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Abstract

I offer one possible explanation of why inertial and gravitational mass are equal in Newtonian
gravitation. I then argue that the explanation given is an example of a kind of explanation
that is not captured by standard philosophical accounts of scientific explanation. Moreover,
this form of explanation is particularly important, at least in physics, because demands for
this kind of explanation are used to motivate and shape research into the next generation of
physical theories.

“What do we mean here by ‘explanation’? ... This whole issue, which perhaps lies between
nature and sociology, seems to be a bit vague. Quite possibly, an attempt to make the
word explanation more precise may do more harm to the field [of physics] than good.”

-Robert Geroch (1978, pg. 63)

1 Introduction

Consider the following questions, any of which might be heard in the halls of a physics

department.

1. Our best theory of particle physics predicts that in very high energy experiments, which
probe the smallest distance scales, the electromagnetic, weak, and strong forces should
have approximately the same strength. But at these same distance scales, gravitation
is many orders of magnitude weaker. Why is gravity so much weaker than any of the
other forces?

2. The Standard Model of particle physics makes predictions that have been confirmed
to 15 significant digits (Odom et al., 2006). But the Standard Model’s predictions rely
on 19 parameters that are “put in by hand” to agree with experiment; in order for the
Standard Model to make accurate predictions at all, these parameters must be finely

1Thank you to Kyle Stanford and David Malament for helpful remarks on earlier drafts of this paper.
Thank you, also, to the Southern California Philosophy of Physics group, in particular Jeff Barrett, Craig
Callender, and Tarun Menon, for a spirited and productive discussion of the material presented here.

2weatherj@uci.edu
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tuned. Why do these Standard Model parameters take the values they do, and is there
a sense in which they are “natural” or determined by some underlying mathematical
or physical principle?

3. In Newtonian physics,3 inertial mass (the value m that appears in F = ma) always has
the same value as gravitational mass (the coupling to the gravitational field, i.e. the
value m that appears in UG = mφG, where φG is the gravitational potential and UG is
the potential energy of a particle with mass m), even though in principle the theory
distinguishes these masses. This equivalence is empirical: it was first established (in
slightly different terms) by Galileo; at the end of the 19th century, it was tested with
very high precision by Loránd Eötvös. Yet the correspondence seems highly suggestive.
Why are inertial and gravitational mass equal in Newtonian physics?

I need not multiply examples. Each of these is a why question asked in a particular scientific

context (physics). As such, I take it that they are calls for scientific explanation.4 Indeed,

they are why questions of a particularly important sort: these are the kind of questions that

physicists often use to motivate their research projects. Questions 1 and 2 are open and

form the basis of several major contemporary research programs5 in high energy particle

physics and quantum gravity. Question 3, meanwhile, has been settled, or at least, we now

have the theoretical machinery available to provide one sort of answer to it. I claim that the

answer one can now give in response to question 3 is an example of one kind of explanation

that would satisfy the physicists who ask questions 1 and 2. It may not be the only kind of

explanation that physicists would ultimately deem satisfactory, though I think it is an ideal

of the sort of explanation physicists have in mind when they ask questions 1 and 2. My

central goal in this paper will be to examine just what kind of explanation it is.

Before proceeding, however, I should give some context to the present discussion. Over

the last 20 years, since Salmon (1989) proposed a detente between the causal and unifica-

tionist accounts of explanation, the idea that some sort of pluralist account of explanation

is necessary to capture the full variety of explanatory phenomena has gained considerable

3I will use the expression “Newtonian theory” interchangeably with “Newtonian physics.” In both cases
I mean Newtonian dynamics plus gravitation.

4Perhaps not all calls for explanation take the form of why questions, and perhaps not all why questions
call for explanations. But I claim these why questions do call for explanations.

5I do not mean “research program” in a technical philosophical sense. I just mean that string theorists,
loop quantum gravity theorists, and many particle phenomenologists (in the physicist’s sense of phenomenol-
ogy) take these questions to be central to their research.
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support. Salmon’s own line was that the causal and unificationist accounts are not inconsis-

tent. Instead, he thought they offer different kinds of understanding, corresponding to the

different kinds of explanation; in some sense, he thought, both the causal and unificationist

accounts are correct. On Salmon’s view, the two accounts together offer a full account of

explanation on which unificationist explanations are “top-down” and causal explanations are

“bottom-up.” Any given event or phenomenon can be explained in both ways. But this form

of pluralism is still too limiting: it now seems that some explanations do not fit neatly into

either account (see, for instance, Batterman (2002)), and moreover, that some phenomena

that are easily explained using one kind of explanation do not, as Salmon suggests, have

explanations of the other sort.6

More recently, Godfrey-Smith (2003) (following Kuhn (1977)) has suggested a different

kind of pluralism, in which what counts as a good explanation can vary depending on sci-

entific context. Explanation in biology need not be the same as explanation in physics, and

explanation in either field in the early 21st century need not be the same as explanation was

in, say, the 17th century. On this view, it is a mistake (as Geroch suggests above) to attempt

to characterize scientific explanation in advance: what counts as a good explanation in sci-

ence is evolving along with the sciences themselves. I am very sympathetic to this view.

But I take it that two projects remain, even after a pluralistic, contexualist account has

been accepted. The first project is to identify the working parts of contextualist pluralism:

what makes a particular explanation an appropriate one in a given instance, as an answer

to a particular why question? Certainly, scientific context—i.e. field of study and historical

moment—determines the array of explanations that are available. But in many scientific

contexts, such as contemporary physics, it seems that more than one form of explanation is

common. Moreover, as Salmon suggests, many phenomena may have explanations of radi-

6I take Fisher (1930)’s explanation of sex ratio in humans as an example of this latter sort. (See also
Skyrms (1996, Ch. 1), where Fisher’s work is put in perspective.) A causal explanation can explain why any
individual turned out to have a particular gender, but it cannot explain why the ratio must be what it is.
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cally different types.7 The second project, meanwhile, is to identify interesting explanations

used in various contexts and attempt to understand their epistemic virtues (or, perhaps, lack

thereof). The current paper is an example of the second kind of project.

From here I will proceed as follows. I will start by clarifying what question 3 is asking. I

will then sketch what I take the answer to be.8 This question has been answered informally

in a variety of ways since General Relativity (GR) first appeared in 1915; the answer I will

present here is certainly in the spirit of these standard responses, though it precisifies a

number of details about the relationship between mass in GR and Newtonian physics that

are usually left vague. To my knowledge, the form of the answer I will present here is original

and I take it to be of (minor) independent interest. After presenting the explanation I have

in mind, I will turn to the question of whether the explanation I offer here can be understood

within the rubrics of well established accounts of explanation. I will conclude that it cannot.

In the remainder of the paper, I will try to articulate how the present explanation works,

highlighting its distinctive features.

2 Why are inertial and gravitational mass equal in Newtonian gravitation?

As I have said, inertial mass and gravitational mass are conceptually distinct in Newtonian

physics (I will distinguish them here by writing mI for inertial mass and mG for gravitational

mass). Indeed, one would expect them to be unrelated to one another. Inertial mass is

a constant of proportionality in the fundamental dynamical principles of the theory. It

appears in Newton’s second law, which states that F = mIa; momentum is defined as

p = mIv; kinetic energy is T = 1/2mIv
2. One can think of inertial mass as a measure

of a body’s tendency to accelerate under the influence of an impressed force. Inertial mass

is closely related to inertial motion, which enters Newtonian theory via Newton’s first law.

The first law states that a body undergoing uniform rectilinear motion will not deviate from

7I would suggest that the problem of identifying appropriate explanations is essentially pragmatic, but
will defer discussion of this point to future work.

8The discussion in the body of the paper is precise, but informal. The technical details of the explanation
are included in an appendix.
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that motion unless acted on by an external force; inertial mass, then, determines a body’s

tendency to deviate from uniform rectilinear motion when acted on by an external force,

whether gravitational or otherwise.

Gravitational mass, meanwhile, determines the strength of the gravitational force that

a body exerts on other bodies and, conversely, is exerted on the body by other bodies. It

enters the theory via Newton’s law of universal gravitation, which states that given two

bodies with respective gravitational masses
1
mG and

2
mG, each will exert a force of

FG =
G

1
mG

2
mG

r2

on the other, where r is the magnitude of the distance between the bodies’ centers of mass and

G is Newton’s constant. Equivalently, one can think of gravitational mass as a measure of a

body’s response to a background gravitational field. If a test body9 with gravitational mass

mG is placed in a gravitational potential φG(r), then the body will have gravitational potential

energy UG(r) = mGφG(r) and will experience a force FG = −mG∇φG(r). Gravitational mass

can be thought of (in modern terms) as gravitational charge, in analogy with classical electric

charge. Indeed, the fundamental force equations have exactly the same structure. Given two

bodies with electric charges
1
q and

2
q, Coulomb’s law gives that each will exert a force of

FE =
C

1
q
2
q

r2

on the other, where C is Coulomb’s constant. Likewise, a test charge q in an electric

potential φE(r) will have electrical potential energy UE = qφE(r) and will experience a

force of FE = −q∇φE(r).

The parallel with electric force is particularly salient here. Suppose one wants to know

the acceleration exhibited by a test particle of charge q and inertial mass mI in an electric

9By test body, I mean a body that is assumed not to contribute to the gravitational field itself. In other
words, when considering test bodies one neglects the “backreaction” of a body’s own gravitational field.
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potential φE . Combining Newton’s second law with the force law for a test particle in an

electromagnetic field, one finds that

a = − q

mI
∇φE .

In other words, the acceleration depends on the ratio of the charge to the inertial mass of the

body, both of which are freely varying, independent objects. One can find in nature bodies

with many different values for the ratio q/mI . Meanwhile, if one performs the identical cal-

culation to determine the acceleration due to gravity (given a fixed gravitational potential),

one likewise finds,

a = −mG

mI
∇φG. (2.1)

Again, the acceleration depends on the ratio of two values: the gravitational and inertial

masses. Given the structural similarities between the gravitational and electric cases, one

should expect to go out into the world and find bodies with a wide array of different values for

the ratio mG/mI . After all, (a) how much a body will tend to deviate from rectilinear motion

given an external force and (b) the strength of that external force should be independent

quantities (as they are when considering electric force). But it turns out that when we

start looking into how bodies behave in a gravitational potential, we find something quite

different. Given any body at all, the ratio mG/mI always takes the same value: choosing

the natural units, we always find that mG/mI = 1.

Given this background, the explanandum can be stated as follows: all evidence suggests

that, given any body, the gravitational and inertial masses of that body can be demon-

strated to be equal, despite the fact that Newtonian theory gives no reason to expect these

two masses to be related. In other words, we want to understand why gravitational mass and

inertial mass appear to be identical in Newtonian theory. In some ways this is an unusual

why question (at least with respect to standard accounts of explanation), so I want to spend

some time up front focusing on its distinctive features. First off, it is a question about a
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general observational feature of the world, but it is expressed in the terms of a specific phys-

ical theory. In other words, the question takes the Newtonian concepts of gravitational and

inertial mass for granted. One can express the observational fact without reference to the

Newtonian theory—Galileo first described the phenomenon that all bodies fall at the same

rate, irrespective of mass, before Newton was born—but when one does so, the question

does not arise. One might, perhaps, wonder about the apparent universality of free fall in

other contexts or even quite generally: after all, Galileo’s results certainly conflicted with

the Aristotelian expectation, so one might well have demanded an explanation for Galileo’s

observations in the context of Aristotelian physics, too. But without the background concep-

tual machinery of Newtonian physics, the question is different. I am interested in a specific

question about the world, expressed within the Newtonian framework. It seems to me that

questions 1 and 2 are similar in this regard, mutatis mutandis.

This first feature suggests a second feature. Although the question is posed within the

Newtonian framework, and cannot be quite the same question if posed in other contexts, it

explicitly cannot be answered within the Newtonian framework. As we have seen, the New-

tonian concepts of gravitational and inertial mass are distinct. That the two masses always

take the same value for any given body is contingent, though suggestive, within Newtonian

physics. It is this contingency that forms the explanandum under consideration. The ques-

tion would be quite different if inertial and gravitational mass were natively identified within

the theory, or if the theory itself gave some indication for why their coincidence was only ap-

parent. The reason the question arises is that the observed equivalence cannot be explained

within the Newtonian framework. But this means that any appropriate answer will have

to go beyond Newtonian physics. So we have a question posed in one theory that can only

be adequately answered by appealing to another, presumably more general or fundamental,

theory.

But what form could such an answer take? Einstein (1920) claimed that the observed

equivalence between gravitational and inertial mass was an important factor in his devel-
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opment of GR, and that it can be taken as evidence in favor of the “general postulate of

relativity.” The principle that the two mass concepts should be identified, or equivalently

the idea that free fall does not depend on mass, is often called the weak equivalence principle

and continues to play a central role in some presentations of GR (see, for instance, Weinberg

(1972, ch. 1)). From this point of view, the observed equivalence is explained by asserting

that in a supervening theory (GR), no distinction is made between the two masses. Inertial

and gravitational masses are simply the same. But there is something strange, and poten-

tially misleading, about this answer to the original question. The reason for the difficulty is

that a more accurate account of the situation in GR, using only concepts native to GR itself,

would be to say that there is only inertial mass. It is not that gravitational mass is explicitly

identified with inertial mass, but rather than gravitational mass has been stricken from the

theory altogether. There is no gravitational potential in GR; nor is there a gravitational

force. And so it makes no sense to ask how a body responds to a gravitational potential or

how strongly it exerts a gravitational force on another body.10 To say that gravitational and

inertial masses are identified in GR is simply a confusion.11 When one attempts to answer

the original question by appealing to some supposed equivalence between the two kinds of

mass in GR, one mixes terms from two theories in a way that is dubious and confusing.

These considerations suggest another response to our original question. Given that grav-

itational mass does not make sense in GR, one might say that the question turns out to be

an error. We used to think that gravitation was a force (one might say), and that a body’s

gravitational mass determined the magnitude of that force exerted by and on the body. But

now we know that gravitation is not a force at all and so questions about gravitational mass

do not make any sense. This type of response is intended to dissolve, rather than answer,

the question, by directing the questioner to a textbook on GR. But I claim that this kind of

10This point is put clearly, for instance, by Sachs (1976), though it has not always been recognized by the
physics community, as Weinberg (1972) attests.

11Einstein, of course, can be excused for making statements to this effect: he was building a new theory
and, in Neurath’s boat fashion, needed to work with what he had in order to make himself understood (and
in order to understand what he was doing himself).
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response is unsatisfying. First, the question was asked in a specific framework; to say that

that framework is no longer widely accepted is irrelevant. Second, even if one accepts that

GR supercedes Newtonian physics, and one accepts moreover that gravitational mass does

not exist in GR, the question remains and should have an answer. In Newtonian physics,

which everyone accepts as a predictively accurate theory, there are two different kinds of

mass. As such, I can point to two kinds of roles that one might expect mass to play. Sup-

posing that GR is correct that gravitational mass does not make sense, why does it seem

that inertial mass gets peeled apart into two separate things? Or equivalently, if we limit

attention to gravitation on the scales at which Newtonian physics is effective, why do we find

gravitational mass to be a useful concept, and moreover, why is it equal to inertial mass?12

I think this discussion helps to clarify both what question was originally being asked and

what kind of answer would be appropriate. We have two fixed points to navigate between.

First, the question is such that it cannot be answered by the Newtonian theory. New physics

is required. But second, it is a question that needs to be answered in the terms in which

it was asked, i.e. within the Newtonian framework. As we have seen, using Newtonian

terms within the framework of GR leads to inconsistencies and serious confusion, while

using concepts native to GR at best allows a dissolutive response, rather than an answer, to

the question. With these two points in mind, one might rephrase the question once again,

as follows. Given that we now believe GR to have superseded Newtonian theory as our best

description of large-scale dynamics and gravitation,13 why are gravitational and inertial mass

12Curiously, one can already imagine giving the same response to question 1: why should we compare
gravitation to the other three forces? After all, we already know that there is no such thing as gravitational
force! But this answer would be equally unsatisfying in that context, for the same reason: gravitation is
conceived of as a force in modern particle physics, which is at least part of the difficulty in making quantum
field theory and GR mesh. It is easy to imagine a similar response, too, to question 2: it may well turn out
that these parameters are not important to our next class of theories. I think this serves to underline the
curious character of the questions above: they are all expressed in the language of one theory, but one fully
expects that the answer will come from a theory in which the terms of the question may not make any sense.

13Some readers might balk at this point and argue that GR cannot provide any kind of explanations
whatsoever if it is not true. I do not share the intuition that only true theories have explanatory power. But
I do not think this issue is relevant here. Everything I say in what follows can be recast in conditional form:
explanations of the form “If GR were true, then...” are perfectly sufficient for a discussion of what kinds of
explanation are possible in science.
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equal in Newtonian theory?14 In this particular case, since it turns out that gravitational

mass does not make sense in GR, there is an additional question hidden within the original

question: if GR is right, why does Newtonian theory support two concepts of mass in the

first place?

To answer these questions, one needs to show, in detail, how Newtonian theory relates

to GR. One needs to show why, if GR is true, Newtonian theory is such an effective theory,

at least at certain distance/energy scales. One way of doing this would be to show that

Newtonian theory can be reached from GR as an appropriate limit that captures (within

GR) the circumstances in which Newtonian theory seems so effective.15 This observation

suggests yet another refinement of the original question. What we are really interested in

is the following: Given that we now believe GR to have superseded Newtonian theory, then

why, insofar as Newtonian theory is a limiting case of GR, are inertial and gravitational

mass equal in Newtonian theory? I maintain that this reformulation captures of the spirit

14Rephrasing the question in this way is only possible when one can point to the superseding theory. In
the cases of questions 1 and 2, no superseding theory is known. These questions might be rephrased in terms
of a future possible theory, or as a statement of a certain kind of research objective. One is looking for a new
theory T that can tell us why, given that theory T supersedes the Standard Model (say), the parameters in
the Standard Model take the particular values that they are observed to take.

15Many philosophers have questioned when and whether it is possible to show that an old theory reduces
to a new theory (in the philosopher’s parlance) or a new theory reduces to an old theory (in the language
of working physicists) in the sense I have in mind here of a new theory explaining why an old theory
worked. Nagel (1961, 1970), for instance, treated intertheoretic reduction as explanation (in the deductive-
nomological (DN) sense) in a way that bears a rough family resemblance to what I am thinking of; Nickles
(1973), meanwhile, argues that often explanatory reductions are not possible at all (at least in the DN sense).
Curiously, Nickles identifies Newtonian physics and relativity theory as a prime example of a reduction
relationship that is not an explanation in the DN sense, but rather a collection of rough intertheoretic
relations. It seems to me that if any intertheoretic relationship deserves to be called deductive, it is the
relation between Newtonian theory and GR. But I do not intend to enter a debate on intertheoretic reduction
here. Instead, I want to distinguish identifying reduction and explanation (as Nagel does) from a more
ambiguous demand that a new theory explain, at least in some sense, why our old theories succeeded. One
way of cashing this requirement out is to say that a new theory cannot make predictions that are inconsistent
with the successes of previous theories (in which case the new theory will at least reveal regularities captured
by the old theory). At least in physics, if a new theory is inconsistent with the success of an old theory, it
is perceived as a major difficulty for the new theory. One can see this tension, for instance, in the relation
between quantum mechanics and Newtonian physics, where there is a real worry that quantum mechanics
makes predictions regarding, for instance, superpositions of medium-sized dry goods that do not conform well
with classical expectations (or ordinary experience). This apparent inability to recover Newtonian theory
from quantum mechanics, though not a barrier to the acceptance of quantum mechanics, remains a central
problem for (some) working physicists. In any case, in the present example such an explanation is possible,
and I maintain that parallel explanations are demanded by each of the questions asked in the introduction.
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in which the original question was asked, and moreover, we finally have a question that is

precise enough to answer. It is now clear that the answer would involve trying to show

that if Newtonian theory is taken as the limit of GR in the appropriate way, then Newtonian

theory does support two concepts of mass, and moreover, that for any body these two masses

must be equal. In other words, one shows that gravitational mass arises in some way in the

limiting process, and that the result must be equal to inertial mass.16

It turns out that it is possible to perform this procedure exactly as described. (See

appendix A.) There is a precise sense in which Newtonian theory is a limit of GR (Künzle,

1976; Ehlers, 1981; Malament, 1986a).17 It involves a two step process. One begins by

considering a one-parameter family of relativistic spacetimes, parametrized by some variable

λ. λ, at the present level of discussion, can be taken to reflect the inverse of the “speed of

16At the very least, the answer sketched would be responsive to the question when reformulated as relative
to GR. It seems to me that, given GR and the relationship between GR and Newtonian physics, the correct
way of thinking about Newtonian physics is through the lens of GR. But not all philosophers agree: there
is another way of thinking according to which Newtonian physics is an entirely unrelated (and false) theory
of spacetime and gravitation. From this perspective, one might try to relate the theories and thus explain
the empirical success of Newtonian theory by looking for various limiting relations between Newtonian laws
and the laws of GR such that, under certain circumstances, particular Newtonian laws can be understood to
be approximately true. All I can say in response is that I agree that if one understands Newtonian physics
in this way, then the explanation I offer is not satisfying. But I disagree that this is the most natural way
of understanding Newtonian physics. In particular, it seems to me that the relationship that one does get
between Newtonian physics and GR by understanding the former as a limiting case of the latter is highly
desirable from the point of view of practicing physics (and philosophy of physics). But see also footnote 17.

17This footnote is in some sense a continuation of footnote 16; it also addresses a possible worry about
so-called “counterfactual” explanations. As I have said, there is a way of thinking about Newtonian gravi-
tation in light of GR according to which describing the sense in which Newtonian theory is a limit of GR is
tantamount to describing the experimental conditions under which it is appropriate to use Newtonian laws
for purposes of approximation. This is not what I have in mind. When I describe Newtonian theory as a
limiting case of GR, I mean that given a fixed background manifold, (a) there is a precise sense in which
classical spacetime structure on that manifold can be understood as the limit of a sequence of relativistic
spacetime structures, and (b) when one takes this limit (with appropriate background assumptions), one
recovers the correct Newtonian laws in toto on the resulting classical spacetime. (See appendix A.) There
is at least one place in which the two ways of thinking make contact, however. If, rather than consider-
ing experimental settings in which particular Newtonian laws are appropriate approximations, one instead
considers the experimental circumstances under which one would be unable to identify failures of absolute
simultaneity (perhaps because the apparatus is too coarse grained to detect the finite speed of light), then
it is appropriate (from an experimental point of view) to assume that spacetime has a classical, Galilean
structure. And if one were to make such an assumption, it would then be appropriate to take the limit I
have described to derive the relevant approximate laws—hence “motivating” the explanatory power of the
limit, hopefully even for a reader who is disinclined to think of Newtonian theory natively as a limiting case
of GR. I also take it that describing the limit in this way should moderate worries that the limit “as c goes to
infinity” cannot be explanatory because it is counterfactual, since one can understand the limit as describing
the case where for all we can tell c is infinite (as was the situation in 1687).
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light”18 in each of the spacetimes. By constructing this family of spacetimes carefully, one can

consider the limit that the spacetimes approach as λ approaches 0 (corresponding to taking

the speed of light to infinity). The result is a degenerate “classical” spacetime with many of

the characteristic features of Newtonian physics: space is always flat and Euclidean; there is

a unique sense of space at a time and absolute simultaneity holds; the spacetime is Galilean

relativistic, which means that (1) measurements of elapsed time and the distance between

simultaneous events will be the same for all observers, irrespective of their motion and (2)

there is no absolute standard of rest. But we have not yet recovered Newtonian physics.

Rather, we have reached an intermediate point between GR and Newtonian physics, which

I will call geometrized Newtonian theory.19,20 Geometrized Newtonian theory is classical in

the sense that the spacetimes it permits are classical (as just described). But in geometrized

Newtonian theory, gravitation is still geometrical: the geometry of spacetime is curved,

with curvature determined by the distribution of matter in the universe, and gravitational

effects are manifestations of the resulting geometry. In this sense geometrized Newtonian

theory is like GR, though with a different spacetime structure and with different fundamental

equations. Importantly, since gravitation is geometrical rather than a force between bodies,

gravitational mass does not make any more sense in the context of geometrized Newtonian

theory than in GR.

To see where gravitational mass comes from, we need to take the second step in the lim-

iting process. This step makes use of a theorem known as the Trautman Recovery Theorem

18There is an abuse of language, here. Really, λ parametrizes something about the metrical structure of
the spacetime, specifically how wide the light cones are at a point. But the widths of the light cones indicates
how null vectors, which are the possible tangent vectors for the wordlines traversed by light, relate to the
timelike and spacelike vectors in the spacetime. Hence wider lightcones indicate “faster” light.

19Geometrized Newtonian theory is sometimes called Newton-Cartan theory. It was first developed during
a lecture course by Élie Cartan in the early 1920s, as an attempt to understand how Newtonian gravitation
related to GR (Cartan, 1923, 1924). (See also Friedrichs (1927).) Strictly speaking geometrized Newtonian
theory, rather than standard Newtonian physics, is the classical limit of GR.

20It may be helpful to emphasize, here, that geometrized Newtonian theory is not a model within GR
that is somehow suggestive of classical physics. It is an independent theory with the empirical content of
Newtonian physics. Indeed, a classical spacetime as described here is not and could not be a relativistic
spacetime because it does not have an appropriate metric structure. We really have left GR when we arrive
at the classical limit. As we shall see, there is a strong sense in which standard Newtonian physics can be
recovered from geometrized Newtonian theory, and so the “Newton” in its name is well justified.
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(Malament, 2010, Prop. 4.2.5), due to Andrzej Trautman. Trautman’s theorem tells us that,

given a classical spacetime of the sort found in geometrized Newtonian theory, satisfying cer-

tain conditions, one can find21 (1) another spacetime that is flat,22 and (2) a scalar field φG

that satisfies Poisson’s equation (i.e. that has the dynamical relationship to the distribution

of matter in the universe that Newton’s theory predicts for the gravitational potential) and

which is such that for any free (inertial) massive test point particle,

a = −∇φG.
23 (2.2)

Thus, under certain circumstances, we can recover a flat spacetime and a gravitational poten-

tial φG that has just the relations to both the distribution of matter in the universe and the

dynamics of a particle that we would expect from Newtonian physics, and moreover, in this

flat spacetime, the particle trajectories determined relative to the gravitational field agree

with the particle trajectories as determined by the geometrized theory in the initial curved

spacetime. More loosely, one finds a flat spacetime and gravitational field that “makes the

same predictions” as the geometrized theory. We have now recovered full-blown, standard

Newtonian physics as a limit of GR.

I want to draw attention to an important feature of Eq. (2.2). It is a derived relation be-

tween the acceleration of a particle and the gradient of the gravitational potential. Compare

Eq. (2.2) with Eq. (2.1). They differ by a proportionality term, mG/mI . In other words, Eq.

(2.2) is just what we get if we set mI = mG in (2.1). In the process of recovering Newtonian

theory from GR, we have shown that gravitational and inertial mass must be equal. An-

other way of getting to the same conclusion would be as follows. Eq. (2.2) just tells us the

relationship between acceleration and the gravitational potential. The gravitational mass

was defined as the coupling to the gravitational field: it is the constant of proportionality

21See theorem A.4 for details of this claim, and for a precise statement of the conditions a (geometrized)
classical spacetime needs to satisfy in order to recover standard Newtonian theory, which are not trivial.

22A classical spacetime as considered by geometrized Newtonian theory is generally curved, though space
is always flat. In standard Newtonian physics, spacetime taken as a whole has to be flat.

23Here I am using the notation of standard Newtonian physics.
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moderating the relationship between force and the gravitational field. If we use F = mIa,
24

we find that the force on a massive test point particle arising from the gravitational potential

φG is

F = mIa = −mI∇φG. (2.3)

Eq. (2.3) tells us directly that the coupling to the gravitational field in Newtonian physics

is given by the inertial mass. The reason that gravitational and inertial mass are always

equal is that gravitational mass simply is inertial mass. And thus we have an answer to the

original question (suitably formulated).

3 What have I just done?

Now that I have offered an answer to one of my questions, I can ask what kind of explanation

I have given. It seems clear without further argument that this explanation is not a causal

explanation, in any of the senses of causal explanation that have been articulated over

the last few decades.25 It likewise does not fit into any of the earlier statistical accounts of

explanation, such as the statistical relevance account of explanation or the inducto-statistical

account.26 For one, in all of these cases (causal/mechanical, SR, IS), one explains an event or

perhaps a class of events. The explanation under consideration in this paper regards a more

general feature of the world, in particular as it relates to a specific theory.27 For another,

the present explanation is (at least roughly) an argument ; usually, causal explanations take

the form of a narrative of events that lead to the event to be explained. In the remainder

24It might be worth emphasizing that F = mIa holds for massive point particles generally in GR, ge-
ometrized Newtonian theory, and standard Newtonian gravitation. Sometimes one hears that “GR does not
have forces, whereas Newtonian physics does,” but this is not correct. There are forces in GR; the difference
with Newtonian physics is that gravitation is not a force in GR. One way of seeing why this should be is
that the worldlines of massive particles under the influence of only gravitational effects are non-accelerating,
which means that the force acting on them (in GR) vanishes.

25Some prominent examples are of course Salmon (1984), but also Cartwright (1983) andWoodward (2003).
Strevens (2004, 2008) also offers a kind of causal account of explanation, though his “kairetic account” also
includes some of the desirable features of the unificationist account.

26For more on either of these, see (Salmon, 1989).
27See, too, Kitcher (1989, Sec. 3.3) for more on the idea that the causal account has difficulty with

explanations of theoretical regularities, as opposed to propositions concerning individual events.
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of this section, I will focus on two other prominent accounts of explanation that, at least

prima facie, have a better chance of capturing the kind of explanation I gave in the previous

section: the deductive-nomological (DN) account and the unificationist account.28

3.1 The Deductive-Nomological Account

The DN account of explanation, originally proposed by Hempel and Oppenheim (1948), was

long the received view of explanation. On this account, an explanation is a (logical, first-

order) argument by which the thing to be explained, the explanandum, is deduced from a

set of true premises, the explanans. It is taken to be necessary that the explanans include

at least one law of nature; generally, it will also include particulars such as initial conditions

or boundary conditions. The thing to be explained is a proposition. The intuition is that

an explanation is a demonstration of law-like expectability. To explain a proposition is to

show that one could expect it to be true, given the laws of nature and some given set of

circumstances.29

Does the explanation I give in section 2 fit the DN mold? It certainly has many of

the central features of a DN explanation. The explanation consists of an argument by

which the explanandum is derived. The explanans is perhaps a bit broad: all of the central

28Batterman (2002) also discusses a form of explanation that is not well-treated by the causal and uni-
ficationist accounts. He dubs it “asymptotic explanation.” I think that he has correctly identified a form
of explanation that the received accounts miss; however, I want to emphasize that the present example is
strikingly different from the examples Batterman offers. Asymptotic explanation involves explanations of
“universality”—properties that families of systems have at a given distance scale, irrespective of their mi-
croscopic details. His most familiar example concerns phase changes: virtually all substances undergo phase
changes (from gas to liquid, liquid to solid, etc.), even though they have dramatically different microscopic
properties. The explanation of such universal features involves the renormalization group, which is a method
for moving between different levels of description of a physical system. The form of explanation described
here relies on a very different kind of limiting procedure and concerns relations between theories, not between
distance scales.
Given the importance of the renormalization group in particle physics, it may well turn out that the answers

to questions 1 and 2 described at the beginning of this paper will turn out to look more like Batterman’s
examples. (This is especially likely for question 2.) But I do not think this is a problem for what follows.
What is important is that there are cases in which the kind of explanation I am describing is decidedly not
asymptotic explanation.

29See, as ever, Salmon (1989). I am glossing over many difficulties concerning what might count as a law
of nature and what kind of deduction is necessary (for instance, are all explanations deductions in first-order
logic?).
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principles of GR must be included in order to set up the limiting process necessary to recover

geometrized Newtonian theory. But among these principles are several law-like propositions,

and at least one law plays a central role in the explanation insofar as F = mIa enters at the

end of the story to show that inertial mass provides the coupling of a body to the Newtonian

gravitational potential.30 Finally, there is a strong sense in which the argument’s explanatory

power comes from the fact that the result is derived from these central principles of GR,

which means that the explanation is nomological in an important way.

But not all is well. This explanation poses some difficulties for the DN model, too. First,

the present explanandum is most naturally expressed as a proposition in second-order logic.

We are trying to explain why in all propositions concerning inertial and gravitational mass

(or, in all instances of Newton’s force law), the two values appear to be equal. Hence we

are required to quantify over sentences of the logic. In first-order logic, it is not possible

to express the full force of the conclusion: one can show that in any particular instance,

gravitational mass is equal to inertial mass, but not that inertial mass is always equal to

gravitational mass, which is what was demanded. Is this an insurmountable problem for

the DN model? As typically described (as, for instance, in Salmon (1989)), the DN account

begins with a first-order logic. But I do not see that first-order deductions are a necessary

feature of the account; one can easily imagine extending the account to include more general

deductions. In any case, a second-order derivation is certainly in the spirit of the DN model.

A second worry, however, is more troubling. At issue is the language in which the

deduction is to be performed. If one were to begin with a language consisting only of terms

readily interpreted in GR, then gravitational mass would not appear and so the proposition

“inertial and gravitational mass are (always) equal” could not even be expressed. Conversely,

one might begin with an augmented language that includes gravitational mass terms and

then endeavor to show that gravitational mass is always equal to inertial mass via a deduction

in this augmented language. But it is difficult to see how to interpret such an augmented

30Other laws, such as Einstein’s equation, must also be included in the explanans because they are necessary
for constructing the limit.
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language. In any case GR by itself would not provide a model for the language, which means

that even if the deduction were to succeed, it would not follow that one had derived the

explanandum by appeal to GR alone. Either way it seems that an essential part of the

explanation cannot be captured within the DN framework.

So the present explanation bears some family resemblance to DN explanations, though

it does not have just the form described by Hempel and Oppenheim (because it requires

second-order logic). More troubling, the DN account does not naturally permit the final

(important) step of the explanation. All that said, if one were committed to the claim that

all explanations, or at least all deductive explanations, need to fit the DN model, it may be

possible to extend the model to include the present example. Alternatively, if disinclined to

extend the DN model, one might bite the bullet and claim that the example does not have

any explanatory power. I do not want to make either of these moves, however. Insofar as I

already accept a pluralistic view about explanation, I do not see any virtues in a procrustean

reading of the present explanation as an example of DN explanation.

But suppose that one is not convinced that the two concerns I have raised pose problems

for a DN reading of the present example. Even so, many writers have pointed out that

Hempel and Oppenheim offer neither necessary nor sufficient conditions for an argument to

be explanatory (Godfrey-Smith, 2003; Salmon, 1989; Kitcher, 1989). In other words, even

if the present explanation does fit the DN model, it does not follow that it is explanatory

because it fits that model. One still needs to give an account of what makes a given ar-

gument explanatory, even if it has a law as a necessary premise. A prominent attempt to

describe what additionally may be required to make an argument explanatory is given by

the unificationist account of explanation, which I will turn to presently.

3.2 The Unificationist Account

Kitcher (1989) provides the authoritative manifesto on the unificationist account of expla-
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nation, so I will focus on the version of the account given there.31 The basic idea of the

unificationist account of explanation is that science aims to explain phenomena by showing

how a phenomenon fits into a unified systematization of our beliefs. Kitcher makes this idea

precise in the following way. Suppose that K is the set of all statements endorsed by the

scientific community. An acceptable explanation is a member of the explanatory store over

K, denoted E(K). How can we characterize the members of E(K)? First, we say that E(K)

is a set of arguments by which some members of K are derived from other members of K.

But in general there will be many such sets of arguments. To pick one, Kitcher introduces

general argument patterns, ordered triples consisting of (1) a schematic argument, which

are sequences of sentences with key terms replaced by dummy variables (i.e. sequences of

schematic sentences); (2) sets of sets of filling instructions corresponding to each schematic

argument, where a given set of filling instructions tells you how to fill in the dummy variables

of a schematic sentence; and (3) a classification of the schematic argument, which tells you

which of the sentences in the argument are supposed to count as premises and which are

conclusions. One general argument pattern is more stringent than another if its classification

and the structure of its schematic sentences together make it more difficult to instantiate.

Given this machinery, Kitcher says that E(K) consists of the (not necessarily unique)32 min-

imal set of maximally stringent general argument patterns from which a maximal number

of conclusions can be drawn. More roughly, one wants to find the smallest subset of K from

which the other members of K can be derived, using the fewest possible stringent argument

patterns.

As on the DN account, an explanation on the unificationist account is an argument.33 But

31For more on the history of the unificationist account, see Kitcher (1989) and Salmon (1989), as well as
references therein.

32See Kitcher (1989, pg. 435). In general, Kitcher seems to think that the explanatory store over K may
not be determined by the constraints given. In historical cases, however, he claims that these constraints
are mutually sufficient to determine the explanatory store of K.

33Depending on how strictly one construes the constraints on what counts as an argument for the unifi-
cationist account, the second worry above, regarding how to understand the language of the argument, may
carry over. I will proceed by assuming that the unificationist account allows some flexibility about what
counts as a permissible argument.
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the unificationist account offers an additional set of constraints on the kinds of arguments

that count as explanatory, above and beyond the conditions of the DN account. It is not

sufficient (or necessary) that a given conclusion be derived from a set of premises including a

law, as in the DN model; now, an argument is explanatory if it is a member of the explanatory

store of a set of statements endorsed by the scientific community.34 To understand whether

the explanation in section 2 is a unificationist explanation, then, we want to determine

whether we should expect it to be in the explanatory store over K. There are several

reasons to think that it should not be.

First, it is not clear that “gravitational mass and inertial mass are equal” is a member

of K—which would mean that it is not even a candidate explanandum. Kitcher assumes

that K is deductively closed and consistent. Thus, if the statements of GR are members of

K, then “there is no such thing as gravitational mass” is also a member of K, ruling out

“gravitational mass and inertial mass are equal”. Perhaps one can relativize statements in

K to theories, i.e., consider statements of the form “in such and such theory, X” as members

of K. But this seems like a strange move for a unificationist to make. It seems more in

the spirit of the unificationist approach to skip over explanations of such uniformities in the

Newtonian context and go right to explaining the motion of individual bodies in a way in

which one never introduces the Newtonian concept of gravitational mass at all. Indeed, on

Kitcher’s account of reduction, one would reduce Newtonian gravitation to GR by showing

that the general argument patterns of Newtonian gravitation can be recovered from and

extended as general argument patterns of GR. But then one would not expect to be able

to explain features of the world that can only be expressed in the Newtonian framework,

because the very goal of the reduction would be to move one’s explanatory arguments out

of the Newtonian framework and into GR. The ideal would be able to explain all of the

34On Kitcher’s account, one would add an “only if” to this last sentence. But if we adopt a pluralist view
of explanation on which some, but not necessarily all, explanations are unificationist explanations then we
want to understand the condition of membership in E(K), as defined by Kitcher, to be only a sufficient
condition. A given explanation may be explanatory by virtue of being in E(K), but it is possible that there
are other kinds of explanations as well.
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phenomena that can be explained by Newtonian physics with GR alone, eschewing the

(exclusively) Newtonian argument patterns altogether.

Another worry comes from the opposite direction. Even if K were construed in such a

way that the explanandum were in K, it is still not clear that the explanation I have given

would be included in the explanatory store. For one, even if you neglect explanations of the

sort I have given, you can still explain all the same phenomena in the world. That is, adding

an additional singular argument of the sort I have given makes the explanatory store larger,

without adding any payoff in terms of explanations of particulars. Given the conditions on

choosing E(K), one could conclude that the explanation I have given should not be in E(K)

even if the explanandum were included, since if the explanation were included, E(K) would

violate the minimality condition.

A third worry is more general. It is difficult to see what kind of argument pattern is

being executed in the present example. The thing to be explained is a singular feature of the

Newtonian theory. Neither the explanandum nor the explanation itself can be schematized

without losing its essential character. One might be able to schematize the argument by re-

construing it as an argument concerning the inertial and gravitational masses for particular

bodies, and then include a general argument pattern by which one shows that for any given

body, the inertial and gravitational masses are identical. But it is not clear that such expla-

nations answer the original question. Really we want to know why inertial and gravitational

mass are always the same, not why they happen to take the same value in any variety of

situations.

I think that these points suggest that the explanation I have given is an awkward fit

with the unificationist account of explanation, too. Once again, this does not mean that

the unificationist account cannot be adapted to fit the explanation I have given. I think it

probably can. Indeed, it is hard to prove that a given explanation, if successful, is not a

member of the maximally unified set of arguments over a set of beliefs. My point is rather that

to make the present explanation fit with the details of Kitcher’s account, some adaptation
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of the unificationist position is likely necessary. More importantly, even if one can find a

modified unificationist account that would fit more naturally with the present explanation,

it is not clear that it would do justice to the explanation I have given. In other words, it does

not seem that the reason that the explanation I have given is explanatory has anything to do

with the fact that it is an instantiation of a general, stringent, and unified argument pattern.

Indeed, I have suggested that it is not an instantiation of a general argument pattern at

all—it is a singular explanation of a general feature of Newtonian theory.

If anything, attempting to adapt the unificationist picture to include explanations of

the present sort threatens to gloss over the important features of an explanation that are

not otherwise native to the unificationist account of explanation. I would rather say that

very many explanations in science have the character that Kitcher describes: they consist of

arguments that are explanatory by virtue of how they fit some particular or regularity into

a systematized body of knowledge. I find Kitcher’s analysis of his own examples convincing,

and I think that a broad class of explanations in physics fit well with the unificationist picture

of explanation. Modifying the unificationist account, which gets so many interesting cases

right, seems counterproductive. What we have here is simply a different kind of explanation.

4 Let a thousand flowers bloom

So far, I have argued that the explanation given in section 2 is neither a causal explanation

nor any kind of statistical explanation. It is, at least roughly, a deductive argument, though

it cannot easily be made to fit the strict logical structure demanded by the DN model. Even

if it could be made to fit with the DN model (or if the DN model could be expanded to

include such explanations), one would still owe an account of why this particular deductive-

nomological argument is explanatory, given that the Hempel-Oppenheim criteria are not

sufficient alone. The leading candidate to provide the additional sufficient conditions for

deductive arguments to count as explanatory is the unificationist account; I have argued,

however, that as presented by Kitcher (1989), the unificationist account does not allow
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for explanations of the sort I have given. Indeed, the trouble is not necessarily with the

unificationist account; rather, the explanation I have given is simply not explanatory by

virtue of its status as an instantiation of a maximally unified argument pattern. It should

be clear from my remarks in section 1 that I do not take these accounts’ inability to deal

with the present explanation as an argument against the accounts. I have simply presented

a scientific explanation of a different sort (and there are many possible sorts).

The remaining work is simply to identify some of the features of the present explanation

and to try to characterize what makes it explanatory. I have identified the most important

features along the way, but it seems worthwhile to tie them together now. First, as we

have seen, the present explanation is an argument (broadly construed). But it is a singular

argument: it explains a broad generality in Newtonian physics and there are no other gen-

eralities that can be explained by the same argument.35 Moreover, the explanation requires

second-order logic to capture the spirit in which the question is asked. Most importantly,

there is a crucial step of translation involved in the theory that makes it difficult to fully

capture in purely logical form. This translation is necessary because the question is asked

in the language of one theory (indeed, it only makes sense in that theory), but it is of a

form that a fortiori cannot be answered without appealing to physics that goes beyond the

theory within which it is asked. Meanwhile, it demands an answer on its own terms: it is

not enough to dissolve the question by appealing to a superseding theory. The explanatory

demand is to show how, given some superseding theory, a general fact within an old theory

that seemed unexplainable given the apparatus of that theory is really necessary or to be

expected. The explanation consists in filling in the details of a general response to such

questions along the following lines: such and such is the case in this theoretical framework

because really we believe this other, superseding theory.

I take it that the explanatory work here is done by spelling out how two theories relate

35That is not to say that there are not other generalities of Newtonian theory that can be explained by the
limiting process I have described. There are. Two examples are the fact that space is flat in Newtonian theory
(Malament, 1986b) and that momentum is conserved. But the explanations for these differ in important
details from the explanation I have given, even though they are also explained via the limit from GR.

22



to one another and showing that, taken as a limit of a superior theory, an old theory must

display the regularity in question. It is worth emphasizing again that for this kind of expla-

nation to be satisfactory, one needs to understand the original question in a specific way, as

in some sense relative to the superseding theory, (though as I have argued, this is often the

most natural way of understanding theories that have been superseded). For these reasons,

one might call explanations of the sort I have given intertheoretic explanations, or perhaps

aspirational explanations, since the questions that call for such explanations are often de-

mands for new theories. This last feature reiterates something I have already suggested, that

such explanations are particularly important: these explanations guide inquiry by setting

out the questions that a new theory is expected to answer (once appropriate translation work

into the old theory has been done). That said, they are not the only kinds of explanation

that could serve in this role. And as Geroch suggests in the above quoted passage, to say

any more would be a mistake.

A Technical Details of Answer to Question 3

In the body of the paper I offer an answer to the question, “Why are inertial and gravitational

mass equal in Newtonian physics?” This answer concerns the sense in which standard New-

tonian gravitational theory can be understood as a limit of GR, via geometrized Newtonian

theory. The explanation offered in the main text is reasonably precise, but non-technical;

here I offer the technical details of that argument. This appendix is not intended as a

complete or pedagogical introduction to geometrized or covariant formulations of Newtonian

gravitation (or GR, the treatment of which will be especially brief). I will provide only a

brief, formal review of geometrized and covariant standard Newtonian theory and GR to

establish notation and terminology. For a systematic treatment of these subjects, including

proofs of the theorems stated here and an explanation of the “abstract index notation” I

will use throughout, see Malament (2010, Esp. Ch. 4). For a systematic treatment of the

sense in which geometrized Newtonian theory arises as a limit from GR, see Künzle (1976),
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Ehlers (1981), and Malament (1986a).

A.1 Preliminary definitions

We begin by defining the geometrical structures we will work with. First we will describe

GR.

Definition A.1 A relativistic spacetime is an ordered pair (M, gab), where M is a smooth,
connected, four-dimensional manifold and gab is a smooth, non-degenerate semi-Riemannian
metric on M with Lorentz signature (+,−,−,−).

In a relativistic spacetime, the metric defines a lightcone structure at every point as follows.

Given any point p and any vector ξa in the tangent space Mp, we say that ξa is timelike if

gabξ
aξb > 0, spacelike if gabξ

aξb < 0, and null if gabξ
aξb = 0. The length of any vector ξa at a

point is given by ||ξa|| = |gabξaξb|1/2. A (smooth)36 curve is timelike (resp. spacelike or null)

if its tangent vector is at every point of the curve. A spacetime is temporally orientable if

there exists a continuous timelike vector field on all of M ; such a vector field determines a

temporal orientation. If a relativistic spacetime has a temporal orientation, then it is possible

to consistently distinguish between future- and past-directed timelike vector fields. In what

follows, we assume all relativistic spacetimes have a temporal orientation.

Since the metric is non-degenerate, there exists an inverse metric gab such that gangnb =

δab. We can move easily between vector fields and covector fields on M by “raising” and

“lowering” indices with gab and gab, respectively, so for instance if ξa is a vector field on M ,

then ξb = gabξ
a is a covector field on M , and likewise for more complicated tensor fields.

The metric determines a unique derivative operator on M , ∇a, satisfying the compatibility

condition ∇agbc = 0. The derivative operator allows us to define the curvature of spacetime

via the Riemann curvature tensor, which is the unique smooth tensor field Ra
bcd such that for

all smooth vector fields ξb, Ra
bcdξ

b = −2∇[c∇d]ξ
a. We say that a spacetime is flat if Ra

bcd = 0.

From the Riemann curvature tensor, we can define the Ricci tensor by Rab = Rn
abn.

36Here and in what follows, it should be assumed that we are limiting attention to smooth (i.e. infinitely
differentiable) curves, fields, manifolds, etc., whether stated explicitly or not.
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Massive point particles are represented by their worldlines, which are smooth future-

directed timelike curves parametrized by arc-length. (Point particles have an attenuated

status here—really, we are thinking of a field theory, and point particles are some appropriate

idealization.) With every point particle, there is an associated four-momentum, P a, defined

at every point of the particle’s worldline, whose length is the (inertial) rest mass. For a

point particle with non-zero mass mI ,
37 we can write P a = mIξ

a, where ξa is the tangent

vector field to the particle’s worldline (called the particle’s four-velocity). The acceleration

of a particle’s wordline, ξn∇nξ
a, is determined by the relation F a = mIξ

n∇nξ
a, where F a

represents the external forces acting on the particle; in the absence of forces, massive test

point particles traverse timelike geodesics. More generally, we can associate with any matter

field a smooth symmetric field T ab, called the energy-momentum tensor. T ab can be thought

to encode the four-momentum density of the matter field as determined by any future-

directed timelike observer at a point: For all points p ∈ M and all unit, future-directed

timelike vectors at p, ξa, the four-momentum of a matter field at p as determined by ξa

is P a = T a
bξ

b. The curvature of spacetime is related to the energy-momentum tensor by

Einstein’s equation,

Rab = 8π(Tab −
1

2
Tgab), (A.1)

where T = T a
a.

We can now proceed to define a parallel structure for classical theories.

Definition A.2 A classical spacetime is an ordered quadruple (M, tab, h
ab,∇), where M is

a smooth, connected, four-dimensional manifold; tab is a smooth symmetric field on M of
signature (1, 0, 0, 0); hab is a smooth symmetric field on M of signature (0, 1, 1, 1); and ∇
is a derivative operator on M compatible with tab and hab, i.e. it satisfies ∇atbc = 0 and
∇ah

bc = 0. We additionally require that tab and hab are orthogonal, i.e. tabh
bc = 0.

37Since keeping track of the distinction between inertial and gravitational mass is important for the ultimate
moral of the present discussion, I will label masses as inertial even in the context of GR and geometrized
Newtonian gravitation, were strictly speaking there can be no ambiguity. In keeping with the notation from
the body of the paper, I will use capitalized calligraphic symbols for subscripts indicating labels to distinguish
them from subscripts indicating index (i.e. tensor) structure. So, I will be used to indicate “inertial” and G
to indicate “gravitational.”
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Note that “signature,” here, has been extended to cover the degenerate case. We can see

immediately from the signatures of tab and hab that neither is invertible. Hence in general

neither tab nor h
ab can be used to raise and lower indices.

tab can be thought of as a temporal metric on M in the sense that given any vector ξa

in the tangent space at a point, p, ||ξa|| = (tabξ
aξb)1/2 is the temporal length of ξa at that

point. If the temporal length of ξa is positive, ξa is timelike; otherwise, it is spacelike. At

any point, it is possible to find a covector ta, unique up to a sign, such that tab = tatb. If

there is a continuous, globally defined vector field ta such that at every point, tab = tatb, then

the spacetime is temporally orientable (we will encode the assumption that a spacetime is

temporally oriented by replacing tab with ta in our definitions of classical spacetimes). hab,

meanwhile, can be thought of as a spatial metric. However, since there is no way to lower

the indices of hab, we cannot calculate the spatial length of a vector directly. Instead, we rely

on the fact that if ξa is a spacelike vector (as defined above), then there exists a covector

σa such that ξa = habσb. The spatial length of ξa can then be defined as (habσaσb)
1/2. (This

spatial length is independent of the choice of σa; if ξ
a is not a spacelike vector, then there

is no way to assign it a spatial length.) Note, too, that it is possible to define the Riemann

curvature tensor Ra
bcd and the Ricci tensor Rab with respect to ∇ as in GR (or rather, as

in differential geometry generally). Flatness (Ra
bcd = 0) carries over intact from GR; we say

a classical spacetime is spatially flat if Rabcd = Ra
nmqh

bnhcmhdq = 0. It turns out that this

latter condition is equivalent to Rab = hanhbmRnm = 0.38

We describe matter in close analogy with GR. Massive point particles are again repre-

sented by their worldlines, which are smooth future-directed timelike curves parameterized

by elapsed time. For a point particle with (inertial) mass mI , we can always define a smooth

unit vector field ξa tangent to its worldline, again called the four-velocity, such that we can

define a four-momentum field P a = mIξ
a. The mass of the particle is now given by the

temporal length of its four-momentum. In similar analogy to the relativistic case, we can as-

38See Malament (2010, Prop. 4.15).
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sociate with any matter field a smooth symmetric field T ab, now called the mass-momentum

tensor. T ab once again encodes the four-momentum density of the matter field as determined

by a future directed timelike observer at a point, but in this case all observers agree on the

four-momentum density at p: P a = tbT
ab. Contracting once more with tb yields the mass

density, ρ = tatbT
ab.

In the present covariant, four-dimensional language, standard Newtonian theory can be

expressed as follows. Let (M, ta, h
ab,∇) be a classical spacetime. We require that ∇ is flat

(i.e. Ra
bcd = 0). We begin by considering the dynamics of a test point particle with inertial

mass mI and four-velocity ξa. As in GR, the force on a particle is related to the acceleration

of its worldine by F a = mIξ
a∇aξ

b (literally, F = mIa). In the absence of external forces, a

massive test point particle undergoes geodesic motion. If the total mass-momentum content

of spacetime is described by T ab, we require that the conservation condition holds, i.e. at

every point ∇aT
ab = 0. To add gravitation to the theory, we can represent the gravitational

potential as a smooth scalar field φ on M . φ is required to satisfy Poisson’s equation,

∇a∇aφ = 4πρ (where ∇a is shorthand for hab∇b). Gravitation is considered a force; in

general, the gravitational force on a point particle is moderated by its gravitational mass,

according to F a
G = −mG∇aφ. (Indeed, this relationship can be taken as a definition of the

gravitational mass.)

In geometrized Newtonian theory we again begin with a classical spacetime (M, ta, h
ab,∇),

but now we allow ∇ to be curved. The dynamics of a point particle with inertial mass mI

and four-velocity ξa are again given by F a = mIξ
n∇nξ

a; likewise, free massive test point

particles undergo geodesic motion. However, the geodesics are now determined relative to ∇,

which is not necessarily flat. The conservation condition is again expected to hold. Gravita-

tion is no longer a force and so there is no longer a “gravitational mass” term in the theory.

Instead, gravitational interactions are seen to be the result of the curvature of spacetime,
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which in turn is determined by a geometrized form of Poisson’s equation,

Rab = 4πρtatb. (A.2)

Since the Riemann curvature tensor (and by extension, the Ricci tensor) is determined

by ∇, the geometrized Poisson’s equation places a constraint on the derivative operator.

In particular, ∇ must be such that, for all smooth vector fields ξa, Rabξ
a = −2∇[b∇n]ξ

n =

4πρtatbξ
a. Note, too, that the geometrized Poisson’s equation forces spacetime to be spatially

flat, because if Poisson’s equation holds, then Rab = 4πρhanhbmtntm = 0 by the orthogonality

condition on the metrics.

A.2 Relations between the theories

We are particularly interested in the relationship between these three theories. Several

results are available. First, it is always possible to “geometrize” a gravitational field on

a flat classical spacetime—that is, we can always move from the covariant formulation of

standard Newtonian gravitation to geometrized Newtonian gravitation, via a result due to

Andrzej Trautman (1965).

Proposition A.3 (Trautman Geometrization Lemma.) (Slightly modified fromMala-

ment, 2010, Prop. 4.2.1.) Let (M, ta, h
ab,

f

∇) be a flat classical spacetime. Let φ and ρ

be smooth scalar fields on M satisfying Poisson’s equation,
f

∇a

f

∇ aφ = 4πρ. Finally, let
g

∇ = (
f

∇, Ca
bc),

39 with Ca
bc = −tbtc

f

∇ aφ. Then (M, ta, h
ab,

g

∇) is a classical spacetime;
g

∇ is
the unique derivative operator on M such that given any timelike curve with tangent vector
field ξa,

ξn
g

∇nξ
a = 0 ⇔ ξn

f

∇nξ
a = −

f

∇ aφ; (G)

39This notation is explained in Malament (2010, Prop. 1.7.3). Briefly, if ∇ is a derivative operator on M ,
then any other derivative operator on M is determined relative to ∇ by a smooth symmetric (in the lower
indices) tensor field, Ca

bc, and so specifying the Ca
bc field and ∇ is sufficient to uniquely determine a new

derivative operator.
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and the Riemann curvature tensor relative to
g

∇,
g

R a
bcd, satisfies

g

Rab = 4πρtatb (CC1)
g

Ra
b
c
d =

g

Rc
d
a
b (CC2)

g

Rab
cd = 0. (CC3)

Trautmann showed that it is also possible to go in the other direction. That is, given a

curved classical spacetime, it is possible to recover a flat classical spacetime and a gravita-

tional field, φ—so long as the curvature conditions (CC1)-(CC3) are met.

Proposition A.4 (Trautman Recovery Theorem.) (Slightly modified from Malament,

2010, Prop. 4.2.5.) Let (M, ta, h
ab,

g

∇) be a classical spacetime that satisfies eqs. (CC1)-
(CC3) for some smooth scalar field ρ. Then, at least locally on M , there exists a smooth

scalar field φ and a flat derivative operator on M ,
f

∇, such that (M, ta, h
ab,

f

∇) is a classical

spacetime; (G) holds; and φ and
f

∇ together satisfy Poisson’s equation,
f

∇a

f

∇ aφ = 4πρ.

It is worth pointing out that the pair (
f

∇, φ) is not unique. It is also worth pointing out

that whenever we begin with standard Newtonian theory and move to geometrized Newto-

nian theory, it is always possible to move back to the standard theory, because Prop. A.3

guarantees that the curvature conditions (CC1)-(CC3) are satisfied.

We can now ask how either of these classical theories relate to GR. The answer is that

geometrized Newtonian theory arises as a limiting case of GR, for a properly constructed

limit. (For full details of this limiting procedure, see Malament (1986a, Sec. 5).) Intuitively,

we will begin with a relativistic spacetime, and then allow the lightcone structure at every

point to open in such a way that, in the limit, the lightcones at every point become degen-

erate. Since the lightcone structure in a sense determines the speed of light, allowing the

lightcones to widen in this fashion captures a sense in which one might allow the speed of

light to go to infinity.

To motivate what follows, it is useful to see how the limit works in detail in so-called

Minkowski spacetime, which is a relativistic spacetime (M, gab) in which (a)M is the manifold
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R4, (b) gab is flat, and (c) the manifold and the derivative operator associated with gab

together are geodesically complete. In this case, we can write the metric at any point as a

matrix in terms of standard coordinates (t, x, y, z) and a constant c, the speed of light, as

gab(c) = Diag(1,−1/c2,−1/c2,−1/c2). Because of the special properties of Minkowski space,

it makes sense to speak of the lightcone widening uniformly around the fixed t−axis at all

points. The metric has a well defined limit as c → ∞, which can be expressed at any point

p as, limc→∞ gab(c) = Diag(1, 0, 0, 0) = tab, where tab is a suggestively named degenerate

metric on M with (generalized) signature (1, 0, 0, 0). The inverse metric gab(c) does not

itself have a well-defined limit, but if we rescale it as gab(c)/c2, it does. In this case, we find,

limc→∞ gab(c)/c2 = Diag(0,−1,−1,−1) = −hab, where now hab is a degenerate metric on M

with signature (0, 1, 1, 1). So in Minkowski space, we can recover the metrical structure of

classical spacetime simply by allowing the speed of light to diverge.

In a general spacetime, however, we cannot assume that the metric will behave so nicely—

for instance, if space is curved, we do not even know if there is a global coordinate system in

which we can write the metric at an arbitrary point. So we proceed more carefully. Consider

a manifold M admitting a one-parameter family of nondegenerate Lorentz metrics gab(λ)

(where λ ranges over some interval (0, k) ⊆ R) that satisfy two conditions:

(Lim1) limλ→0 gab(λ) = tatb for some non-vanishing closed field ta;
40

(Lim2) limλ→0 λg
ab(λ) = −hab for some field hab of signature (0, 1, 1, 1).

For any λ ∈ (0, k), we can associate with gab(λ) the unique covariant derivative operator

compatible with gab(λ),
λ

∇, as well as the Ricci curvature tensor associated with
λ

∇,
λ

Rab.

Thus the one-parameter family of metrics generates a one-parameter family of compatible

derivative operators and curvature tensors. Suppose further that, for any λ ∈ (0, k), we can

define a smooth symmetric field T ab(λ) that together with gab(λ) and its associated Ricci

tensor satisfy:

40If ta is a non-vanishing closed field, the product tab = tatb automatically has signature (1, 0, 0, 0).
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(Lim3) For all λ ∈ (0, k),
λ

Rab = 8π
(
Tab(λ)− 1

2
gab(λ)T (λ)

)
, where T (λ) = Tab(λ)g

ab(λ); and

(Lim4) limλ→0 T
ab(λ) = T ab for some smooth symmetric field T ab on M .

When these conditions hold, it is possible to show that in the limit as λ → 0, the family

of relativistic spacetimes (M, gab(λ)) converges to a classical spacetime on which T ab and

Rab satisfy the geometrized Poisson equation, Eq. (A.2). This result can be formulated as

follows:

Proposition A.5 (Classical Limit of GR.) (Adapted from Malament, 1986a, Props. on
Limits 1 & 2) Fix a smooth, connected, four-dimensional manifold M and assume λ is a real-
valued variable taking all values on an interval (0, k). Suppose that for each λ on an interval
(0, k), there exist smooth symmetric fields gab(λ) and Tab(λ) on M such that (M, gab(λ)) is a
relativistic spacetime and for each λ, gab(λ) and Tab(λ) collectively satisfy conditions (Lim1)-

(Lim4). Then there exists a derivative operator ∇a on M such that limλ→0

λ

∇a = ∇a,
41 and

for which (M, ta, h
ab,∇a) is a classical spacetime satisfying Ra

b
c
d = Rc

d
a
b. Moreover, there

exists a smooth field ρ on M such that limλ→0 Tab(λ) = ρtatb, which satisfies Rab = 4πρtatb.

Prop. A.5 gives the precise sense in which geometrized Newtonian gravitation is a limiting

case of GR.

A.3 Gravitational Mass in Newtonian Theory

We have now done sufficient groundwork to offer a technically precise formulation of the

explanation given in the body of the paper. The argument was that by beginning with GR

and then moving in the limit to standard Newtonian theory, one finds that a massive point

particle’s coupling to the gravitational field is given by its inertial mass. This limit proceeds

in two steps. First, using Prop. A.5, one shows that geometrized Newtonian gravitation is

a limiting case of GR. Prop. A.4, meanwhile, shows that when three curvature conditions,

(CC1)-(CC3), are satisfied, we can recover (covariant) standard Newtonian theory from

41What does it mean for a sequence of derivative operators to converge? Suppose that ∇̃a is a fixed

auxiliary derivative operator on M . Then for each
λ

∇a, there is a smooth symmetric field Ca
bc(λ) such that

λ

∇a = (∇̃a, C
a
bc(λ)). Now suppose that there is another derivative operator on M , ∇a = (∇̃a, C

a
bc). We can

say that limλ→0

λ

∇a = ∇a if limλ→0 C
a
bc(λ) = Ca

bc.
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geometrized Newtonian theory. It is in the course of executing this two step process that

one is forced to associate gravitational and inertial mass.

There is an important subtlety here. To connect Props. A.4 and A.5 and show that we

can recover standard Newtonian theory as a limit from GR, we need to show that the clas-

sical spacetime we reach in the limit from GR in fact meets the three curvature conditions

necessary to recover the standard theory. Prop. A.5 gives that two of the curvature con-

ditions, (CC1) and (CC2), are satisfied automatically. But what about (CC3), Rab
cd = 0?

In general, Rab
cd need not vanish in a classical spacetime reached in the limit from GR. It

turns out that there is a more general recovery theorem, due to Hans-Peter Künzle (1976)

and Jürgen Ehlers (1981), that holds when Rab
cd ̸= 0. But the theory that you recover

in this case is not standard Newtonian gravitation—it is a non-geometrized generalization

of standard Newtonian gravitational theory in which the gravitational potential field is re-

placed by a vector field and there is an additional contribution to the force law for a particle

arising from a kind of universal rotation. The third curvature condition is sufficient to guar-

antee that this rotational contribution vanishes and that the gravitational vector field can

be written as the covariant derivative of a scalar potential.

There are several circumstances under which one can guarantee that the condition Rab
cd is

satisfied.42 But for present purposes, establishing when the condition holds is unnecessary.

The important point is that condition (CC3) is both a necessary and sufficient condition

for recovery of standard Newtonian physics via Prop. A.4. This is not a problem for the

explanation, per se, since insofar as we can recover standard Newtonian theory at all, we

can do so only from the class of families of relativistic spacetimes that converge to classical

spacetimes satisfying (CC3). In other words, in order for the explanation I propose to

succeed, one needs to assume a special curvature condition that is not otherwise guaranteed

to hold in the limit from GR—but this curvature condition is just what one need to assume

in order to recover standard Newtonian theory in the first place.

42For instance, Rab
cd is automatically satisfied in a classical spacetime that is, in a certain precise sense,

“asymptotically flat” (See Malament, 2010, Sec. 4.5 for details).
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I can now state the precise claim, the proof of which amount to the formal explanation.

Proposition A.6 Let (M, ta, h
ab,

f

∇) be a flat classical spacetime and let φ be a gravitational
field defined on that spacetime as in standard Newtonian gravitation. Suppose further that

(M, ta, h
ab,

f

∇) and φ arise via the two-step limiting process just described (which is only
possible if the intermediate curved classical spacetime satisfies (CC3)). Consider a mas-
sive point particle with inertial mass mI traversing a timelike curve in M , γ, with tangent
vector field ξa, under the influence of only gravitational force. Then the gravitational force
experienced by the massive point particle is

F a
G = mIξ

n
f

∇nξ
a = −mI

f

∇aφ. (A.3)

In other words, the particle’s gravitational mass is equal to its inertial mass.

Proof. By assumption, (M, ta, h
ab,

f

∇) and φ arise via the two-step limiting process described

above. Thus there exists a (curved) classical spacetime (M, ta, h
ab,

g

∇) satisfying (CC3) from

which (M, ta, h
ab,

f

∇) can be recovered. Since the particle experiences no non-gravitational

force, we know from the geodesic principle of geometrized Newtonian gravitation that γ must

be a geodesic relative to
g

∇. Meanwhile, by Prop. A.4, we know that if γ is a geodesic relative

to
g

∇, then ξn
f

∇nξ
a = −

f

∇aφ. Thus we have the acceleration of the particle’s worldline, which

we can plug into F a = mIξ
n

f

∇nξ
a to find the gravitational force on the particle. We see

that F a
G = mIξ

n
f

∇nξ
a = −mI

f

∇aφ, as required. It follows that the particle’s coupling to the

gravitational field is given by its inertial mass. �
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