
x1 and x2, and components related to the non-interacting states of each field (Fock 
states). That is, we use only the Fock space for each field to calculate the interactions in 
quantum electrodynamics. Implicit in this expression is a subtle point about the 
perturbative procedure adopted in quantum electrodynamics: the idea that when far 
apart, particles do not interact and they can be described by states of the free-particle 
Fock space (disregarding their self-interaction). This idea can be given a more formal 
presentation by considering that the interaction between particles in a scattering process 
is adiabatically switched on in the remote past and adiabatically switched off in the 
remote future (Lippmann & Schwinger, 1950, p. 473; Bogoliubov & Shirkov, 1959, p. 
197). It is the procedure of infinite past and infinite future separation (corresponding 
also to a spatial separation) of the particles – taken to be quanta of one of the fields (for 
example in the electron-electron scattering) or quanta of both fields (for example in the 
photon-electron scattering) – that permits a perturbative approach for the interactions as 
corrections to the free-particles states of each field by itself. 
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In the Fock space we have a direct connection of quanta to the normal modes of 
classical field configurations. It is from the Fourier splitting of a classical wave into 
positive and negative frequency normal modes, providing the basis for the configuration 
space, that the concept of quanta emerges (via a quantization procedure which results in 
associating a quanta to each normal mode). In the case of interacting fields it is not 
possible to make this Fourier expansion (Fraser 2006, p. 136). This implies that it is not 
possible to use the Fock representation for a free field to represent the interacting fields 
(Earman & Fraser, 2006, p. 322). Following this line of reasoning, this means that the 
quanta concept is unavailable when we consider fully interacting fields (Earman & 
Fraser, 2006, p. 330; Fraser, 2008, pp. 2-3). It could seem that the perturbative S-matrix 
approach could overcome this problem by providing a rigorous procedure to describe 
the interacting Dirac and Maxwell fields in the scattering problem by using only the 
Fock states representing free quanta from each field. According to the Haag theorem 
this is not possible.  

From Haag’s theorem (Haag, 1955) we know that we cannot have a unitary 
transformation that relates the field operators corresponding to the free Hamiltonian H 
and the interacting field Hamiltonian HI. Considering that at t0 the Heisenberg picture 
and the Dirac picture (interaction representation) coincide (Earman & Fraser, 2006, p. 
320), it would seem that the state vector in the interaction representation, in the limit t  
±∞, corresponds to free particles due to the fact that the interaction part of the 
Hamiltonian is negligible. But from Haag’s theorem it seems that “at times t = ±∞, all 
the assumptions of the theorem hold for the Heisenberg representation, which represents 
an interaction, and for the interaction representation, which is a Fock representation for 
a free system” (Earman & Fraser, 2006, p. 322). In informal terms Haag’s theorem 
implies that the state vectors in the interaction representation, that for t  ±∞ are 
supposed to represent the free field, and the state vector in the Heisenberg 
representation for the interacting fields, are not in a common domain of both H and HI 
(Schweber, 1961, p. 416).  

From Haag’s theorem we can conclude that if we have a free field at t = –∞, the 
interaction representation describes also a free field at any time t0. This means that we 
need to have a state of the fully interacting Hamiltonian from the start so that we can 
consistently give the interaction representation its usual interpretation as giving a 
different time dependency to the state vector and the operators (Schweber, 1961, p. 
317). 

Both the Heisenberg and Dirac pictures can hypothetically be used in either free or 
interacting systems, if we can separate the Hamiltonian in two parts. The change of 
representation does not change the physical situation whether it concerns free or 
interacting fields. There really is no “interaction picture’s assumption that there is a time 
at which the representation for the interaction is unitarily equivalent to the Fock 
representation for a free system” (Fraser, 2006, p. 54).3 This ‘assumption’ has nothing 
to do with the representation being used. The ‘assumption’ is that with an adiabatic 
                                                
3 Earman & Fraser’s take it that in the infinite past and the infinite future “particles are assumed to be 
infinitely far apart and therefore not interacting” (Earman & Fraser, 2006, p. 321). In this case they 
consider that at t=±∞ “the representation is taken to be a Fock representation” (p. 321). And this is taken 
to be a Dirac picture (interaction representation) assumption: “In the interaction picture ... at t = ±∞ the 
representation is the Fock representation for the free field” (p. 321). At this point I thus disagree with 
Earman & Fraser’s presentation of the consequences of the Haag theorem. I simply do not think that the 
assumption that at infinite past we can take the state of a particular field to be a free state as described by 
a Fock space has to be seen as part of the assumptions of the Dirac picture. But this is a question of detail. 
The main aspect of their presentation is irrefutable: according to the Haag theorem the perturbative 
approach used in quantum electrodynamics to describe interactions is mathematically inconsistent. 
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switching on of the interaction, the state vector for the interacting fields can be 
constructed from the state vector of free fields (Schweber, 1961, p. 320):  

 
aa0t

ψt)φU(tlim 


. 

 
This is what is supposed to be achieved in the adiabatic switching on of the potential 
that ‘connects’ a free field Hamiltonian with the interacting field Hamiltonian (Jauch & 
Rohrlich, 1976, p. 134; Schweber, 1961, p. 322): 0

t-ε
0-tε-t

HV(t))e(Hlim (t)Hlim 


, 

where  is a parameter that is taken to zero in the end of the computations. The point is 
that at infinite times before and after the adiabatic switching on/off of the interaction 
potential, the state vectors in either the Heisenberg or the Dirac picture are assumed to 
be describing free fields. The question here is not thus the representation being used but 
whether it is possible to connect the interacting state to a free field state. It seems clear 
from the consequences of Haag’s theorem that the usual adiabatic switching on/off of 
the interaction will not do the trick.  

It is well known that in the applications of quantum electrodynamics there are 
problems with divergent integrals. These problems are circumvented in practice with 
renormalization techniques in which (basically) all the divergent integrals appearing in 
the series expansion of the S-matrix are related to corrections to the mass and charge of 
the fermions. Since the value of the mass and the charge are not defined by the theory 
but result from measurements, the terms in the series expansion that are divergent (but 
formally should be smaller and smaller) are taken to be part of the observed mass and 
charge. 

It might seem that by using renormalization techniques the consequences of Haag’s 
theorem might be evaded because “once infinite renormalization counter terms are 
introduced, the interaction picture is not mathematically well-defined” (Fraser, 2006, p. 
2). From this it might seem that “renormalization addresses this problem not by refining 
the assumptions, but by rendering the canonical framework mathematically ill-defined” 
(Fraser, 2006, p. 90). But it would be rather strange to say the least, that by considering 
an impoverished mathematical structure, suddenly, something physically equivalent to a 
unitary transformation connecting free and interacting field operators might emerge. In 
reality this argument does not provide any explanation for why the theory is effective, 
and this is a central question which has correctly been considered to be relevant: “there 
is, however, unfinished business in explaining why perturbation theory works as well as 
it does” (Earman & Fraser, 2006, p. 307). 

If we followed Fraser’s account we would be back where we started since, without 
taking into account the ill-defined mathematics of renormalization (and this is possible 
by considering only the lowest-order calculations), one can say that the adiabatic 
switching on/off of the interaction is also of doubtful mathematical rigor precisely due 
to the Haag theorem. This means that when imposing the adiabatic switching on/off we 
are developing an ill-defined approach. The primary question of the effectiveness of the 
theory would remain, independently of the probable impossibility of taking into account 
the Haag theorem in this ill-defined mathematical context (now due to the adiabatic 
switching on/off of the interaction). 

It does not seem that the effectiveness of the perturbative approach, in spite of 
Haag's theorem, is a consequence of the need for a mathematical ill-defined mass and 
charge renormalization. At least there is no argument that shows how the efficiency of 
this scheme might result from developing it from a mathematical structure that is ill-
defined due to renormalization. Moreover the renormalization technique is not the only 
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element that makes the theory mathematically ill-defined. It seems that we cannot arrive 
at any solid conclusions by analysing from a mathematical perspective, what appears to 
be an ill-defined mathematical structure.  

My view is that, the explanation for the good results of the perturbation theory 
approach to the scattering (and bound state) problems in spite of the Haag theorem, will 
not be found in the mathematical structure of quantum electrodynamics. As will be seen 
below, the point about Haag’s theorem is that the question of its applicability, is not 
even addressed in the way the physical theory is really used: we have to consider the 
physical input assumptions of the theory together with its mathematical formulation and 
application, not the mathematical structure by itself. 

As mentioned in a previous section, the theory is developed from a canonical 
quantization of two independent classical fields. The description of the interaction 
between the fields is given, like in the classical counterpart, by an interaction term. 
Formally we can adopt whatever representation is mathematically possible. However, as 
I will show bellow, the use of the interaction representation is justified when we notice 
that, in the theory, we are considering different systems with an interaction that can be 
taken as a perturbation of their independent states. In this sense the use of the 
interaction representation is clinched to the physical conceptual basis of the theory. We 
simply use part of the Hamiltonian, which is possible since the theory was developed 
considering distinct parts, one corresponding to the free Dirac field, another to the free 
Maxwell field, and another to the interaction. This is the one pulled apart from the 
others in the interaction representation.   

The description of scattering is developed from the theory considering an initial 
state corresponding to a limited number of free particles (quanta), and with an adiabatic 
switching on of the interaction between the fields, a fully interacting state A

+is 
apparently obtained (A

+would be an eigenstate of the interacting field Hamiltonian). 
The interacting state B

–that corresponds to a well-defined number of quanta in the 
final state is defined in an equivalent way.  The scattering amplitude SAB is given by 
(B

–, A
+) (Schweber, 1961, p. 323). The point is that we really do not work with these 

doubtful interacting states. What is going on is quite different. We are only considering 
a few terms of a perturbation expansion of the scattering matrix. We are always 
considering a weak interaction between distinct fields. For the description of their 
interaction it is not necessary to have a description of the fields as a closed interacting 
system. On the contrary, if we try to make a full description of the interaction 
considering all the terms of the power series expansion of the S-matrix, it can “at best 
only be an asymptotic expansion” (Schweber, 1961, p. 644).  

According to Freeman Dyson, the series expansion of the S-matrix is divergent, and 
this has nothing to do with renormalization (Dyson, 1952b). That is, even if there were 
no divergent integrals appearing in the terms of the S-matrix, the series would still be 
divergent.4 Dyson mentions that the “divergence will not prevent practical calculations 
being made with the series” (Dyson, 1952b, p. 632). However Dyson’s view was that in 
a certain way the theory only provided a basis for developing the S-matrix series 
expansion (Cushing, 1986, p. 122). In Dyson’s own words: “I had this rather positivistic 
view that all QED was the perturbative series. So if that failed you didn’t really have a 

                                                
4 It is important to notice that Dyson’s argument is a heuristic physical one, not a rigorous mathematical 
derivation. In my view this is not a deficiency of Dyson’s argumentation, since we are considering a 
theory with an ill-defined mathematical structure. Also, even if a strict mathematical proof of the 
divergence of the S-matrix does not exist, further strong evidence in favour of Dyson’s claim has been 
given in the last decades (e.g. Aramaki 1989, 91-92; West, 2000, 180-181; Jentschura, 2004, pp. 86-112; 
Caliceti et al, 2007, pp. 5-6). 
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theory” (quoted in Schweber, 1994, p. 565). This makes it even more imperative to 
justify the perturbative approach (which provides excellent agreement with 
experimental results), and to explain how to get rid of large-order terms of a divergent 
series that simply would make it impossible to use the theory. 

Just from a mathematical perspective the use of only a few terms of a divergent 
series is difficult to defend, but by considering the input physical assumptions of the 
theory the justification of throwing away large-order terms will become clear. As we 
will see it is related to the weakness of the interaction between the Maxwell and Dirac 
fields (Mandl & Shaw, 1984, p. 95). This by itself can explain why a few order terms in 
a perturbative approach can give so good results. But it does not by itself justify 
throwing away terms that should be smaller and smaller but which will ultimately result 
in a divergent series.  

As mentioned, the scattering amplitude SAB can be written as (B
–, A

+), where we 
have 


 ΑΑ0t

ψ)φtU(0lim
0

 and 


 ψt)φU(0lim
t

, where U is the time displacement 

unitary operator determined by solving the Schrödinger equation, A and B are the 
initial and final free states, and the in and out states A

+ and B
– are taken to be 

eigenstates of the full interacting Hamiltonian (Schweber, 1961, pp. 317-323). Formally 
these interacting states can be derived from the (complete) S-matrix. Since the S-matrix 
series expansion is divergent we can conclude that we cannot obtain these interacting 
states (Scharf, 1995, pp. 314-318), i.e. it is not even possible to find solutions of the 
coupled non-linear Maxwell-Lorentz and Dirac equations as (infinite) power series 
expansions in the coefficient e (the electric charge). To say in a different form, it is not 
possible to find a solution for a closed system of (electromagnetic) field and charged 
particles (Dirac field).  

Let us recall that the theory was structured around the idea that the interaction 
between radiation and matter is weak. This we know from the fact that the coupling 
constant between the fields is small. We did not quantize the interacting system, but 
each field one by one; i.e. when we speak of weak interaction this has two related 
aspects: one is that the interaction term in the Lagrangian (or Hamiltonian) is small; the 
other is that from this we are justified to consider the quantization of radiation and 
matter separately as the quantization of free fields, and to take the interaction term as a 
perturbative one.5 As Dyson mentioned, quantum electrodynamics “is in its nature a 
perturbation theory starting from the non-interacting fields as … unperturbed system[s]” 
(Dyson, 1952a, p. 79). Since we are starting from the non-interacting fields, we need to 
use the adiabatic switching on/off trick to ‘connect’ the two quantized systems and so to 
be able to describe their interaction. Now, as we have just seen, if we try to describe 
within the theory the full weak interaction between radiation and matter (corresponding 
to determine the eigenstates of the full interacting Hamiltonian) we get into trouble (i.e. 
we obtain divergent results).  

We conclude then that, in practice (i.e. in the theory we really have and work with), 
the notion of weak interaction implies an intrinsic (essentially) approximate approach, 
                                                
5 It is important to remember that contrary to what formal presentations of the theory might led us to think 
(e.g. Dyson, 1952a, pp. 58-59; Källén, 1972, pp. 75-80), we do not start with a Lagrangian for an 
interacting system of radiation and matter and then due to practical problems in solving a set of coupled 
non-linear equations we feel forced to resort to perturbative calculations. On the contrary the theory was 
pretty much developed along two separated lines – one of then the quantization of the free 
electromagnetic field (a subject not addressed here) the other the development of a relativistic equation 
for the electron –, from the start taking into account, implicitly, that we were dealing with two clearly 
distinct weakly interacting physical entities: (quantized) charged particles and (quantized) 
electromagnetic field. 
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i.e. there is, in practice, an unbridgeable gap between the notion of weak interaction and 
the idea of a full (complete) description of the (weak) interaction (since a full 
description of the interaction would correspond to obtaining a complete expansion of 
the S-matrix, which is not possible). Thus the divergence of the S-matrix series 
expansion implies that we are unable to bridge the gap that exists between our starting 
physical assumption of two independent unperturbed systems and the (ideal) closed 
system of fully interacting radiation and matter; and there is a good reason for this. 

As Earman & Fraser showed from a formal consideration of fully interacting fields 
(corresponding to an exact solution that we cannot obtain in the case of quantum 
electrodynamics), we cannot describe them in terms of the Fock representation for free 
fields. This means that, formally, for a closed system of interacting fields we cannot use 
all the physical input of quantum electrodynamics associated with the notion of weak 
interaction of radiation and matter (in particular our starting physical assumption of two 
non-interacting fields); i.e. the formal considerations imply an, in principle, 
incompatibility between the notion of weak interaction as implemented in the theory and 
the (formal) notion of a closed system of fully interacting fields. Also, as we have seen, 
considering the complete series expansion of the S-matrix would correspond to the 
description of a closed system of fully interacting fields. Here the formal results are 
valid, i.e. we would have two contradictory mathematical results. This is not the case 
since the series expansion of the S-matrix is divergent. 

We see then that we disregard the large-order terms not simply for pragmatic 
reasons but for physical reasons. Including these terms would correspond to an 
improper use of the mathematical structure of the theory beyond its physical content (in 
a tentative description of a closed system of radiation and matter): in quantum 
electrodynamics we have the concepts of radiation and matter, and of a weak interaction 
between them, not of fully interacting fields.6 At this point I make a one-to-one 
correspondence between getting meaningful mathematical results and the way we set up 
the physical concepts in the theory. In this case, (meaningful) approximate calculations 
of the weak interaction between different physical systems (radiation and matter).  

I think that the situation we are facing here can be illuminated by recalling some of 
Bohr’s views related to the Klein paradox and the problem with infinities in the theory 
(later addressed by renormalization). Regarding the Klein paradox, Bohr called the 
attention to the fact that it arises from not taking into account the elementary unit of 
electrical charge in the determination of the actual potential barrier, i.e. by not 
considering the physical concepts inscribed in the theory. According to Bohr, if 
calculations are made in which this fact and the limits in the determination of the 
electron’s position are not taken into account, we would be facing the 

 
actual limit of applying the idea of potentials in connection with possible experimental arrangements. In 
fact, due to the existence of an elementary unit of electrical charge we cannot build up a potential barrier 
of any height and steepness desired without facing a definite atomic problem. (Quoted in Moyer, 1981, 
pp. 1057) 
 

In a nutshell, to Bohr the paradox resulted from “an unlimited [mathematical] use of 
the concept of potentials in relativistic quantum mechanics” (quoted in Moyer, 1981, p. 
1058; see also Darrigol, 1991, pp. 154-155). 

                                                
6 With this justification for disregarding the large-order terms of the S-matrix series expansion we are 
then in the situation of considering that the good empirical results of the theory follow simply – in the 
perturbative approach – from the weakness of the interaction between the two separately quantized fields. 
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An analogous situation occurs with the (renormalizable) infinities in the theory. 
According to Alexander Rueger presentation of Bohr’s ideas, 
 
only for an [atomic] electron weakly interacting with the electromagnetic field could the radiation 
reaction, which would render the electron’s orbit unstable, be ignored; as Bohr stressed repeatedly, strong 
interactions would make the idea of approximately stationary states of the electron in the atom 
impossible. (Rueger, 1992, pp. 317-318) 
 
In these circumstances, Bohr recalls that “the whole attack on atomic problems … is an 
essentially approximate procedure, made possible only by the smallness of [the 
coupling constant]” (Bohr, 1932a, p. 378). That is, to Bohr 
 
the attempts to treat the radiation effects on rigorous lines by considering the atoms and the 
electromagnetic field as a closed quantum-mechanical system led to paradoxes arising from the 
appearance of an infinite energy of coupling between atoms and field (Bohr, 1932b, p. 66) 
 
We have then, according to Bohr, that the physical conditions used to set up the theory 
imply an essentially approximate approach of an electron weakly interacting with the 
electromagnetic field. Like in the case of the Klein paradox if we extend the 
mathematical structure of the theory beyond its physical content we face a breakdown in 
the calculations. In my view, this is exactly the situation we are facing with the 
divergence of the S-matrix series expansion. 

When trying to close the gap between two weakly interacting systems (described by 
an approximate approach) and fully interacting fields (corresponding to obtaining the 
exact solution for a closed quantized system of interacting fields), we face ‘the actual 
limit of applying the idea’ of non-interacting fields that are part of our physical input 
assumptions. 

What we have then is the impossibility of defining within the theory a fully 
interacting state from the two fields that are defined and quantized as independent 
entities. Thus, in my view, we have a theory that is able, on an approximate level, to 
describe (using a few terms in perturbative calculations) the interaction between two 
separate fields, and not a theory describing as a whole a system of fully interacting 
fields. From a formal perspective the Haag theorem says that it is not possible to 
connect the separate fields with (fully) interacting fields when starting from the physical 
assumptions used to articulate the theory, i.e. from the notion of weak interaction as it is 
implemented in quantum electrodynamics.  

In the theory the consequences of the Haag theorem are circumvented not because 
we are facing a “canonical framework mathematically ill-defined” (Fraser, 2006, p. 90) 
but because we are not even trying to describe a system of (fully) interacting fields (this 
eventual possibility is excluded in practice due to the divergence in the series expansion 
of the S-matrix and in principle, on formal grounds, by the above mentioned 
incompatibility between the notion of weak interaction as it is implemented in the 
theory and the formal results related to interacting fields); we are just tying to describe, 
by an ‘essentially approximate procedure’, the weak interaction between radiation and 
matter as distinct systems.7 Thus, there is no conflict in quantum electrodynamics with 
the Haag theorem. 
                                                
7 However I agree with Fraser’s view that we cannot apply Haag’s theorem when working with a 
“canonical framework mathematically ill-defined” (Fraser, 2006, p. 90). What I do not agree with is 
Fraser’s view that in some way renormalization addresses the problem of evading the consequences of 
Haag’s theorem enabling the theory to be effective (also, as I mentioned, there are other factors which can 
be taken to render the theory mathematically ill-defined). That is because, in my view, in quantum 
electrodynamics, the problem of circumventing the Haag theorem is in reality the problem of explaining 
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Let us now go back to the problem of the role of the concept of quanta in the 
description of interactions within quantum electrodynamics. If, when calculating say the 
amplitude for electron-electron scattering, the complete S-matrix was (somehow) 
considered, then there would be an infinite number of terms corresponding to an infinite 
number of combinations of different quanta. One could say that in this case the quanta 
“type and number are not sharp” (Weingard, 1988, p. 46). The quanta description of 
interactions, as quanta exchange, would then appear to be a mathematical fiction due to 
the use of perturbation theory in the calculation of the scattering amplitude. However, 
when considering the scattering as really described in the theory, we can only use a few 
terms of the S-matrix expansion. There is simply no meaning to an exact S-matrix in the 
theory.8  

As the divergence in the series expansion of the S-matrix shows, the Lagrangian of 
quantum electrodynamics does not provide us with the possibility of describing a 
system of interacting Dirac and Maxwell fields, but with the possibility to describe in an 
intrinsically approximate way the interaction between the two fields. The descriptions 
of interactions in the theory are based on the use of the Fock space for each field and the 
idea of (virtual) quanta exchange. There are no alternatives in quantum 
electrodynamics. From the start the theory was not developed to treat the question of 
fully interacting fields, but to treat the question of the interaction between distinct fields 
that are separately quantized. To consider that “Fock representations are generally 
inappropriate for interacting fields” (Earman & Fraser, 2006, p. 330), is, in the context 
of quantum electrodynamics, to turn upside down the theory as it was developed. The 
theory is built on top of the physical idea of independent entities whose interaction 
describes change in nature. When accepting this approach, and its intrinsic limitations, it 
is difficult to consider inappropriate, at least from an empirical point of view, the results 
of quantum electrodynamics; and so, contrary to Earman and Fraser’s views, we can 
retain the concept of quanta in the description of interactions. 

 
5. Conclusions 
 

From a historical perspective, and by using the Dirac equation, I have tried to show 
how the concept of quanta emerges and what its role is in the description of interactions 
in quantum electrodynamics. To this end, I made a detour by not considering in detail 
the well-known case of the description of scattering processes in quantum 
electrodynamics, but the less analysed question of the quantum field theoretical 
description of a two-body system (like the hydrogen atom). This detour made it possible 
to connect the usual description of the hydrogen atom through the Dirac equation as a 
relativistic one-electron equation with the quantized Dirac field description (resulting 
from the quantization of a classical de Broglie wave described by the Dirac equation). 
Both in scattering and bound state problems, I think it becomes clear that the concept of 
quanta is fundamental in quantum electrodynamics since the physical processes are 
                                                                                                                                          
how the theory gives good results while addressing the problem of the divergence of the S-matrix series 
expansion (necessary to justify the perturbative approach) and, at the same time, evading the 
consequences of Haag theorem. These are not separated problems. In reality, as we have seen, when 
addressing the first part of the problem, the consequences of Haag’s theorem become irrelevant 
(independently of the fact that we are considering a mathematically ill-defined approach). 
8 There might appear to be ways of sidestepping this type of approach considering the Feynman path 
integral approach (Weingard, 1988, p. 54). But again, in the theory it is not possible to consider an infinite 
expansion of the transition amplitudes. In the mathematical expression for the transition amplitudes there 
are quanta propagators, and the interpretation of the propagators relating them to quanta cannot be 
overturned in a (finite expansion) calculation based on path integrals. 
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described as resulting from the exchange of virtual quanta between particles whose 
states are described using Fock spaces. 

It turns out that this approach is not mathematically well-defined. In a nutshell, 
Haag’s theorem implies that the perturbative approach used in quantum electrodynamics 
to treat the interaction between the quantized Maxwell and Dirac fields is not consistent. 
This brings up two big questions. How can the way the theory is implemented (giving a 
prominent role to the concept of quanta in the description of interactions) be justified? 
And even more importantly, “why perturbation theory works as well as it does” 
(Earman & Fraser, 2006, p. 307). Earman & Fraser do not provide any answer to this 
last question as regards quantum electrodynamics. And with respect to the first 
question, Fraser merely proposes to take shelter in the ill-defined mathematical structure 
of the theory to justify the inapplicability of the Haag theorem (Fraser, 2006, p. 90). 
However this argument has no explanatory power. It is an argument based solely on the 
mathematical structure of the theory (not taking into account its physical content) and it 
is not providing an explanation of the good results and soundness of the perturbative S-
matrix approach.  

According to Dyson the series expansion of the S-matrix, used in the description of 
scattering (and bound state) processes, is divergent. This indicates that the theory only 
provides a description of interactions using a few lower-order terms (which works well 
due to the small coupling constant between the fields). This means that the theory can 
only provide results if we are close to a free field situation. In other words, only when 
considering the interaction between two different fields as a small perturbation to their 
individual free states can the theory provide results in agreement with experiments.  

We see that one has problems when trying to give a full description of the 
interaction, which corresponds to treating matter and radiation as one closed system. 
This would imply to go beyond the initial physical set up of the theory based on the 
idealization of totally non-interacting fields. In this way I think that quantum 
electrodynamics can be seen as providing only an approximate approach to the 
description of the interaction between two fields taken to be different physical systems. 
Only the lower-order terms of the series expansion can be kept. To take in the large-
order terms would mean to disrupt the physical input assumptions provided by the 
implementation of the notion of weak interaction (i.e. the possibility of quantization of 
free fields and the description of their interaction perturbatively, by resort to the 
adiabatic switching on/off of the interaction). Due to the small coupling constant 
between the fields, the lower-order terms already provide good results.  

From this perspective, how can Earman & Fraser’s conundrum be solved while 
saving the use of quanta in the description of interactions? It is true that we are in an ill-
defined mathematical context. However, we do not really need that to make the 
consequences of the theorem irrelevant in the theory. If we forget about Haag’s theorem 
and set the machinery into motion, we face the situation that we cannot go from a free 
fields situation to a fully interacting fields situation (exactly as the Haag theorem says). 
This occurs because we are stretching the physical concepts too much and the 
calculations breakdown, i.e. we have a theory describing the weak interaction between 
different fields, not a theory describing fully interacting fields. In this way we are 
outside the scope of Haag’s theorem. 

Regarding the concept of quanta which follows naturally from the quantization 
procedure this is, as we have seen, a central concept in the quantum electrodynamical 
description of the weak interactions between the fields (as this description involves free-
particle Fock spaces). However we are left with a tension regarding the concept of 
quanta. The point is that we start with the idealization of non-interacting fields, and, as 
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we have seen, we need the unphysical adiabatic switching on/off trick to set quantum 
electrodynamics as a perturbation theory into motion. The problem is that when 
addressing scattering problems, we take the particles (for example electrons) to be far 
apart before (and after) the scattering, and because of this not interacting (i.e. electrons 
as quanta of the Dirac field without self-interaction). In this way, we are describing the 
particles observed after the scattering process is over with the idealization of charged 
particles with a ‘disconnected’ charge, and this is rather unphysical (since implicit in the 
possibility of observation of an electron is the possibility of electromagnetic interaction 
with it).  
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