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1 Introduction 

In recent debates mechanisms are often discussed in the context of ‗complex systems‘, 

with certain biological examples, for instance concerning biochemical processes, as 

paradigmatic cases. Complex systems of this kind often have a complicated 

compositional structure. I want to draw the attention to the fact that there is still another, 

radically different kind of complex system, in fact one that many scientists—in 

particular in the physical sciences—regard as the only genuine kind of complex system. 

Instead of being compositionally complex these systems rather exhibit highly non-

trivial dynamical patterns, on the basis of structurally simple arrangements of large 

numbers of non-linearly interacting constituents. To be sure, I want to call this kind 

‗dynamically complex systems‘. The characteristic dynamical patterns in dynamically 

complex systems arise from the interaction of the system‘s parts largely irrespective of 

many properties of these parts. One example, which has been studied extensively in 

statistical physics, is the ferromagnet with a surprising dynamical behaviour despite of 

the fact that it consists of nothing more than a simple array of numerous identical 

dipoles. Analyses of dynamically complex systems are by no means limited to physics. 

For instance, it is common practice to model socio-economic contexts by using 

dynamical multi-agent systems, which deal with ‗microscopic‘ agents with a very 

simple individual behaviour in a very simple arrangement.  

Whereas for a compositionally complex system it is usually feasible to predict its 

behaviour once the compositional structure and the behaviour of its parts is known, this 

is completely different in the case of dynamically complex systems. Here the 

knowledge of the compositional structure, e.g. agents with only two possible actions 
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arranged on a square lattice, together with the knowledge of the behaviour of its parts in 

isolation as well as in simple composites, often allows for hardly any straightforward 

predictions of the dynamical behaviour of a given complex system. Nevertheless, an 

ensemble of similar complex systems can exhibit surprising statistical characteristics, 

the robustness of which calls for an explanation in terms of underlying generating 

mechanisms. Thus, not only for compositionally complex systems, but also for 

dynamically complex systems, the identification of generating mechanisms is essential 

in order to explain their often surprising behaviour.  

However, I want to argue, dynamically complex systems are not sufficiently 

covered by the available conceptions of mechanisms. Whereas for mechanisms in 

compositionally complex systems the decomposition into modules is an essential and 

non-trivial task, it is usually largely a non-issue for dynamically complex systems. 

Instead, the recognition and detailed (statistical) analysis of dynamical patterns that are 

to be explained becomes one main task, besides the identification of generating 

mechanisms. The most important novelty in dynamically complex systems is the fact 

that the material nature of the mechanisms‘ parts in dynamically complex systems is 

irrelevant in a far more drastic way than in many classical biological mechanisms, for 

instance. Structurally similar dynamical patterns can occur in materially completely 

diverse phenomena such as traffic jams, avalanches, earthquakes, tsunamis and financial 

market crashes. In each of these cases one has a system with a large number of 

elements, which displays a surprising macroscopic behaviour that results purely from 

the local interaction of the system‘s components. Due to the resulting predominance of 

structural over material considerations in complex systems research, which is 

underlined by the formation of numerous interdisciplinary projects and even whole 

scientific fields, mechanisms in dynamically complex systems must be construed in a 

more abstract structural fashion.
1
 Despite these and other differences, it is still 

appropriate to talk about ‗mechanisms‘ both for compositionally as well as for 

dynamically complex systems, since, among other things, in both cases the interaction 

of parts and the robustness regarding the resulting behaviour of the composite system 

are essential, albeit these features need to be filled in a different way. 

Many widely used notions in complex systems research, such as complexity, 

emergence and mechanisms, are notoriously and to some extent inevitably vague. 

Among other things this vagueness manifests itself in various lists, e.g. of emergent 

phenomena or nonlinear mechanisms, whose items are neither on the same level nor 

situated in any clear conceptual hierarchy. It is one of my aims in this paper to go some 

way towards a clarification, either by characterising some notions or by highlighting 

                                                 
1
 In short, I use the term ‗structural‘ in the philosophy of physics fashion (structural versus material) and 

not the philosophy of biology one (structural versus functional). For philosophers of biology, ‗functional 

descriptions‘ abstract from everything other than input-output relations or the function that a part plays in 

a given whole, whereas ‗structural descriptions‘ go beyond functional ones by referring to the inner 

material structure that underlies or may underlie a given functional relation. In contrast to that, the 

philosophy of physics‘ usage of ‗structural‘ refers to abstracting from any particular material entities. This 

usually means that one focuses on abstract mathematical structures, such as the harmonic oscillator or 

certain symmetries or dynamical patterns like bifurcations in chaotic systems. In physical contexts the 

focus on abstract mathematical structures often reveals decisive insights into essential features of a 

physical system that are invisible with a detailed material description. 
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certain hidden ambiguities. My main goal is to explore whether and how the notion of a 

mechanism has to be modified in the case of mechanisms in (dynamically) complex 

systems. Moreover, I will show under which conditions the widespread, if not 

inflationary talk about mechanisms in (dynamically) complex systems stretches the 

notion of mechanisms beyond its reasonable limits and is no longer legitimate. Thus, I 

want to explore the boundary of the notion of mechanisms by giving reasons for 

distinguishing warranted from unwarranted claims about successful mechanistic 

explanations. To this end I will carve out a minimal notion of mechanisms that allows 

theorists, first, to incorporate many complex systems analyses into the mechanistic 

program and, second, to say in which cases claims for a mechanistic explanation are at 

least premature. I will present two detailed examples, one of which I see on the (yet) 

unwarranted and the other one on the warranted side of the boundary of a minimal 

notion of mechanisms. 

2 Dynamical Complexity 

2.1 Compositional versus Dynamical Complexity 

The most important distinction in my analysis is that between compositional and 

dynamical complexity. What I call compositional complexity is also discussed under the 

labels structural, combinatorial or detail complexity.
2
 Alternatively, one could also talk 

about set-up complexity because the complexity is due to a complicated organisation of 

the set-up. Note that my usage of the term ‗compositional complexity‘ should not be 

understood in the sense of complex rules of composition, which play a role in the 

discussion of emergence.
3
 The compositionally complex systems I have in mind are 

typically linear systems which obey the principle of superposition, i.e. the behaviour of 

the compound system is the summation of the behaviours of its component parts in the 

sense that the system behaviour can be predicted by the traditional reductionist 

procedure of identifying components and characterising their individual input-output 

behaviours. In compositionally complex systems the complexity resides in the large 

number of relevant variables that characterise the component parts together with the 

detailed organisation which is one out of very many possible combinations of the 

component parts. I call such a system compositionally complex because the individual 

behaviours of its parts and the detailed way how these parts are organized in the 

compound system are decisive for the overall system behaviour. Change the behaviour 

or the input of one of its parts or change the relation of two parts and you will in general 

change the behaviour of the whole system. Thus in compositionally complex systems 

many micro details have a measurable (linear) effect on the studied behaviour of the 

whole system.  

In contrast, for dynamically complex systems very few parameters are usually 

sufficient to describe the behaviour of the whole system one is interested in. In most 

                                                 
2
 For instance, see Sterman (2000: 21) and Érdi (2007: 1). Moreover, I should point out that there is also a 

divergent technical notion of ‗compositional complexity‘ as ―a measure of bias in the sequence 

composition‖ (Zvelebil/Baum 2007: 151), which is used in particular in the analysis of DNA sequences. 
3
 See Hüttemann (2004: chapter 3) and Hüttemann/Terzidis (2000). 
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cases the vast majority of micro details is irrelevant, in the sense that a change of most 

microscopic variables as well as a change of most interrelations of the component parts 

will have no effect at all on the overall system behaviour.
4
 Dynamical complexity is 

characterised by the fact that even in compositionally simple systems with simple (but 

nonlinear) rules that determine the dynamics the resulting time series can be 

unexpectedly complex. For instance, a nonlinear double pendulum, i.e. a pendulum with 

another pendulum attached to it, exhibits complex chaotic behaviour, due to the non-

linearity of the rules that determine its dynamics, while the compositional complexity is 

as low as one can think. Thus, dynamical complexity arises from the nonlinear 

interactions of the subunits over time.  

The example of the double pendulum allows me to forestall a possible 

misunderstanding. Dynamically complex systems also do have components, no less 

than compositionally complex systems. However, most facts about the nature of these 

components as well as their initial arrangement have no bearing on the complex system 

behaviour one wants to explain. In the case of the double pendulum, for instance, it 

makes no difference for the complexity of its behaviour how long the two pendulums 

are, out of which material they are made and in which initial state they are arranged. To 

put it another way, dynamically complex systems don‘t need to look differently from 

compositionally complex systems. They may still have recognizable components which 

behave and interact in a regular fashion and thereby give rise to a particular behaviour 

of the whole system. However, knowledge about the detailed nature of these 

components and the way how they are organized in the whole does not render the 

complexity of the system behaviour understandable. 

Strictly speaking, a system exhibits either compositional or dynamical complexity 

only with respect to a certain behaviour to be explained. That is, one and the same 

system can be compositionally complex with respect to the behaviour of, e.g., one 

quantity and dynamically complex with respect to the behaviour of another quantity, or 

not complex at all with respect to the behaviour of still another quantity. For instance, 

the community of financial market traders may be compositionally complex with 

respect to the money they spend on travelling, dynamically complex with respect to the 

stock market prices they generate and not complex at all with respect to their collective 

weight. The dependence of complexity on the particular quantity or phenomenon one is 

studying is reflected by the fact that the issue of compositional versus dynamical 

complexity as well as the issue of mechanisms in such systems play a major role in the 

broader context of explanations. And the quality of an explanation in turn depends on 

that aspect of a phenomenon one seeks to understand. Thus complexity, mechanisms 

and explanations are pragmatic matters, which depend decisively on one‘s explanatory 

interests.  

                                                 
4
 The occurrence of the so-called butterfly effect, a well-known characteristic feature of dynamically 

complex systems is not in conflict with how I characterised dynamical complexity and explains the 

addition ‗In most cases‘. In some cases, tiny variations of the initial conditions are sufficient to generate a 

drastic effect for the whole system. But even this effect does not occur for compositionally complex 

systems where, due to their linearity, similar variations of the initial conditions always lead to similar 

effects for the whole system. 
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Talk about ‗dynamical complexity‘ in complex systems‘ research has a certain 

further ambiguity since the term refers to two intimately connected but still different 

perspectives, strictly speaking. The first meaning is dynamically emerging complexity, 

i.e. an unpredictable complexity in the system behaviour that arises while the system 

evolves in time, although the rules for the interactions between its components are very 

simple (albeit nonlinear). The second meaning is complexity displayed in the statistical 

characteristics of the dynamics, i.e. it refers to a complex measurable phenomenology of 

the dynamics. Roughly the ambiguity concerning ‗dynamical complexity‘ is the 

difference between process and result. Examples for such a complex coming about are 

the endogenous formation of abrupt changes and extreme events through the nonlinear 

interaction of the system‘s subunits without an abrupt or extreme external influence. An 

example for a ‗complex result‘ is statistical self-similarity, e.g., of the fluctuations of 

some quantity (see below). If some given dynamics is statistically self-similar, it is often 

referred to as ‗fractal dynamics‘. But of course, while the system evolves, fractality 

cannot be recognized. The fractality involved here shows up only in the statistical 

analysis of the data set of the whole time series, which results from the dynamics of the 

system. To a certain degree the ambiguity of ‗dynamical complexity‘ is already inherent 

in the term ‗dynamics‘, which is often referred to almost as an object, whereas the 

paraphrase of ‗dynamics‘ as the ‗evolution of a system in time‘ exhibits the procedural 

character. 

Dynamical complexity in the first sense emerges only in the temporal evolution, i.e. 

in the dynamics of a compound system without any need for complex initial conditions. 

In other words, even if the set-up of the system is very simple, its dynamics can exhibit 

an unpredictable complexity. In addition, the composition of the system may, in 

concrete cases, also be complicated or, if one wishes to say so, ‗complex‘, but this 

compositional complexity is not responsible for the dynamically emerging complexity I 

am addressing. In order to isolate and understand how complexity arises it is therefore 

advisable to make the assumptions about the initial set-up of the system as simple as 

possible. Although some kind of dynamical complexity in the second sense, i.e. a 

complex statistical phenomenology of the dynamics, could in principle result from the 

compositional complexity of the initial set-up or complex influences from the system‘s 

environment, there are very powerful and subtle methods for discriminating complex 

statistical characteristics that most likely emerged only in the temporal evolution of 

compositionally simple systems. One of the main reasons behind this assessment is the 

experience with other systems that are well understood and where a complex dynamical 

phenomenology emerged purely endogenously by the (nonlinear) interaction of the 

system‘s otherwise simple subunits.  

2.2 Dynamical Complexity: From Data Analysis to Mechanisms  

Often, significant complex dynamical patterns are very difficult to identify because they 

are hidden beneath other regular or random processes (see the ‗DFA method‘ below). 

Since the non-trivial identification of certain characteristic features in the dynamics of a 

system is taken as a strong indicator for corresponding underlying ‗mechanisms‘, it 

becomes hard to disentangle description and analysis on the one side and explanation on 
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the other side. Interestingly, Goldberger (2006), for instance, makes no clear distinction 

between phenomena (which are to be explained) and mechanisms (on which the 

explaining is usually taken to rest) when he presents his list of ‗nonlinear/complexity-

related mechanisms and phenomena in physiology‘.
5
 Since, on the one hand, 

dynamically emerging complexity necessarily results in complexity displayed in the 

statistical characteristics of the dynamics and, on the other hand, the occurrence of such 

statistical characteristics is in turn the most important indication of underlying 

dynamically emerging complexity (of the corresponding kind), these two aspects are 

often identified without further reflection about their difference.  

As one can see in the later examples, the ambiguity of the expression ‗dynamical 

complexity‘ (i.e. process versus result) is, to a certain degree, transferred to the way the 

term ‗mechanism‘ is used in complex systems‘ research. For instance, there is, side by 

side, talk about ‗feedback mechanisms‘ and ‗fractal mechanisms‘, although these two 

issues, feedback and fractality, are not on the same conceptual level. Whereas feedback 

is a process that can occur in the evolution of a system, fractality is (in this context) a 

characteristic property of the statistics of a time series. Thus, strictly speaking, fractality 

itself is not a process in time at all—although it may be a strong indicator for a certain 

underlying process or mechanism that generates fractality. I can see two options now. 

Either one ‗simply‘ points out that the expression ‗mechanism‘ is inappropriate in such 

cases. Or one explores under which conditions one can make sense of this common use. 

I will go for the second option. 

As mentioned above, investigations of dynamically complex systems are—due to 

the crucial role of structural considerations—often pursued in interdisciplinary research 

groups. Econophysics, for instance, is a relatively young special science between 

physics and economics that tries to analyze and explain economical phenomena by 

using models, techniques and analytical tools from physics.
6
 Although the possibility of 

econophysics first appears puzzling, it is ‗simply‘ grounded on the insight that 

important properties of, e.g., financial markets can be understood if one adopts a 

complex systems framework. The same reasoning stands behind many other, mostly 

computer-aided analyses of, e.g., traffic flow, opinion dynamics, social networks, 

avalanches, earthquakes, turbulences, tsunamis etc., and in a more general fashion in 

chaos theory, game theory or the theory of self-organisation. In these diverse contexts 

one observes similar dynamical patterns, which is seen as an indication that they are 

generated by structurally similar mechanisms. For this reason, it is often possible to use 

the same methods, models and analytical strategies, many of which were first devised in 

physics. Although in the case of econophysics the use of analytical tools from physics is 

particularly dominant, the general reasoning, the concepts, and the strategies are very 

similar in various other investigations of complex systems. Outstanding examples for 

the success of econophysics are the analysis and description of financial market crashes 

                                                 
5
 Among other things, Goldberger‘s list (p. 469) contains abrupt changes (e.g. bifurcations, intermittency 

and other bursting behaviours, bistability/multistability, phase transitions), complex periodic cycles and 

quasiperiodicities, nonlinear oscillations (e.g. limit cycles, phase-resetting, entrainment phenomena, 

pacemaker annihilation) and scale-invariance (diffusion limited aggregation, fractal and multifractal 

scaling, long-range correlations, self-organized criticality). 
6
 See, for instance, Mantegna and Stanley (2000) and Johnson et al. (2003). 
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by using the advanced physical theory of phase transitions, where the common 

characteristic is a sudden occurrence of a comprehensive change of the state of affairs.  

Scale-invariance/self-similarity, power-law behaviour and the closely connected 

occurrence of ‗universal behaviour‘ and criticality are important indications that one is 

dealing with a dynamically complex system. The existence of long-range correlations in 

fluctuating quantities is particularly interesting because it indicates that there may be an 

underlying long-memory process, i.e. that the fluctuation at a given time depends on 

what has happened at earlier times. By contrast, a Gaussian random walk process 

exhibits no long-range correlations because each change of the respective quantity is an 

independent event, so to say, which is not affected by previous changes. Long-range 

correlations are an implication of statistical self-similarity, which in turn is tantamount 

to power-law behaviour. The equivalence of statistical self-similarity and power-law 

behaviour is primarily a mathematical issue. A power law looks the same everywhere, 

i.e. if you take a small piece of a power-law tail and inflate it, it is identical with a larger 

piece of the initial curve. This is different, in particular, for exponential functions like 

the Gaussian, which drops sharply towards zero for small values already and then lies 

almost on the x-axis. The next point to be explained is the connection between statistical 

self-similarity and long-range correlations. For random processes like coin tossing there 

is no correlation between, in this case, two coin tosses. There is a fifty-fifty chance for 

either side in each toss. Even if you had heads ten times in a row, there is still a fifty 

percent chance for heads in the eleventh toss. And if you look at the probability 

distribution for many samples of 10 consecutive coin tosses you will get a completely 

different result than for samples of 100 consecutive coin tosses. The probability 

distributions for sequences of independent random variables are not self-similar, i.e. 

they have different statistical properties on different scales. This is very different, say, 

for (healthy) heartbeat intervals or stock prices. If there are days with drastic stock price 

movements there is a much higher chance for still more days with large changes in the 

immediate future than in quiet times (even though there is no correlation between the 

direction of these changes, i.e. up or down, which is the reason why it is not easy to 

exploit this knowledge). Thus changes of stock prices have a memory. 

Another important and closely connected point is that for independent random 

processes (e.g. coin tosses) there is a negligible probability that very many subunits (e.g. 

individual tosses) all do the same, which would lead to extreme events like 100 

consecutive times heads. If such an extreme events happens, there is either an external 

cause, e.g. a magnetic heads-detecting device, or the subunits most likely interacted 

with a coordinating effect. Thus statistical facts about a complex system can supply 

strong reasons for specific inferences about the existence or non-existence of underlying 

interactions between the system‘s parts with a collective effect. 

Scientists in complex systems research make every effort to discover power-law 

and therefore scale-invariant relations because it has far-reaching implications for the 

behaviour of the system under investigation. Most importantly, under certain conditions, 

most microscopic details become irrelevant for the dynamics of the system on the 

macroscopic level. As one can learn from studies of so-called critical phenomena in 

statistical physics, the occurrence of scale-invariance and hence self-similarity is the 
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deeper reason why diverse systems can exhibit very similar or even identical behaviour, 

a fact that physicists call ‗universal behaviour‘.
7
 ‗Universality‘ in this sense can be 

explained via the method of renormalisation involving iterative course graining, which 

in turn would not be possible without self-similarity. Thus there is a direct road from 

power-law behaviour, scale-invariance and self-similarity to understanding why certain 

universal structural mechanisms can account for phenomena in physics as well as in 

economics.
8
 More specifically, power-law behaviour allows applying ‗scaling methods‘, 

which were first devised in physics, in very different contexts such as economics. 

In the context of dynamically complex systems, and also in my two examples in the 

next section, statistical self-similarity is of particular importance. Spatial self-similarity 

is relatively well-known from branching trees, snowflakes and coastlines which display 

spatial structures of the same type on small and large scales (see figure 1). The temporal 

kind of self-similarity shown in the right diagram is more abstract. It refers to the 

statistical properties of a temporal process, namely the probability distribution of the 

deviations of some quantity from one time step to another. For this reason one talks 

about ‗statistical self-similarity‘. 

 

 

 
 

                                                 
7
 See Binney et al. (1992) for a detailed account of the physical and Batterman (2002) of the philosophical 

perspective. 
8
 Newman (2005) cautions that the mechanism discovered for critical phenomena is only one among 

various different mechanisms generating power-law behaviour. 
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Figure 1. Schematic comparison of spatial (left diagram) and temporal (right 

diagram) self-similarity. In both cases, zooming repeatedly into parts of the 

initial structure/dynamics reveals structures/dynamics with similar or even 

identical characteristics as the initial one. Reprinted from Goldberger 2006 

(will ask for permission). 

 

One practically important aspect of scale-invariance stems from the fact that it is a 

symmetry principle. As in the well-known spatio-temporal cases, e.g. translational, 

rotational or Galilean invariance, the corresponding symmetry principles often allow for 

simple and elegant solutions of otherwise intractable problems. For instance, symmetry 

considerations often make it possible to derive important aspects of a system‘s 

dynamics without solving the underlying equations of motion. In other words, in certain 

important respects the dynamical behaviour of a system can be understood by abstract 

reasoning concerning its symmetries without any detailed knowledge about the 

behaviour of its fundamental constituents. The significance of these facts for econo-

physics, for instance, is straightforward. The application of physics to economical issues 

is, to a large extent, possible because financial market behaviour exhibits invariances 

that allow neglecting certain micro details, thus making way for analytical methods and 

explanatory models developed in physics, in order to understand the behaviour of 

systems in those special circumstances where, just as in financial markets, many micro 

details loose their relevance in a sharply specified sense. 

In the following section I will exemplify the significance of scale-invariance in two 

different concrete contexts. More importantly, I will discuss the connection with 

mechanisms in dynamically complex systems. 
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3 On Heartbeat and Financial Market Crashes 

3.1 Congestive Heart Failure  

Traditionally, cardiologists have described the normal heart beat activity as a regular 

sinus rhythm. However, in contrast to our subjective impression and to the traditional 

cardiologists‘ assumption, interbeat intervals normally fluctuate, even for individuals at 

rest, in a complex way, which appears to be erratic. The upper time series (a) in figure 2 

shows the heart rate dynamics of a healthy person, while the lower one (b) the dynamics 

of a person with congestive heart failure.  

 

 
 

Fig. 2. Comparison of (a) healthy and (b) unhealthy heart rate dynamics. Contrary 

to one‘s expectation, healthy heart rate activity is far more complex, and seemingly 

erratic, than the relatively regular heart rate activity of unhealthy individuals. Only 

subtle data analysis is the first important step towards explaining this surprising 

difference. Reprinted from Ivanov et al. (2002) (will ask for permission). 

 

Although the ‗healthy dynamics‘ exhibits a far more complex pattern of variability than 

the ‗unhealthy dynamics‘ with its rather periodic temporal structure, their mean values 

as well as their variances are almost identical. Thus the unexpectedly irregular behavior 

of heart beat activity defies conventional methods of analysis, which only work for 

stationary or ‗well-behaved‘ time series. In order to analyse such data sets with 

fluctuations on multiple time scales one needs sophisticated techniques of ‗fractal 

analysis‘, one of which is depicted in figure 3. 
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Figure 3. The method of detrended fluctuation analysis (DFA) allows 

uncovering hidden dynamical patterns, which are strong indicators for 

specific underlying mechanisms. The above diagrams depict the stepwise 

isolation of a power law in a seemingly erratic time series of heart beat (see 

main text for further explication). Reprinted from Goldberger et al. (2002) 

(will ask for permission). 

 

The detrended fluctuation analysis, or short ‗DFA method‘, is very useful in 

revealing to what extent there are so-called long-range correlations in a given non-

stationary time series, where non-stationarity means that the statistical properties of the 

time series, such as the mean value, vary with time.
9
 In such cases one needs a 

sophisticated method since linear or higher order polynomial trends in the data often 

lead to the spurious detection of long-range correlations. In the first step of the DFA 

                                                 
9
 The DFA method was first presented in Peng et al. (1994) for the analysis of DNA nucleotides. 
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method, applied to heart beat dynamics, a time series of interbeat intervals such as the 

one in diagram A of figure 3 (with N beats in total) is integrated, where the average 

interbeat interval RRave is subtracted from each interbeat interval RR(i), so that one gets 

1 ave( ) [ ( ) ]k

iy k RR i RR    as the integrated time series (see diagram B in figure 3).
10

 

Note that if the interbeat intervals were all equal, then RR(i)  RRave and thereby y(k) 

would vanish and the DFA method would be redundant. Moreover, if the interbeat 

interval time series were stationary, i.e. if the interbeat intervals would randomly 

fluctuate around a constant mean value, then y(k) would also vanish, again making the 

DFA method redundant. Thus, a non-vanishing integrated time series y(k) reveals 

fluctuations that are not evenly distributed around some mean value, i.e. it makes the 

non-stationarity of the time series visible and quantifiable. In particular, it allows 

detecting whether the heart beat intervals temporarily tend into one direction, e.g. 

becoming either shorter or longer. That this happens is well-known to everyone by first-

hand experience.  

The DFA method allows investigators to extract and put aside these ‗trends‘ 

(therefore the name ‗detrended fluctuation analysis‘) in order to get an undisturbed view 

into hidden statistical patterns which may indicate certain underlying processes. This 

removal of trends is done in the following way. The integrated time series gets divided 

into equal boxes and in each box a ‗least squares line‘ is fitted to the data, which is 

taken to represent the trend in that box (see diagram B in figure 3). In the next step, the 

integrated time series gets detrended by subtracting the local trend in each box of the 

chosen size n. Eventually, one calculates the root-mean-square fluctuation of the 

integrated and detrended time series and repeats the same procedure over all time scales, 

i.e. all box sizes, in order to determine the relationship between the average fluctuation 

F(n) and the respective box size n. If, on a double logarithmic plot one finds a linear 

relationship, this indicates the presence of power law scaling and thereby of a fractal 

structure of the time series.
11

 In this case the fluctuations can be characterized by a 

scaling exponent, which is the slope of the line in diagram C of figure 3. At this stage it 

may be helpful to consult section 2.2 again, where I already explained the more general 

implications of these issues. 

Thus using the DFA method one finds that the fluctuations of the healthy (but not 

the unhealthy) heart rate dynamics are statistically self-similar, i.e. the statistical 

properties of heart rate fluctuations are identical on different time scales. Thus healthy 

heart rate regulation generates statistically self-similar fluctuations, which is tantamount 

to long-range correlations in the time series.
12

 Goldberger, one of pioneers of ‗fractal 

physiology‘, offers the following conclusion:  

―A defining feature of healthy function is adaptability, the capacity to respond to 

often unpredictable stimuli. […] Fractal physiology, exemplified by long-range 

correlations in heartbeat and breathing dynamics, may be adaptive for at least two 

                                                 
10

 ‗RR‘ stands for Scipione Riva-Rocci, who invented the traditional procedure for measuring blood 

pressure. 
11

 In a double logarithmic plot, i.e. if the logarithm of both the x- and the y-coordinate of a function y(x) is 

taken, a power law y(x) = x
a
 becomes a straight line. 

12
 See Binney et al. (1992) for the connection between the statistical self-similarity of fluctuations and the 

existence of long-range correlations. 
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reasons […]: (1) long-range correlations serve as an organizing mechanism [my 

emphasis] for highly complex processes that generate fluctuations across a wide 

range of time scales and (2) the absence of a characteristic scale may inhibit the 

emergence of very periodic behaviors that greatly narrow system responsiveness. 

This hypothesis is supported by findings from life-threatening conditions, such as 

chronic heart failure where the breakdown of fractal correlations is often 

accompanied by the emergence of a dominant mode […] The paradoxical 

appearance of highly ordered dynamics with pathologic states (―disorders‖) 

exemplifies the concept of complexity loss (decomplexification) in aging and 

disease […]. Physiologic stability appears to relate in part to complex patterns of 

variability that incorporate long-range correlations […] The opposite of a fractal 

(scale-free) system […] is one dominated by a characteristic frequency […].‖ 

(Goldberger (2006)) 

Goldberger directly (although tentatively) interprets the long-range correlations in the 

time series of healthy heart beat, as found by means of the DFA method, as an 

‗organizing mechanism‘ that helps to generate fluctuations across many time scales, 

which secure the responsiveness of a healthy heart to unpredictable influences.  

What is it that justifies Goldberger‘s (and other‘s) hypothesis that a mechanism has 

been identified? The first, very important point is the robustness of the statistical 

characteristics that the DFA method allows one to identify in healthy heartbeat 

dynamics. For different healthy individuals in the same context (e.g. sleep or wake 

phase) one always finds the same characteristics. Second, there has been some transfer 

of knowledge from structurally similar situations.
13

 In particular there is a large body of 

experience with complexly fluctuating quantities in condensed matter physics. From 

these cases one knows that certain statistical characteristics of fluctuations imply long-

range correlations, which arise purely endogenously by the non-linear interaction of the 

system‘s subunits in the absence of any coordinating external force. If this inference is 

justified, it suggests an (endogenous) mechanism that leads to correlations between 

(spatially or temporally) distant subunits of the system. As a third point, a mechanistic 

interpretation of the results of data analysis such as Goldberger‘s always rests on 

specific contextual knowledge. For instance, one needs to know, I want to argue, that 

the responsiveness of heartbeat to unpredictable influences is an important ability of 

healthy individuals, so that one can surmise that there is some corresponding 

mechanism. Despite of these points in favour of Goldberger‘s mechanistic interpretation 

the question is not yet conclusively answered whether he is in fact justified in claiming 

the discovery of a mechanism. In my evaluation such an interpretation is not sufficiently 

grounded as long as not even a sketch has been supplied as to how the component parts 

may, by their compositional and interactive organisation, generate the phenomenon of 

interest. I will come back to this point in the final discussion. Before doing so I want to 

present another example which is closely related to the first one in some structural 

aspects, whereas materially we will be concerned with a completely different subject 

                                                 
13

 The following quote by condensed matter physicists indicates the fundamental significance of this 

point: ―What makes continuous phase changes especially interesting is the scale-freedom of the 

fluctuations at […]. Not only is the creation of long-range structure by short-range inter-molecular forces 

intriguing, but any example of scale-freedom is worthy of close examination since this phenomenon 

occurs in several physical systems that are inadequately understood.‖  (Binney et al. 1992: 30) 
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matter. Moreover, the situation will be different regarding the legitimacy of talking 

about mechanisms. 

3.2 Financial Markets 

My second candidate for a mechanism in a dynamically complex system occurs in so-

called microscopic models of financial markets, within the context of econophysics (see 

above). Since mechanisms are always relative to some behaviour that is to be explained, 

it is necessary to describe what it is that econophysicists want to explain and why they 

rate complex systems theories, as developed in condensed matter physics, as the 

appropriate framework for this end. The endogenous formation of financial market 

crashes, i.e. without any particular external causes, is one particularly well-known 

example for a characteristic dynamical pattern that calls for an explanation. Put more 

generally, financial markets experience far more large changes and extreme events, like 

crashes and bubbles, than one would traditionally expect for random processes, such as 

Brownian motion. Econophysics often talk about ‗fat tails‘ in the probability 

distributions for price changes in assets like stocks or commodities, since the 

corresponding functions stay way above the x-axis much longer than in Gaussian 

probability distributions for random variables like body size or IQ. Another closely 

connected example for a characteristics dynamical feature in financial market that calls 

for an explanation is the so-called volatility clustering, i.e. the tendency of quiet and 

turbulent market periods to cluster together in packages. These characteristics of 

financial markets indicate that the interaction between market participants is of crucial 

significance. That is, the best explanation for the high probability of extreme events in 

financial markets involves the assumption that financial markets are complex systems 

with non-linearly interacting constituents, just as many other composite systems that 

show a similar tendency for the endogenous formation of extreme events in the absence 

of any dramatic external causes.
14

  

One main research activity in econophysics is the construction of so-called 

microscopic models of financial markets
15

 that reproduce the observed statistical 

features of market movements (e.g. fat tailed return distributions, clustered volatility, 

crashes) by employing or inventing highly simplified models with large numbers of 

agents (market participants).
16

 Thereby one tries to understand the main statistical 

characteristics of observed probability distributions in terms of underlying random 

processes, e.g. random walk. The relevant parts of physics that are used to build 

microscopic models of financial markets are usually models and methods from 

condensed matter physics and statistical physics. Microscopic models of financial 

markets are highly idealized as compared to what they are meant to model. Often all 

agents have identical properties or there are very few subgroups. Another option is to 

                                                 
14

 See Mantegna and Stanley (2000: 5), Sornette (2003: 15) and Schweitzer (2003, section 1.1). 
15

 In the last decade economists and physicists investigated various microscopic (or ‗agent-based‘) models 

of financial markets, for instance the Kim-Markowitz, the Levy-Levy-Solomon, the Cont-Bouchaud, the 

Solomon-Weisbuch, the Lux-Marchesi, the Donangelo-Sneppen and the Solomon-Levy-Huang model. 

See Samanidou et al. (2007) for a review of these models. 
16

 See Voit (2001) and Johnson et al.( 2003) as well as Casti (1997) for the wider background. 
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have a set of agents with random variations. The interaction between agents is usually 

modelled as extremely simple, like ‗do what your nearest neighbour does‘. 

A paradigm case of a microscopic model for financial markets arose from the 

collaboration of the economist T. Lux and the physicist M. Marchesi.
17

 Their stochastic 

multi-agent model rests on the empirical fact that the universal characteristics of price 

change statistics (fat tails, clustered volatility) are structurally similar to scaling laws in 

physics. In physics, scaling laws arise from the interaction of a large number of 

interacting units, e.g. particles, where most microscopic details are irrelevant. This 

structural similarity of observed phenomena in physics and finance suggests an equally 

similar explanation. In the Lux/Marchesi model there are two types of traders, 

‗fundamentalists‘ and ‗noise traders‘ (or ‗chartists‘).
18

 Whereas fundamentalists are 

rational traders who base their action on the comparison of the fundamental value pf of 

the traded asset (e.g. stocks, bonds or currencies) and the actual market price p, the 

behaviour of noise traders only depends on the current price trend and the opinion of 

other traders. A crucial feature of the setting used by Lux and Marchesi refers to the 

dynamics for the fundamental value pf, more precisely its relative (logarithmic) changes 

between two time steps, which are assumed to be Gaussian random variables. This 

assumption is decisive for the Lux/Marchesi approach because it means that changes of 

pf cannot be the reason for the typical statistical features of financial assets like fat tails 

and clustered volatility, which the model in meant to reproduce in its dynamics. Figure 

4 shows the result of one ‗computer simulation run‘.  

 

 

                                                 
17

 See Lux and Marchesi (1999). 
18

 The coinage of and the distinction between ‗fundamentalists‘ and ‗noise traders‘ is not due to Lux and 

Marchesi, but is established in economics. 
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Figure 4. Result of a typical simulation run for a stochastic multi-agent 

model of a financial market. Most importantly, in comparison to the 

assumed input series in diagram c, the resulting time series in diagram b 

shows far more large changes as well as packages or clusters of very volatile 

asset prices. Both of these characteristics must have been produced purely 

endogenously by the interaction of the market participants. (Reprinted from 

Lux and Marchesi 1999, with permission by Nature.) 

 

The intuitively most compelling impression of the result can be gained by comparing 

the time developments of the market price p (upper curve) and the fundamental value pf 

(lower curve), first, with each other, and, second, with respect to their statistical 

properties. The most interesting statistical property is the frequency of price changes 

from one time step to another. The crucial point of the result is that the time 

developments of the market price and the fundamental value are very similar whereas, 

at first sight surprisingly, their statistical properties differ remarkably. The two lower 

diagrams show the relative price changes which are extracted from the time 

developments shown in the first diagram. Only after this extraction does the difference 

between the distribution of changes of the market price and the fundamental value 

become visible. Although the market price tracks the fundamental value in average it 

deviates significantly on a short time scale, allowing for the typical ‗extreme events‘ 

and the clusters of high volatility which are observed in real markets. Lux and Marchesi 

conclude that the market is efficient in the sense that the market price follows the 

fundamental value. This does not apply to the short term, however, where the relative 

changes of the market price deviate from the normal distribution, which was assumed 

for the relative changes of the fundamental value.  

In their analysis Lux and Marchesi also use the DFA method which I introduced 

above for the investigation of heart rate dynamics. The analysis of the scaling properties 

(in particular the extraction of critical exponents) shows that the exponents for the 

exogenous input series (i.e. the random changes of the fundamental price pf) do not 

allow for fluctuations of the order of empirically observed price changes. Lux and 

Marchesi show that the emergence of a power-law distribution of price changes is 

produced by changes from quiet to volatile periods, which are due to transitions of 

agents from one group to another, more precisely from fundamentalists to noise traders. 

This behaviour, which is sometimes called ‗switching‘, will play an important role in 

my own analysis of how Lux and Marchesi contribute to the scientific explanation of 

financial market behaviour. Another result of Lux and Marchesi is that a system looses 

its stability when the number of noise traders exceeds a certain critical value, and they 

observed so-called ‗on-off intermittency‘, i.e. the fact that instabilities are recurrent but 

only temporary. Eventually, it should be stressed that the qualitative results of Lux and 

Marchesi are very robust since temporary instability (high volatility) occurs for a wide 

range of parameter values. 

Again, let me ask the question, whether it is justified to say that certain mechanisms 

have been found? Similarly as in the heart beat example, the first important point in 
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favour of talking about mechanisms is the robustness of the statistical characteristics 

which have been identified in financial market dynamics. For Lux and Marchesi‘s 

microscopic models of a financial market, fat-tailed probability distributions and 

volatility clustering are stable characteristics of their computer simulations that do not 

depend on any particular parameter values or any particular initial configuration.  And 

the other two points in my evaluation of the heart beat example, namely about the 

transfer of knowledge from structurally similar situations as well as about additional 

contextual knowledge, are also in place. But in the financial market case, compared to 

the heart beat example, much more has been said about component parts (the agents) 

and their compositional and interactive organisation (different groups of traders, certain 

rules for buying and selling behaviour). And one also gets a clearer picture about how 

the compositional and interactive organisation of the component parts can generate the 

phenomenon of interest. Nevertheless, this is still much less than in classical 

mechanisms. In comparison to the well-known multifacetedness and irrationality of real 

financial markets the described model of a financial market seems ludicrously simple. 

This observation seems a crucial point to me to which I will come back in my final 

evaluation. 

Summing up, for both the heart beat and the financial market example, one strong 

point in favour of talk of mechanisms is the fact that certain subtle statistical 

characteristics of the respective dynamics can be shown to arise in a robust way. 

However, although the reference to the level of component parts and their 

compositional and interactive organisation also remains more or less vague in both 

cases, when compared to the complexity of the phenomena that are investigated, the 

sketch of the ‗microscopic‘ processes are far more convincing in the financial market 

case. In the next section I will argue that this difference is in fact crucial regarding 

claims about mechanistic explanations. 

4 Complex Systems and Mechanical Philosophy 

How could the potential mechanisms in dynamically complex systems be incorporated 

into the program of mechanical philosophy? Thorough answers are hard to be found. A 

promising and very recent answer is presented in Bechtel and Abrahamsen 

(forthcoming). Although Bechtel and Abrahamsen come closest to how I see the matter 

there remain some diverging points. One of their central claims is that despite of 

terminological differences
19

 there is a consensus about the crucial steps of what they 

call a ‗basic mechanistic explanation‘, namely ―(1) the identification of the working 

parts of the mechanism, (2) the determination of the operations they perform, and (3) an 

account of how the parts and operations are organized so that, under specific contextual 

conditions, the mechanism realizes the phenomenon of interest.‖
20

 Bechtel and 

Abrahamsen concede that, as it stands, the basic notion of mechanistic explanation is 

too limited to account for the insights into the complex dynamics of biological 

                                                 
19

 For instance, Machamer, Darden and Craver (2000) stress the dichotomy of ‗entities‘ and ‗activities‘, 

whereas Glennan (1996, 2002) emphasizes the interaction between the parts of a mechanism. 
20

 See Bechtel and Abrahamsen (2011), all following quotes come from this paper, unless otherwise 

stated. 
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mechanisms which have been achieved by complexity theories. However, they argue, 

there is no need to supplant the mechanistic philosophy of science by the new paradigm 

of complex systems modelling since it is possible and preferable to correct and thus 

modify the mechanistic approach appropriately by incorporating the relevant ideas of 

complex systems theories. The resulting notion of what they call ‗dynamic mechanistic 

explanation‘ is meant to recognize the ―previously neglected temporal dynamics and the 

implications for our understanding of how operations are orchestrated in real time‖ or in 

other words, the ―temporal dynamics that orchestrate the functioning of biological 

mechanisms.‖ 

I agree with Bechtel and Abrahamsen that the idea of mechanistic explanations 

should not be given up in favour of complex systems theories since many tools and 

concepts of complex systems theories can and should be integrated into the more 

comprehensive conception of mechanistic explanations. However, I think the 

phenomenon of dynamical complexity that I am focussing on cannot be fitted into the 

existing theories of mechanisms by adding insights into the complexity of the dynamics 

of mechanisms, by recognizing how operations are ―orchestrated in real time‖, to use a 

phrase by Bechtel and Abrahamsen. Instead, I claim that in the case of what I call 

dynamically complex mechanisms, understanding the robust dynamical patterns of the 

system is in fact the core task of the researcher whereas the identification of parts, 

operations, and their organisation looses much weight, although it is not completely 

lost. Detailed analyses of the parts and the operations of these parts and the 

organisation, including the detailed organisation of their interactions, are of minor 

interest, since they have, to a surprisingly high degree, no effect on the dynamical 

characteristics of interest. They constitute the set-up but nothing much is understood if 

only the parts, their interaction behaviour and the initial arrangement of the whole 

system are specified. Rather, one has to identify the dynamical patterns of the 

compound system of interacting parts. When complex systems researchers try to 

understand by which mechanisms these dynamical patterns are generated they usually 

make certain assumptions about the parts of the complex system, their interaction 

behaviour, and the basic arrangement of the whole system so that it displays the 

phenomenon one wants to be explained. But finding an appropriate set of assumptions 

as such by no means exhausts the identification and understanding of mechanisms in 

dynamically complex systems. Moreover, often the parts in dynamically complex 

systems can change their nature completely while the complex system evolves in time, 

as one can quickly see in the econophysics example. Traders can switch from one group 

to another, which is in fact a crucial characteristic of the model. But if the parts are 

taken to be identified by their behaviour, then one is forced to say that that there isn‘t 

even a stable set of entities in a dynamically complex system. 

So what should we conclude concerning the question how complex systems 

research and mechanical philosophy are related? Bechtel and Abrahamsen offer the 

following conclusion: 

―Dynamic mechanistic explanation stands in contrast not only to purely 

mechanistic explanation but also to theoretical inquiries that emphasize complex 

dynamics in living systems conceived abstractly—at best neglecting but in some 

cases explicitly rejecting the mechanistic project. Artificial life research, for 
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example, is conducted on a plane removed from research on actual biological 

mechanisms. While accounts oriented purely to complexity or dynamics can make 

unique and valuable contributions, they provide no understanding of how the 

dynamic relations are actually realized in living systems if they do not get anchored 

to component parts and operations of actual mechanisms. That is, they are empty. 

We contend that complexity and dynamical systems theory find their best use as 

tools in a more integrated endeavor.‖ (Bechtel and Abrahamsen (forthcoming)) 

Again, I agree with Bechtel and Abrahamsen that an understanding of complex 

dynamics does and should not supplant mechanistic explanations. However, as I have 

shown in the two examples above, mechanisms in dynamically complex systems are not 

appropriately covered by the standard notions of mechanisms. To some extent this 

judgement is in agreement with Bechtel and Abrahamsen, but a closer look reveals 

important differences. In order to see that it is helpful to consult two other writings by 

Bechtel, together with Richardson:  

―The interactions between subsystems become increasingly important as the units 

engage in more complex modes of interaction, such as […][different] kinds of 

feedback […]. […] Thus, emergence is a consequence of complex interaction. 

Different models are needed to characterize the interactions between the 

components in a complexly organized system than are needed to characterize the 

behavior of the independent components. With emergent phenomena, it is the 

interactive organization [my emphasis, M.K.], rather than the component 

behaviour, that is the critical explanatory feature.‖ (Bechtel and Richardson 

(1992: 285)) 

In what Bechtel and Richardson (1993) call ‗integrated systems‘ the behaviour of the 

whole system is mostly determined by the (nonlinear) interaction of its components. 

And in still extremer cases ―the activities of the parts seem to be different in kind from, 

and so far simpler than those performed by the whole. The parts can be so simple, in 

fact, that they do not seem to contribute anything of interest to understanding the 

behavior of the whole; in some cases it is possible to destroy or disable much of the 

system without significantly affecting performance.‖
21

 While Bechtel and Richardson 

think of network models of cognition something similar applies to microscopic models 

of financial markets, for instance. Here the statistical patterns are not altered by adding 

or removing however many specific traders, as long as we are still dealing with a large 

number of nonlinearly interacting heterogeneous subunits. 

For a better understanding of mechanisms in dynamically complex systems I think 

the eventual shift away from classical mechanistic thinking is not radical enough as long 

as the basic idea remains that we have a certain number of working parts, say, A, B, C, 

D, E, F and G, each of which can perform certain operations and which interact with 

each other in a nonlinear way thus giving rise, for instance, to self-sustained oscillations 

like in the circadian rhythm. I do not intend to reject this analysis in the cases Bechtel in 

particular is studying but I want to point out that not all explanations in terms of 

nonlinear mechanisms are appropriately represented by this description. In those 

dynamically complex systems I am focussing on in this paper it is inappropriate to 

emphasize the identification of particular working parts and certain operations they 
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 Bechtel and Richardson (1993: 202f). 
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perform. The kind of nonlinear mechanisms I scrutinize work largely irrespective of the 

detailed individual natures of the subunits that are involved and their initial 

compositional as well as their detailed interactive organisation in the whole system. 

Since it is apparent from complex systems that are microscopically well-understood 

that most micro details can be irrelevant (relative to one‘s explanatory target), it is only 

consistent that detailed investigations about the organisation of mechanisms become 

less important in the case of dynamically complex systems. Instead, the focus is shifted 

towards studying the dynamics. For instance, it is of great interest, under which 

conditions the dynamics is robust and in which cases instabilities occur. However, if the 

attention is exclusively directed towards analysing the (statistical) characteristics of the 

dynamics, then the point is reached where, in my judgement, the researchers‘ use of the 

term ‗mechanism‘ is no longer justified since it transgresses the limits of even the most 

minimal notion of mechanisms. For example, one can sometimes find talk about ‗fractal 

mechanisms‘, although fractality is a feature that only refers to the statistics of time 

series.  Without any further knowledge, all one is warranted to say in this case is that the 

statistical characteristics one has found indicate certain underlying mechanisms. But no 

mechanism has been identified unless at least some indication has been given about how 

an interaction of subunits may be involved to generate the phenomenon of interest. The 

inevitably vague qualification ‗at least some indication‘ is of crucial importance. 

Requiring more than that would, in my view, make too many complex systems studies 

non-explanatory. And more importantly, the valuable explanatory perspective of 

complex systems theories would be diminished if its structural focus were given up, 

where specific material details are deliberately faded out. 

The difficulties in fitting the potential mechanisms in dynamically complex systems 

into the existing notions of mechanisms prompts the question whether one should talk 

about mechanisms at all in this case. Is there any need or at least are there good reasons 

for construing explanations for the behaviour of dynamically complex systems in terms 

of mechanisms? A first strong indication that one should indeed be talking about 

mechanisms is that the term is ubiquitous in actual analyses of complex systems. For 

instance, there is an extensive discussion about the ―mechanisms‖ that generate power 

law behaviour, which is closely connected with scale-invariance (see above).
22

 

Although in some cases the term ‗mechanism‘ seems inappropriate, widespread 

terminology among scientists should be taken seriously. Nevertheless, this point alone 

does not yield a conclusive justification. A closer look at the econophysics example 

from above already provides a firmer basis. In the actual scientific practice of 

econophysics there are clearly two different areas of research. On the one hand we have 

statistical analyses which provide the systematic identification of explananda. But on 

the other hand, many investigations are concerned with the formulation of explanatory 

microscopic models, i.e. models that reproduce or ‗generate‘ the observed phenomena, 

in particular their statistical characteristics. And it seems that the underlying conception 

of explanation is mechanistic, partly because there are no established laws on the micro 

level that would allow invoking the covering law model, for instance. Moreover, to a 

certain degree, interdisciplinary approaches such as econophysics rest on the transfer of 
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mechanistic models from one scientific field to another, e.g. from condensed matter 

physics to economics. Eventually, there are two further reasons why a construal of 

explanations in complex systems theories in terms of mechanisms is attractive. First, it 

supplies important means in order to answer questions concerning the reducibility of 

complex systems behaviour. Naturally, this point is only attractive if one is interested in 

micro reductions. Second, mechanistic explanations are arguably the best way towards 

finding effective interventions and many investigations in complex systems research 

have this goal. 

5 Towards a More Structural Notion of Mechanisms  

Structural explanations that rest, for instance, on basic symmetries independently of any 

particular ontology have a long and successful history in physics. Elementary particle 

physics lives on considerations where symmetry principles are the cornerstones. With 

the advent of the statistical mechanics of complex systems and modern computing, 

structural explanations spread into various fields far beyond fundamental physics, at 

first within physics, eventually into almost each science. Today, the same analytical 

techniques, concepts, models and explanatory strategies are applied across radically 

different sciences such as physics, biology, economics and social science. Apparently, 

the success of this transfer does not rest on a common ontology—unless one wants to 

reify structures, which I do not advocate. In a sense these sciences have the same 

underlying ontology since, for instance, markets traders, human hearts and ocean waves 

ultimately all consist of elementary particles. But this common fundamental ontology is 

not the reason why the same explanatory strategies can successfully be applied. In the 

context of complex systems theories the reason is the observable fact that there are 

structural similarities in the dynamics of compound systems with completely different 

kinds of subunits. These structural similarities can be classified in terms of certain 

dynamical patterns that can in turn be represented and discriminated in a mathematically 

precise and subtle way.  

A concrete example for structural similarities in the dynamics of extremely diverse 

complex systems is probably more helpful than 1000 words. Ferromagnets have the 

surprising ability to form a macroscopic magnetization if the temperature falls below a 

certain threshold. Detailed analyses revealed, roughly sketched, that the underlying 

mechanism involves the endogenous, i.e. not externally coordinated, parallel alignment 

of neighbouring dipoles (spins) across the whole piece of matter, whereas the dipoles 

are irregularly oriented for higher temperatures. Physicists talk of a phase transition, 

which results in long-range correlations of otherwise uncorrelated dipoles (and of 

course in self-similarity, power laws, and all that). Reasoning in structural analogies 

helped enormously to understand that something very similar happens in financial 

markets. Here as well it is the mutual interaction between traders (analogous to dipoles) 

and their ability to change the neighbour‘s trading behaviour (analogous to the 

orientation of the dipoles) that is crucial for understanding the endogenous formation of 

large changes and even comprehensively collective behaviour (e.g. financial market 

crashes). Once this structural analogy is understood it allows for far-reaching 

explanatorily valuable conclusions without the need for detailed analyses of the micro 
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details. What still needs to be done, however, is a convincing proof that the analogy 

actually holds. That is, sufficient grounding in the actual situation of financial markets 

must be supplied, for otherwise one just has an interesting speculation. But insisting on 

a complete specification of the microscopic situation would spoil the explanatory 

efficacy of this approach, since one of its crucial characteristics is the insight into the 

irrelevance of most micro details. 

Today, complex systems with large numbers of nonlinearly interacting subunits 

have a similar significance as analytically tractable systems in the past. The behaviour 

of complex systems is much harder to understand and to predict than the behaviour of 

simpler classical systems. Nevertheless, for good reasons complex systems theorists 

firmly believe that—bearing in mind the much higher complexity of the subject 

matter—they can do more than just describe similarities of dynamical patterns. For 

instance, one can show under which conditions the statistical characteristics of 

dynamical patterns are robust and how these patterns arise on the basis of nonlinear 

interactions of subunits—subunits that need not be described more than in a rough 

structural way. Moreover, in some cases it can precisely be said at which point a system 

may loose its stability. This is less than in the classical cases since the further 

development cannot be accurately predicted, but still something explanatorily helpful 

can be said, e.g. for purposes of intervention. 

Summing up one can say that complex systems theories can contribute substantially 

to the explanation of when and why certain structural dynamical patterns
23

 are generated 

in a robust way by the nonlinear interaction of the system‘s parts, even if these parts and 

their compositional and interactive organisation in the whole system are only roughly 

sketched. Therefore, I think it is justified to say that complex systems theories supply 

mechanistic explanations, provided a sufficient grounding in concrete interacting parts 

is supplied. In many cases, more detailed and concrete grounding may be desirable, but 

still a large number of cases will remain, where more details will be very hard to supply 

without deteriorating the explanatory efficacy. However, if one is willing to follow this 

step, the notion of mechanisms must be modified or adapted in a rather drastic way. 

Even the more sophisticated gloss that the understanding of mechanisms comprises the 

identification of parts, of the input-output behaviours of these parts and how the 

compositional and interactive organisation can bring about the phenomenon of interest 

has an inappropriate focus in the case of dynamically complex systems. Here, the 

emphasis lies not on the identification of material parts, their detailed behaviours and 

the initial set-up of the whole system but on identifying the structural conditions for the 

robust generation of characteristic dynamical patterns. To this end, a very simple 

description of the lower-level organisation can be sufficient for a mechanistic 

explanation, and sometimes even the best one can do. 
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