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1 Introduction

My topic is the relation between two notions, that of a symmetry of a
physical theory and that of the physical equivalence of two solutions or
models of such a theory. In various guises, this topic has been widely
addressed by philosophers in recent years.1

As I intend to use the term here, a symmetry of a theory is a map or
transformation that leaves invariant the structure used to encode the laws
of the theory. The notion of physical equivalence that I have in mind is as
follows: two solutions (models) of a physical theory are physically equivalent
if and only if, for each possible physical situation, the two are equally well-
or ill-suited to represent that situation. The first of these notions is a formal
one, in the sense that in specifying the formalism of a theory, one specifies its
symmetries. The second is an interpretative notion: two solutions that are

∗To appear in R. Batterman (ed.), The Oxford Handbook of Philosophy of Physics.
†Versions of this paper were given (under a different and better title) in Chicago,

Ann Arbor, and Montreal—thanks to all those present. For helpful comments and dis-
cussion, thanks to Dave Baker, Bob Batterman, Katherine Brading, Caro Brighouse,
Kevin Coffey, Hilary Greaves, Juha Pohjanpelto, Peter Railton, Laura Ruetsche, Jamie
Tappenden, and Bas van Fraassen. Special thanks to Old Man Batterman for his great
patience and editorial sagacity—even if he doesn’t know a good title when he sees one.

1See, e.g., Baker (2010), Brading and Castellani (2007), Dasgupta (2010), Debs and
Redhead (2007), Healey (2009), Ismael and van Fraassen (2003), North (2010), and
Roberts (2008).

1



physically equivalent according to one interpretation of a given formalism
may be inequivalent according to another.

Part of the interest in these notions among philosophers derives from the
following line of thought. In an influential discussion John Earman argued
that in the special case of spacetime symmetries, facts about symmetries
place interesting constraints on good interpretative practice.2 Consider the
case of time translation by b temporal units. In the first instance, this
operation is a map that takes each point of spacetime to a point of spacetime
b units later than itself. But we can also think of time translation as acting
in an obvious way on fields living on spacetime. Earman observes that
in this context, a transformation like time translation is a symmetry of
a theory if and only if it maps solutions of the theory to solutions of the
theory. And he goes on to argue that under any reasonable interpretation, a
transformation of this kind ought to be a symmetry of the theory if and only
if it is a symmetry of the geometric structure of spacetime.3 In particular,
it follows from Earman’s arguments that if one focuses on theories in which
spacetime symmetries are the only relevant symmetries, then under any
reasonable interpretation, solutions are physically equivalent if and only if
they are related by a symmetry—in this way formal facts place interesting
constraints on (good) interpretation.

It is natural to wonder how much of this picture carries over if one
moves beyond spacetime symmetries. Much recent philosophical writing on
symmetries and related topics seems to assume that the answer is: all of
it.4 For the following two doctrines play an important (if often implicit)
role in this literature.

D1. The symmetries of a classical theory are those transformations that

2See Earman (1989, §3.4).
3If spacetime geometry fails to be invariant under some such transformation that is

symmetry of the laws, then one is positing unnecessary geometric structure (think of
Newton on absolute space). Conversely, if one’s spacetime structure is invariant under
transformations that are not symmetries of the laws, then one is cheating somehow
or other, employing some structure in one’s formalism to break a spacetime symmetry
without being willing to pay the ontological price (think of someone whose theory has a
point mass sproinging back and forth about the origin in the Cartesian plane, but who
is unwilling to posit a privileged point of space or any physical structure—matter, field,
force, etc.—other than the single moving point-particle).

4I won’t do anything to substantiate this claim here (let us not descend into recrim-
inations at this time!), beyond saying that, like many a rant, this one is directed in part
at earlier versions of its author.
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map solutions of the theory’s equation of motion to solutions of the
theory’s equation of motion.

D2. Two solutions of a classical theory’s equation of motion are related by
a symmetry if and only if they are physically equivalent, in the sense
that they are equally well- or ill-suited to represent any particular
physical situation.

Here D1 is a formal condition, D2 a constraint on good interpretative prac-
tice. Combined, they would yield a strong and interesting constraint on
(good) interpretation.

However, it is not difficult to see that the combination of D1 and D2 is
an unhappy one. Consider any classical theory. Let u1 and u2 be solutions
of the theory’s equation of motion. Consider the transformation T on the
space of solutions that maps u1 to u2, u2 to u1, and leaves every other
solution where it is. According to the first doctrine above, T is a symmetry
of the theory. The second doctrine above then implies that u1 and u2

are physically equivalent. So the two doctrines jointly imply that any two
solutions of any classical theory are physically equivalent—and hence that
each classical theory is more or less useless because unable to discriminate
among the systems for which it provides good models.5

There are many strategies for encoding the laws of a theory in a math-
ematical form—and each such strategy is associated with a formal notion
of symmetry. D1 encapsulates the notion of symmetry associated with the
most spare and näıve method of encoding the laws of a theory. It is natu-
ral to wonder whether some more sophisticated relative of D1 might form
a fruitful combination with D2. There has been some recent discussion
of this question among philosophers, with some authors adopting an op-
timistic view, arguing or assuming that some more sophisticated relative
to D1 will do the trick, and some authors adopting a pessimistic view, ac-
cording to which the notion of physical equivalence is not closely linked
with a formal notion of symmetry (even when we restrict to well-behaved
interpretations).6

5Our world contains many systems that can be treated (for all practical purposes)
as being isolated. It follows from the conjunction of D1 and D2 that if a theory provides
equally good models of two isolated systems, then any model of the theory must provide
equally good representations of each of these systems—which is to say that the theory
is just about useless in application.

6Since none of the authors I have in mind address the topic in quite the same terms
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My project here is to examine the viability of D1 and D2 and to say a
bit about the source of their prima facie plausibility. In the next section, I
briefly sketch the framework in which I will proceed. Section 3 is devoted
to a discussion of D1 and its inadequacies. Sections 4 and 5 give a brief
overview of some of the more sophisticated alternatives to D2. Section 6 ar-
gues that none of the notions of symmetry considered combine satisfactorily
with D2. Section 7 presents my cautiously pessimistic conclusions.

2 Stage-Setting

Consider a classical theory in which a history of a physical system is rep-
resented by a function u : M → W ; here M is the manifold parameterised
by the independent variables of the theory and W is the manifold parame-
terised by the dependent variables of the theory.7 Thus M might correspond
to time and W to the space of possible configurations of some system of
particles. Or M might correspond to spacetime and W to the space of
values available to some field at each point of spacetime. The laws of the
theory are given by an equation,

∆[u] = 0,

employed here (or in quite the same terms as one another), the following attributions
should perhaps be taken with a grain of salt. On the optimistic side: Baker (2010, §1)
conjectures that D2 is true relative to some generalization of the Hamiltonian approach
discussed in §5 below; Brading and Castellani (2007, §§4.1 and 8.2) claim that D2 is true
relative to the notion of a classical symmetry discussed in §4 below; Roberts (2008, fn.
3) holds that D2 is true for the sort of version of D1 discussed in fn. 11 below. On the
pessimistic side: Ismael and van Fraassen (2002) take D1 to be the only philosophically
salient notion of symmetry—and thus think that in order to get around the sort of
problems noted above, one should take models to be physically equivalent if and only if
they are related by a symmetry and agree in (roughly speaking) their directly perceivable
features; Healey (2009) likewise notes some of the problems surrounding D1, mentions
that there are other formal notions of symmetry available, then pursues an approach
that builds physical equivalence into its notion of symmetry; Dasgupta (2010) argues
that a notion of symmetry appropriate to D2 must involve notions like that of a mental
state.

7More generally, here and throughout, one could take histories to be represented by
sections of a fibre bundle E →M with typical fibre W. Almost any classical field can be
thought of this way. E.g., a gauge field, standardly represented by a connection one-form
on a principle bundle P →M, can be represented instead by a section of a certain affine
bundle J1(P )/G→M associated with P ; see, e.g., Kolář et al. (1993, §17.4).
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where ∆ is a (linear or nonlinear) differential operator.8 The job performed
by such an equation is to single out from a large space K of functions that
represent “kinematically possible” histories of the system those that repre-
sent dynamically possible histories. Typically, K is specified by specifying
the independent and dependent variables of the theory and the degree of
regularity (smoothness etc.) of candidate functions as well as any (asymp-
totic) boundary conditions that they must satisfy. We call the subspace
S ⊂ K consisting of u that satisfy the equation of the theory the space of
solutions.

3 A Recipe for Disaster

Here is a recipe for arriving at the characterization of symmetries of classical
theories that is embodied in the doctrine D1 discussed above: begin with
the standard abstract notion of a symmetry; reflect on the case of spacetime
symmetries; extrapolate.

Symmetries, abstractly speaking. There is a basic notion of sym-
metry, elaborated in various ways in the various branches of mathematics.
Consider a structure—a set of objects, D, equipped with some relations, R1,
. . . , and functions, f1, . . . . A symmetry of this structure is a one-to-one
and onto map F : D → D that preserves all of the relations and functions
between the objects.9

Spacetime symmetries. Suppose that we want to check whether a given
field theory is invariant under a spacetime transformation such as time-
translation. Then all we have to do is to check to make sure that whenever
u(x, t) is a solution of the theory’s equation of motion, so is u(x, t− b), for
any real number b. That is, we define in the obvious way an operator on the
set of kinematically possible fields that implements the putative symmetry,
then check to see whether it maps solutions to solutions.

8So the left-hand side of this equation is the function on M that results from applying
∆ to u and the right-hand side is the zero function.

9I.e., R(x1, . . . , xn) if and only if R(F (x1), . . . , F (xn)); and f(x1, . . . , xn) = y if and
only if f(F (x1), . . . , F (xn)) = F (y).
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Generalization. Suppose that we think of a classical theory as a struc-
ture consisting of a large set of functions K with a distinguished subset S.
Then we would expect the symmetries of such a theory to be those one-to-
one and onto maps from K to itself that preserve S. Spacetime symmetries
fit this pattern exactly! This suggests that we ought to think of classical
theories in the way just outlined.

Something has gone wrong. Following this recipe leads to the fol-
lowing

Fruitless Definition: A symmetry of a differential equation ∆ is a one-
to-one and onto map T : u ∈ K 7→ T (u) ∈ K that preserves the space
of solutions, in the sense that u ∈ S if and only if T (u) ∈ S.

As an attempt to capture the ordinary notion of a symmetry of an equa-
tion (and hence of a theory), this is a disaster. Ordinarily, symmetries of
theories are hard to come by. But some remarkable theories have atypi-
cally large symmetry groups (relative to the number of degrees of freedom
of the systems that they treat). The definition above effaces this sort of
distinction between theories. For if we allow arbitrary permutations of the
solutions of a theory to count as symmetries, then the size of a theory’s
group of symmetries depends only on the size of its space of solutions.10

All of this is liable to strike fans of the Fruitless Definition as cheap
and misleading: after all, since the spaces involved have topological and
differential structure, surely one should restrict attention to continuous or
smooth transformations of the space of kinematic possibilities? This is fair
enough—but it wouldn’t make much difference. At best, it would lead us

10Don’t mathematicians sometimes offer up characterizations of symmetries along
these lines? Yes—but only when speaking loosely and heuristically. Thus in the intro-
duction to Olver’s influential textbook on symmetries of differential equations, we are
told that: “Roughly speaking, a symmetry group of a system of differential equations
is a group which transforms solutions of the system to other solutions;” Olver (1993,
xviii)—see also, e.g., Bluman and Anco (2002, 2) and Klainerman (2008, 457). But on
the next page we are told that once “one has determined the symmetry group of a sys-
tem of differential equations, a number of applications become available. To start with,
one can directly use the defining property of such a group and construct new solutions
to the system from known ones.” Of course, one cannot do this if one’s notion of a
symmetry is given by the Fruitless Definition—one needs to be working with one of the
more specialized notions that are the focus of Olver’s book, some of which are described
below. And likewise for the other applications on Olver’s list.
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to identify the symmetries of a theory with something like the family of
smooth permutations of the space of solutions, rather than with the full
family of permutations of that space.11 But this would still lead us to the
conclusion that every theory had an enormous group of symmetries that
depended only on relatively coarse features of its space of solutions.12

4 Symmetries of Differential Equations

Laws of classical physics are given by differential equations—and there are
a number of ways that a differential equation can be encoded in a structure
whose symmetries can be investigated. D1 corresponds to the most flat-
footed of these. In this section and the next we briefly survey some more
sophisticated alternatives: the focus in this section is on approaches that
directly encode the equation of motion of the theory in a structure whose
symmetries can be identified with the symmetries of the theory; in the next
section, we consider approaches that take a detour via a Lagrangian or
Hamiltonian formulation of the theory.

There is no settled, definitive notion of a symmetry of a differential
equation—rather there are a family of related notions.13 Three are espe-

11 Roughly speaking: for non-freaky ∆, one expects S to sit inside K as (something
like) a submanifold; if φ1 and φ2 are (generic) points in S then there will be a diffeo-
morphism F : S → S with φ2 = F (φ1); and one expects to be able to extend F to a
diffeomorphism F̄ : K → K. (Slightly more carefully: one expects that any obstructions
to extending F in this way are going to be technical in nature, and not detract from the
main point.)

12Consider, by way of illustration, the Newtonian theory of three gravitating point
particles of distinct masses. Here a point in the space of kinematically possible fields,
K, essentially assigns each of the particles a worldline in spacetime (without worrying
about whether these worldlines jointly satisfy the Newtonian laws of motion). The
space of solutions, S, is the eighteen-dimensional submanifold of K consisting of points
corresponding to particle motions obeying Newton’s laws. So one expects that any
diffeomorphism from S itself can be extended to a suitably nice map from K to itself.
But for any solutions u1, u2 ∈ S, we can find a diffeomorphism from S to itself that maps
u1 to u2, so we again find that arbitrary pairs of solutions are related by symmetries.
This seems unacceptable, since we ordinarily think of this theory as having a relatively
small symmetry group (consisting just of spacetime symmetries).

13For an historical overview and references, see Olver (1993, 172 ff. and 374 ff.).
There is of course a trade-off to be made between fecundity and generality. In practice,
the notions that mathematicians and physicists find interesting are far more restrictive
than the fruitless notion considered above. But there would appear to be no feeling that
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cially important: the notion of a classical symmetry, the notion of a gener-
alized symmetry, and the notion of a non-local symmetry. I will sketch the
first of these and then describe how the other two are related to it. A few
more details concerning classical symmetries are presented in an appendix
below.

Let us focus on the field-theoretic case: the independent variables of the
theory parameterise the spacetime manifold M ; a configuration of the field
is represented by a function u : M → W ; and the dynamical laws of the
theory are encoded in a kth-order partial differential equation ∆.

Roughly speaking, the classical symmetries of such a theory can be
characterized as follows. Let E be the manifoldM×W that is parameterised
by the independent and dependent variables of the theory taken together.
Any diffeomorphism d̄ : E → E will induce a transformation d from the
space of kinematically possible fields of the theory to itself (this claim is
unpacked in the appendix below). A map d that arises in this way is
a classical symmetry of the equation if and only if it maps solutions to
solutions.14 So classical symmetries are, roughly speaking, transformations
of the space of kinematically possible fields that: (a) map solutions to
solutions; and (b) are suitably local, in the sense that they arise from smooth
transformations of the dependent and independent variables of the theory.
Classical symmetries are also known as Lie symmetries or point symmetries.
The spacetime symmetries of a theory are those classical symmetries that
arise from transformations of the independent variables of the theory that
leave the dependent variables untouched.15

The classical symmetries of an equation form a family much more re-
stricted than that picked out by D1—and typically this means that solutions
related by a classical symmetry share many salient features. In typical cases,
the classical symmetries of a theory of n Newtonian particles are just the
spacetime symmetries—so solutions are related by a symmetry if and only if

there is a correct notion of a symmetry of a differential equation—plausibly, for every
interesting such notion, there is a yet more general one that is still interesting.

14Two subtleties are glossed over in the text. (i) In general d may map a kinematically
possible field to an object that is a sort of partially-defined multiply-valued field rather
than a kinematically possible field (see fn. 60 below). (ii) The story is (yet) more
complicated in the important special case where dimW = 1.

15Note, in particular, that we make no appeal here to metric tensors and the like—
we just look for transformations of the independent variables that leave invariant the
equations of motion. (Some subtleties arise at this point for certain types of fields; see,
e.g., Kolář et al. (1993) on gauge natural bundles.)
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they have the particles instantiating the same sequence of relative distance
relations.16 In the case of general relativity, the classical symmetries are
generated by spacetime diffeomorphisms and by scale transformations—so
that, roughly speaking, two solutions are related by a symmetry if and only
if they agree about the pattern of ratios of distances instantiated.17

The notion of a classical symmetry is a special case of the basic mathe-
matical notion of symmetry: the classical symmetries of a differential equa-
tion are the structure-preserving maps for a certain structure associated
with the equation. Here is the story in briefest outline (a few more de-
tails are provided in the appendix below).18 One constructs a space, Jk(E)
(the kth jet bundle over E) a point of which is specified, intuitively speak-
ing, by specifying a point x of spacetime and the values of the field and
its partial derivatives through order k at x. Jk(E) comes equipped with
some geometric structure, C (the Cartan distribution), that ensures that
the specification of a point of Jk(E) lives up to this intuitive picture. Our
differential equation ∆ determines a submanifold E ⊂ Jk(E)—since for each
point of spacetime ∆ imposes a constraint on the values of the fields and
their partial derivatives at that point. So we have a structure consisting of
a large space, Jk(E), a geometric structure C on Jk(E), and a distinguished
subspace E of Jk(E). In accord with our template for defining symmetries
of structures, we take a symmetry of this contraption to be a one-to-one
and onto map F : Jk(E)→ Jk(E) that respects C and maps points of E to
points of E . It turns out that the resulting notion coincides with the notion
of a classical symmetry as characterized above.

In order to characterize generalized and non-local symmetries, it is help-
ful (as well as more honest—see fn. 60 below) to describe the relevant
notions by characterizing their infinitesimal generators.19

From this perspective, classical symmetries (investigated by Sophus Lie
and others in the late nineteenth century) are, roughly speaking, transfor-
mations that map solutions to solutions and whose infinitesimal generators
depend only on the independent and dependent variables of the theory.

Emmy Noether introduced a substantially more general notion at the

16 Hydon (2000, example 4.4).
17See Anderson and Torre (1996).
18For what follows, see, e.g., Krasil’shchik and Vinogradov (1999, Chapter 3).
19Unfortunately, discrete symmetries threaten to go missing when one adopts this

perspective. For one approach to this problem, see Hydon (2000, Chapter 11).
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beginning of the twentieth century.20 Her generalized symmetries (also
known as local or higher symmetries or as Lie–Bäcklund transformations)
are, roughly speaking, transformations that map solutions to solutions and
whose infinitesimal generators depend on derivatives of the fields as well on
the independent and dependent variables of the theory.21 These arise as the
symmetries of a fancier structure that can be used to encode the differential
equation of interest: again the equation is represented as a submanifold of
a ambient space equipped with a Cartan structure; this time the ambient
space is an infinite jet bundle—the specification of a point of which involves
specifying a point of spacetime together with the values at that point of a
function and all of its partial derivatives.

Every classical symmetry is also a generalized symmetry. Some equa-
tions have no non-classical generalized symmetries (the Einstein field equa-
tions of general relativity are an example).22 But many equations have
generalized symmetries that are not classical symmetries. Striking exam-
ples include:

The Kepler Problem. This is the problem of determining the motion
of Newtonian massive particle moving in the external gravitational
field of a fixed massive body.23 In addition to the ‘obvious’ conserved
quantities for this system—energy and angular momentum—there is
a ‘hidden’ one, the Lenz–Runge vector.24 Associated with this hid-

20See, e.g., Olver (1993, Chapter 5) or Krasil’shchik and Vinogradov (1999, Chapter
4).

21To get a feeling for what this means, consider the sort of gauge transformations that
normally arise in presentations of Maxwell’s theory: if we take the vector potential A(x)
as our field, then the theory is invariant under infinitesimal transformations of the form
A 7→ A+ εdΛ where Λ(x) is a real-valued function on spacetime. Now suppose that Λ is
a map then when fed a kinematically possible A returns a real-valued function Λ[A] on
spacetime. If for each spacetime point x and each A, the value of Λ[A] at x depends only
on x and on A(x), then the infinitesimal transformation A 7→ A+ εdΛ[A] corresponds to
a classical symmetry of Maxwell’s theory; if the value of Λ[A](x) depends also on a finite
number of derivatives of A at x, then this map is a generalized symmetry of Maxwell’s
theory. See the discussion of generalized gauge symmetries in Pohjanpelto (1995) and in
Torre (1995). For a thoroughly worked-out example involving only finitely many degrees
of freedom, see Cantwell (2002, §14.4.1).

22See Anderson and Torre (1996).
23Note that the Kepler problem contains all of the dynamics of the honest Newtonian

two-body problem. See, e.g., Goldstein et al. (2002, §3.1).
24The Lenz–Runge vector is − q

|q| +
1
µp× (q× p), were q is the position of the moving

particle, p is its momentum, and µ is a constant that depends on the masses.
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den conserved quantity is a non-classical generalized symmetry of the
Kepler problem (more on this below).25

The KdV Equation. The Korteweg–de Vries equation is an equation used
to model waves in shallow water. We can think of it as an equation
governing a field u(x, t) on a two-dimensional spacetime:

∂u

∂t
+
∂3u

∂x3
+ u

∂u

∂x
= 0.

The only classical symmetries of this equation are spacetime and scal-
ing symmetries; but it has an infinite-dimensional family of general-
ized symmetries.26

Yet more general are the non-local symmetries that have been inves-
tigated in recent decades.27 These are, roughly speaking, transformations
that map solution to solutions and whose infinitesimal generators are al-
lowed to depend on non-local functionals (such as integrals) of the fields,
as well as on their derivatives and on the dependent and independent vari-
ables of the equation.28 They arise as symmetries of a structure that results
when the differential equation is encoded in a certain extension of the infi-
nite jet bundle. Many examples of non-local symmetries are known—even
the Kepler problem admits nonlocal symmetries that are not generalized
symmetries.29

5 Variational and Hamiltonian Symmetries

The governing equations of many physical theories can be given a La-
grangian or Hamiltonian treatment (although this sometimes requires some

25For the generalized symmetry of the Kepler problem, see Lévy–Leblond (1971,§5.B).
Note that this system also admits a classical symmetry that is in a sense associated with
the Lenz–Runge vector; see Prince and Eliezer (1981).

26For the classical and generalized symmetries of the Korteweg–de Vries equation, see
Olver (1993, 125 ff. and 312 ff.).

27See, e.g, Krasil’shchik and Vinogradov (1999, Chapter 6).
28For a thoroughly worked-out example in which an infinitesimal symmetry and the

corresponding finite symmetry both depend on an integral over space of the dependent
variable of the theory, see Cantwell (2002, §16.2.2.1).

29See, e.g., Leach et al. (2003).
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craft or flexibility). For such theories, it is natural to consider the symme-
tries of the structures employed in the Lagrangian or Hamiltonian treatment—
which need not coincide with the symmetries of the equation itself.

Variational symmetries. There there are two main styles of Lagrangian
formalism, sometimes called the dynamical and the covariant approaches,
which coincide for theories with finitely many degrees of freedom but dif-
fer for field theories.30 Dynamical approaches are quite similar in spirit to
the Hamiltonian approach considered below.31 Under covariant approaches,
which are our concern here, the basic space of interest is a jet bundle over
the space of dependent and independent variables of the theory (as in the
treatment of classical symmetries sketched above) and the Lagrangian is
now to be thought of as an object that when fed a kinematically possible
field u gives in return a d-form L[u] on the spacetime M (here d = dimM).32

Each such Lagrangian is associated with a differential equation, whose so-
lutions correspond to those fields that satisfy a certain variational principle
for the Lagrangian. A (classical or generalized) symmetry of an equation
arising from a Lagrangian is called a variational symmetry if it leaves the
Lagrangian invariant. Even if a theory admits a Lagrangian formulation,
some symmetries of the underlying equation may not show up as variational
symmetries—as a rule, Galilean boosts and scaling symmetries are often not
variational.33 Modulo niceties about boundary conditions, Noether’s theo-

30For these labels and for an investigation of the relation between the two approaches,
see Castrillón López and Marsden (2008). For introductions to the two approaches, see
Abraham and Marsden (1985, §§3.5 ff. and Example 5.5.9).

31Under such approaches, one works with a space of instantaneous states (which will
be infinite-dimensional in the field-theoretic case), equips this space with a real-valued
function, L (the Lagrangian), and employs a variational principle to find those curves in
the space of states that correspond to dynamically possible histories of the system.

32For instances of this styles of approach, see, e.g., Castrillón López and Marsden
(2008) and Krasil’shchik and Vinogradov (1999, Chapter 5).

33 On scale transformations, see Olver (1993, 255). A standard remedy is to introduce
the notion of a divergence symmetry, a transformation that leaves the Lagrangian invari-
ant up to a total divergence; many interesting symmetries are divergence symmetries but
not variational symmetries, including boosts of Newtonian systems and the conformal
symmetries of the wave equation; see Olver (1993, 278–281). Scaling symmetries are
more subtle. Scale transformations are symmetries of general relativity, but are neither
variational nor divergence symmetries; see Anderson and Torre (1996, §2.B). Rescaling
of space and time is a symmetry of the wave equation that is neither a variational nor a
divergence symmetry, although there is a related scale transformation that acts on the
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rem assures us that each one-parameter family of variational symmetries is
associated in a canonical way with a conservation law.34

Hamiltonian symmetries. Let us restrict attention to the ideal case in
which specifying an initial data set (=a possible instantaneous dynamical
state) for the equation of the theory determines a unique solution defined
at all times. Then, speaking roughly and heuristically, a Hamiltonian treat-
ment amounts to the following. The phase space of the theory is the space,
I, of all initial data sets. The Hamiltonian, H, of the theory is the real-
valued function on the phase space that assigns to each point of the phase
space the energy of the corresponding physical state. The phase space can
be equipped with a geometric structure, ω, with the following marvellous
feature: together H and ω determine a family of curves in I, exactly one
passing through each point; each of these curves corresponds to a solution
of the theory’s equation of motion, in the sense that that the two objects
pick out the same sequence of instantaneous dynamical states; and for any
such solution there is a corresponding curve of this kind.35 So the struc-
ture (I, ω,H) in effect encodes the differential equation of the theory. It
is natural to investigate the Hamiltonian symmetries of the theory: those
one-to-one and onto maps from I to itself that preserve both ω and H.36

dependent variables as well as the independent variables which is a divergence symmetry
(but not a variational symmetry); see Olver (1993, Examples 2.43, 4.15 and 4.36).

34But: certain types of variational (or divergence) symmetries of theories whose initial
value problems are ill-posed are associated with so-called trivial conservation laws; see
Olver (1993, 342–346) on Noether’s second theorem. And: there exist techniques for
associating conservation laws with symmetries that do not rely on Noether’s theorem;
see, e.g., Bluman (2005).

35ω is a symplectic form—a closed, nondegenerate two-form. ω and H determine a
vector field XH on I : XH is the vector field that when contracted with ω yields the one-
form dH. Integrating this vector field gives the curves mentioned in the text. Note that
there is a canonical recipe for constructing I, H, and ω given a Lagrangian treatment of
the theory.

36Note that the symplectic space (I, ω) has a vast family of symmetries. Suppose
that we are interested in a Newtonian theory of finitely many particles. Then I is finite-
dimensional, but the family of smooth permutations of I that preserve ω is infinite-
dimensional—it is only when we restrict attention to transformations that also preserve
H that we end up with something like what we want. Something similar is of course
true in ordinary quantum mechanics: while the family of unitary transformations of
a Hilbert space will be very large, the family of such transformations that preserve a
given Hamiltonian will be quite small—and only the latter is a good candidate for the
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The Hamiltonian version of Noether’s theorem assures us (fussing about
boundary conditions aside) that there is a conserved quantity associated
with each one-parameter family of Hamiltonian symmetries of a theory.

6 Symmetry and Physical Equivalence

Why was it (in hindsight, in one sense) a mistake for Newton to postulate
absolute space? Because he thereby postulated more spacetime structure
than was required for his dynamics—boosts are symmetries of his laws of
motion but not of the spatiotemporal structure that he postulated. Reflec-
tion on this example and others motivates the principle that sound inter-
pretative practice requires that the spacetime symmetries of one’s ontology
ought to include the spacetime symmetries of one’s preferred theory. Con-
versely, it seems like something has gone wrong if the spacetime symmetry
group of one’s equations of motion is more restricted than the spacetime
symmetry group of one’s ontology—for in this case, one would be shirking
one’s duty by in effect employing geometrical structure in one’s dynamical
theory while not being willing to pay the ontological cost.

It is tempting to think that this picture ought to generalize: Why should
spacetime symmetries be special? At the level of slogans, the idea is easy
to state—our interpretative practice should be guided by the principle that
the symmetries of a theory’s laws and the symmetries of its ontology should
coincide. It isn’t obvious how to give a precise and general formulation of
the idea. But one thing that seems clear is that any such formulation would
have as a consequence the second doctrine discussed in the opening section
of this paper:

D2. Two solutions of a classical theory’s equation of motion are related by
a symmetry if and only if they are physically equivalent, in the sense

symmetry group of a theory. The situation is more perplexing in the case of fancier
quantum theories. On the one hand, an arbitrary C∗-algebra automorphism is pretty
clearly the analogue of an arbitrary symplectic or unitary transformation and so is not a
good candidate to be a symmetry of a theory: indeed, in many cases of interest any two
states are related by such an automorphism; see Kishimoto et al. (2003). On the other
hand, in some contexts it is not possible to identify symmetries of a theory with those C∗-
algebra automorphisms that preserve the Hamiltonian because there is no Hamiltonian
operator available at the C∗-algebra level; on this point, see Ruetsche (2011, §12.3).
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that they are equally well- or ill-suited to represent any particular
physical situation.37

We have seen that disaster follows if this doctrine is combined with the
notion that the symmetries of a classical theory are the maps that send
solutions to solutions. But having set aside that notion, we can ask whether
D2 can be safely combined with one of the more nuanced and discriminating
notions of symmetry on offer.

Indeed, one can give various plausibility arguments in favour of theses
in the neighbourhood of D2.

(a) Intuitively speaking, two solutions are related by a symmetry if and
only if they are interchangeable by the lights of the theory’s formal-
ism. And surely if everything has been set up properly (i.e., just the
right ingredients have been built into the formalism of the theory), two
solutions that are formally interchangeable should also have identical
representational capacities—and so should be physically equivalent in
the present sense.

(b) Further, one might think that there is a pretty good reason for thinking
that two solutions related by a classical symmetry of a theory must
be physically equivalent. For such symmetries can be thought of as
smooth transformations of the dependent and independent variables of
the theory that preserve the form of the equations of the theory. How
could our representational practices reasonably distinguish between two
solutions of a theory that are related by a reparameterisation of the
theory’s variables to which the equations of the theory are themselves
indifferent?

(c) That this is the right way to go is also suggested by consideration of
familiar cases. No one denies that solutions of a theory’s equations are
physically equivalent if they are related by a spacetime symmetry of the
theory (i.e., by a symmetry that transforms the independent variables
of the theory without affecting the dependent variables).38 A similar

37In truth, in order to formulate a plausible doctrine in the neighbourhood of D2,
one should probably work with infinitesimal symmetries—otherwise it is easy to concoct
counterexamples by deleting points from a theory’s space of solutions.

38There is disagreement over the question whether there are distinct physical possi-
bilities related by shifts and the like. But that is a different question.
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consensus exists regarding paradigm cases of (global and local) inter-
nal symmetries (that involve transformations of dependent variables of
the theory that do not affect the independent variables). Thus, if one
has a theory involving a complex scalar field such that global phase
transformations of the form φ(x) 7→ eiθφ(x) (θ a constant) are sym-
metries, then one regards solutions related by such a transformation as
physically equivalent. Similarly, one regards as physically equivalent so-
lutions of Maxwell’s equations in vector potential form that are related
by local gauge transformations of the form Aµ(x) 7→ Aµ(x) + dΛ(x)
(here Λ is a smooth function on spacetime, so in general the transfor-
mation effected on the dependent variables varies from spacetime point
to spacetime point). Why should other symmetries be different?

Unfortunately, these mutually reinforcing half-arguments don’t add up to
much: each of the general notions of symmetry that we have considered
leads to unpalatable consequences when plugged into D2.

Consider first the notion of a classical symmetry of a differential equa-
tion. As noted above, most equations admit relatively few such symmetries,
so that solutions related by a classical symmetry share a great deal in com-
mon. But there exist equations whose symmetry groups are so large that
they act transitively on the space of solutions (i.e., for any two solutions,
u1 and u2, there is a classical symmetry of the equation that maps u1 to
u2). This sort of shocking behaviour can be found in some of the most basic
theories of classical physics.

(i) A single Newtonian free particle. In this case, the spacetime symme-
tries of the theory are given by the Galilei group, and any solution
can be mapped on to any other by such a symmetry.39

(ii) The harmonic oscillator. In one spatial dimension, an arbitrary solu-
tion takes the form q = A cos t + B sin t. The theory admits a one-
parameter group of classical symmetries that acts on solutions by
changing the value of B, and another such group that changes the

39In fact, the classical symmetries for this theory are not exhausted by the Galilei
symmetries—already in two spacetime dimensions, where the Galilei group is three-
dimensional, the classical symmetry group for the free particle is eight-dimensional. See,
e.g., Duarte et al. (1987).
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value of A—so any solution can be mapped to any other by a symme-
try of the theory.40

(iii) Linear homogeneous partial differential equations—such as the heat
equation, the wave equation, the source-free Maxwell equations, etc.
Corresponding to any solution u0 of such an equation, there is a clas-
sical symmetry Tu0 : u 7→ u + u0.

41 And, of course, for any two solu-
tions u1 and u2 of a linear equation, there is a solution u0 such that
u2 = u1 + u0. So any two solutions of a linear homogeneous partial
differential equation are related by a symmetry.

If we maintain that any two solutions related by a classical symmetry are
physically equivalent, then each of these theories will be unable to discrimi-
nate among the systems it provides good models for—it will consider them
to have the same physics. That is a presumably the right verdict in the case
of the theory of a free Newtonian particle—if we follow the policy of regard-
ing solutions related by a spacetime symmetry as physically equivalent, then
no degrees of freedom remain in this theory once such symmetries are fac-
tored out. But the other examples are very different: under any ordinary
reading, they admit solutions that represent situations in which nothing is
happening (the oscillator is permanently immobile at the origin, the field
is in a ground state) and others that represent situations in which plenty is
going on (the oscillator is continually sproinging around, energy in the form
of heat or waves is propagating). An approach to understanding physical
theories that leaves us unable to see these distinctions is not something we
can live with. So D2 is false if understood as a thesis concerning classical
symmetries of differential equations.

Further, employing generalized or non-local symmetries would not help:
the problems just noted would remain, and new ones of the same ilk would
crop up.42

40See, e.g., Lutzky (1978, §3). Note that the complete classical symmetry group of the
one-dimensional oscillator is eight-dimensional, and so outstrips the group of spacetime
symmetries. Note also that all of these results carry over, mutatis mutandis, to the case
of a time-dependent oscillator in n spatial dimensions; see Prince and Eliezer (1980).

41See, e.g., Hydon (2000, p. 145). For the classical symmetries of the heat equation
and the wave equation, see, e.g., Olver (1993, Examples 2.41 and 2.43). For symmetries
of the source-free Maxwell equations, see Anco and Pohjanpelto (2008).

42E.g., the group of non-local symmetries of the Kepler problem acts transitively on
solutions; see Leach et al. (2003).
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Nor does it help to shift attention to variational or Hamiltonian sym-
metries. Consider first variational symmetries. The class of (classical or
generalized) variational symmetries of an equation is more restrictive than
the class of (classical or generalized) symmetries of an equation. And that
has some benefits: the variational symmetries of the wave equation do
not include addition-of-an-arbitrary-solution (and do not act transitively
on the space of solutions).43 But: the problem with the harmonic oscilla-
tor remains—for any two solutions, there is a variational symmetry that
maps one to the other.44 So the class of variational symmetries is still in
some respects too generous underwrite D2. It is also in some respects too
restrictive: for example, neither the boost symmetry of classical mechanics
nor the scaling symmetry of general relativity is a variational symmetry.45

But it is hard to deny that two solutions related by such a symmetry are
physically equivalent in the relevant sense.46

Further, recall that not every equation of motion admits a Lagrangian
treatment.47 True, with some ingenuity one can often find surrogates for
such equations that do admit Lagrangian treatment (e.g., by replacing the
variables of the original theory by suitable potentials, or by introducing
non-physical fields).48 But it is hard to see why one should have to take
such detours in order to understand the connection between symmetry and

43See Olver (1993, Example 4.15).
44See Lutzky (1978) and Prince and Eliezer (1980).
45What happens if in place of variational symmetries, we consider divergence sym-

metries? Some problems go away, others reappear. Good news: Galilean boosts and
certain types of scaling transformations count as symmetries (see fn. 33 above). Bad
news: addition-of-an-arbitrary solution is a divergence symmetry of the wave equation;
Olver (1993, Example 4.36). So if we count solutions related by a divergence symmetry
as physically equivalent, we have to view every pair of solutions of the wave equation as
begin physically equivalent.

46In the case of general relativity, denying that solutions g and c · g (c a positive
constant) related by a scale transformation are physically equivalent is especially difficult
for those who deny that they there are possible worlds that agree about distance ratios
but disagree about matters of absolute distance—for according to such philosophers there
is only one world that is adequately represented by g and c · g taken together, and it is
isn’t easy to see how one of the two solutions could have a better claim than the other
to represent that world.

47The problem of identifying those which do so is known as the inverse problem of the
calculus of variations or as Helmholtz’s problem. For an introductory survey, see Prince
(2000).

48See, e.g., Ibragimov and Kolsrud (2004), Olver (1993, Exercises 5.35, 5.36, and
5.46), Rosen (1966), and Sorkin (2002).
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physical equivalence.
What about Hamiltonian symmetries, then? This class is again too re-

strictive in some respects. As in the variational case, scaling symmetries
are typically not Hamiltonian symmetries. Galilean boosts cause the same
sort of trouble—since they typically leave the potential energy of a system
invariant while altering its kinetic energy, they fail to preserve the Hamilto-
nian. So if one took solutions to be physically equivalent only if related by
a Hamiltonian symmetry, then one would have to violate the general prin-
ciple that solutions of classical theories are physically equivalent if related
by a spacetime symmetry.49

At the same time, the class of Hamiltonian symmetries is also too gen-
erous in some respects. In the Hamiltonian setting we are at least safe
from the threat of the group of symmetries of a theory acting transitively
on the space of states (since Hamiltonian symmetries preserve the Hamil-
tonian and theories ordinarily allow states of differing energy). But we
nonetheless still run into cases in which we are unwilling to consider states
or solutions related by Hamiltonian symmetries as physically equivalent.

Consider the Kepler problem. This theory has a number of Hamiltonian
symmetries, some of which are spacetime symmetries and some of which are
not. The spacetime symmetries include time translation (associated with
conservation of momentum) and rotation (associated with conservation of
angular momentum). As usual, we want to regard solutions related by
spacetime symmetries as physically equivalent—in the present case, this
means that we regard solutions as physically equivalent if the corresponding
elliptical orbits are of the same shape (i.e., have the same eccentricity and
have equally long major axes). The further Hamiltonian symmetries of the
Kepler problem are associated with the conservation of the Lenz–Runge
vector. If two solutions are related by one of these symmetries, then the
corresponding ellipses have equally long major axes, but (in general) have
different eccentricities and different orientations in space.50 The upshot is

49Just as one might move from variational symmetries to divergence symmetries (see
fn. 33 above), one might consider transformations of a system’s phase space that leave
invariant the set of Hamiltonian trajectories without worrying about whether they also
leave the Hamiltonian itself invariant. This class would include Galilean boosts. But it
would not include scale transformations—e.g., in the Kepler problem, changing the scale
used to measure distances carries one from a periodic solution to a periodic solution with
a different period, so such a transformation doesn’t correspond to a mere permutation
of Hamiltonian trajectories.

50See Morehead (2005). This symmetry corresponds to a generalized symmetry of the
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that if we take being related by a Hamiltonian symmetry to imply physical
equivalence, then we must take solutions of the (negative energy) Kepler
problem to be physically equivalent if and only if they correspond to ellipses
with equally long major axes.51 But we do not normally regard highly
eccentric orbits and perfectly circular orbits as being physically equivalent.52

We run into the same problem with the harmonic oscillator: the family of
Hamiltonian symmetries acts transitively on the surfaces of constant energy
in the space of initial data—so two solutions of the theory are related by a
Hamiltonian symmetry if and only if they represent the system as having
the same total energy.53 But two solutions of the harmonic oscillator can
have the same energy while corresponding to quite different motions—e.g.,
in the two-dimensional case, one might have the particle moving back and
forth on a line segment while the other has it executing a circular motion.54

equations of motion.
51For the negative energy Kepler problem, the length of the major axis determines

the energy of a solution, so any Hamiltonian symmetry leaves this quantity invariant;
see, e.g., Goldstein et al. (2002, §3.7).

52(1) One might think that we would do so if scaling transformations were up for
grabs, since one can indeed transform a circular orbit into an eccentric orbit by rescaling
one coordinate axis while leaving the others invariant. But this sort of rescaling does
not preserve the Hamiltonian of the Kepler problem (because it changes the length of
the major axis of some solutions). (2) The discussion above glosses over an interesting
subtlety. At the infinitesimal level, one does indeed find a large set of symmetries of
the Kepler problem. But the space of initial data features a singular set of points
(corresponding to situations in which the two particles collide). And the existence of
this singular set provides an obstruction to integrating the infinitesimal symmetries into
a group action; see Cushman and Bates (1997, p. 74). However: there exist ways of
regularizing the singularities of the Kepler problem—and these constructions lead to
a family of finite symmetries that act transitively on surfaces of constant energy. For
discussion and references, see Cushman and Bates (1997, Chapter II) or Guillemin and
Sternberg (1990, §2.7). (3) Note that the fact that the Hamiltonian symmetry group of
the Kepler problem is larger than its spacetime symmetry group plays an important role
in the quantum theory of the hydrogen atom; see Jauch and Hill (1940) or Guillemin
and Sternberg (1990, §7).

53Consider the two-dimensional case. There are four conserved quantities, corre-
sponding to four independent Hamiltonian symmetries. A surface of constant energy is
a three-sphere in the phase space and the group of Hamiltonian symmetries is the group
U(2), which acts transitively on the energy surfaces. For details, see, e.g., Goldstein et
al. (2002, §9.8), Cushman and Rod (1982), or Cushman and Bates (1997, Chapter II).

54Again, the fact that the symmetry group of the classical system is U(2) rather than
just the spacetime symmetry group plays an important role in the quantum theory; see
Jauch and Hill (1940).
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Or, again, consider the Korteweg–de Vries equation. This equation gov-
erns a real-valued field u in one spatial dimension. Under its usual inter-
pretation, this field describes the dynamics of a shallow body of water with
one horizontal dimension, with u(x, t) giving the depth of the water above
spatial point x at time t. Consider a particular solution, u0. How large is
the family of solutions physically equivalent to u0? Well, it surely includes
solutions related to u0 by spacetime symmetries, and perhaps also scaling
symmetries. But the family of generalized symmetries of the equation and
the family of Hamiltonian symmetries are both infinite-dimensional—so it
seems clear that each must contain many symmetries that relate physically
inequivalent solutions.55

7 Outlook

Where does this leave us? There are various interesting formal notions of
symmetry applicable to classical physical theories. But none of the standard
ones are suited to underwrite a principle like D2 that makes a direct link
between the being related by a symmetry and being physically equivalent.

I leave it as a challenge to the reader to identify a general and interesting
formal notion of symmetry that renders D2 true—or, better, to identify a
family X of symmetries such that two solutions of a theory that are related
by a symmetry are physically equivalent if and only if they are related by
a symmetry that belongs to X.

55In the examples just considered, it is pretty clear that one does not want to count
every pair of solutions related by a generalized symmetry as being physically equivalent.
Does one ever want to count solutions as physically equivalent that are related by a
generalized symmetry that is not a classical symmetry? Yes—for instance, when the
solutions in question are also related by a respectable classical symmetry. Consider, e.g.,
the generalized gauge transformations described in fn. 21 above—if two solutions are
related by such a symmetry, then they are also related by an ordinary gauge transfor-
mation.
Are there pairs of solutions related by a generalized symmetry (but not by any classical
symmetry) that one would want to consider physically equivalent? That appears to be a
more difficult question. Part of the difficulty lies in the fact that what one has in practice
are the infinitesimal generators of generalized symmetries: it is in general a nontrivial
task to find the corresponding group actions; see, e.g., Olver (1993, 297 ff.). Further,
even in cases where the corresponding groups of transformations can be determined,
their physical interpretation can be obscure; see, e.g., Olver (1984, 136 f.).
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Above we have seen that we ordinarily take spacetime symmetries to
belong to X. Further, we have seen that there are classical symmetries,
generalized symmetries, non-local symmetries, variational symmetries, and
Hamiltonian symmetries that are not in X. We have also seen that X con-
tains symmetries that fall outside of the classes of spacetime symmetries,
variational symmetries, and Hamiltonian symmetries

Perhaps it is possible to find some formal notion of symmetry that com-
bines well with D2. But it is hard to be optimistic—certainly, the ways of
encoding the content of laws that are most appealing to mathematicians
and physicists appear to lead to notions of symmetry that are cooly indif-
ferent to considerations of representational equivalence. So it appears that
the sort of constraint that knowledge of the symmetries of a theory places
on the range of reasonable interpretations of that theory may well be more
modest than one might have hoped.56

Appendix

Here are a few more details about classical symmetries of differential equa-
tions. Let’s begin by describing Jk(E).57 For present purposes, it is easiest
to work in terms of coordinates.58

A point y in M is specified by specifying a d-tuple of real numbers,
(y1, . . . , yd) (the coordinates of y).

A point (y, v) in E is specified by specifying a (d + m)-tuple of real
numbers, (y1, . . . , yd; v1, . . . , vm) (the coordinates in M of y plus the
coordinates in W of u(y), the value of the field u at spacetime point
y).

A point (y, v, p) in Jk(E) is specified by specifying a

[
d+m

(
d+ k
k

)]
-

tuple of real numbers, (y1, . . . , yd; v1, . . . , vm; p1, . . . , pn), where the pi

56Of course, some interesting weaker relative of D2 might be true. E.g., for all that has
been said here, being related by a Hamiltonian symmetry that corresponds to a classical
symmetry of their equation of motion may be a sufficient condition for two solutions to
be physically equivalent.

57For what follows, see, e.g., Krasil’shchik and Vinogradov (1999, Chapter 3).
58But note that everything described below can be done in a respectable global and

coordinate-independent fashion. See, e.g., Saunders (2008).
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are just numerous enough to be regarded as a list of the values of the
partial derivatives (from order one through k) of u by the spacetime
coordinates.

When we think of Jk(E) in this way, it provides a natural way to encode
the content of any kth order partial differential equation whose dependent
and independent variables parameterise E. For think what such a differen-
tial equation does: for each point x of spacetime, the equation imposes a
constraint on the values of the field and its partial derivatives through order
k when evaluated at x. But, roughly speaking, that is to say that such a
differential equation determines a submanifold of E ⊂ Jk(E), and that the
content of the equation is exhausted by the structure of E as a submanifold
of Jk(E).

Now we are getting somewhere: we can identify symmetries as one-to-
one and onto maps from Jk(E) to itself that preserve E and all relevant
structure of the ambient space Jk(E). But what does this structure amount
to?

We know that Jk(E) is a manifold and that we are working in a setting
in which everything is at least a bit smooth—so it is natural to require
our symmetries to be appropriately smooth diffeomorphisms from Jk(E) to
itself.

There is one further kind of structure on Jk(E) that matters in the
present context. Recall that we have said that, intuitively, the extra vari-
ables that we add in moving from E to Jk(E) are supposed to correspond to
the values of the partial derivatives of the field with respect to the spacetime
coordinates. We need to put some structure on Jk(E) in order to enforce
this intuitive demand.

In order to get a feeling for what is required here, consider the following
line of thought. Let u : M → W be a kinematically possible field. The
content of u is encoded in its graph, Γu, the subset of E consisting of pairs for
the form (x, u(x)), for x ∈M. Of course, the map x ∈M 7→ (x, u(x)) ∈ Γu
is a diffeomorphism. Further, a sufficiently smooth submanifold Γ ⊂ E
corresponds to a kinematically possible u in this way if and only if the
projection map π̄ : (x, v) ∈ Γ → x ∈ M is a diffeomorphism from Γ onto
M.

Now, each kinematically possible u also determines a diffeomorphism
from M to Jk(E). We define the k-jet of u to be the map j[u] : x ∈
M → (x, u(x), p) ∈ Jk(E), where p = (p1, . . . , pn) encodes the values
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at x of the partial derivatives of u through order k. The k-jet of u is
a diffeomorphism onto its image Ju. There is of course a projection map
π : (x, v, p) ∈ Jk(E) 7→ x ∈M, whose restriction to Ju is the inverse of the
jet j[u].

It may be tempting to suppose that any sufficiently smooth submanifold
K ⊂ Jk(E) such that π : K →M is a diffeomorphism onto its image arises
as the Ju for some kinematically possible u. But this is false. For consider
such a K. For each spacetime point x ∈ M, K includes exactly one point
(x, v, p). So, questions of boundary conditions aside, K does determine a
kinematically possible u—for each spacetime point x just set u(x) = v,
where (x, v, p) is the unique point in K that π sends to x. But there is no
guarantee that Ju = K, precisely because we have not yet built into the
structure of Jk(E) any connection between the pi and the partial deriva-
tives of the field—so in general, if (x, v, p) is a point in K and u is the
kinematically possible field determined by K, there is no reason to expect
that the values of the partial derivatives of u at x are given by p (that is,
in general one expects that j[u](x) 6= (x, v, p) so that Ju 6= K).

There is an elegant solution to this problem. One imposes on Jk(E)
some geometric structure, in the form of the Cartan distribution, C, which
singles out at each point of Jk(E) a distinguished subspace of dimen-

sion

[
d+m

(
d+ k − 1
d− 1

)]
in the

[
d+m

(
d+ k
k

)]
-dimensional tan-

gent space at that point. The Cartan distribution has the following beau-
tiful feature: a submanifold K of Jk(E) that is diffeomorphic to M via
the natural projection map π : (x, v, p) 7→ x is of the form Ju for some
kinematically possible u if and only at any point of K, all tangent vectors
pointing along K lie in the privileged subspace picked out at that point by
C. That is: the Cartan distribution encodes our intuitive constraint that
the pi should correspond to the values of the partial derivatives of fields.59

Putting all of this together: a symmetry (in the present sense) of our
equation is a diffeomorphism from Jk(E) to itself that preserves: (i) the
submanifold E ⊂ Jk(E) that encodes the equation; and (ii) the Cartan
distribution C. It now turns out that (except in the special case where
m = 1) the only such diffeomorphisms arise via diffeomorphisms from E to
itself (this claim will be unpacked in the next paragraph). And of course,

59The space of vectors picked out by C at a point of Jk(E) coincides with the vectors
annihilated by the family of one-forms on Jk(E) that enforce the differential relations
that require the pi to be the derivatives of the components of u with respect to the xj .
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since each kinematically possible field u with can be identified with the
submanifold j[u](M) ⊂ Jk(E), any diffeomorphism from Jk(E) to itself
acts in a natural way on the space of kinematically possible fields—and
(subtleties aside) any diffeomorphism from Jk(E) to itself that preserves E
maps solutions to solutions. So: the symmetries (in the present sense) of a
differential equation are the transformations of the space of kinematically
possible solutions that map solutions to solutions and that are suitably
local, in the sense of depending only on the independent and dependent
variables of the theory.

There are two unfinished bits of business. The first is to unpack the
notion of a diffeomorphism from Jk(E) to itself arising via a diffeomorphism
from E to itself. Let d̄ : E → E be a diffeomorphism. We seek to define a
corresponding diffeomorphism d : Jk(E)→ Jk(E). We proceed by selecting
an arbitrary (x, v, p) ∈ Jk(E) and showing how to find d(x, v, p). Let u be a
kinematically possible field such that u(x) = v and j[u](x) = (x, v, p) (i.e.,
(x, v, p) gives the value of u and its partial derivatives at x). Let Γu be the
graph of u in E (i.e., the set of points of E of the form (x, u(x)), for all
x ∈ M). Γu is a smooth submanifold of E that projects diffeomorphically
to M under the map π̄ : (x, v) 7→ x. Now, since d̄ is a diffeomorphism from
E to itself, the set d̄(Γu) is also a smooth submanifold of E. Sadly, d̄(Γu)
need not project diffeomorphically to M. But let us ignore that detail, and
pretend that it does—and hence corresponds to a kinematically possible
u∗.60 Then we can define d(x, v, p) := j[u∗](x′), where x′ = π̄(d̄(x, v)). The
resulting map d : Jk(E) → Jk(E) is a well-defined diffeomorphism (in
particular, it is independent of the choices we made along the way).

The final piece of unfinished business is to note that one typically works
with fields that have well-defined transformations laws under changes of
coordinates on spacetime: so a spacetime diffeomorphism d̄ : M → M
induces in a natural way a diffeomorphism D̄ : E → E.61 The corresponding
transformation D : K → K is then given by D : u(x) 7→ u(D̄−1(x)). Then
we find, as expected, that D is a classical symmetry if and only if it maps
solutions to solutions.

60To do everything honestly, we would need to: (i) introduce a generalized notion of
a solution; (ii) work locally; or (iii) shift our focus to the infinitesimal symmetries.

61This is one point at which the story can become more complicated for fields that
are not given by tensors. See, e.g., Kolář et al. (1993) on gauge natural bundles.
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