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Abstract 

Given the impressive success of environment-induced decoherence (EID), nowadays no 

interpretation of quantum mechanics can ignore its results. The modal-Hamiltonian interpretation 

(MHI) has proved to be effective for solving several interpretative problems but, since its 

actualization rule applies to closed systems, it seems to stand at odds of EID. The purpose of this 

paper is to show that this is not the case: the states einselected by the interaction with the 

environment according to EID (the elements of the “pointer basis”) are the eigenvectors of an actual-

valued observable belonging to the preferred context selected by the MHI. 
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1. Introduction 

The modal interpretations of quantum mechanics are realist, non-collapse interpretations, according 

to which the quantum state describes the possible properties of the system, rather than the actually 

possessed properties (for overview and references, see Dieks and Vermaas 1998). Each modal 

version proposes a specific interpretative rule of actual-value ascription, in general with the aim of 

offering and adequate answer to the quantum measurement problem. Some of them work very well 

in the account of ideal measurements, but face severe problems in the non-ideal case. It is at this 

point that environment-induced decoherence (EID) entered the discussion: some authors suggested 

that, since measuring apparatuses are never isolated from their environments, decoherence provides 

an answer to the non-ideal-measurement challenges. 

Recently a new interpretation belonging to the modal family has been proposed: according to 

the modal-Hamiltonian interpretation (MHI), the Hamiltonian of the closed system defines the 

preferred context −the set of the actual-valued observables−. The MHI has proved to be effective for 

solving the measurement problem, both in its ideal and its non-ideal versions, and has been applied 

to many well-known physical situations (free particle with spin, harmonic oscillator, hydrogen atom, 

Zeeman effect, fine structure, Born-Oppenheimer approximation) leading to results compatible with 

experimental evidence. 

Since immune to the non-ideal-measurement challenges, the MHI has no need of decoherence 

for giving an adequate account of quantum measurement. Nevertheless, to the extent that the 

preferred context is defined by the Hamiltonian of the system −conceived as a closed system with no 

external interaction−, the MHI seems to be incompatible with the EID approach, which relies on the 

interaction between the measurement apparatus −an open system− and its environment. In this paper 

we shall argue that the conflict is merely apparent: in the measurement situation, the preferred 

context defined by the MHI agrees with the pointer basis selected by EID. 
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2. Modal Interpretations and Decoherence 

In the Kochen-Dieks (K-D) modal interpretation (Kochen 1985; Dieks 1988), the biorthogonal 

(Schmidt) decomposition of the pure quantum state of the system picks out the actual-valued 

observables. In the Vermaas-Dieks (V-D) version (Vermaas and Dieks 1995), a generalization of the 

K-D interpretation to mixed states, the actual-valued properties are defined by the spectral resolution 

of the system’s reduced state, obtained by partial tracing. Both versions seem to be designed to give 

an answer to the ideal (perfect and non-disturbing) von Neumann measurement, where the 

interaction between the measured system S  and the measuring apparatus M  establishes a perfect 

correlation between the eigenstates 
i
o  of an observable O  of S  and the eigenstates 

i
p  of a 

pointer observable P  of M , 

0 0
ψ = ⊗ → ψ = ⊗∑ ∑i i i i i

i i

c o p c o p       (1) 

In fact, in the ideal situation the expansion of the correlated state in terms of the eigenvectors of O  

and P  is a biorthogonal decomposition, and 

( ) ( )2 2ρ = ψ ψ = ρ = ψ ψ =∑ ∑S M i i i M A i i i

i i

Tr c o o Tr c p p    (2) 

As a consequence, according to the K-D and the V-D rules of actual value-ascription, both the 

observable O  and the pointer P  are actual-valued observables (see also the Copenhagen Variant by 

van Fraassen 1991). 

However, the von Neumann model is a never attainable idealization: a real measurement 

always involves small but non-zero cross-terms due to imperfect correlations (first kind 

measurement):  

*ψ = ⊗ = ⊗∑ ∑ij i j i i i

ij i

d o p d o p   with 0ijd ≠  for i j≠ , * * ≠ δi j ijo o    (3) 

Furthermore, it can be expected that a real measurement introduces a disturbance onto the measured 

system (second kind measurement):  

*ψ = ⊗ = ⊗∑ ∑i i i ij i j

i ij

d o p d o p   with * * ≠ δi j ijo o , 0ijd ≠  for i j≠    (4) 

As noticed by Albert and Loewer (1990, 1993), Albert (1992), Elby (1993) and Ruetsche (1996), 

among others, in both kinds of measurement the K-D and the V-D interpretations lead to results that 

disagree with those obtained in the orthodox collapse interpretation. Moreover, whereas in the case 

of an imperfect measurement it can be expected that the 0ijd ≠ , with i j≠ , be small, in the 

disturbing case they need not be small and, as a consequence, the disagreement might be 

unacceptable. 
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It is at this point that EID has been appealed to in order to protect modal interpretations from 

the non-ideal-measurement challenges (see Healey 1989, 1995; Dieks 1994a, 1994b; Bacciagaluppi 

and Hemmo 1996; Monton 1999). In fact, the measuring apparatus is in interaction with a very large 

environment E , whose states associated with the different pointer states 
i
p  can be expressed as 

( )
i
e t . The state of the whole system + +S M E  is, then,  

*
( )ψ = ⊗ ⊗∑ i i i i

i

c o p e t          (5) 

The reduced density operator of the apparatus is obtained by tracing over the degrees of freedom of 

S  and E , 

( ) * * *
ρ ( ) ( ) ( ) ( ) ( )= ψ ψ =∑M SE i j i j j i j i

ij

t Tr t t c c p p o o e t e t     (6) 

where the factor ( ) ( )j ie t e t  determines the size of the off-diagonal terms at each time. Many 

models for the interaction between M  and E  show that, when the environment is composed of a 

large number of subsystems, the states ( )
i
e t  of the environment rapidly approach orthogonality 

and, as a consequence, ρ ( )
M
t  rapidly becomes approximately diagonal in the basis { }ip . In other 

words, after the decoherence time the off-diagonal elements of ρ ( )
M
t  are small independently of the 

original disturbance (for a full argument, see Bacciagaluppi and Hemmo 1996; for difficulties in 

continuous models, see Bacciagaluppi 2000). 

 

3. The EID Pointer Basis 

In his first papers on decoherence, Zurek (1981, 1982) studied physical models where the reduced 

density matrix ends up being diagonal in the eigenvectors of an observable P , which commutes 

with the Hamiltonian int

ME
H  describing the apparatus-environment interaction.  According to Zurek, 

this property is what makes P  to be the pointer observable: since P  is a constant of motion of 
int

ME
H , when the apparatus is in one of its eigenstates, the interaction with the environment will leave 

it unperturbed: “The form of the interaction Hamiltonian between the apparatus and its environment 

is sufficient to determine which observable of the measured quantum system can be considered 

«recorded» by the apparatus.  The basis that contains that record −the pointer basis of the 
apparatus− consists of the eigenvectors of the operator which commutes with the apparatus-
environment interaction Hamiltonian” (Zurek 1981, 1516).  Since those first works, the condition 

int
, 0  = ME

P H  has usually be considered as the definition of the pointer basis or of the pointer P  of 

the apparatus.  For instance, Elby (1994, 363) explains: “Let 'P  denote an arbitrary apparatus 

observable that doesn’t commute with the pointer reading P .  Using ‘toy’ examples, along with 

general considerations, Zurek argues that int

ME
H  commutes with P , but does not commute with any 
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'P .  In rough terms, the interaction between the apparatus and its environment picks out the 

pointer-reading basis”.  More recently, Schlosshauer (2004, 1278-79) claims: “One can then find a 

sufficient criterion for dynamically stable pointer states that preserve the system-apparatus 

correlations in spite of the interaction of the apparatus with the environment by requiring all pointer 

state projection operators 
n n n
P p p=  to commute with the apparatus-environment Hamiltonian 

int

ME
H .” 

In the 90’s, Zurek stressed that the original definition of the pointer basis was a simplification: 

when the system’s dynamics is relevant, the einselection of the preferred basis is more complicated. 

Zurek introduced the “predictability sieve” criterion (Zurek 1993, Zurek, Habib and Paz 1993) as a 

systematic strategy to identify the preferred basis in generic situations. The criterion relies on the fact 

that the preferred states are, by definition, those less affected by the interaction with the 

environment. On the basis of the application of this criterion, three different regimes for the 

selection of the preferred basis can be distinguished (Paz and Zurek 1999, 2002; see also Zurek 

2003): 

� The first regime is the quantum measurement situation, where the self-Hamiltonian of the system 

can be neglected and the evolution is completely dominated by the interaction Hamiltonian. In 

such a case, the preferred states are directly the eigenstates of the interaction Hamiltonian (Zurek 

1981).   

� The second regime is the more realistic and complex situation, where neither the self-

Hamiltonian of the system nor the interaction with the environment are clearly dominant, but both 

induce non-trivial evolution.  In this case, the preferred basis arises from the interplay between 

self-evolution and interaction; quantum Brownian motion belongs to this case (Paz 1994).   

� The third regime corresponds to the situation where the dynamics is dominated by the system’s 

self-Hamiltonian.  In this case, the preferred states are simply the eigenstates of this self-

Hamiltonian (Paz and Zurek 1999).   

 

4. The Modal-Hamiltonian Interpretation 

The non-ideal-measurement criticisms affect those modal interpretations whose rules of actual-value 

ascription depend on the state of the system. On the contrary, the MHI rule only depends on the 

system’s Hamiltonian. Let us recall the main postulates of this intepretation (Lombardi and 

Castagnino 2008; see also Castagnino and Lombardi 2008; Ardenghi, Castagnino and Lombardi 

2009; Lombardi, Castagnino and Ardenghi 2010) 
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� A quantum system S  is a pair ( , )HO  such that (i) O  is a space of self-adjoint operators on a 

Hilbert space H , representing the observables of the system, (ii) H ∈O  is the time-independent 

Hamiltonian of the system, and (iii) if 
0

'ρ ∈O  (where 'O  is the dual space of O ) is the initial 

state of S , 
0

ρ  evolves according to the Schrödinger equation in its von Neumann version. 

� A quantum system : ( , )S HO  with initial state 
0

'ρ ∈O  is composite when it can be partitioned 

into two quantum systems 1 1 1
: ( , )S HO  and 2 2 2

: ( , )S HO  such that (i) 1 2= ⊗O O O , and (ii) 
1 2 1 2

H H I I H= ⊗ + ⊗ ∈O  (where 1I  and 2
I  are the identity operators in the corresponding 

tensor product spaces). In this case, the initial states of 1
S  and 2

S  are obtained as the partial 

traces 1
0 (2) 0Trρ = ρ  and 2

0 (1) 0Trρ = ρ , and we say that 1
S  and 2

S  are subsystems of the composite 

system S . If the quantum system is not composite, we call it elemental. 

� Actualization rule: given an elemental quantum system : ( , )S HO , the preferred context consists 

of H  and the observables commuting with H  and having, at least, the same symmetries 

−degeneracies− as H . 

According to the MHI, a quantum measurement is a three-stage process. In the first stage, the 

system S  to be measured −represented in the Hilbert space 
S
H  and with Hamiltonian 

S
H − and the 

measuring device D  −represented in the Hilbert space 
D
H  and with Hamiltonian 

D
H − do not 

interact. During the second stage, an interaction Hamiltonian int

SD
H  introduces the correlation 

between the eigenstates 
i
o  of the observable O  of S  and the eigenstates 

i
p  of the pointer P  of 

D  (see Mittelstaedt 1998 for the precise form of int

SD
H ). In the third stage the interaction ends, and 

the whole system becomes a composite system +S D  with a Hamiltonian = ⊗ + ⊗
S D S D

H H I I H  

and an initial state ψ = ⊗∑SD i i i

i

c o p . Although ψ
SD

 is an entangled state, since there is no 

interaction between the subsystems S  and D , the actualization rule has to be applied to each one of 

them independently. In particular, when applied to D , the rule states that the definite-valued 

observables are the Hamiltonian 
D

H  and all the observables commuting with 
D

H  and having, at 

least, the same degeneracy as 
D

H .   

On the basis of the above description, according to HMI two conditions define a quantum 

measurement: 

(a) During a period t∆ , S  and D  must interact through an interaction Hamiltonian int
0≠

SD
H  

intended to introduce a correlation between the observable O  of S  and the pointer P  of D .  

The requirement of perfect correlation is not included as a defining condition of measurement, 

because the actualization rule explains the definite reading of the pointer P  even in non-ideal 

measurements, that is, when the correlation is not perfect.  In this case, the rule also accounts for 
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the difference between reliable and non-reliable measurements (Lombardi and Castagnino 2008, 

Section 6). 

(b) The measuring apparatus D  has to be constructed in such a way that its pointer P  (i) has 

macroscopically distinguishable eigenvalues, and (ii) commutes with the Hamiltonian 
D

H  and 

has, at least, the same degeneracy as 
D

H . 

This account of the quantum measurement has been used to explain how the initial −pure or 
mixed− state is reconstructed through measurement both in the ideal and in the non-ideal case, and 

has been successfully applied to the paradigmatic example of the Stern-Gerlach experiment, with 

perfect and non-perfect correlation, and also in the case of an imperfect collimation of the incoming 

beam (Lombardi and Castagnino 2008). However, this account seems to be at odds with the 

explanation given by the EID program, according to which the decoherence of the measuring 

apparatus in interaction with its environment is what causes the apparent “collapse” that suppresses 

superpositions. In fact, in the MHI, the environment is absent: after the interaction D  is a closed 

quantum system unitarily evolving with its own Hamiltonian 
D

H . Moreover, this seems to flagrantly 

contradict the fact that real measuring apparatuses are never isolated, but they interact significantly 

with their environments. In the following sections we shall show that the conflict is only apparent. 

 

5. The MHI Preferred Context 

The first step towards dissolving the conflict between MHI and EID is to understand that, in the 

account given by MHI, the measuring device D  is not the macroscopic apparatus A  designed by the 

experimentalist for measurement (eventually surrounded by a “bath” B  of particles in interaction 

with it), but the entire quantum system that interacts with the system S  in the second stage and 

remains closed in the third stage: it is this system what must have a pointer commuting with its 

Hamiltonian 
D

H . On this basis, we can now analyze the elements that participate in the process as 

described in the framework of the MHI: 

• The closed system D  −e.g., the apparatus A  plus the bath of particles B − is certainly a 
macroscopic system, whose Hamiltonian is the result of the interaction among a huge number of 

degrees of freedom. Since, in general, symmetries are broken by interactions, the symmetry of a 

Hamiltonian decreases with the complexity of the system. Then, a macroscopic system having a 

Hamiltonian with symmetries is a highly exceptional situation: in the generic case, the energy is 

the only constant of motion of the macroscopic system.  As a consequence, in realistic 

measurement situations, 
D
H  is non-degenerate, 
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ω = ω ω
D n n n
H     with 

n n'
ω ≠ ω         (7) 

and, therefore, { }
n

ω  is a basis of the Hilbert space H
D
 of D .  This means that, when 

[ ] 0=
D

P,H , we can guarantee that P  has, at least, the same degeneracies as 
D
H  because 

D
H  is 

non-degenerate. 

• The pointer P  cannot have such a huge number of different eigenvalues as 
D
H , because the 

experimental physicist must be able to discriminate among them (for instance, in the Stern-

Gerlach experiment the pointer has three eigenvalues).  This means that P  is a “collective” 

observable of D  (see Omnés 1994, 1999), that is, a highly degenerate observable that does not 

“see” the vast majority of the degrees of freedom of D : 

n n

n

P p P=∑            (8) 

where the set { }
n
P  of the eigenprojectors of P  spans the Hilbert space H

D
 of D .  In other words, 

the eigenprojectors of P  introduce a sort of “coarse-graining” onto the Hilbert space H
D
.  

Therefore, if the Hamiltonian H
D
 is non-degenerate (see eq.(7)), the condition [ ] 0=

D
P,H  

implies that P  can be expressed in terms of the energy eigenbasis { }
n

ω  as 

n n

n

n n n i i

n n i

P p P p= = ω ω∑ ∑ ∑         (9) 

This expression shows that, since 
n n'
p p≠ , P  has more degeneracies than 

D
H . 

• The requirement [ ] 0=
D

P,H , far from being an ad hoc condition necessary to apply the 

actualization rule, has a clear physical meaning: it is essential to preserve the stationary behavior 

of P  during the third stage of the measurement process, in order to make the reading of P  

possible.  If this requirement did not hold because of the uncontrollable interaction among the 

microscopic degrees of freedom of the macroscopic apparatus or between the macroscopic 

apparatus and an external “bath”, the reading of P  would constantly change and measurement 

would be impossible.  Therefore, the complete experimental arrangement has to be designed in 

such a way that the uncontrollable degrees of freedom of D  −internal or external to the 
macroscopic apparatus− do not affect significantly the stationarity of the pointer.  This goal may 

be achieved by many different technological means; but, in any case, measurement has to be a 

controlled situation where the reading of a stable pointer can be obtained. 

 

6. The EID Pointer Basis from a Closed System Perspective 

In the context of EID, during the third stage the measuring apparatus M  does no longer interact with 

the measured system S  but interacts with the environment E . If, in the context of MHI, we use 
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= +D M E  to call the whole system that interacts with S  in the second stage but remains closed 

during the third stage, the question is how to identify the open parts of D  to be conceived as the 

measuring apparatus M  and the environment E . This is a legitimate question because a whole 

closed system may be partitioned in many different ways, none of them more “essential” than the 

others (Harshman and Wickramasekara 2007a, b; for this claim in the context of decoherence, see 

Castagnino, Laura and Lombardi 2007). 

A natural assumption is to consider the macroscopic, material apparatus A  built for 

measurement as “the measuring apparatus” M , and the bath B  of the particles scattering off A  as 

“the environment” E ; then, = +D A B  is the closed system resulting from the interaction between 

A  and B . From this position, it is supposed that A  is the open system that decoheres: the reduced 

density operator ( )ρA

r
t  of A  should converge to a final time-independent ρA

r
, diagonal in the pointer 

basis of A , that is, of its Hilbert space H
A
, and the pointer P  should define such a basis. However, 

although apparently “natural”, this is not the best choice for the split of D , since it does not take into 

account the environment internal to the device A . In fact, being a macroscopic body, A  has a huge 

number of degrees of freedom, which have to be “coarse-grained” by P  if it is to play the role of the 

pointer. In other words, since the pointer P  must have a small number of different eigenvalues to 

allow the observer to discriminate among them, P  is a highly degenerate observable on the Hilbert 

space H
A
 of the open macroscopic apparatus A  and, as a consequence, it does not define a basis of 

H
A
. 

Since a closed quantum system can be partitioned in many, equally legitimate manners, D  can 

be split in a theoretically better founded way in the measurement case. Let us recall that the pointer 

P  is the observable whose eigenvectors became correlated with the eigenvectors of an observable of 

the measured system during the second stage of the process, and that the interaction in that stage was 

deliberately designed to introduce such a correlation. So, if we want that during the third stage P  

really defines a basis, the open “measuring apparatus” M  must be the part of D  corresponding to 

the Hilbert space H
M
 where the pointer is non-degenerate. If we call 

M
P  the pointer belonging to 

⊗H H
M M

, it reads 

=∑M n n n

i

P p p p            (10) 

where { }
n
p  is a basis of H

M
. Then, the relevant partition is = ⊗H H H

D M E
, where H

E
 is the 

Hilbert space of the “environment” E , with basis { }
m
e . Then, the pointer acting on H

D
 can be 

expressed as a highly degenerate observable: 
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   
= ⊗ = ⊗ =   

   
∑ ∑M E n n n m m

n m

P P I p p p e e  

= ⊗ ⊗ =∑ ∑ ∑n n m n m n n

n m n

p p e p e p P        (11) 

This agrees with the features of P  required by MHI: P  introduces a sort of “coarse-graining” onto 

the Hilbert space H
D
 (compare eq.(11) with eq.(8)). The many degrees of freedom corresponding to 

the degeneracies of P  in H
D
 play the role of the “environment” E , composed by the microscopic 

degrees of freedom of the macroscopic apparatus A  −internal environment− and the degrees of 
freedom of the bath B  −external environment−. 

 

7. Compatibility between MHI and EID 

As we have seen, in the first papers on decoherence, the condition int
, 0  = ME

P H  was considered as 

the definition of the pointer basis. However, this definition involves several assumptions. In fact, the 

entangled state ( )ψ
SME

t | of the whole system evolves according to the Schrödinger equation under 

the action of the total Hamiltonian int int int= + + + + +
SME S M E SM SE ME
H H H H H H H . So, first it is 

considered that the system-environment interaction and the system-apparatus interaction are zero: 
int

0=
SE

H  and int
0=

SM
H . This assumption is reasonable on the basis of the design of the measurement 

arrangement: after a short time, any interaction with the system ends and the subsystem +M E  

follows its independent dynamical evolution; for this reason, also the self-Hamiltonian 
S
H  of the 

system can be disregarded. Then, the stability of the pointer strictly requires that: 

[ ] int
, 0 with= = ⊗ + ⊗ +

ME ME M E M E ME
P H H H I I H H      (12) 

If we recall that the pointer P  is an observable highly degenerate in the −internal and external− 
degrees of freedom of the environment (see eq.(11)), then condition (12) results 

[ ] int
, , 0 = ⊗ ⊗ + ⊗ + = ME M E M E M E ME

P H P I H I I H H      (13) 

But since [ ], 0⊗ ⊗ =
M E M E
P I I H , then the stability requirement for the pointer observable becomes 

that it commutes with the Hamiltonian int⊗ +
M E ME

H I H , where the self-Hamiltonian of the 

environment is not involved: 

int
, 0 ⊗ + = M E ME

P H I H          (14) 

This argument shows that the condition int
, 0  = ME

P H , introduced in the first papers on 

decoherence, is a particular case that holds only when the self-Hamiltonian 
M
H  of M  can be 

disregarded. It is also clear that the three regimes distinguished by Zurek as the result of the 
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application of the predictability sieve turn out to be the three particular cases of condition (14), and 

can be redescribed in terms of that condition: 

� When int

M E ME
H I H⊗ << , the self-Hamiltonian of M  can be neglected, and then int

, 0  = ME
P H . 

Therefore, the preferred basis is defined by the interaction Hamiltonian int

ME
H . 

� When int⊗ ≃
M E ME

H I H , neither the self-Hamiltonian of M  nor the interaction with the 

environment are clearly dominant. In this case, the preferred basis is defined by condition (14). 

� When int

M E ME
H I H⊗ >> , the dynamics is dominated by the self-Hamiltonian of M  and, then, 

[ ] [ ] [ ], , , 0⊗ = ⊗ ⊗ = =
M E M E M E M M

P H I P I H I P H . Therefore, the preferred states are simply 

the eigenstates of 
M
H . 

As a consequence, the fact (noted by Schlosshauer 2004, 1280; see also Schlosshauer 2007, 84-85) 

that many systems are typically found in energy eigenstates although the interaction Hamiltonian 

depends on an observable different than energy, far from being surprising, necessarily results from 

the requirement of stability for the preferred basis. But the point we want to stress here is that, when 

the EID pointer basis is considered from this closed-system viewpoint, it agrees with the preferred 

context as defined by the MHI actualization rule: in both cases, the pointer/preferred basis is given 

by the Hamiltonian of the whole closed system. In fact, the three regimes identified and obtained 

case by case by Zurek turn out to be particular cases of the MHI characterization of the preferred 

basis: if the preferred states are defined by the eigenstates of the Hamiltonian of the whole system, it 

is not hard to realize that they will depend on the Hamiltonian's component which dominates the 

whole evolution. 

Moreover, from this perspective the first regime can be justified on general grounds. 

According to Zurek, the first regime is the quantum measurement situation, where the self-

Hamiltonian of the measuring system M  can be neglected and the evolution is completely 

dominated by the interaction Hamiltonian: this means that int

M E ME
H I H⊗ << . If, as explained in the 

previous section, M  is the part of the closed system D  “viewed” by the pointer P  and the 

environment carries over almost all the degrees of freedom of D , it seems reasonable to suppose 

that, in general, the Hamiltonian corresponding to the interaction with that huge number of degrees 

of freedom is much greater than the self-Hamiltonian of the “small” part defined by the pointer: the 

condition int

M E ME
H I H⊗ <<  leading to the first regime turns out to have a physical justification. 
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8. Conclusions 

At present it is quite clear that the theory of decoherence does not supply an interpretation of 

quantum mechanics. Nevertheless, given its impressive success, it is also clear that nowadays no 

interpretation can ignore the results coming from the EID approach. The MHI has proved to be 

effective for solving the measurement problem with no need of EID. However, since the 

actualization rule applies to closed systems, the MHI seems to stand at odds of EID. 

In this paper we have shown that this assumption is misguided. On the contrary, when the 

measurement process is viewed from a closed-system perspective, the MHI and the EID accounts of 

measurement agree: the classical-like states einselected by the interaction with the environment (the 

eigenvectors of the pointer, elements of the pointer basis) are the eigenvectors of an actual-valued 

observable belonging to the preferred context selected by the MHI. 
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