
Quantum Ontology in the Light of Gauge Theories

Gabriel Catrena

aDepartment of Philosophy, University of Buenos Aires, Argentina

Abstract

We propose the conjecture according to which the fact that quantum me-

chanics does not admit sharp value attributions to both members of a com-

plementary pair of observables can be understood in the light of the symplec-

tic reduction of phase space in constrained Hamiltonian systems. In order

to unpack this claim, we propose a quantum ontology based on two inde-

pendent postulates, namely the phase postulate and the quantum postulate.

The phase postulate generalizes the gauge correspondence between first-class

constraints and gauge transformations to the observables of unconstrained

Hamiltonian systems. The quantum postulate specifies the relationship be-

tween the numerical values of the observables that permit us to individualize

a physical system and the symmetry transformations generated by the oper-

ators associated to these observables. We argue that the quantum postulate

and the phase postulate are formally implemented by the two independent

stages of the geometric quantization of a symplectic manifold, namely the

prequantization formalism and the election of a polarization of pre-quantum

states respectively.

Keywords: quantum mechanics, gauge theories, geometric quantization,

symplectic reduction

I. Introduction

In this article we consider quantum mechanics in the light of a funda-

mental idea coming from gauge theories, namely that first-class constraints

induce gauge transformations [25]. In gauge theories, the symmetries defined

by gauge transformations reduce the amount of observable (or gauge invari-

ant) information that is necessary to completely describe a physical system.
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More precisely, the symplectic reduction defined by the first-class constraints

of the theory permits us to pass from the original constrained phase space,

which contains both physical and non-physical degrees of freedom, to the so-

called reduced phase space, which only describes gauge invariant quantities

[9, 25, 32]. In this way, a constrained Hamiltonian system of 2n canonical

variables and k first-class constraints can be reduced to an unconstrained

Hamiltonian system of 2(n − k) physical canonical variables. The heuris-

tic conjecture of the present article is that a similar idea can be used for

explaining the fact that both members of a complementary pair of observ-

ables cannot be sharp objective properties of the same quantum system in

accordance with Heisenberg uncertainty principle. In other terms, our main

claim is that the reduction in the number of observables that are necessary

to completely describe a physical system from 2n classical observables (e.g.

q and p) to n quantum observables (e.g. q or p) can be understood in the

light of the symplectic reduction of phase space in gauge theories. In or-

der to generalize to unconstrained Hamiltonian systems (what we shall call

from now on) the “gauge correspondence” between first-class constraints

and gauge transformations, we argue that there exists a universal symmetry

acting on the phase space of every Hamiltonian system, be it constrained or

not. The action of this universal symmetry defines a “projection” from the

2n classical observables q and p to the n quantum observables q or p (or a

mixture of both in accordance with Heisenberg uncertainty principle). In or-

der to distinguish this universal symmetry and the corresponding symmetry

transformations from gauge symmetries and gauge transformations—which

are only present in the framework of constrained Hamiltonian systems—,

we call the former phase symmetry and phase transformations respectively.

In order to ascertain the conceptual meaning of phase symmetry, we

show that the existence of this universal symmetry is a direct consequence

of a particular ontology of physical systems. This quantum ontology can be

understood as an extension of what we shall call pre-ontology. According

to the latter, what we shall call an object is a “multifaceted” structure (1)

that has different aspects, profiles, or faces (which will be called from now on

phases); and (2) that is defined by a set of invariant objective properties that

permit observers to recognize the object in spite of its multiple phases. We

argue that the quantum ontology can be obtained by adding two postulates

to the pre-ontology, namely the phase postulate and the quantum postulate.
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The phase postulate generalizes the gauge correspondence between first-

class constraints and gauge transformations to the relation between objective

properties and phase transformations. More precisely, the phase postulate

states that the operators associated to the objective properties of an object

generate its phase transformations. It can be shown that, from a conceptual

point of view, Heisenberg uncertainty principle is a natural consequence

of the following two claims: (1) the operators associated to the objective

properties of a physical system generate its phase transformations (phase

postulate), and (2) the objective properties must be invariant under these

phase transformations. This last assertion is just a particular implementa-

tion of the standard relationship between objectivity and invariance under

a symmetry group [4, 6, 16, 17, 18, 19, 20, 31, 40].

In turn, the quantum postulate establishes a faithful correspondence be-

tween the numerical values of the objective properties of an object and the

phase transformations generated by their associated operators. This postu-

late implies that the particular numerical value of an objective property like

a momentum p, far from being intrinsically related to the velocity q̇ (i.e.

to the transformation of q in time), faithfully specifies how the correspond-

ing object virtually transforms under the phase transformations generated

by the operator associated to p (i.e. the translations in q). We finish ar-

guing that the quantum postulate and the phase postulate are formally

implemented by the two independent stages of the geometric quantization

formalism, namely (1) the prequantization of a sympletic manifold, and (2)

the definition of a polarization respectively [7, 33, 37, 42].

This article continues the work started in Refs.[11, 12]. While the phase

postulate was introduced in Ref.[12], a first formulation of the quantum pos-

tulate was proposed in Ref.[11]. The construction of a quantum ontology

compatible with these postulates was started in Ref.[11]. The main con-

tributions of the present article are (1) the claim according to which the

phase postulate generalizes the gauge correspondence between first-class

constraints and gauge transformations to unconstrained Hamiltonian sys-

tems, and (2) a reformulation of the quantum postulate in terms of the

relationship between the numerical values of the objective properties and

the corresponding phase transformations.1

1In Ref.[11] the quantum postulate is formulated in the framework of the momentum-
map formalism for Hamiltonian actions on symplectic manifolds.
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The organization of the paper is as follows. In Section II, we revisit the

relevant aspects of symplectic geometry and constrained Hamiltonian sys-

tems. In Section III, we introduce the pre-ontology of physical objects. In

Sections IV and V, we introduce the phase postulate and the quantum pos-

tulate respectively. In Section VI, we revisit the difference between momenta

p and velocities q̇ in the light of the proposed postulates. In Section VII,

we analyze the relationship between this twofold conceptual reconstruction

of quantum mechanics on the one hand and the geometric quantization of

a symplectic manifold on the other. In the final section we summarize the

obtained results and its formal consequences.

II. Symplectic Geometry and Constrained Hamiltonian Systems

From a geometric point of view, the phase space of a classical Hamilto-

nian system of n degrees of freedom is a 2n-dimensional symplectic mani-

fold (P,ω). A symplectic manifold is a manifold P endowed with a 2-form

ω (called symplectic structure) that is closed (dω = 0) and non-degenerate

(ivω = 0 ⇔ v = 0), where d is the exterior differential on differential forms

on P

d : Ωk(P ) → Ωk+1(P ), d2 = 0,

and ivω denotes the contraction of the differential form ω with the vector

field v [1, 2]. Darboux’s theorem states that there always exist local coor-

dinate systems (qi, pi) such that ω locally takes the form ω =
∑

i dpi ∧ dq
i

(for the sake of simplicity we shall omit from now on the indices i). In the

simplest case, the phase space of a classical system is given by the cotan-

gent bundle P = T ∗Q
π
−→ Q over the configuration space Q. The symplectic

2-form of a cotangent bundle can be obtained from a canonical 1-form θ on

P by means of the expression ω = dθ (which means that ω is globally exact

in this particular case).2

2The canonical 1-form θ can be defined as follows. For any vector v ∈ Tx(T
∗Q), the

projection π : T ∗Q → Q defines the pushforward π∗v ∈ Tπ(x)Q. On the other hand, the
point x ∈ T ∗Q defines a pair (qx, px), where by definition the 1-form px acts on vectors in
Tπ(x)Q (i.e. px ∈ T ∗

π(x)Q). This means that one can contract the 1-form px and the vector
π∗v. One can then define the canonical 1-form θ on P = T ∗Q by means of the expression
ivθ(x) = iπ∗vpx. In local coordinates (q, p) on T ∗Q, the canonical 1-form is θ = −pdq.
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The 2-form ω of a symplectic manifold defines a correspondence

τ : C∞(P ) → HP ⊂ TP (1)

f 7→ vf ,

between real smooth functions f (classical observables) and the so-called

Hamiltonian vector fields vf (which we shall also call from now on classical

operators). This correspondence is defined by means of the map

T ∗P → TP (2)

df 7→ vf

given by the following expression

ivfω = df. (3)

In R
2, the Hamiltonian vector field associated to an observable f ∈

C∞(P ) takes the simple form

vf =
∂f

∂p

∂

∂q
−
∂f

∂q

∂

∂p
. (4)

The correspondence (1) defines a Poisson structure on the space of clas-

sical observables C∞(P ) through the Poisson bracket3:

{f, g} = vg(f) ∈ C∞(P ). (5)

It can be shown that the Poisson bracket is a Lie algebra, which means

that it satisfies bilinearity, skew-symmetry ({f, g} = −{g, f}) and the Jacobi

identity ({f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0). The set of classical

observables C∞(P ) endowed with the Poisson structure defines a Poisson

algebra. The Jacobi identity can also be expressed as

[vf , vg] = v{f,g}. (6)

This means that the map f 7→ vf is a Lie algebra homomorphism from

the Poisson algebra C∞(P ) to the Lie algebra of Hamiltonian vector fields

HP . Moreover, the Poisson bracket structure and the commutative algebra

3The Poisson bracket can also be defined by means of the expression {f, g} = ivg ivf
ω.

Indeed, ivg ivf
ω = ivg (df) = vg(f) = {f, g}.
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structure associated to the pointwise multiplication of functions in C∞(P )

are related by means of the Leibnitz rule:

vh(fg) = {fg, h} = g{f, h} + f{g, h} = gvh(f) + fvh(g).

Hence, the Poisson structure makes C∞(P ) into a Lie algebra where the

Poisson bracket acts as a derivation in each argument. Indeed, it is worth

noting that {f, g} = vg(f) is by definition the Lie derivative Lvgf of f in

the direction defined by the vector field vg.

The classical operators vf generate symplectic diffeomorphisms—or canon-

ical transformations—of phase space (P,ω), that is to say diffeomorphisms

of P that preserve the symplectic structure ω. Indeed, the Lie derivative of

ω along a Hamiltonian vector field vf is identically zero:

Lvfω = (divf + ivfd)ω = d2f = 0,

where we used (3) and dω = 0. We can thus say that a classical observ-

able f induces an action on physical states in (P,ω) given by the symplectic

diffeomorphisms generated by its associated classical operator vf . These

considerations show that the use of operators acting on physical states, far

from being introduced only in the framework of quantum mechanics, is al-

ready an essential feature of classical mechanics. In other terms, we could

say that the canonical quantization condition

Poisson brackets (of observables) Commmutators (of operators)

is already realized in classical mechanics by the Lie algebra homomorphism

C∞(P ) → HP . Moreover, two classical operators vf and vg do not necessar-

ily commute. As we shall see below, the fact that the classical correspon-

dence (1) between observables and classical operators is not entirely satisfac-

tory justifies the necessity of extending the classical operators to quantum

operators. These remarks have a consequence of fundamental importance,

namely that in order to understand the differences between classical and

quantum mechanics we do not have to compare the non-commutative alge-

bra of quantum operators with the commutative ring structure of classical

observables C∞(P ) (relative to pointwise multiplication), but rather with

the Lie algebra of classical operators HP .

In the rest of this section, we shall briefly describe the theory of clas-

sical constrained Hamiltonian systems (or gauge systems). A constrained
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Hamiltonian system is a Hamiltonian system (P,ω) endowed with a set of

k first-class constraints Ga(q, p) ∈ C∞(P ), with a = 1, ..., k [25]. First-class

constraints are real smooth functions on the phase space P that are in in-

volution, that is to say that form a closed Poisson algebra:

{Ga, Gb} = f cabGc, (7)

where f cab are functions on P called structure functions. First-class con-

straints play a twofold role. On the one hand, they define the constraint

surface Σ ⊂ P by means of the constraint equations:

Ga(q, p) = 0, a = 1, ..., k.

The constraint surface Σ is a submanifold of the phase space P of di-

mension 2n− k. The restriction of the symplectic form ω to Σ is closed but

not non-degenerate. In other terms, ω|Σ = ι∗ω is a pre-symplectic form,

where ι : Σ →֒ P is the inclusion map. Hence, the constraint surface Σ is a

pre-symplectic submanifold of P . In fact, the Hamiltonian vector fields va

defined by the constraints Ga satisfy ivaω|Σ = 0. This means that va are

null vector fields of the pre-symplectic form ω|Σ (see Ref.[25], chap. 2). The

integral lines of the null vector fields va—i.e. the so-called gauge orbits—

define a null foliation of the constraint surface Σ. The first-class constraints

Ga(q, p) induce infinitesimal gauge transformations of classical observables

f(q, p) along the gauge orbits by means of the expression4:

Lvaf = va(f) = {f,Ga} . (8)

In this way, first-class constraints Ga(q, p) induce an action on observables—

and therefore on states—by means of theirs associated classical operators va.

In well-behaved circumstances, the null foliation defined by the gauge or-

bits is fibrating, which means that there exists a projection map π : Σ →

(Pred, ωred) over the quotient space (Pred, ωred). This quotient space is a

symplectic manifold called reduced phase space, where the reduced symplec-

tic form ωred satisfies the expression π∗ωred = ι∗ω, with ι : Σ →֒ P .

4In the rest of this article we shall use the following terminology: the expression “an
observable f induces a transformation” will sometimes be used as an abbreviation for the
longer expression “the operator vf associated to an observable f generates a transforma-
tion”.
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It is worth noting that the involution condition (7) is the Frobenius’ inte-

grability condition for distributions [9]. The fact that first-class constraints

are in involution means that the gauge orbits induced by one constraint

remain in the constraint surface defined by the others. For instance, the

gauge transformation of the constraint Ga generated by the constraint Gb

is given by the Poisson bracket LvGbGa = {Ga, Gb} = f cabGc ≈ 0, where

the weak equality “≈” means that the left side of the equation is equal to

zero only on the constraint surface Σ defined by the constraints. Hence, the

involution condition (7) guarantees that the constraint Ga is invariant on

the constraint surface Σ under the gauge transformation generated by Gb.

This means that the gauge orbits generated by Gb remain in the surface

Ga = 0. It is also worth remarking that the involution condition (7) can

also be interpreted in the following terms. Two constraints Ga(q, p) = 0 and

Gb(q, p) = 0 are said to be “compatible”—which means that they can be

used to define the same constraint surface—only if they “commute” weakly,

i.e. only if {Ga, Gb} = f cabGc ≈ 0. Reciprocally, we could say that (weak)

Poisson non-commutativity defines the obstruction to the compatibility of

different constraints. As we shall see in what follows, the fact that observ-

ables that do not have vanishing Poisson bracket cannot be sharp objective

properties of the same quantum system admits an analogous interpretation.

According to the usual understanding of gauge theories, the gauge trans-

formations induced by first-class constraints are transformations of the coor-

dinate systems that do not modify the physical states. Hence, each element

x ∈ Pred in the reduced phase space of the theory is an equivalence class

composed of all the different coordinate representations of the same phys-

ical state. The so-called gauge observables of the theory are the functions

on Pred. Since in general it is difficult to construct the reduced phase space

Pred of a theory, it is important to know how to recover the observable in-

formation from the functions on the original phase space (P,ω). To do so,

it is necessary to characterize the functions on Pred in terms of functions on

P . This can be done by firstly remarking that the functions on Pred can

be identified to the gauge invariant functions on the constraint surface Σ.

Indeed, functions f ∈ C∞(Σ) that are not invariant along the gauge orbits

generated by the constraints Ga do not define functions on the quotient

space Pred. The second step towards defining gauge observables in terms of

functions on the original phase space P is to characterize the functions on
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the constraint surface Σ in terms of functions on P . This can be done by

defining functions on Σ as equivalence classes of functions on P , where two

functions f, g ∈ C∞(P ) belong to the same equivalence class if they differ in

a function that vanishes on Σ, i.e. if f − g = faGa ≈ 0 (where the coeffi-

cients fa are phase space functions). In other terms, C∞(Σ) = C∞(P )/IΣ,

where IΣ is the ideal of functions vanishing on Σ. Thanks to this two-step

characterization of functions on Pred in term of functions on P , the gauge

observables of the theory can be recovered by means of a cohomological al-

gorithm, namely the so-called BRST cohomology [25]. The nilpotent BRST

operator ΩBRST of this cohomology theory is defined in such a way that its

zero degree cohomology H0(ΩBRST ) coincides with the set of observables of

the system. This means that the operator ΩBRST encodes both the restric-

tion to the constraint surface Σ and the projection to the reduced phase

space Pred.
5

By construction, the gauge observables do not distinguish between states

belonging to the same gauge orbit. However, this does not mean that the

theory is “incomplete”, that is to say that there could exist hypothetical

“hidden gauge variables” capable of physically distinguishing between gauge

equivalent states. Gauge observables cannot distinguish between states be-

longing to the same gauge orbit because these states are just different co-

ordinate representations of the same physical state. If one did not assume

that states in a gauge orbit are physically equivalent, then the theory would

be indeterministic [21]. As we shall claim below, the situation seems to be

analogous in quantum mechanics. According to the proposed interpretative

framework, it is not the case that quantum mechanics is incomplete, but

rather that the different values of the coordinate q of a system characterized

by a sharp value of the momentum p are phase equivalent, which means that

they can be related by means of phase transformations. In other terms, the

different values of q of a system characterized by a sharp value of p belong

to the same phase orbit.

5Conceptual and geometric interpretations of the BRST construction in the framework
of Yang-Mills theory can be found in Refs.[13, 14] respectively.

9



III. Pre-ontology of physical objects

In this section we introduce what we shall call a “pre-ontology” of phys-

ical objects. This pre-ontology is intended to provide a notion of symmetry

capable of explaining the fact that the quantum description of every Hamil-

tonian system does not admit sharp value attributions to both members of a

complementary pair of observables. The fact that every Hamiltonian system

must be described in quantum mechanical terms (even if their behavior can

be approximated by classical mechanics under certain conditions) implies

that the notion of symmetry that we need cannot depend on the partic-

ular characteristics of specific physical systems, such as gauge symmetries

or particular physical symmetries (e.g. systems with spherical invariance,

etc.).

Before characterizing the pre-ontology, we shall describe the heuristic

idea that will lead us to the required notion of symmetry. Classical ob-

servables f ∈ C∞(P ) play a twofold role in mechanics. Firstly, they can

be evaluated on states x ∈ P and used to individualize them. Indeed, the

properties fi(x) defined by a complete set of classical observables suffice for

identifying any state x ∈ P .6 Secondly, classical observables induce sym-

plectic diffeomorphisms of phase space (P,ω) through the action generated

by their associated classical operators vf (Hamiltonian vector fields). It is

worth stressing that this correspondence between observables and classical

operators (which is defined by the symplectic structure of phase space) is a

fundamental feature of classical mechanics that has remained for the mo-

ment uninterpreted. The twofold role played by classical observables means

that any Hamiltonian system can be individualized by specifying the numer-

ical values defined by a complete set of classical observables, which in turn

induce symplectic diffeomorphisms of phase space. This means that the

very individualization of a Hamiltonian system naturally entails a notion

of transformation. The pre-ontology that we shall propose and its quantum

extension are intended to interpret these transformations as symmetry trans-

formations of the corresponding system. These symmetry transformations–

that we shall call phase transformations–will permit us to define a universal

(i.e. valuable for any Hamiltonian system, be it constrained or not) notion

6A set {fi}i ⊂ C∞(P ) is a complete set of classical observables if and only if every
other function g that satisfies {fi, g} = 0 for all fi is necessarily constant.
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of symmetry capable of explaining the fact that the complete description

of a quantum system only requires n canonical variables (instead of the 2n

canonical variables required in classical mechanics).

The pre-ontology is based on the definition according to which the term

object will denote a multifaceted structure characterized by a set of invari-

ant objective properties. Firstly, this means that an object, far from being a

point-like or structureless entity, is a configuration that has different “per-

spectival” aspects, profiles, faces, or (as we shall call them from now on)

phases. Hence, we could say that an object is a multifaceted superposition

of phases. The phase that an object exposes to a hypothetical second object

(which we could call the observer) depends on the relative orientation be-

tween the two objects. In order to “observe” different phases of the object,

it is necessary to perform either an “active” transformation of the object

or, equivalently, a “passive” transformation of the observer’s position. The

transformations that permit the observer to observe the different phases of

an object will be called phase transformations. A set of phases connected

by means of a one-parameter family of phase transformations will be called

phase orbit. The set of phase transformations that generate all the object’s

phase orbits define what we shall call the phase group of the object. These

definitions can be illustrated by considering an ordinary example of a multi-

faceted structure, like for instance a die. A rotation of a die around one of its

main axes is a phase transformation that permits an observer to observe the

corresponding sequence of four numbers. By definition, these four numbers

belong to the same phase orbit.

Besides having different phase orbits, an object is a configuration char-

acterized by a set of objective properties that permit observers to identify

the object in spite of the perspectival variation of its phases. More pre-

cisely, an object will be individualized by a set of values
{

f1
α, ..., f

n
ρ

}

defined

by a set of observables
{

f1, ..., fn
}

, where f iµ denotes a particular value of

the observable f i. Since phase transformations interchange different phases

of the same object, the objective properties
{

f1
α, ..., f

n
ρ

}

that characterize

the object as such must be invariant under the object’s phase group. In

this way, the pre-ontology provides a particular realization of the standard

group-theoretical relationship between objectivity on the one hand and in-

variance under symmetry transformations on the other (different analysis

of this correspondence can be found in Refs.[4, 6, 19, 20, 23, 30, 31, 40]).

11



However, it is worth stressing that the different elements of a phase orbit

should not be understood as different coordinate representations of the same

physical configuration as it is the case in gauge theories, but rather as non-

invariant “perspectival” components of the object’s intrinsic multifaceted

structure. Hence, it is necessary to establish a distinction between the usual

epistemological realization of the correspondence objectivity-invariance and

the ontological realization. The fact that a geometric object (such as a vec-

tor field or a tensor field) admits different coordinate representations does

not mean that coordinate transformations could permit an observer to gain

access to different intrinsic profiles of the geometric object. On the contrary,

the different phases of an object that are interchanged by the corresponding

phase transformations belong to the intrinsic multifaceted structure of the

object. Even if its phases are not invariant under phase transformations,

they are different intrinsic profiles of the same object.

It is worth stressing that phase transformations define a universal notion

of invariance that stems from the definition according to which every object

is, independently of its particular characteristics, a multifaceted structure.

Hence, it is important not to confuse the universal phase symmetry with

the possible particular symmetries of specific systems (like for instance the

symmetries of snow crystals, regular polygons, or systems with spherical

invariance). In order to clarify this point, let’s consider for instance two dice

of six phases: a normal die A (whose phases are numbered from one to six)

and a die B such that the same number is printed on opposite phases (let’s

say the numbers 1, 3 and 5 for each pair of opposite phases). According to

the pre-ontology, the objective properties of both dice have to be invariant

under the corresponding phase groups. Besides this universal symmetry,

the die B has an additional particular symmetry, namely a symmetry under

rotations of n180◦ (n ∈ Z) around any of its three main axes. This means

that its opposite phases cannot be qualitatively distinguished, even if they

are phases of the die that are numerically different. Hence, if an observer

rotates the die B 180◦ around one of its main axes, (s)he will not observe any

difference between the initial and the final state of the die. On the contrary,

if an observer rotates the die A around one of its main axes (excluding

rotations of 360◦), (s)he will observe phases of the die that are qualitatively

different, in spite of the fact that (s)he is always observing the same die.

This example suggests that phase transformations can produce “observable”
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effects, even if they do not modify the object as such. In particular, the six

possible outcomes of a toss of a normal die are qualitatively different, in

spite of the fact that these outcomes are just non-objective phases of the

die.

To sum up the pre-ontology, we can say that there is no objective en-

tity without an invariant identity ([34], p. 23), nor without different non-

invariant phases. We shall now claim that this pre-ontology does not con-

vey a complete ontology of physical objects. The reason for this is that

the phase group of a given object–and therefore the corresponding objective

invariants–remain for the moment unspecified. This problem was clearly

stated by Nozick in the following terms: ‘The notion of invariance under

transformations cannot (without further supplementation) be a complete

criterion of the objectivity of facts, for its application depends upon a selec-

tion of which transformations something is to be invariant under.’ ([31], p.

79). In order to specify the phase group that defines the objective invari-

ants of an object, we have to supplement the pre-ontology with an additional

criterion. We shall now examine two alternative strategies for doing so.

Firstly, we could stress that the different phases of an object can be

observed by performing spatiotemporal rotations and translations of the ob-

ject. Hence, the group of phase transformations should be related to the

kinematical symmetry group of the geometric background in which the ob-

ject is embedded. Following this line of reasoning, we could try to adapt the

strategy developed in Wigner’s seminal 1939 paper [41] to the conceptual

framework provided by the pre-ontology (see also Refs.[5, 28, 38]).7 More

precisely, the space of phase orbits of the object should be a representa-

tion space for the kinematical group of the geometric background. In other

terms, the phase orbits of an object embedded in a geometric background en-

dowed with a particular kinematical group of symmetry (e.g. Galilei group,

Poincaré group, etc.) should be generated by elements of a representation of

the corresponding group. However, this proposal does not solve the problem

of the indetermination of the phase group. In order to show this, we can

argue as follows. We want to understand why the description of a physical

system in terms of the canonical variables (q, p) of a symplectic manifold

7Philosophical discussions of Wigner’s description of “elementary particles” in terms
of irreducible representations of the relevant kinematic group of symmetries can be found
in Refs.[18, 19, 30, 35].
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(P,ω) is not satisfactory. In the terms provided by the geometric quan-

tization formalism, we want to understand why it is necessary to extend

the symplectic manifold (P,ω) to a U(1)-complex linear bundle L→ P en-

dowed with a connection and a compatible Hermitian metric. However, the

information according to which the canonical variables (q, p) of a symplectic

manifold describe the embedding of the corresponding physical system in

a spatiotemporal manifold is an additional piece of information that is not

encoded in the symplectic manifold itself. In other terms, nothing in a sym-

plectic manifold (P,ω) forces us to assume that the observables f ∈ C∞(P )

describe a spatiotemporal dynamics. In particular, there exist physical sys-

tems, like for instance the inertio-gravitation field of general relativity, that

by definition are not embedded in an external geometric stage. Indeed, the

canonical variables of the ADM Hamiltonian formulation of general relativ-

ity describe (in a particular gauge) the temporal evolution of the Riemannian

geometry of spatial hypersurfaces [3, 29]. This means that the Hamiltonian

formulation of general relativity does not describe the dynamics of some

canonical degrees of freedom in space, but rather the temporal evolution

of the geometry of space itself. Since the final objective of this analysis

is to construct a quantum ontology valid for any Hamiltonian system, we

cannot presuppose that the corresponding observables can always be inter-

preted in terms of an embedding of the corresponding system in a geometric

background. Hence, the only geometric setting that we shall presuppose

is the symplectic manifold (P,ω) that describes the possible states of the

classical system. An advocate of a Wignerian approach could still reply

that in the case of general relativity and classical Yang-Mills theory the

group of phase transformations could be identified with the group of general

diffeomorphisms of the Lorentzian manifold M and the gauge group (i.e.

the group of vertical automorphisms of the corresponding G-principal fiber

bundle over M) respectively. However, these groups are generated by the

first-class constraints of the corresponding theories. This means that the

corresponding gauge symmetries can be eliminated (at least in principle)

by passing to the unconstrained reduced phase space description. By doing

so, we obtain ordinary (i.e. unconstrained) classical Hamiltonian systems.

The universal phase symmetry must explain why the classical description

provided by this reduced phase space is overdetermined, even if the gauge

group action has already been quotiened out. Since our objective is to con-
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struct an ontology of physical systems capable of explaining the necessity

of passing from the 2n-dimensional classical description of an unconstrained

Hamiltonian system to the n-dimensional quantum description, we cannot

identify the phase group that induces this reduction with a gauge group. All

in all, whereas gauge symmetries generated by k first-class constraints ex-

plain the symplectic reduction from the 2(n+k) original degrees of freedom

of a constrained system to the 2n degrees of freedom of the reduced phase

space, phase symmetries must explain the reduction from these 2n classical

degrees of freedom to the n quantum degrees of freedom.

A second proposal for trying to bypass the indetermination of the phase

group of an object is to claim, in the wake of Klein’s Erlangen program,

that the symmetry group is fixed by the free (or conventional) choice of

what Debs and Redhead call an “invariance criterion” [20]. We could then

argue, as for instance Cassirer does, that the freedom in the choice of the

group of symmetry transformations is a consequence of the fact that the

objective invariants, far from being immediately given, result from an ac-

tive determination of physical objectivity.8 This means that what counts

as an objective invariant is not defined once for all, but rather depends on

the kind of properties that the subject considers relevant in a given research

framework [19].9 However, this proposal does not permit us to overcome the

indetermination of the phase group for the following reason. We want to use

the action of the phase group to explain the “projection” from the 2n clas-

sical canonical variables to the n quantum observables that define quantum

states. We know from quantum mechanics that this “projection” depends

on the quantum system. For instance, a quantum system can be localized

either in q or in p, i.e. be an eigenstate either of q̂ or p̂. If we assumed that

the phase group is fixed by the free election of an invariance criterion, then

8‘Taking our departure from a fact given in intuition, there are altogether different
directions in which we may proceed and determine the fact accordingly, i.e., according
to the group of transformations to which we may refer. We enjoy complete freedom in
the choice of these alternative groups. Different groups will yield different invariants and
hence different geometrical properties.’ ([16], p. 14; see also Ref.[17]).

9Weyl subscribes this solution in the following terms: ‘We found that objectivity means
invariance with respect to the group of automorphisms. Reality may not always give a clear
answer to the question what the actual group of automorphisms is, and for the purpose
of some investigations it may be quite useful to replace it by a wider group.’ ([40], p.
132). In Ref.[26] Ladyman describes Weyl’s notion of objectivity in the following terms:
“Objects are picked out by individuating invariants with respect to the transformations
relevant to the context.”
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the difference between a state localized in q and a state localized in p would

become purely conventional. Hence, the very physical difference between

eigenstates of different quantum operators would disappear. As we know

from quantum mechanics, it is the choice of a representation–i.e. the choice

of a basis of the Hilbert space–that results from a free choice. On the con-

trary, the fact that a quantum state is an eigenstate of a certain complete

set of commuting operators defines the physical state as such. Moreover,

there is no reason for presupposing that the objective properties of different

objects of the same kind (i.e. described by the same space of states) must

be invariant with respect to the same phase group. In the conceptual frame-

work provided by the pre-ontology, two objects can differ in two ways. On

the one hand, their invariants with respect to the same phase group can be

different. In quantum mechanical terms, two quantum states can differ by

the fact that they are eigenstates of the same complete set of commuting op-

erators with different eigenvalues. Secondly, the objective properties of two

different objects can be invariant with respect to different phase groups. In

quantum mechanical terms, two quantum states can differ by the fact that

they are eigenstates of different complete sets of commuting operators. This

means that phase symmetry cannot result from the “subjective” freedom

in defining the kind of transformations and invariants that the observer will

take into consideration, but rather from the intrinsic structure of the objects

themselves.

The indetermination of the phase group justifies the necessity of extend-

ing the pre-ontology to what we shall call quantum ontology. The latter

can be obtained by adding two postulates to the former, namely the phase

postulate and the quantum postulate. Whereas the phase postulate specifies

the phase group that defines the objective properties of a given object, the

quantum postulate uses this specification to provide a positive characteri-

zation of the information about the object that is conveyed by its objective

properties. We shall then argue that these two postulates are formally im-

plemented by the two steps of the geometric quantization of a symplectic

manifolds, namely the prequantization and the election of a polarization of

pre-quantum states.
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IV. Phase postulate

According to the considerations of Section II, the localization (or indi-

vidualization) of physical states in gauge theories depends on the existence

of two kinds of properties, namely the first-class constraints and the observ-

ables. While the first-class constraints Ga ∈ C∞(P ) allow us to define the

reduced phase space (Pred, ωred) of possible physical states of the theory,

the observables f ∈ C∞(Pred) allow us to individualize the different physical

states in Pred. We could say that the constraints define the kind of physi-

cal states that the theory takes into consideration. On the other hand, the

observables can be used to individualize the different physical states of the

corresponding kind. For instance, the presence of first-class constraints in

the Hamiltonian formulation of general relativity implies that the possible

physical histories described by the theory do not represent 4-dimensional

manifolds M endowed with Lorentzian metrics gab, but rather equivalence

classes [(M,gab)] of Lorentzian manifolds under general diffeomorphisms of

M . Far from being a mere epistemic requirement, these constraints encode

the ontological commitment of the theory, that is to say the kind of its possi-

ble physical states.10 Indeed, the existence of constraints in general relativity

implies that the kind of possible physical states described by the theory is

such that spatiotemporal locations on M have no physical significance [36].

The important point for the present discussion is that these two classes

of properties—i.e. the first-class constraints and the observables—are dif-

ferently treated in classical mechanics. On the one hand, the first-class

constraints—i.e. the properties that define the kind of possible physical

states—“strike” twice. Firstly, the constraints define a localization (or,

equivalently, a restriction) to the constraint surface Σ ⊂ P . Secondly, the

constraints induce gauge transformations that define a projection Σ → Pred

to the orbit space of possible physical states (reduced phase space). We could

then say that the localization to the constraint surface defined by a set of

first-class constraints {Ga} entails a projection to the orbit space defined by

the action of the associated classical operators {va}.
11 We could rephrase

10An analysis of this ontological interpretation of gauge symmetries for the particular
case of classical Yang-Mills theory can be found in Ref.[13].

11The fact that the localization to the constraint surface defined by a first-class con-
straint Ga always entails a projection along the gauge orbits generated by the Hamiltonian
vector field va explains why each constraint removes two unphysical canonical variables.
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this by saying that the restriction to the subspace of states that satisfy

the constraint equation Ga(q, p) = 0 entails the impossibility of identify-

ing different elements of a single gauge orbit generated by va with different

physical states. It is worth stressing that this “limitation” does not result

from a supposed incompleteness of the theory, but rather from the fact that

gauge equivalent states are just different coordinate representations of the

same physical state.

On the other hand, the observables on the reduced phase space f(q, p) ∈

C∞(Pred) (or, in general, on any unconstrained phase space) “strike” only

once.12 Let’s consider for instance the subspace of states that satisfy the

property p = p0. The important point is that the restriction to the surface

p = p0 does not entail a projection defined by the action of the classical

operator vp = ∂
∂q (which generates translations along the coordinate q). In

other terms, the fact that the momentum p of a physical system has the value

p0 does not imply that the transformations between the different values of

q are mere symmetry transformations. Hence, the restriction to the surface

defined by a particular value of p does not forbid us from identifying each

value of the canonically conjugated coordinate q with a different physical

state. In fact, in classical mechanics it is necessary to fix the values of both

q and p in order to individualize a physical state. We can thus conclude that

in classical mechanics a localization defined by an observable does not entail

a projection along the canonically conjugated observable.

To summarize, we can say that a classical observable only defines a lo-

calization, whereas a first-class constraint defines both a localization (to the

constraint surface) and a projection (to the reduced phase space). The first

postulate of the quantum ontology removes this difference between observ-

ables and first-class constraints:

Phase postulate: the transformations induced by an observable f that

defines an objective property of an object are phase transformations of the

object.

In other terms, whereas first-class constraints induce gauge transforma-

tions, the transformations induced by the objective properties of an ob-

12For the sake of simplicity, we use the same letters q and p for denoting the canonical
variables of both P and Pred.

18



ject should be understood as phase transformations. We are thus claiming

that the correspondence between properties and symmetry transformations

should be valid for both the properties that define the kind of possible phys-

ical states (first-class constraints) and the properties that individualize the

different physical states of the same kind (observables). In other terms, a

localization—be it defined by a first-class constraint or by an observable—

must always entail a projection. Let’s consider for instance a physical system

characterized by the objective property p = p0. According to the phase pos-

tulate, the transformations generated by the operator associated to p (i.e.

the translations along the coordinate q) must be interpreted as phase trans-

formations of the corresponding object. Hence, we can say that the phase

transformations induced by p “phase out” the coordinate q, which means

that the different values of q are just “pure phase”. In this way, the phase

postulate explains why a quantum physical system cannot be described by

2n sharp objective (or phase invariant) properties.

The phase postulate permit us to define the group of phase transforma-

tions of a given object in the following terms: the phase group of an object

is composed of all the transformations induced by the objective properties of

the object. Hence, the phase group is object-dependent: two objects defined

by the values
{

f1
α, ..., f

n
ρ

}

and
{

g1
β , ..., g

n
̺

}

of the different set of observables
{

f1, ..., fn
}

and
{

g1, ..., gn
}

respectively have different phase groups, namely

the groups of phase transformations generated by the operators associated

to these two different sets of observables.

The phase postulate implies that we cannot identify each point of a sym-

plectic manifold with a different physical state, even if the system has no

constraints. We could say that points in phase space provide an overde-

termined description of physical systems, since they do not only define the

objective properties of the system (e.g. p0) but also select one particular

representant (e.g. q0) of the orbit generated by the action of the operator

(e.g. vp) associated to the objective property in question.13 We can thus

conclude that phase space is not an adequate geometric arena for defining

physical systems that satisfy the phase postulate. It is worth stressing that

this conceptual justification of the reduction in the number of variables that

13Analogously, points in the original phase space of a constrained Hamiltonian system
provide an overdetermined description of physical states, since they fix the values of 2k
non-physical canonical variables (where k is the number of first-class constraints).
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are necessary to completely decribe a physical system does not presuppose

any kind of epistemic restriction to the amount of information an observer

can have about an object.

V. Quantum postulate

The phase postulate states that the objective properties of a physical

system induce, by means of the action generated by theirs associated op-

erators, the phase transformations between its non-objective phases. We

shall now analyze the relationship between the possible numerical values of

the objective properties and the phase transformations generated by theirs

associated operators. In other terms, we want to understand the relation-

ship between the two fundamental roles played by physical observables in

mechanics, namely (1) to assign numerical values to physical states, and

(2) to define operators that act on states. To do so, we shall begin by re-

marking a tautological fact, namely that by definition a velocity q̇ conveys

information about the instantaneous rapidity of the transformation of q in

time. Analogously, we could expect the particular value of a momentum

p to convey information about the transformations that are naturally as-

sociated to it, namely the canonical transformations of q generated by the

classical operator vp. However, in classical mechanics the different values of

an observable f ∈ C∞(P ) do not convey any information about the trans-

formations generated by the classical operator vf ∈ TP associated to f . For

instance, the transformations of q generated by vp = ∂
∂q do not depend on

the numerical value of p. Indeed, p and p′ = p + k (with k ∈ R) define the

same infinitesimal transformation of q:

Lievp+kq = {q, p+ k} = {q, p} = Lievpq.

This is a consequence of the fact that the surjective Lie algebra ho-

momorphism (1) between observables f ∈ C∞(P ) and classical operators

vf ∈ HP is not injective (or faithful), being its kernel the set of constant
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functions14:

f(q, p) = k ∈ R 7→ vk =
∂k

∂p

∂

∂q
−
∂k

∂q

∂

∂p
= 0.

We can thus conclude that the non-injectivity of the Lie algebra homo-

morphism (1) between the Poisson algebra of observables C∞(P ) and the Lie

algebra HP of classical operators implies that the canonical transformations

generated by vp do not depend on the particular value of p. It is worth not-

ing that this fact can also be considered a consequence of the commutativity

of the classical operators vp and vq. Indeed, since the translation from p to

p′ = p + k is generated by the classical operator vq = − ∂
∂p associated to q,

the variation of vp under a transformation of p is given by the Lie derivative

of vp along vq. In other terms, the Lie derivative Lievqvp
.
= [vp, vq] measures

how the classical operator vp changes under a transformation of p (generated

by definition by vq). The important result is that the non-injectivity of the

Lie algebra homomorphism (1) implies that this Lie derivative is zero:

Lievqvp = [vp, vq] = v{q,p} = v1 = 0.

Therefore, the commutativity of the classical operators associated to

canonically conjugated variables implies that the numerical values of the

latter (e.g. p) do not faithfully quantify the transformations generated by

theirs associated classical operators (e.g. vp). In order to bypass this flaw

of the Lie algebra homomorphism (1) between observables and classical op-

erators, we shall introduce the second postulate of the quantum ontology:

Quantum postulate: the numerical value of an objective property of

an object must faithfully quantify the phase transformations generated by

its associated operator.

The previous arguments show that the implementation of this postulate

requires to force the injectivity of the Lie algebra homomorphism between

14This property of the application between observables f ∈ C∞(P ) and Hamiltonian
vector fields vf ∈ HP can be summed up by saying that the short sequence

0 → R
i
−→ C∞(P )

π
−→ HP → 0

is exact. In other words, the image of the injection i—the constant functions f = k in
C∞(P )—is the kernel of the projection π. This means that HP = C∞(P )/R.
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observables and operators. Equivalently, in order to implement a faith-

ful correspondence between the two roles played by physical observables—

namely, to assign numerical values to physical states and to induce canonical

transformations—, it is necessary to force the non-commutativity of the op-

erators associated to complementary pairs of observables. In this way, the

quantum postulate permits us to understand the conceptual scope of the

formal analogy between Poisson brackets of classical observables and com-

mutators of quantum operators proposed by Dirac. The essential difference

between classical and quantum mechanics does not rely on the existence of

a map between observables f and operators Of such that [Of , Og] = O{f,g}

(condition which is already satisfied by the Lie algebra homomorphism (5)

between observables f ∈ C∞(P ) and classical operators vf ∈ TP ; see ex-

pression (6)), but rather on the requirement according to which such a map

must be injective. This last requirement amounts to implement the Dirac

quantization condition according to which quantum operators must verify

O1 = 1̂, where 1̂ is the identity operator.

A satisfactory implementation of the two postulates of the quantum on-

tology would permit us to define an objective property of an object as a

quantity that faithfully (quantum postulate) quantifies the phase transfor-

mations of the object generated by its associated operator (phase postulate).

In section VII, we shall argue that geometric quantization implements these

two independent postulates of the quantum ontology in two different stages,

namely the prequantization of a symplectic manifold and the election of a

polarization. As we shall see, whereas the implementation of the quantum

postulate requires to pass from classical operators to quantum operators,

the implementation of the phase postulate requires to pass from classical

states to quantum states. Before showing this, we shall further analyze the

notion of objective properties that results from these postulates.

VI. Momenta vs. velocities

It is worth stressing that the notion of objective properties that results

from the phase postulate and the quantum postulate differs from the usual

interpretation of physical observables. According to the standard compre-

hension of Hamiltonian mechanics, a momentum p is just the canonical

version of the velocity q̇(t). This means that p indirectly measures, via its

relation to q̇(t), the instantaneous rapidity of a physical motion along the
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coordinate q parameterized by a temporal parameter t. The transformation

from the dependent variables q and q̇(t) to the independent canonical vari-

ables q and p, i.e. the introduction of the auxiliary variables p, seems to be a

mere trick to pass from the n second-order Euler-Lagrange equations to the

2n first-order Hamilton equations. However, the relation between p and q̇(t)

depends on the presupposition of a temporal structure, that is to say of a

temporal variable t and a conjugated Hamiltonian h. A temporal structure

can be introduced in two different ways. For subsystems of the universe, the

existence of a temporal structure results from the presupposition of an exter-

nal temporal parameter t and the definition of a Hamiltonian function h on

the phase space of the subsystem in question. In a cosmological framework,

where by definition there are no external variables, a temporal structure

can be defined by selecting a suitable degree of freedom to play the role of

an internal physical clock. These kinds of systems are characterized by the

presence of the so-called Hamiltonian constraint H = 0. The election of an

internal temporal structure amounts to fix the gauge [15]. The important

point in the present context is that a temporal structure (either external

or internal) is an additional layer of structure that is not encoded in the

symplectic structure of phase space. In order to stress this fact, we shall

establish a difference between a symplectic system (P,ω) and a Hamiltonian

system (P,ω, t, h), that is a symplectic system endowed with a temporal

structure.

The point that we want to stress here is that the notion of objective

properties conveyed by the phase postulate and the quantum postulate, far

from presupposing the existence of a temporal structure, only relies on the

symplectic structure of phase space. As we explained in Section II, the

classical operators vf ∈ HP defined by the Lie algebra homomorphism (1)

act on physical states by means of symplectic diffeomorphisms (or canonical

transformations) of (P,ω). In particular, the momentum p induces canon-

ical transformations of the coordinate q through the action of the classical

operator vp = ∂
∂q . If the symplectic system is endowed with a temporal

structure (t, h), then we can legitimately claim that the momentum p, be-

ing related to the velocity q̇(t) through Hamilton’s equation q̇(t) = ∂h
∂p ,

indirectly measures the rapidity of the transformations of q in time. Let’s

suppose, for instance, a standard Hamiltonian system with Hamiltonian

function h(q, p) = p2

2m + V (q). As we argue in Section V, the canonical
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transformations of q induced by p are not faithfully quantified by the nu-

merical values of p. On the contrary, the transformations of q in time are

faithfully quantified by the value of the momentum p, since p = mq̇(t). How-

ever, this is just a consequence of that fact that the Hamiltonian function

h is quadratic in p. Indeed, Hamilton’s equation dq
dt = ∂h

∂p means that the

differential relationship between the transformations of q (induced by p) and

the transformations of t (induced by h) depends on the functional relation

between the generators of the corresponding transformations, namely p and

h respectively. For instance, if the Hamiltonian h were linear in p, then

there would be no relation between q̇ and p. The important point in the

present context is that the canonical transformations of q generated by p

can be related to the transformations of q in time (i.e. to a temporal phys-

ical motion of the system) only through the mediation of the Hamiltonian

h. If the system is not endowed with a temporal structure, then we cannot

pass from canonical transformations to temporal physical motions. We shall

then maintain that a physical interpretation of p valid for any symplectic

system (be it endowed with a temporal structure or not) must stem from

the intrinsic definition of p, that is from the definition according to which

p is an observable that induces canonical transformations of q through the

action of its associated operator. Hence, it is necessary to construct a sat-

isfactory physical interpretation of the canonical transformations induced

by p. The phase postulate carries out this task. According to this postu-

late, the canonical transformations induced by an objective property of an

object must be interpreted as phase transformations between the different

non-objective phases of the object. However, the interpretation of canonical

transformations as phase transformations would not be entirely satisfactory

if the numerical values of the objective property in question were not related

to the induced phase transformations. This problem is solved by means of

the quantum postulate. Indeed, if the application between observables and

operators were injective, then the numerical value of an objective property

could be interpreted as a faithful numerical characterization of the way in

which the object transforms under the corresponding phase transformations.

The implementation of the quantum postulate and the phase postulate

would allow us to maintain that a momentum p, far from being intrinsically

related to a velocity q̇, must be understood as a quantity that faithfully

quantifies (quantum postulate) the phase transformations of q generated by
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the operator associated to p (phase postulate). This means that the differ-

ent values of the coordinate q of an object characterized by a sharp value

of p do not describe the different instantaneous positions of a moving point-

like object, but rather the different “positional” phases of an intrinsically

delocalized object.15 The important point is that this interpretation of the

canonical transformations induced by an objective property does not depend

on the possibility of realizing these transformations as effective motions in

time. In particular, the objective properties of a symplectic system that is

not endowed with a temporal structure, far from describing the temporal

motion of the system, provide, by inducing the corresponding phase orbits,

a faithful description of its atemporal multifaceted structure. By adopting

the terminology introduced by Weyl in Ref.[39], we shall say that the trans-

formations of an object induced by its objective properties, far from being

actual displacements of the object in time, are virtual transformations of

the object. If the system is endowed with a temporal structure, then these

virtual transformations can be turned into actual displacements in time by

measn of the corresponding Hamilton equation.

It is worth remarking that the rapidity of the motion in time of differ-

ent physical systems can be quantified and mutually compared thanks to

the existence of the standard provided by the common flow of time. In

other terms, the difference between two velocities q̇1(t) and q̇1(t) reflects

the fact that the corresponding systems traverse different distances in the

same (infinitesimal) period of time. If we want to construct a satisfactory

interpretation of an observable like a momentum p by making abstraction

of the existence of the standard provided by the flow of time, then we have

to determine which is the common standard that permits us to distinguish

15In Ref.[11] (section III) we analyzed the compatibility between such an “atemporal”
description of a free particle and the standard description in terms of the temporal evo-
lution of the corresponding degrees of freedom. Briefly, the energy E = p0

2m
of a free

particle characterized by the objective property p = p0 is also an objective property of
the particle. Hence, the phase postulate implies that the transformations induced by the
Hamiltonian h = p

2m
(i.e. the transformations of t) are mere phase transformations of the

particle. In other terms, the fact that the Hamiltonian h is an objective property of the
particle implies that the temporal evolution of the system is just a phase transformation.
It follows that the different positions q(t), far from being instantaneous objective proper-
ties of a particle that is objectively moving in time, are just different phases of the system
parameterized by t. Hence, the phase postulate implies that a free “particle”, far from
being a point-like object moving in time, should be understood as a delocalized object
endowed with different temporal phases.
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two different values of p. The answer to this problem is provided in Ref.[12].

By using the so-called momentum map formalism, we showed that the in-

jectivity of the map between observables and operators would permit us to

define physical observables as quantities that faithfully quantify the repre-

sentation of abstract operators belonging to the corresponding Lie algebra

g as operators acting on the space of states. In particular, different values

of the observable p, far from characterizing the transformations of q with

respect to the common flow of time, would quantify the different possible

representations of the same abstract operator ξq ∈ g.16

VII. Geometric quantization in the light of the quantum ontology

The phase postulate and the quantum postulate cannot be implemented

in the framework of classical mechanics. Firstly, the representation of phys-

ical systems by means of points in phase space does not satisfy the phase

postulate. In fact, this postulate implies that classical states are overde-

termined, since they do not only define the objective properties of physi-

cal systems (e.g. p0) but also select one particular value (e.g. q0) of the

phase orbit generated by the operator (e.g. vp) associated to the objective

property. This means that non-objective properties are wrongly considered

objective in classical mechanics. Secondly, the non-injective Lie algebra ho-

momorphism (1) between observables f ∈ C∞(P ) and classical operators

vf ∈ HP does not satisfy the quantum postulate. We shall now argue that

16The main geometric ingredients of this construction are the following. The symplectic
action Φ : G× P → P of a Lie group G of Lie algebra g on a manifold P defines a map
ι : g → TP between Lie algebra elements ξ ∈ g and the so-called fundamental vector fields

vξ on P by means of the expression vξ(x) = d
dλ

(exp(−λξ) ·x)|λ=0 (for x ∈ P ). In Ref.[12],
we introduced the following terminology: the fundamental vector field vξ ∈ TP evaluated
at a point x ∈ P is said to be the representation of the abstract operator ξ ∈ g on the
particular state x. A symplectic G-action is said to be Hamiltonian if there exists a map
µ̃ : g → C∞(P ) (called co-momentum map) such that τ ◦ µ̃ = ι, where τ : C∞(P ) → HP .
This means that the representation ι of abstract operators in g as fundamental vector
fields in TP is factorized through the physical observables in C∞(P ):

g
µ̃

//

ι

""

C∞(P )
τ

// HP .

If the maps µ̃ and τ were equivariant and injective respectively, then we could state that
observables in C∞(P ) faithfully quantify the representation on P of abstract operators in
g. However, this is not the case in classical mechanics (see Ref.[12] for details).
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the canonical quantization of a symplectic manifold (P,ω) amounts to im-

plement these two postulates. Our arguments rely on the most rigorous

mathematical constructive formalization of canonical quantization, namely

geometric quantization [7, 33, 37, 42].17

According to the canonical quantization procedure, the self-adjoint quan-

tum operators v̂f associated to observables f ∈ C∞(P ) must satisfy the

following conditions:

Q1) If f = k ∈ R, then v̂f=k = kI, where I is the identity operator.

Q2) If {f, g} = h, then [v̂f , v̂g] = −i~v̂h.

Q3) If {fi} is a complete set of classical observables, then the set {v̂fi}

must act irreducibly on the Hilbert space of quantum states.18

Condition Q2 states that the application from observables to operators

must be a Lie algebra homomorphism. However, expression (6) shows that

this condition is already satisfied by the classical application (1) between

observables f ∈ C∞(P ) and classical operators vf ∈ HP . Hence, far from

being introduced when passing to the quantum description, the existence

of an application between Poisson brackets of observables and commuta-

tors of operators is an essential feature of classical mechanics. This means

that strictly speaking canonical quantization only relies on two fundamental

conditions, namely Q1 and Q3.

Condition Q1 states that the Lie algebra homomorphism between ob-

servables and operators must be injective. In the framework of geometric

quantization, this condition is implemented by means of the so-called pre-

quantization formalism. This formalism shows that an operator algebra

isomorphic to the Poisson algebra C∞(P ) of classical observables can be

defined by extending classical operators vf to quantum operators v̂f . To

do so, it is necessary to define a U(1)-principal fiber bundle L
ϑ
−→ P over

the phase space (P,ω) endowed with a connection θ̃ of curvature defined

17Short introductions to geometric quantization can also be found in Refs.[1, 27].
18A set of smooth functions {fi} on P is said to be a complete set of classical observables

if every other function g that satisfies {fi, g} = 0 for all fi is necessarily constant. This
implies that the complete set {fi} locally separates points in P . In other terms, the values
{fi(x)} provided by a complete set of classical observables suffice to individualize the state
x ∈ P . In turn, a set of self-adjoint operators {v̂fi

} acting on a Hilbert space H is said to
be a complete set of operators if every other operator v̂g that commutes with all of them
is a multiple of the identity.
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by the symplectic form ω.19 Thanks to the existence of the new “verti-

cal” dimensions defined by the fibers ϑ−1(x) (with x ∈ P ), it is possible to

add vertical components ζf tangent to the fibers to the classical operators

vf ∈ TP . Moreover, this can be done in such a way that the extended vector

fields v̂f = vhf + ζf (where vhf is the horizontal lift of vf defined by the con-

nection θ̃) satisfy commutation relations isomorphic to the Poisson algebra

of observables. In this way, the prequantization formalism shows that the

quantum operators v̂f can be obtained by means of a suitable extension of

the classical operators vf .

The quantum operators v̂f act by construction on functions on L. This

action can be used to define an induced action on the so-called pre-quantum

states, that is on the sections of the associated fiber bundle L̃ = L×U(1)C
π
−→

P . Let’s denote H(P,L) the space of these sections. More precisely, it can

be shown that the quantum operators v̂f act on sections ψ : P → L̃ by

means of the following expression ([7], Proposition 2.3.16):

v̂f (ψ) = −i~∇vfψ + fψ, (9)

where ∇vf = vf + i
~
θ̃(vf ).

Let’s consider for instance the cotangent bundle P = T ∗Q. Since the

curvature of the connection θ̃ is given by the symplectic form ω, the local

connection form coincides with the canonical 1-form θ of the symplectic

manifold (P,ω). By choosing the local connection form θ = −pdq, the

quantum operators associated to q and p take the form:

v̂q = i~
∂

∂p
+ q, v̂p = −i~

∂

∂q
. (10)

By endowing the associated fiber bundle L̃→ P with an Hermitian inner

product compatible with the connection ∇, expression (9) defines Hermitian

operators with respect to the inner product

〈ψ,ϕ〉 =

∫

P
〈ψ(x), ϕ(x)〉

ωn

n!
,

where ψ and ϕ are sections of L̃.

19It is possible to show that this geometric construction exists if an only if ω satisfies the
so-called integrality condition, i.e. if an only if (2π~)−1ω defines an integral cohomology
class in H2(P,Z). It is worth remarking that the discrete character of some quantum
operators’ spectra can be derived from this topological condition (see Refs.[7, 33, 37, 42]
for details).

28



The extension of classical operators vf to quantum operators v̂f does not

suffice to reobtain quantum mechanics. In fact, since pre-quantum states

ψ : P → L̃ can be localized in both q and p, they violate Heisenberg uncer-

tainty principle. The fact that the Hilbert space H(P,L) of pre-quantum

states is so large implies that the quantum operators associated to a com-

plete set of classical observables do not act irreducibly on the Hilbert space

of pre-quantum states. Hence, the Hilbert space of pre-quantum states does

not satisfy condition Q3.
20 In the framework of geometric quantization,

this problem can be solved—i.e. condition Q3 can be satisfied—by intro-

ducing an additional structure, namely a polarization. Roughly speaking,

the election of a polarization “cuts in half” the Hilbert space H(P,L) of

pre-quantum states. A polarization P of a symplectic manifold (P,ω) is a

foliation of P by Lagrangian (i.e. maximally isotropic) submanifolds. A

Lagrangian submanifold of a 2n-dimensional symplectic manifold (P,ω) is a

n-dimensional submanifold K ⊂ P such that ω vanishes on TxK × TxK. A

canonical example of a Lagrangian submanifold is the configuration space

Q of the cotangent bundle P = T ∗Q. The identity ivg ivfω = {f, g} implies

that the observables associated to the Hamiltonian vector fields that define

a polarization form a complete set of commuting observables. A section

ψ : P → L̃ is said to be polarized with respect to the polarization P if it is

covariantly constant along P, i.e. if it satisfies

∇Pψ = 0. (11)

Let’s consider for instance the so-called vertical polarization of the cotan-

gent bundle P = T ∗Q, i.e. the polarization spanned by the vector field ∂
∂p .

If we choose the local connection form θ = −pdq, then the polarized sections

are the functions on T ∗Q that satisfy ∂ψ
∂p = 0, that is the functions that are

constant along the fibers of the cotangent bundle T ∗Q. The resulting po-

larized states only depend on the coordinate q of the configuration space Q

(Schrödinger representation). Analogously, the momentum representation

can be obtained by using the polarization spanned by the vector field ∂
∂q .

These trivial examples show that the election of a particular polarization

20Let’s consider for instance the subset of states of the form ψ(q). The states v̂qψ(q) =

qψ(q) and v̂pψ(q) = −i~ ∂ψ(q)
∂q

that result from applying the operators (10) to this subset
of states also depend only on q. Hence, the states ψ(q) define a proper subspace of the
set of pre-quantum states that is invariant under the action of the quantum operators v̂q
and v̂p.
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amounts to choosing a representation of the corresponding quantum theory.

We shall now argue that this factorization of canonical quantization in

two independent stages can be understood as a formal implementation of

the two postulates of the quantum ontology. To do so, it is necessary to

further specify the relationship between the conceptual framework provided

by the quantum ontology on the one hand and the quantum formalism on

the other. This can be done by identifying the objective properties of a

quantum system with the eigenvalues (or quantum numbers) that define the

corresponding quantum vector. In other terms, we assume the validity of

the so-called eigenvalue-eigenstate link [8, 22]. More precisely, we assume

that the numerical value f0 of the observable f is an objective property of

the object represented by the pure state ψ if and only if ψ is an eigenstate

of v̂f with eigenvalue f0, i.e. if and only if v̂fψ = f0ψ. In what follows,
{

f1, ..., fn
}

is a complete set of commuting observables and f jα denotes the α

eigenvalue of v̂fj (which will be written, for the sake of simplicity, as v̂j). The

eigenvalue-eigenstate link allows us to introduce the main ontological claim

of the proposed interpretative framework, namely that the physical referent

of a pure state ψ = |f1
α, ..., f

n
ρ 〉 is a single “multifaceted” structure defined

by the invariant objective properties
{

f1
α, ..., f

n
ρ

}

that faithfully quantify

the virtual phase transformations of the object generated by the self-adjoint

operators {v̂1, ..., v̂n}.

As we argued in Section V, the non-injectivity of the Lie algebra ho-

momorphism f 7→ vf between observables and classical operators implies

that the numerical values obtained by evaluating the observables f on phys-

ical states x ∈ P do not faithfully quantify the transformations generated

by theirs associated classical operators vf . As we have just explained, the

prequantization formalism extends classical operators vf to quantum oper-

ators v̂f in such a way that the application f 7→ v̂f is injective. Hence, we

could expect the transformations generated by the quantum operators v̂f

to be faithfully quantified by the numerical values of the corresponding ob-

servables. On the other hand, the polarization of prequantum states imple-

mented by means of equation (11) implies that the resulting quantum states

cannot depend on the variables that span the corresponding Lagrangian

submanifold of phase space. As we explained before, these variables form

a complete set of n commuting observables (e.g.
{

q1, ..., qn
}

). Hence, the

quantum states can only depend on the remaining n commuting observ-
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ables (e.g. {p1, ..., pn}).
21 Since, the canonical transformations induced by

an observable like p transform the canonically conjugated variable q, we can

expect a polarized state characterized by a given value p0 of p to be invariant

under the transformations generated by the quantum operator v̂p. Indeed, a

polarized state characterized a given value p0 of p cannot also depend on q.

Hence, a transformation of q cannot modify the state |..., p0, ...〉 as such. In

the terms provided by the quantum ontology, we expect the transformations

generated by v̂p to be virtual phase transformations of the object represented

by the state |..., p0, ...〉. This means that we expect quantum states to sat-

isfy the phase postulate. All in all, the implementation of both the quantum

postulate and the phase postulate should guarantee that each eigenvalue f jα

quantifies faithfully how the corresponding Lie algebra element T j ∈ g is

represented as an operator v̂j that generates virtual phase transformations

of the state |..., f jα, ...〉. Let g = eiT
jθ ∈ G be the one-parameter abstract

subgroup of G (obtained by means of the exponential map exp : g → G)

whose tangent vector at the identity is equal to T j. Let’s consider now a

quantum state |..., f jα, ...〉 characterized by the objective property f j = f jα.

The abstract transformations g = eiT
jθ ∈ G are represented as effective

transformations of the state |..., f jα, ...〉 by means of the following expression:

eiv̂jθ|..., f jα, ...〉 = eif
j
αθ|..., f jα, ...〉. (12)

This fundamental expression encompasses the two essential features of

quantum mechanics implemented by the quantum postulate (i.e. by the

prequantization formalism) and the phase postulate (i.e. by the election of

a polarization). Firstly, the eigenvalue f jα quantifies faithfully how the ab-

stract group elements g = eiT
jθ are represented as effective transformations

of the state. This means that two different eigenvalues f jα and f jα′ define

different realizations eif
j
αθ and eif

j

α′
θ of the same abstract transformations

eiT
jθ. In other terms, each eigenvalue f jα characterizes a particular repre-

sentation of the group action defined by the one-parameter subgroup eiT
jθ

21This point has been clearly stated by Guillemin and Sternberg in the following terms:
“The Heisenberg uncertainty principle says that it is impossible to determine simulta-
neously the position and momentum of a quantum-mechanical particle. This can be
rephrased as follows: the smallest subsets of classical phase space in which the presence
of a quantum-mechanical particle can be detected are its Lagrangian submanifolds. For
this reason it makes sense to regard the Lagrangian submanifolds of phase space as being
its true ‘points’.” [24], p. 515.
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of G. In this way, we could say that the quantum postulate guarantees

that “all quantum numbers [...] are indices characterizing representations of

groups.” ([39], p. xxi). Expression (12) also encompasses the fact that the

transformations of the state |..., f jα, ...〉 generated by the quantum operator

v̂j multiply the state by the phase eif
j
αθ, which means that they do not mod-

ify the state as such. This is the formal translation of the phase postulate,

that is to say of the claim according to which the transformations induced

by an objective property of an object (i.e. generated by the operator associ-

ated to one of the eigenvalues of the corresponding state) are virtual phase

transformations of the object.

Let’s consider, for instance, two quantum vectors, |12 ,
1
2〉 and |1, 1〉, such

that L̂z|
1
2 ,

1
2〉 = ~

2 |
1
2 ,

1
2〉 and L̂z|1, 1〉 = ~|1, 1〉 (where we have changed the

notation for the quantum operators from v̂Lz to the standard notation L̂z).

According to the quantum postulate, the different eigenvalues of L̂z, being

objective properties of the corresponding objects, must faithfully quantify

the transformations generated by L̂z. More precisely, we expect the different

eigenvalues of L̂z to specify how the same abstract rotation around the ver-

tical axis is differently represented as transformations of the corresponding

quantum objects. Let’s consider for example an abstract rotation given by

θz = 2π. While the quantum vector |1, 1〉 does not change under such an

abstract rotation:

eiL̂z2π/~|1, 1〉 = ei2π|1, 1〉 = |1, 1〉,

the quantum vector |12 ,
1
2〉 “changes” in a sign:

eiL̂z2π/~|
1

2
,
1

2
〉 = eiπ|

1

2
,
1

2
〉 = −|

1

2
,
1

2
〉.

In this way, the different eigenvalues of L̂z specify how the two quantum

objects differently transform under the same abstract rotation around the

z axis. One could argue that strictly speaking the quantum vector |12 ,
1
2 〉 as

such does not change under an abstract rotation given by θz = 2π, since

it only “changes” in the non-physical phase eiπ. Indeed, quantum vectors

are defined up to a phase factor eiθ. However, far from being an objection,

this simply means that quantum vectors also satisfy the phase postulate.

In other terms, the transformations generated by the operators {v̂1, ..., v̂n}

associated to the objective properties
{

f1
α, ..., f

n
ρ

}

that define a quantum

object represented by the pure state ψ = |f1
α, ..., f

n
ρ 〉, far from transforming
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the object into a different object, are just virtual phase transformations of

the object. In particular, the angular orientations with respect to the z

axis of the objects represented by the quantum vectors |12 ,
1
2 〉 and |1, 1〉 are

not objective properties of the objects. Hence, the virtual transformations

of these orientations generated by the action of eiL̂zθ do not modify the

objects as such.

It is worth stressing that the fact that phase transformations leave the

objective properties of an object invariant does not mean that they are

trivial transformations that cannot produce observable effects. Even if the

overall orientation of a single die has no physical significance, a change in the

orientation of a die in a system composed of two nested dice does modify the

intrinsic structure of the whole system. Analogously, even if transformations

of the absolute phase of a quantum object cannot have observable effects, we

know from quantum mechanics that relative phases account for the quantum

interference phenomena. Hence, the fact that the same abstract operation

can be differently represented as effective transformations acting on quantum

objects is far from being physically trivial, even if the corresponding phase

transformations do not modify the objects as such.

In general, the proposed interpretative framework implies that quantum

objects cannot be localized in both members of a complementary pair (such

as q and p). Indeed, the sharp localization on one of these variables entails

that the other one is completely “phased out” by the phase transforma-

tions induced by the former. In Refs.[11, 12] we argued that Heisenberg

uncertainty principle, far from resulting from an epistemic restriction to

the amount of information an observer can have about an object, can be

understood as a consequence of the circular imbrication between objective

properties and non-objective phases established by the phase postulate. In-

deed, the phase postulate entails that an objective property of an object

must be invariant under the phase transformations induced by all the other

objective properties of the same object. On the one hand, the fact that
{

f1, ..., fn
}

is a complete set of commuting observables implies that the

eigenvalues
{

f1
α, ..., f

n
ρ

}

that define a quantum vector ψ = |f1
α, ..., f

n
ρ 〉 are

indeed invariant under the phase transformations generated by the oper-

ators {v̂1, ..., v̂n}. On the other hand, the variables that are canonically

conjugated to the observables
{

f1, ..., fn
}

cannot be objective properties of

the same object, since they are not invariant under the phase transforma-
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tions generated by the operators {v̂1, ..., v̂n}. In particular, q cannot be an

objective property of an object defined by a sharp value of p, since q is not

invariant under the phase transformations induced by p. In this way, the

phase postulate implies that a quantum object can only have n sharp objec-

tive properties. By removing the dependence of the pre-quantum states on

the surplus n canonical variables, the introduction of a polarization formally

implements the phase postulate. It is worth stressing that this restriction

with respect to the overdetermined classical description is analogous to what

happens in gauge theories: while the involution condition (7) implies that

two first-class constraints are compatible only if they commute on the con-

straint surface, two observables f and g can define sharp objective properties

of the same quantum object only if they have vanishing Poisson bracket (or,

equivalently, if theirs associated quantum operators commute). This com-

patibility condition guarantees that the objective property f0 defined by the

observable f (i.e. the eigenvalue f0 of the quantum operator v̂f ) is invariant

under the phase transformations generated by v̂g (and viceversa). The main

consequence of this argument is that quantum vectors provide a complete

description of all the objective (i.e. invariant under phase transformations)

properties of quantum objects [11]. Hence, we can conclude that it is not

the case that the quantum description of physical reality is incomplete, but

rather that the classical description is overdetermined, since it does not take

into account the difference between phase-invariant observables and phase-

dependent observables.

In this way, the factorization of the canonical quantization of a symplec-

tic manifold (P,ω) in two independent stages matches the twofold construc-

tion of a quantum ontology by means of two independent postulates. On

the one hand, the quantum postulate explains why a satisfactory ontology

of physical objects requires to implement, by means of the pre-quantization

formalism, an injective Lie algebra homomorphism between the Poisson al-

gebra of observables C∞(P ) and the Lie algebra of operators. On the other

hand, the phase postulate explains why it is necessary to polarize the pre-

quantum states, i.e. to select the pre-quantum states that are covariantly

constant along a foliation of (P,ω) by Lagrangian submanifolds.
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VIII. Conclusion

In gauge theories, the existence of gauge symmetries reduce the number

of physical degrees of freedom that are necessary to completely describe the

state of a physical system. The heuristic idea of the present article is that

the reduction in the number of observables that are necessary to describe a

physical system from 2n classical observables (q and p) to n quantum observ-

ables (q or p) can be explained in an analogous way. Since this “quantum

reduction” should be valid for both constrained and unconstrained Hamil-

tonian systems, it is necessary to introduce a universal symmetry principle

different from that of gauge theories. In order to define such a symmetry

principle, we proposed a general quantum ontology of physical objects. This

quantum ontology can be understood as an extension of what we have called

pre-ontology. According to the latter, an object is a multifaceted structure

defined by a set of objective properties that are invariant under the phase

transformations that interchange its different non-objective phases. We have

then argued that the pre-ontology does not provide a general criterion for the

determination of the phase group of a given object. The quantum ontology

bypasses this flaw by supplementing the pre-ontology with two postulates,

namely the phase postulate and the quantum postulate.

The phase postulates generalizes the gauge correspondence between first-

class constraints and gauge transformations to the observables of any uncon-

strained Hamiltonian system. This means that the observables that define

the objective properties of the corresponding physical object induce—by

means of their associated operators—the phase transformations between its

non-objective phases. In this way, the phase postulate complements the

standard correspondence objectivity = invariance by stating that the phase

transformations under which the objective properties must be invariant are

induced by the objective properties themselves. Far from producing a vicious

circle, this virtuous circular relationship between objective properties and

phase transformations provides a conceptual explanation of the Heisenberg

uncertainty principle. Indeed, the fact that different elements of a single

phase orbit are “phase equivalent” reduces in half the number of observ-

ables that are necessary to completely describe the object. In other terms,

the uncertainty principle formalizes the compatibility condition that results

from the fact that an objective property has to be invariant under the phase

transformations induced by all the other objective properties of the same
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object. Hence, asking after the objective position q of an object with an

objective momentum p is as nonsensical as looking for the objective face of

a die. In this way, the phase postulate explains why quantum mechanics

does not admit sharp value attributions to both members of a complemen-

tary pair of observables. Moreover, this explanation does not appeal to a

hypothetical epistemic restriction to the amount of information an observer

can have about an object. Indeed, the phase postulate implies that quantum

vectors, far from being states of incomplete knowledge, convey a complete

description of all the objective properties of physical objects.

On the other hand, the quantum postulate establishes a faithful cor-

respondence between the two roles played by physical observables in me-

chanics, namely (1) to assign numerical values to physical states, and (2)

to induce transformations by means of their associated operators. Accord-

ing to the quantum postulate, the objective property f0 defined by an ob-

servable f faithfully specifies how the object transforms under the virtual

phase transformations generated by the quantum operator v̂f . In this way,

the quantum postulate provides a satisfactory interpretation of one of the

essential features of mechanics, namely the correspondence between observ-

ables and operators. The important fact is that these two postulates cannot

be implemented in the geometric arena of classical mechanics, i.e. sym-

plectic geometry. Indeed, we argued that the quantum postulate and the

phase postulate provide a satisfactory conceptual interpretation of the two

independent stages of the geometric quantization formalism, namely the pre-

quantization of a symplectic manifold and the polarization of the resulting

pre-quantum states respectively.

In this way, the proposed interpretative framework sheds new light on

two hallmarks of quantum mechanics, namely 1) that quantum mechanics

does not admit sharp value attributions to both members of a complemen-

tary pair of observables, and 2) the existence of a faithful correspondence

between (Poisson brackets of) observables and (commutators of) quantum

operators. As we argued in Section VII, the main lesson of geometric quan-

tization is that quantum mechanics can be essentially deduced from these

two independent features. It is also worth stressing that this interpreta-

tive proposal, far from demanding philosophically costly hypothesis such as

many-worlds, hidden variables or epistemic restrictions, only relies 1) on a

particular interpretation of the standard correspondence between objectiv-
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ity and invariance under a symmetry group, and 2) a supplementation of

such a correspondence with two independent postulates that match the two

steps of the geometric quantization deduction of quantum mechanics.

It is also worth remarking that this interpretative framework permits us

to propose a conjecture that can be mathematically explored. Indeed, the

generalization of the gauge correspondence between first-class constraints

and gauge transformations to unconstrained Hamiltonian systems allows us

to conjecture that the BRST formalism could be used for quantizing uncon-

strained Hamiltonian systems. More precisely, we briefly recalled in Section

II that the action of the BRST operator encodes both the restriction to the

constraint surface and the projection to the reduced phase space of the the-

ory. Analogously, we can conjecture that quantum states can be obtained

as solutions of a generalized eingevalue equation that has the same formal

structure than the BRST condition ΩBRSTψphys. = 0 for physical states in

gauge theories [25]. This means that this generalized eigenvalue equation

should (1) fix the possible eigenvalues of the corresponding observable (e.g.

p), and (2) phase out the canonically conjugated variable (e.g. q). If this

conjecture were correct, then the polarization of the corresponding quantum

vector, far from being an ad hoc condition on pre-quantum states as it is the

case in geometric quantization, would be directly implemented by the gen-

eralized eigenvalue equation. From a conceptual point of view, the validity

of such a conjecture would confirm that quantum mechanics does provide

a generalization of the gauge correspondence between first-class constraints

and symmetry transformations to unconstrained Hamiltonian systems. A

forthcoming article will be devoted to the analysis of this conjecture [10].
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