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Abstract

The purpose of this article is to update and defend syntax-based (conserved DNA-sequence mo-

tifs) gene concepts. I show how syntax-based concepts can and have been extended to accom-

modate complex cases of processing and gene expression regulation. In response to difficult 

cases and causal parity  objections, I argue that a syntax-based approach fleshes out a deflationary 

concept defining genes as genomic sequences and organizational features of the genome contrib-

uting to a phenotype. These organizational features are an important part of accepted molecular 

explanations, provide the theoretical basis for a large number of experimental techniques and 

practical applications, and play a crucial role in in annotating the genome, deriving predictions 

and constructing bioinformatics models. 

Introduction

 One of the consequences of the elucidation of the structure of DNA was the identification 

of genes with DNA base sequences (Watson and Crick 1953). Shortly  after, the Central Dogma 

(Crick 1958) allotted DNA the role of an archive containing information for building proteins 

(the ‘blueprint’ gene) via yet to be elucidated mechanisms. With the elucidation of the mecha-

nisms of genome expression during the 1960s and 70s, the notion that genes are DNA sequences 

coding information for proteins was reframed in terms of syntax-like conserved motifs providing 

instructions for transcription and translation, leading to the formulation of the ‘transcription unit’ 

and the ‘open reading frame’ molecular gene concepts. 

 For example, the basic prokaryotic transcription unit is characterized by two regulatory 

regions responsible for recruiting the RNA polymerase (protein that  synthesizes an RNA tran-
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script from the DNA template), a transcribed coding sequence and a transcription termination 

sequence. Within the coding sequence, one or more open reading frames (sequences translated 

into protein gene products) are marked by a site responsible for recruiting ribosomes (the Shine-

Delgarno box), a ‘begin translation’ site (AUG codon) and an ‘end translation’ site (termination 

codon). 

Figure 1. The prokaryotic transcription unit

Such findings suggested that what makes the difference between a region of the genome that 

eventually contributes to a phenotype and one that does not has something to do with the pres-

ence of conserved sequences responsible for interacting with the transcriptional and translational 

machinery  of the cell in order to generate gene products from a DNA template. The assumption, 

amply verified by  in vitro binding studies, is that if a given conserved sequence motif is present 

in a stretch of DNA, it will most likely  serve as a binding site for some component of a mecha-

nism of genome expression and regulation, and therefore contribute to some aspect of genome 

expression. The syntax approach capitalizes on this assumption by treating conserved DNA se-

quence motifs as instructions, which, if processed in the right order, will ultimately  help predict 

which parts of the genome will be expressed and as what gene products. 

 Ever since their discovery, molecular biologists have relied on conserved sequences as a 

means to define and discover genes, formulate hypotheses and make predictions about the regu-

lation of gene expression and the function of gene products, guide genetic engineering, as well as 

design in vitro transcription and translation protocols. Sequence alignment algorithms such as 

BLAST (Altschul et al. 1990) are used on a daily basis in labs around the world to identify puta-

tive genes based on the presence of syntax-like motifs typically required for transcription and 

translation. The establishment of bioinformatics as a new discipline aiming, among other things, 
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to further develop genome annotation protocols (Mandoiu and Zelikovsky 2008) suggests that 

such practices will continue in the near future.   

 Strangely enough, philosophers of biology do not partake of this enthusiasm. Griffiths 

and Stotz (2007) claim that the ‘nominal gene’ defined by current annotation practices will soon 

be superseded by ‘postgenomic’ concepts of the gene. In their view, the discovery of gene rear-

rangement, nested genes, alternative promoters, alternative splicing, trans-splicing, RNA editing, 

frameshifting, alternate stop codons, polyproteins, and various other complications due to regula-

tory, post-transcriptional/translational processing mechanisms posit an insurmountable difficulty 

to a syntax-based approach. Mechanisms of gene expression regulation seem to determine which, 

when and where coding sequences are transcribed and translated, while mechanisms of post-

transcriptional/translational processing seem to control how the information contained in original 

DNA sequence is used. Given the shortcomings of current syntax based gene concepts, there is a 

growingly popular tendency to treat  the genome as a set of sequences that can be ‘read’ (tran-

scribed and translated) and ‘processed’ (RNA splicing and editing, post-translational modifica-

tions of peptides, etc.) in a variety of ways depending on developmental (Griffiths and Neumann-

Held 1999), cellular (Stotz forthcoming), and environmental contexts (Stotz 2006). According to 

this view, genes are best described as “things you can do with your genome” (Griffiths and Stotz 

2006, 500). 

 This raises the question “Is this the end of syntax-based gene concepts?” According to 

these authors, the answer seems to be “Yes”:

The ‘same’ DNA sequence potentially leads to countless different gene products, differ-

ent sequences might  code for identical products, and the need for a rare product asks for 

the assembly of a novel mRNA sequence. Hence the information for a product is not 

sufficiently encoded in the targeted DNA sequence but has to be supplemented through 

sequence information provided by  elements outside the coding sequence, such as tran-

scription, splicing, or editing factors. (Stotz 2006, 905, my emphasis)

The sequence of the DNA can [...] be compared to a sequence of letters without spaces 

or punctuation marks. [...] A different developmental system imposes a different scheme 

over the letters, that is, over the DNA sequence. It is therefore misleading to think of 
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functional descriptions of DNA, such as ‘promoter region’, as explicable solely in terms 

of structural descriptions of DNA, such as ‘sequence.’ [...] the gene is identified not with 

these DNA sequences alone but rather with the process in whose context these se-

quences take on a definite meaning. (Griffiths and Neumann-Held 1999, 661, my em-

phasis) 

 In this paper I challenge this conclusion. I argue that current syntax-based concepts can 

and have been extended to accommodate complex cases of processing and gene expression regu-

lation. The syntax-based approach proposed in this paper has to its advantage three virtues - 

modularity, retro-compatibility and the ability  to explain why the genomic information is ex-

pressed and processed in an orderly, predictive fashion - which rival accounts cannot bolster. In 

response to difficult cases and causal parity objections, I argue that a syntax-based approach 

fleshes out a deflationary  concept defining genes as genomic sequences and organizational fea-

tures of the genome contributing to (rather than determining) a phenotype.

 The paper is organized as follows: In section 2, I show how an updated version of current 

syntax-based gene concepts can accommodate complications due to mechanisms of genome 

processing and genome expression regulation. In section 3, I elaborate a three-level account of 

genome organization, and, in section 4, discuss its advantages. In section 5, I discuss the limits of 

syntax-based approaches and possible avenues of future improvement. Finally, in section 6, I 

summarize my conclusions and arguments.  

2. Expanding the syntax-based approach

 The critiques of current syntax-based gene concepts are fueled by two main concerns:

• gene expression regulation (the role mechanisms of gene expression regulation play 

in specifying which DNA sequences are expressed)

• the breakdown of the gene-gene product sequence collinearity  (due to post-

transcriptional and post-translational processing). 

 Nevertheless, the fact that, in many cases, the mechanisms of gene expression and gene 

expression regulation work in concert with conserved DNA sequences suggests that one way to 

cope with the complexities brought about by these two issues is to update and extend available 
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syntax based gene concepts. A step in this direction is illustrated by Gerstein’s et al. attempt to 

define genes as “subroutines in the genomic operating system.” The authors propose that the 

structure of the genome should be described 

in very much the same way that grammars are used to describe computer programs - 

with a precise syntax of upstream regulation, exons, and introns. (2007, 671)

Thus, instead of taking into account only the basic syntax of transcription and translation under-

lying the transcription unit and the open reading frame gene concepts, Gerstein suggests an ex-

tended syntax including sequences recognized by  transcription factors [enhancers, promoters, 

activator/repressor binding sites associated with regulatory networks (Lee et al. 2002; Levine and 

Davidson 2005)] and sequences signaling splicing [reviewed in (Black 2003)].1 

 It is worth noting however that nothing prohibits us extending this approach to any 

sequence-specific aspect of genome expression, including chromatin regulation [matrix binding 

and nucleosome assembly [reviewed in (Turner 2001)], RNA protein binding associated with 

translational regulation [reviewed in (Mazumder et al. 2003)], and post-translational modifica-

tions (glycosylation, phosphorylation, cleavage of polyproteins).2 While there are still many gaps 

to be filled, there is ample evidence that conserved DNA sequences play a necessary role in 

specifying sites within the genome (or its transcribed/translated counterparts) where various 

components of mechanisms of genome expression, regulation and processing bind and initiate 

activities leading to expression of specific portions of the genome and specific modifications of 

transcribed/translated products. I argue therefore for a more general syntax-based approach that 

goes beyond the immediate scope of Gerstein et al., who are concerned solely  with transcrip-

tional regulation and RNA splicing. 

3. The three-level organization of the genome 

 Following the analogy suggested by Gerstein et al., I argue that  just like computer pro-

grams are organized in subroutines, that is, readymade sets of instructions that can be accessed 
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on demand in a variety  of contexts, the genome is organized into modular genes. At each site 

where transcription is initiated, a modular ‘subroutine is run’; each of these ‘subroutines’ counts 

as a gene. The genome behaves like a ‘master program’ relying on a set of specific syntax-like 

sequences playing a role in specifying where in the genome and which transcription factors bind 

in order to ‘recruit’ the transcriptional machinery. Each gene behaves like a ‘subroutine’ because 

sequences within the transcribed DNA mark sites (by providing binding sites for proteins or in 

virtue of specific three-dimensional folding) for further processing of the initial RNA transcript 

sequence, leading to the synthesis of various gene products. 

 The gist  of the analogy is that  the genome is organized as three nested levels of syntax-

like DNA sequences. The genomic level is the realm of transcription regulation. Regulatory se-

quences distributed at various sited throughout the genome play  a role in specifying where in the 

genome and which transcription factors bind in order to allow for (or prohibit) transcription. The 

gene level corresponds to the transcribed DNA (providing the sequence of the primary RNA 

transcript). For the most part (the one known exception will be discussed in more detail shortly), 

genes act like independently processed modules because, once transcribed, their sequence is 

processed in accordance to the conserved sequences contained within their boundaries alone. The 

sub-gene level is the realm of translation, translational control and post-transcriptional/

translational processing. Sequences within the transcribed/translated DNA mark sites for even-

tual RNA translation regulation and further processing of the RNA transcript/peptide leading to 

the synthesis of one or more final gene products.

 Thus delimited, a gene is shorter than a standard transcription unit but more extended 

than an open reading frame. The transcription regulatory  regions (promoters, enhancers) are part 

of the ‘master genomic program’, while the gene itself is rigorously  delimited as a DNA se-

quence contained between transcription start and stop sites or by homology  with the primary 

transcript. At the same time, a gene is not exactly an open reading frame either, since it includes 

the 5’ and 3’ untranslated regions (UTR), as well as introns and alternate reading frames. 
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Figure 2. The modular organization of the genome

4. The three-level organization approach in practice

 It is interesting to note the similarities between the approach proposed in this paper and 

the genes as ‘things you can do with your genome’ approach advocated by Griffiths and Stotz. 

The signaling pathways mediated activation of different transcription factors allow cells to use 

the same genome in different ways. This accounts for cellular differentiation and the induction of 

gene expression in various environmental contexts. Also, alterations and rearrangements of the 

genome (e.g., gene rearrangement in immune cells, chromosomal deletions/insertions) result in a 

different ‘master genomic program’ that  ultimately contributes to the synthesis of different gene 

products. Each gene can also be used in a variety of ways, as dictated by its internal syntax-

motifs. This accounts for cases of post-transcriptional and post-translational processing. Fur-
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thermore, since the instructions contained in the gene subroutines may prompt events such as 

splicing, the gene-gene product collinearity assumption is not required. 

 I also want to stress the differences. The approach advocated by Griffiths and Stotz 

downplays the specificity and organizational roles played by  DNA conserved sequences. Their 

approach has the advantage of taking into account cases of genome expression regulation and 

processing that are not sequence-specific, such as some aspects of chromatin regulation and 

some forms of RNA editing. Unfortunately, the reader is systematically  left with the impression 

that DNA sequence is merely  the unformed matter on which the mechanisms of genome expres-

sion impose whatever form they want. Griffiths and Stotz give no clues as to why there is order 

and regularity  in the way the genome is processed. In contrast, a three-level syntax-based ap-

proach has no trouble explaining the origin of this order and regularity: the genome is processed 

and expressed - either constitutively  (e.g., house-keeping genes) or in response to regulatory 

stimuli (e.g., activation of transcription factors via signaling pathways) - as dictated by instruc-

tions, or syntax-like motifs contained in its sequence. 

 Furthermore, Griffiths and Stotz’s views on the role of DNA breaks the continuity  with 

current molecular gene concepts. While these authors see this break as innovation, most scien-

tists will most  likely see it as an unrealistic proposal. After all, syntax-based concepts are de 

facto in use as we speak. Every time the term ‘gene’ is mentioned in a scientific paper, the occur-

rence of the term refers either to a transcription unit, to a specific open reading frame, or, as it is 

almost always the case, to a continuous DNA sequence containing some of the proximal up-

stream regulatory sequences and at  least one open reading frame. A cursory look at the Methods 

and Techniques section of the paper in question or a survey  of the sequences daily submitted to 

the NCBI GenBank should suffice to prove my point. In its present use, the term ‘gene’ is not 

used in reference to spliced mRNA or gene product sequences, it does not refer to epigenetic 

contributors to inheritance and it certainly  does not mean ‘things’ someone or something could 

do with its genome. Breaking with the current scientific practice might simply result in the term 

‘gene’ having two distinct meanings, one for practicing scientists and another for philosophers of 

biology. In contrast, an extended syntax-based approach emphasizes the modular organization of 

the genome. By preserving discrete gene-modules, the compatibility with previous syntax based 

8	   	   	   	   	   	   	   	   	   	   	  	  	  	  	  v2.9	  28	  Sep	  2010



gene concepts is ensured by  providing a substantial overlap  in terms of the DNA sequences to 

which these concepts refer. 

 Beyond retro-compatibility, modularity  is a very  important methodological requirement 

in itself (Callebaut and Rasskin-Gutman 2005). If a system is modular, it  can be carved into 

functional modules that can be characterized and investigated on a largely independent basis 

(Lauffenburger 2000). Instead of collapsing all the distinct ways in which the genome is ex-

pressed and regulated under the rather uninformative term ‘things one could do with the ge-

nome,’ a nested syntax-based account successfully conveys the notion that  genome expression 

can be divided in two distinct processes: gene expression regulation, achieved at the level of 

transcriptional control, and gene sequence processing, achieved at the level of transcription, post-

transcriptional modifications, translation and post-translational modifications.  

 In practice, these three virtues of syntax-based gene concepts - modularity, retro-

compatibility and the ability  to explain why the genomic information is expressed and processed 

in an orderly, predictive fashion - are reflected as follows: 

1. Reference continuity is ensured by  providing a significant overlap with the transcription 

unit and open reading frames molecular gene concepts, as well as BLAST-generated and 

GenBank sequences. This means that molecular biologists can continue to identify genes 

and putative genes via currently available molecular techniques and genome annotation 

protocols. Current syntax gene concepts are based on a solid and very successful experi-

mental methodology and are not likely to be abandoned any time soon.

2. Since a gene is not a piece of genomic DNA, but a transcribed DNA sequence, there is no 

restriction on overlapping or nested genes. Also, distinct genes are allowed to share pro-

moter (operons, overlapping promoters) and distal regulatory elements (common enhan-

cers). In contrast to traditional transcription units, alternative promoters are also accommo-

dated. 

3. Unlike traditional open reading frames, it is not required that protein end-products are gen-

erated. RNA products playing structural (ribosomal, transfer and small nuclear RNAs, ri-

bozymes) and regulatory (microRNAs, RNA interference) roles are also coded by genes. 

Also, by keeping the 3’ and 5’ untranslated regions as part of the gene, certain mechanisms 
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of translation regulation are accommodated as part of the gene ‘subroutine’; this allows 

DNA templates for RNA species that are not immediately  processed for translation (such as 

maternal factors) to count as genes.  

1. Since the instructions contained in the gene subroutines may prompt events such as splic-

ing, perfect homology/collinearity  between DNA and gene products is no longer required. 

Waters (1994, 78) proposed that molecular genes are sequences of DNA coding for product 

sequences generated at some point during gene expression, such as peptides or ribozymes. 

Since DNA is said to serve as a template for RNA and peptide synthesis in virtue of the 

mechanisms of transcription and translation, gene products sequences are collinear and 

homologous to template DNA sequences. This conception was criticized on the grounds 

that that  gene rearrangements, splicing, alternative splicing, trans-splicing, and RNA edit-

ing can generate significant divergences between the original DNA sequence and the final 

gene product sequence (Falk 1986; 2003; Portin 2002; Stotz et al. 2006). 

2. More than one gene product  can be associated with any given gene. The fact that the same 

gene can be involved in more than one function/phenotype was acknowledged a long time 

ago by classical geneticists (Morgan 1935). Splicing, alternative reading frames, polypro-

teins are newly discovered molecular mechanisms that further contribute to the generation 

of functional diversity.  

3. Trans-splicing (splicing of distinct RNA species) can be accommodated as a special case. I 

acknowledge that even if most ‘gene subroutines’ are modular (i.e., once initiated, they  are 

not influenced by other ‘gene subroutines’), trans-splicing is an example of non-modular 

processing. However, there are a number of attenuating circumstances. First, the genes im-

plicated in trans-splicing are unambiguously differentiated since each has its own well-

defined transcription initiation and termination sites; the proposed gene definition still ap-

plies [e.g., Finta and Zaphiropoulos (2002) explicitly  and unambiguously distinguish be-

tween the various cytochrome genes involved in trans-splicing]. Second, trans-splicing 

seems to be driven by conserved sequences required by splicing in general, and therefore is 

an agreement with a syntax-based approach. And third, naturally occurring trans-splicing 

involves either transcripts originating from overlapping transcription units (Caudevilla et 
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al. 1998) or highly homologous transcripts [genes sharing “a high degree of similarity”, 

such as duplicated genes (Finta and Zaphiropoulos 2002, 5882)]; we are thus dealing with 

a local, homology  driven cross-modular processing involving identical or very  similar 

modules, not with a generalized breaking of modularity.

4. Finally, this conception is compatible with an important  aspect of Griffiths and Stotz’s 

(2006; Stotz et al. 2006) postgenomic gene: each gene, defined in virtue of transcription 

initiation/termination, can be used in a variety of ways. 

5. Difficult cases and causal/explanatory parity objections

The scope and intended domain of application of syntax-based concepts

 An immediate concern is that some forms of regulation and processing don’t  rely on con-

served sequences. For example, it has been argued that some aspects of chromatin regulation in-

volve sequence-independent mechanisms (Fox-Keller and Harel 2007; Stotz forthcoming). Epi-

genetic contributions to inheritance and development, posit another legitimate source of concern 

(Fox-Keller 2001). Finally, it has been argued that even if conserved sequences are useful in pre-

dicting certain biological outcomes, they don’t suffice to explain these outcomes (Fox Keller 

2000; Griffiths and Neumann-Held 1999).

 My answer to the above objections hinges on a deflationary view of what genes are and 

how they are defined. In contemporary  scientific practice, gene concepts are not substitutes for 

explanation and therefore don’t have to account for every  single causal determinant of inheri-

tance. Quite illustrative in this sense, the Human Genome Nomenclature Committee defines a 

gene as a

DNA segment that  contributes to phenotype/function. In the absence of a demonstrated 

function a gene may be characterized by sequence, transcription or homology. (Wain et 

al. 2002, 464) 

The first half of the definition accommodates a situation where a segment of DNA is shown to be 

associated with a phenotype even if this segment is too short (e.g., a point mutation) or too long 

(e.g., a large DNA segment found between two chromosomal break-points) to count as a molecu-

lar gene. The second half of the definition is explicitly meant to accommodate a situation where 
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putative genes are identified via genome annotation/syntax-based techniques (e.g., promoter-like 

sequences preceding open reading frames, homology with gene product sequences and known 

genes). 

 The extended syntax-based approach defended in this paper spells out in more detail this 

second half of the HGNC definition in an attempt to accommodate instances of expression regu-

lation and post-transcriptional/translational processing: genes are genomic sequences and organ-

izational features of the genome contributing to a pattern of genome expression and, if known, its 

associated phenotype. Nowhere in this (or the HGNC) definition is it stated that genes are unique 

causal determinants, that they contribute to all known instances of inheritance, and that  they ex-

plain or suffice to explain why and how inherited phenotypes occur. 

The limits (and areas of future improvement) of syntax-based concepts 

 I also want to acknowledge the fact that the correlation between a given conserved se-

quence and its associated regulatory/expression/processing outcome is not perfect (e.g., it is 

probabilistic rather than deterministic). There is a general agreement that DNA sequence motifs 

play  a crucial role in specifying binding sites for various non-DNA components (usually pro-

teins) of mechanisms of genome expression and regulation. Typically, DNA-protein interactions 

requires that, (a) certain chemical moieties, specified by the sequence of the DNA motif in ques-

tion, are present; and (b) that these key moieties are exposed at  the right distance and position in 

respect to each other, as dictated by the chemical structure of the DNA double-helix. In as much 

as the DNA molecule is not subjected to any stress (torque, bends, super-/under-coiling), it  has 

been shown that if a given conserved DNA sequence motif is present, it serves as a binding site 

for some specific component(s) of a mechanism of genome expression and regulation, and there-

fore contribute to some aspect of genome expression in a predictable way. 

 One complication which present syntax-based concepts fail to take into account is that 

whenever a protein binds DNA, it creates bends and torques in the DNA double-helix, thus alter-

ing to various degrees the spacing and position of nucleotides and chemical moieties required for 

the binding of other proteins; such changes in spacing and positioning can be important enough 

to result in an enhancing or repression of the binding of these other proteins. Even if the DNA 
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sequence will not completely  change its ‘meaning’ due to deformations of the DNA double helix, 

its specificity/affinity for a given protein target may increase or decrease (sometimes to biologi-

cally insignificant values), thus reducing the accuracy of the predictions about genome expres-

sion. 

 It is important however to realize that this shortcoming of syntax-based approaches does 

not preclude future remedies. For instance, nucleosomes (a key component of chromatin struc-

ture) are particularly troublesome because of the coiling and deformation they induce in the 

DNA double-helix. There is evidence suggesting that the binding and assembly of the nucleo-

somes is to a large extent sequence-dependent, evidence which, in conjunction to a more and 

more detailed knowledge about the way  in which DNA coiling around nucleosome affects the 

structure of the double-helix, is likely to allow for a fine-tuning of syntax-based approaches in 

the near future.

 

6. Conclusion

 I have argued that an expanded syntax-based approach can handle most cases of regula-

tion and processing, while providing a number of key advantages, such as retro-compatibility 

with molecular gene concepts and current genome annotation protocols, a step-by-step modular 

methodology for investigating inheritance phenomena, as well as the ability to explain certain 

regularities characterizing genome expression. In response to objections, I proposed a deflation-

ary view of what genes are and how they are defined, and discussed possible ways in which this 

approach may be improved. Finally, I acknowledged the limits of syntax-based concepts, and 

discuss possible avenues of improvement. 
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