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Abstract

The logical theory of branching space-times (BST; Belnap,
Synthese 1992), which is intended to provide a framework for
studying objective indeterminism, remains at a certain distance
from the discussion of space-time theories in the philosophy of
physics. In a welcome attempt to clarify the connection, Ear-
man has recently found fault with the branching approach and
suggested “pruning some branches from branching space-time”
(2008).

The present note identifies the different—order theoretic vs.
topological—points of view of both discussion as a reason for cer-
tain misunderstandings, and tries to remove them. Most impor-
tantly, we give a novel, topological criterion of modal consistency
that usefully generalizes the order-theoretic criterion of directed-
ness, and we introduce a differential-geometrical version of BST
based on the theory of non-Hausdorff (generalized) manifolds.

Branching space-times (BST; Belnap, 1992) is a logical theory that allows
for the representation of objective indeterminism in a space-time setting. It
deviates from the mainstream representation of indeterminism in the Lewis
tradition, in which wholly separate possible worlds are taken to signal inde-
terminism if they are partially isomorphic. In BST, the world is allowed to
contain different complete possible courses of events, called histories, whose
past overlap and future branching grounds indeterminism. Arguably this
accords better with the notion of objective (rather than epistemic) indeter-
minism, but various objections have been raised against such a branching
conception of indeterminism.
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This note is intended to set some things straight with respect to the
interrelation of BST and general relativity, especially as regards the Hausdorff
property. We will thereby address a number of worries voiced by Earman
(2008). The paper can perhaps function as a sort of companion to Placek and
Belnap (2010). That paper approaches the discussion from a philosophical
point of view, centering on the interpretation of modality. In the present
paper, we try to approach the matter more from the point of view of physics,
thus perhaps furthering interaction on that side of the debate.

We keep the discussion as self-contained as possible, also including some
rather simple definitions. The reason for this is that the discussion here is
situated at an interface of domains, and we want to maintain a high level
of mathematical precision, so it seems better to err on the side of being too
explicit.

1 BST and the Hausdorff property
This section is mostly a summary of results out there. It also serves to in-
troduce some terminology. Further down, in §3, we will be working with
a slightly different framework, which is both stronger and weaker. In §1.1
we comment on some important logical terminology. §1.2 gives the axioms
of BST. In §1.3 we briefly comment on the interrelation of BST and GTR,
identifying topological considerations on BST as the missing link. §1.4 ac-
cordingly gives an overview of topology and BST.

1.1 Terminology: theories and models

We will try to maintain logical rigor in our discussion. We will use the
phrase “branching space-times”, and the label “BST”, for the general class
of branching space-time theories. One specific such theory was proposed by
Belnap (1992); we will use the label “BST92” for this specific axiomatic logical
theory. It is important to keep the following logical terminology straight:1

Logical theory A logical theory is a set of axioms in some given formal
language, e.g., in the case of BST92, a second-order language with

1Here we disagree with Earman (2008, 188n2): if one identifies models and histories, as
he does, one has already rejected without argument a conceptual distinction that is crucial
for making sense of the notion of branching such as formally defined in the branching time
and branching space-times literature.
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identity and a single two-place predicate “≤”.

Model A model, in the logical sense, is a (set-theoretical) structure that
satisfies the axioms of a certain given logical theory. Thus, when we
speak of a “model of BST92”, we mean a structure w.r.t. which all the
axioms of BST92 are true.

Physical theory We try to be realistic in the sense of taking actual practice
seriously, and will therefore not require physical theories to be given
axiomatically, nor to be specified in a formal language. We will as-
sume that a theory, such as the general theory of relativity (GTR),
is given via defining equations, possibly enriched by some local lore
about physicality, admissible violations of assumptions, important toy
models, idealizations, approximation techniques, and so on—basically,
what a good textbook such as Wald (1984) provides.2

Solution A solution to the equations of a physical theory is a mathematical
structure, e.g., some differential manifold. In some well-behaved cases
such a solution is also a model in the logical sense (consider, e.g., Mon-
tague’s famous paper on deterministic theories (Montague, 1962), and
subsequent work in that tradition), but we do not require this.

World We keep “world” as a metaphysical term, and we use David Lewis’s
sensible criterion: a world has to be unified by “suitable external re-
lations” (Lewis, 1986, 208). It may be, and it is in fact the case for
BST92 in the intended interpretation, that each model of a logical the-
ory is a world in this sense. An ensemble of non-overlapping worlds is
not a world, as such an ensemble is obviously not unified via suitable
external relations.3 Note that worlds can be entirely alike qualitatively,
and yet be different. This is not so for models—models are given purely
extensionally.

2This attitude appears to be very much in line with Earman et al. (2009, 93).
3Note that Lewis’s own use of the notion of a world, which Earman (2008, 189) quotes

approvingly, may in fact be at variance with his own criterion, as he characterizes branching
as positing “overlapping worlds” (Lewis, 1986, 206). We cannot see how two things, each of
which is unified by suitable external relations, could overlap without the external relations
unifying the whole resulting structure such as to yield a single world.
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1.2 The axioms of BST92

BST92 is formulated in second order predicate logic with identity and one
single two-place relation symbol, “≤” (written in infix notation). We will
also use the relation symbol “<”, which is defined in the usual way: x < y iff
(x ≤ y and x 6= y).

Let 〈W,≤〉 be a nonempty partial order (a nonempty set W together with
a transitive, antisymmetric relation ≤). Elements of W are called possible
point events, or, briefly, events. Let H ⊆ ℘W be the set of maximal upward
directed subsets of W . (In a partial order, a set is upward directed iff for any
two of its elements a and b, there is an element c s.t. a ≤ c and b ≤ c. We
often shorten to “directed”.) Elements of H, i.e., maximal directed subsets
h ⊆ W , are called histories. A chain in W is a linear subset, i.e., a subset
c ⊆ W s.t. for any x, y ∈ c we have either x ≤ y or y < x.

The axioms of BST92 are as follows (cf., e.g., Belnap, 1992, 2003):

• 〈W,≤〉 is a nonempty, dense partial order without maxima.

• Each lower bounded chain C ⊆ W has an infimum in W , written inf C.

• Each upper bounded chain C ⊆ W has a supremum-in-h (suphC) for
each history h ∈ H for which C ⊆ h.

• (Prior choice principle.) If C ∈ h − h′ is a lower bounded chain in h
none of whose elements is an element of h′, then there is a choice point
c ∈ h ∩ h′ such that c is maximal in h ∩ h′, and c < C (i.e., for all
e ∈ C, we have c < e).

Note that by the given definition, histories are downward closed: if e ∈ h
and f ∈ W s.t. f ≤ e, then also f ∈ h. Accordingly, if c is a lower bounded
chain in history h, then inf c ∈ h as well.

As a first link with space-time theories, we can give a generic definition of
the causal and the chronological past and future of events in a BST92 model,
as follows:

Definition 1 Given a BST92 model 〈W,≤〉, an event e ∈ W lightlike pre-
cedes f ∈ W (in symbols: eC f) iff e ≤ f and there is only a single maximal
chain that has e as its first and f as its last point. Event e chronologically
precedes f (in symbols: e� f) iff e < f and it is not the case that eC f .
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Based on these notions we can define the notions of the causal and the chrono-
logical future (and analogously, past) of an event e ∈ W , as usual::

Definition 2 Given a BST92 model 〈W,≤〉 and some e ∈ W , the causal
future of e, J+(e), and the chronological future, I+(e), are defined as follows:

J+(e) := {f ∈ W | e ≤ f}; I+(e) := {f ∈ W | e� f}.

The corresponding past notions are

J−(e) := {f ∈ W | f ≤ e}; I−(e) := {f ∈ W | f � e}.

1.3 Some facts about BST92 and general relativity

BST92 is a very general theory, it has extremely many models. Still it is not
general enough for full GTR. This can be seen by the following simple fact:
There are solutions of GTR that contain closed timelike curves. Let e and f
be different events on such a curve. Then, on the intended interpretation of ≤
as causal connectibility, we have e ≤ f , f ≤ e and e 6= f , violating the order
requirement of BST92. On the other hand, BST92 is perhaps too general—
it allows for dimension-changing models and many other weird phenomena
(see, e.g., Müller (2005); Müller et al. (2008)). Its models are not generally
metrizable, and there is no requirement that a BST92 model be a—perhaps
generalized—manifold such as presupposed by GTR.

This is not a coincidence, but due to different perspectives taken by
BST92, on the one hand, and by GTR, on the other hand. BST92 was
conceived in a logical, order-theoretic context familiar from modal seman-
tics. GTR, on the other hand, is based on differential geometry, which in
turn is based on topological notions. In order to bring BST92 closer to GTR,
it is therefore necessary to look more closely at its topological aspects.

1.4 Topological issues in BST92

We start be giving some standard basic definitions in order to make the
presentation self-contained; §1.4.1 and §1.4.2 do not contain any original
material. The only point worth noting is that we also define the notion of a
generalized manifold, which, unlike standard manifolds, is not required to be
Hausdorff (see Def. 11 below).
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1.4.1 Topological spaces

Definition 3 (Topological space) A topological space is a pair 〈X,T〉
where X is a nonempty set and the topology T ⊆ ℘X is a collecion of
subsets—the so-called open sets—satisfying:

• ∅ ∈ T and X ∈ T.

• (Finite intersections) If a, b ∈ T, then a ∩ b ∈ T.

• (Arbitrary unions) If {ai | i ∈ I} is a family of open sets (i.e., ai ∈ T
for any i ∈ I), then ∪i∈Iai ∈ T.

A set c ⊆ X whose complement X − c is open, is called closed. A set
that is both open and closed, is called clopen. A topological space 〈X,T〉 is
connected iff ∅ and X are the only clopen sets; equivalently, iff X is not the
disjoint union of two nonempty open sets.

Any non-empty set can trivially be turned into a topological space in the
following two ways: minimally, T = {∅, X}, the “indiscrete” topology, and
maximally, T = ℘X, the “discrete” topology. These are normally not useful
for applications.

A topology can usually be given by specifying less than the full collection
of open sets. In fact, a topology can be specified via a basis, or, even more
simply, via a subbasis.

Definition 4 (Basis, subbasis) Given a topological space 〈X,T〉, a set B ⊆
T is called a basis iff every open set a ∈ T is a (possibly infinite) union of
sets from B. A subbasis is a set S ⊆ T such that the set of all finitely many
intersections of elements of S form a basis.

The real line R and, more generally, the n-dimensional Euclidean space
Rn,4 have natural topologies according to which they are connected (in fact,
even simply connected—see Def. 7). These topologies can be given in many
different ways; one is via a metric.

4For present purposes it will not be important to distinguish between n-dimensional
Euclidean space, which has no origin, and the n-dimensional real vector space Rn, which
contains a distinguished origin. Below we will therefore also treat n-dimensional Minkowski
space Mn as having a distinguished origin (this amounts to chosing specific coordinates).
The existence of an origin is a defining feature of tangent spaces, which really are vector
spaces.
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Definition 5 (Metric) Let X be a set. A function d : X × X 7→ R+
0 is

called a metric on X iff

• d(x, x) = 0,

• if d(x, y) = 0, then x = y (“non-degeneracy”),

• d(x, y) = d(y, x), and

• d(x, y) + d(y, z) ≥ d(x, z) (“triangle inequality”).

There is a natural metric on Rn, given by

d(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) :=
√

(x1 − y1)2 + · · ·+ (xn − yn)2

This metric then induces the natural topology, by using the collection of open
balls

B(x, r) := {y ∈ Rn | d(x, y) < r}

for x ∈ Rn and r ∈ R+ (the positive reals) as a basis. Note that the countable
collection of open balls with rational midpoint coordinates and rational radius
also forms a basis.

The most important mappings between topological spaces are the contin-
uous ones, with paths as special mappings of that kind:

Definition 6 (Continuity; homeomorphism; path) Let 〈X1,T1〉 and
〈X2,T2〉 be topological spaces. A mapping f : X1 7→ X2 is called contin-
uous iff the pre-image f−1(a) ⊆ X1 of any open set a ∈ T2 is open. The
mapping is a homeomorphism iff it is bijective and both it and its inverse
are continuous. A path is a continuous mapping from the closed unit interval
[0, 1] (with the usual topology) into some topological space X.

The notion of a path is central for the definition of two stronger notions of
connectedness:

Definition 7 (Path-connected; simply connected) 〈X,T〉 is path con-
nected iff there is a continuous path between any two of its points. Path-
connectedness is strictly stronger than connectedness. The space 〈X,T〉 is
simply connected iff it is path-connected and every continuous mapping of
the unit circle into X can be continuously contracted to a point. Again, sim-
ple connectedness is strictly stronger than path connectedness.
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Topological spaces that are locally homeomorphic to some Euclidean
space are called locally Euclidean:

Definition 8 (Locally Euclidean) A topological space 〈X,T〉 is locally
Euclidean iff for any x ∈ X there is some a ∈ T with x ∈ a and some n ∈ N
and some open subset b ⊆ Rn such that there is a homeomorphism fx between
a and b. (We can guarantee, and will normally assume, fx(x) = 〈0, . . . , 0〉.)

1.4.2 Manifolds and the Hausdorff property

Hausdorffness. There is a hierarchy of separation properties for points in
topological spaces. For our purposes, the most important property is the T2

property, or Hausdorffness.

Definition 9 (Hausdorff property) A topological space 〈X,T〉 is Haus-
dorff iff for any distinct x, y ∈ X there are a, b ∈ T such that x ∈ a, y ∈ b,
and a ∩ b = ∅, i.e., any two points x, y can be separated by two disjoint open
sets.

Figure 1: The branching real line as a simple non-Hausdorff space. A basis
for the topology is given by the open intervals in both tracks.

Hausdorffness thus forbids, intuitively speaking, the existence of “unseparably
close points”, or perhaps “doubled points” or “points that occupy the same
position”. The branching real line pictured in Fig. 1 is a simple example of
a non-Hausdorff space (but see Fig. 2 for a different branching line that is
Hausdorff). Following Hajicek (1971), who credits Geroch for the notation,
we will write xY y to indicate that the points x and y violate the Hausdorff
condition, i.e., that x and y cannot be separated by disjoint open sets. The
notation usefully suggests graphically that in such a case, x and y “branch
off” from some common trunk, like the left part of the branching line of
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Fig. 1. In fact, in our examples below such x and y will always be different
limits of a single converging sequence.

In differential geometry, Hausdorffness is a feature of the standard defini-
tion of a manifold. Furthermore, any topology induced by a metric is Haus-
dorff. Deviation from Hausdorffness is therefore a rarity in applied mathe-
matics. Nevertheless, we will need to remain general here so as to link the
order-theoretic perspective of BST with the topological perspective of GTR.
Accordingly, we define generalized manifolds that allow non-Hausdorffness.

Manifolds. The idea behind the definition of a (generalized) manifold is
to capture topological spaces that are locally Euclidean in a useful way.

Definition 10 (Chart, atlas) Given a topological space 〈X,T〉, a chart for
a ∈ T is a triple 〈a, f, b〉 where b ⊆ Rn for some n is an open set and f is a
homeomorphism f : a 7→ b. Such a chart induces coordinates on the points
of a. An atlas for a locally Euclidean space is a collection of charts covering
the whole space.

Here is the official definition of a (generalized) manifold:

Definition 11 (Manifold, generalized manifold) A locally Euclidean topo-
logical space 〈X,T〉 is an n-dimensional generalized manifold iff

• it has the same dimension n everywhere and

• it has at least one countable atlas.

A generalized manifold is a manifold iff, additionally, it is Hausdorff.

Properly generalized manifolds, which are non-Hausdorff, we will call Y -
manifolds, again following the terminology of Hajicek (1971).

Differentiability restrictions are important for doing physics on a mani-
fold. A (generalized) manifold is Ck iff on the overlap aij 6= ∅ of any two
of its charts ai and aj, the function fi ◦ f−1j is a Ck diffeomorphism (a Ck-
differentiable homeomorphism) between open subsets of Rn.5

5C0 is immediate given the definition of a manifold; in physics contexts it is customary
to assume that manifolds are as smooth as needed and often, C∞.
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1.4.3 BST92 and the Hausdorff property

By looking at the axioms in §1.2 above, it becomes clear that BST92 does
not provide enough structure to even ask whether its models are Hausdorff—
BST92 does not come with a topology. Obviously, one can turn any BST92
model 〈W,≤〉 into a Hausdorff topological space by taking the discrete topol-
ogy. There are however at least three much more natural topologies for
BST92, with respect to which the question of Hausdorffness can be sensi-
bly asked. Note that we cannot define a topology that would always turn
a BST92 model into a manifold, as the axioms of BST92 do not guarantee
local Euclidicity.6

Alexandrov topology. Generally, for a partial ordering 〈W,≤〉, one can
define the so-called Alexandrov topology TA based on the upper sets, i.e., on
sets of the form

↑ x := {z ∈ W | x ≤ z}, x ∈ W.

Analogously, one could base a topology on the lower sets (replacing “≤” by
“≥”). In some cases taking the upper and lower sets as a subbasis gives a
useful topology. The name “Alexandrov topology” in physics is mostly used
for the topology that takes “chronological diamonds” of the form

D(x, y) := I+(x) ∩ I−(y), x, y ∈ W

as a basis (cf., e.g., Malament, 1977).7 The Alexandrov topology, both in
the mathematicians’ sense and in the physicists’ sense,8 is definable on the
basis of the BST92 axioms, but it is not normally used in physics. A detailed
study in the context of BST92 may be worthwhile, but such a study is not
undertaken here. See McWilliams (1981) for conditions under which the
Alexandrov topology and the usual manifold topology coincide in a space-
time.

The path topology. A topology for space-time manifolds that is finer
than the standard manifold topology was introduced by Zeeman (1967) and

6As will be laid out in the discussion of §3.1, BST92 in fact almost forbids local Euclidic-
ity, but a small change in the axioms paves the way towards models that are manifolds.

7In the presence of minima or maxima in the ordering, this definition needs to be
patched in a way similar to what is mentioned in note 9 below.

8Usage in topological texts on ordered structures thus differs from usage in physics. For
some notes on the former, see, e.g., Tholen (2009); for the latter, see also Visser (2009).

10



simplified by Hawking et al. (1976); see Naber (1992, App. A) for an overview.
The basic idea is to take the idea of a local neighbourhood seriously physically,
so that an environment of x is not required to contain events that are space-
like separated from x. The usual definition of the path topology presupposes
the manifold topology as a background and is therefore not applicable to
BST92 generally. However, a similar idea can be made to work.

Belnap/Bartha topology. Belnap (1992, 432n26), following Bartha, de-
fines a topology taking as basis generalized diamonds (similar to the open
sets in the physicists’ Alexandrov topology) that are the union of diamonds
oriented in all possible causal directions (an idea that triggers associations
with the path topology). The formal definition is as follows (Placek and
Belnap, 2010):

Definition 12 (causal paths and diamonds) In the BST92 partial or-
dering 〈W,≤〉, a set t ⊆ W is a causal path, t ∈ CP , iff t is a maximal
chain in the ordering. Given t ∈ CP ,

de1,e2t := {y ∈ W | e1 < e2 & e1, e2 ∈ t & e1 ≤ y ≤ e2}

is the diamond oriented by t with vertices e1 and e2. (Note that this definition
usefully returns the open set if unsuitable parameters are given, e.g., if e1 6∈
t.)

Thus, if e1 < e2 and e1, e2 ∈ t, we have

de1,e2t := J+(e1) ∩ J−(e2).

In the Belnap/Bartha topology TB for 〈W,≤〉, open sets are those sets that
contain diamonds around all their points, in all directions. Formally, for
A ⊆ W :9

A ∈ TB iff

∀x ∈ A ∀t ∈ CP (x ∈ t→ ∃e1, e2 ∈ t (e1 < x < e2 & de1,e2t ⊆ A)).

9The definition requires a small fix in the presence of minima, which are allowed by
the axioms of BST92: instead of e1 < x, for x a minimum we can obviously require only
that there be some e1 ≤ x. This patch also makes sure that W itself counts as an open
set, which Placek and Belnap (2010) enter as a separate clause. A similar patch would be
required in the presence of maxima, which are however forbidden by the BST92 axioms.
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This topology is in fact rather natural: it is equivalent to the standard
topology on n-dimensional Minkowski space-time, and it is almost the same
as our suggested topology for m-fold branching n-dimensional Minkowski
space-times. These, to be introduced in §3.1 below, are very simple, well
behaved structures that almost fulfill the BST92 axioms and that will form
the local material from which we will build generalized manifolds.

Figure 2: The branching real line as a Hausdorff space. A basis for the
topology is given by the open intervals overapping both tracks. The topology
is therefore not everywhere locally Euclidean.

The question of Hausdorffness. It would be nice to establish some gen-
eral results about BST92 with respect to the mentioned topologies, and es-
pecially w.r.t. the topology TB. E.g., it seems quite plausible to assume
that branching into different histories means non-Hausdorffness of the total
model. In fact this is true in many cases, but it turns out that there are
multiple-history models of BST92 that are Hausdorff: one can simply take
the real line and add a disjoint copy of the open set (0,∞), such that the
points in the two copies are not order-related. It is easy to verify that this
model, pictured in Fig. 2, satisfies the axioms of BST92 and has two his-
tories, but is also Hausdorff according to TB.10 In the other direction, the
question is whether there are non-Hausdorff models of BST92 with only a
single history. We have to leave open this question for now; for some further
pertinent remarks, see Placek and Belnap (2010). As the topology we will
suggest for our version of BST differs slightly from all the mentioned ones
and is, in fact, simpler, we leave the details of the topologies mentioned so
far to the side and turn to physics.

10Note the difference with the non-Hausdorff space of Fig. 1, which in fact violates the
Prior Choice Principle of BST92, and therefore is not a model of BST92.
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2 Branching manifolds and GTR
The general theory of relativity (GTR) is a physical theory whose solutions
are mostly assumed, by definition, to be Hausdorff manifolds. Since various
breakdowns of the exact mathematical formalism (“singularities”) are crucial
for understanding cosmological applications of GTR as well as possible exten-
sions of the theory, some of the mathematical defining features can however
be relaxed.

This is important. If GTR was a logical theory with fixed axioms, and
models of the theory were required to have the structure of Hausdorff mani-
folds, it would obviously be silly to consider non-Hausdorff models for GTR.
However, GTR is a physical theory, and non-Hausdorff models and other in-
dividually branching space-times have actually been researched into. Earman
(2008) gives a useful overview of some of the key results.

Note that the overview to follow pertains to a discussion in physics, where
the guiding question is whether branching (e.g., non-Hausdorff) manifolds
can be useful for describing a single solution of GTR, i.e., a single space-time.
This is not the guiding question behind BST: we have already remarked that
non-Hausdorffness in BST92 is (generically) a sign of modal separation, i.e.,
multiple different space-times (multiple histories) in a single model. Never-
theless, it is important to have the physical facts on the table since they may
constrain physical applications of BST.

One class of intuitively branching manifolds, so-called trousers worlds,
are discussed in §2.1. In §2.2 we give an overview of non-Hausdorff models
for single spacetimes.

2.1 Trousers worlds

Some results of branching phenomena within a single spacetime were prompted
by research into so-called “trousers worlds”. Speaking suggestively, a solution
of GTR is a trousers world iff at some time, space is a connected set (think: a
slice at the waist), whereas at some later time, space forms two or more dis-
connected subsets (think: a slice through the two legs). There are suggestive
drawings of such worlds, e.g., in Earman (2008, 194).

Early logical research into the causal ordering structure of space-time also
took trousers scenarios to be of key importance. Thus, Prior (1967, App. B.5)
remarks that a crucial logical difference between the causal ordering of special
vs. that of general relativity is that in the former, any two events have a
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common upper bound, while in the latter, this may not be so due to trousers
phenomena. In terms of modal logic, this was interpreted to mean that while
a certain modal operator (the so-called Diodorean modality) based on the
GTR causal order only satisfies the axioms of the modal system S4, the
corresponding operator in the case of special relativity satisfies the stronger
confluence property of the modal system S4.2. See Goldblatt (1980) for a
key result and Uckelman and Uckelman (2007) for an overview of further
relevant logical literature.

While these considerations have become part of the “logical” folklore, Ear-
man (2008) usefully remarks that trousers worlds and similar scenarios come
at a very heavy price and may in the end have to be considered unphysical.
Generally, topology change in a single space-time is taken to be physically
suspect, and important classes of physically reasonable GTR manifolds can in
fact be proved to be homeomorphic to Σ×R, where Σ is some 3-dimensional
hypersurface, so that topology change over time is excluded. See Earman
(2008) for details and further references to the literature.

2.2 Non-Hausdorffness: the point of view of physics

Earman (2008) in his overview of “individual branching” for single space-times
concludes that the only viable path to individually branching space-times
comes from non-Hausdorff models. We hasten to stress again that BST, at
least in the form of BST92 and in the form that we are trying to develop
further here, is not after individually branching space-times, but after logical
models whose overlapping histories are individual non-branching and in fact
Hausdorff space-times. Still, it is useful to look at the physicists’ discussion
of non-Hausdorffness.

In mathematical physics, important results about non-Hausdorff space-
times come from considerations of a certain form of singularity: there are
solutions of the GTR equations whose maximal analytic extensions are non-
Hausdorff. Hajicek (1971) proves an important result about this class of
solutions: roughly, a non-Hausdorff space-time either fails to be strongly
causal, or it admits bifurcating geodesics. He interprets this result as show-
ing that “all such [i.e., non-Hausdorff] space-times must be weakly acausal”
(Hajicek, 1971, 75), which would indeed be reason enough for a physicist to
shun non-Hausdorff space-times. It is interesting to see how Hajicek sup-
ports his interpretation of his theorem. Commenting on bifurcating curves,
he writes:
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It is easily seen that such curves can only exist in a non-Hausdorff
space. Then, if we have some system of ordinary differential equa-
tions which has locally a unique solution [ . . . ] it is immediate that
this system cannot have two different solutions [ . . . ] unless these
solutions form a bifurcate curve. Therefore, in view of the classi-
cal causality conception coinciding with determinism it is sensible
to rule out the bifurcate curves. (Hajicek, 1971, 79)

The dialectics is thus as follows: A result from mathematical physics (Ha-
jicek’s Theorem 4) establishes (roughly) that in non-Hausdorff space-time
models there is either a violation of strong causality, or there are bifurcat-
ing curves. An appeal to determinism rules out the latter; considerations
of physicality rule out the former. This amounts to rejecting non-Hausdorff
models.

We agree with this argument completely. If BST92 were to give models
of a single space-time, these models should not contain bifurcating curves,
and most probably they shouldn’t be weakly acausal either, so that non-
Hausdorffness would be ruled out. If one however takes up the issue of non-
Hausdorff models in order to build formal models for indeterminism (which is
the express aim of Belnap and others working on BST, including the present
author), then the above argument obviously pulls no weight.

2.3 Modality in physics

We have seen that the physical discussion of branching manifolds is con-
cerned with single space-times allowing for topology change or having a
non-Hausdorff topology. BST, on the other hand, is concerned with differ-
ent alternative, modally incompatible space-times that are still incorporated
into a single logical model, which metaphysically speaking should be a single
indeterministic world. While a full BST model may be non-Hausdorff, its
individual histories (space-times) are Hausdorff. Can physics have any use
for that?

This is a deep issue, giving rise to very controversial discussions. We
will try to remain neutral, but we wish to remark that once the notion of
a scientific experiment is taken into consideration, modality plays a crucial
and fundamental role in physics. Witness Hawking and Ellis (1973, 189): “a
simple notion of free will [ . . . ] is not something which can be dropped lightly
since the whole of our philosophy of science is based on the assumption
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that one is free to perform any experiment.” Similar considerations can be
found, e.g., in discussions of quantum correlation experiments. For a striking
example, see the recent debate about a so-called “free will theorem” (Conway
and Kochen, 2006).

Whatever the ultimate merits of such discussions, they seem to give us
enough motivation for an in-depth development of a modal theory of non-
Hausdorff manifolds as a generalization of the BST92 theory of branching
space-times. Such a development will be attempted now.

3 Locally Minkowskian BST
The discussion above has shown that there are many delicate issues when it
comes to considerations of non-Hausdorffness in GTR. It should also have
become clear that it is hard to make formally specific contact between BST92
and the GTR discussion. On the one hand, BST92 may be too general: it
allows for very weird phenomena to occur. Placek and Belnap (2010), via
their definition of Minkowskian BST, have gone a long way to alleviating
these worries.11 On the other hand, BST92 is fundamentally a global theory
of a single partial ordering, like special relativity, and not a local one building
on differential geometry, like GTR. This provides a fundamental obstacle to
any firm connection between BST92 models and GTR solutions.

In this section our aim is to both narrow down and to broaden the BST92
framework, arriving at something we will call LMBST—locally Minkowskian
BST, a specific class of generalized manifolds. In §3.1 we will first define
very simple structures, simpler than (in fact, almost special cases of) the
Minkowskian BST92 models in the mentioned literature. Issues of space-
time and modality will be discussed on that basis in §3.2. In the final step,
in §3.3, we will then define global Y -manifold structures based on the local
structures. These, we will argue, are the natural area of contact between
BST and GTR.

3.1 Simple Minkowskian branching: Mn
m

We build up branching structures Mn
m from n-dimensional Minkowski space-

time Mn.
11For previous work on Minkowskian BST, triggered by remarks of Belnap (1992, 412),

see also Müller (2002), Placek and Wroński (2009) and Wroński and Placek (2009).
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3.1.1 Minkowski space-time Mn

Minkowskian space-time Mn is the n-dimensional Euclidean space Rn to-
gether with the pseudo-Riemannian metric ds, where (in coordinates in which
the speed of light c = 1, and assuming n ≥ 2)

ds2(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) := −(x1 − y1)2 + · · ·+ (xn − yn)2.

(Thus, x1 is the time coordinate, x2, . . . , xn are spatial coordinates, and we
are working with signature (−,+,+,+).) Elements of Mn, which will be
denoted by boldface letters x, y, . . . , are called events (as for the elements
of BST92 structures, this is the physicists’, not the philosophers’ usage).
Events for which ds2 < 0 are called time-like separated, for ds2 = 0, light-like
separated, and for ds2 > 0, space-like separated. If ds2 ≤ 0, we also say that
the events are causally connectible.

Note that we cannot derive a useful topology from the pseudo-metric ds.12

If we tried to define open balls like in §1.4.1, as B(x, r) = {y | ds2(x,y) < r},
we would be including all timelike and lightlike events in an open environment
of an event, and even if we went for a definition via the absolute value of
ds2, we would still be stuck with lightlike separated events. The standard
topology T of Minkowskian space-time, also called the manifold topology, is
therefore simply taken to be that of Rn. As that topology is derived not
from a pseudo-metric, but from a metric (the natural metric of Rn), it is
guaranteed to be Hausdorff; furthermore, Mn is connected (in fact, simply
connected) in that topology.

On Mn we can define the following (“causal”) global partial ordering:

〈x1, . . . , xn〉 ≤ 〈y1, . . . , yn〉 iff ds2(x,y) ≤ 0 and x1 ≤ y1.

This ordering captures the light-cone structure of special relativity. We have
the following provable results from our Definition 2:

J+(x) = {y ∈Mn | ds2(x,y) ≤ 0 & x1 ≤ y1},

I+(x) = {y ∈Mn | ds2(x,y) < 0 & x1 < y1},

and similarly for J− and I−. See also the definition of a causal path in §1.4.3
above.

12As Visser (2009) remarks, we can derive a topology from it, but it is highly non-
standard and rarely used.
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We thus have n-dimensional Minkowski space-time as an ordered topo-
logical space 〈Rn,≤,T〉 that is an n-dimensional Hausdorff manifold, where
we can take an atlas consisting of a single chart with the identity function
as a mapping on Rn. (Obviously, such a manifold is C∞.)

3.1.2 Branching Minkowski space-time Mn
m

From the ordered topological space 〈Rn,≤,T〉 we can now build simple n-
dimensional non-Hausdorff manifolds that are also partial orders: we basi-
cally replace the forward light-cone of the origin,

V := J+(0) := {x ∈Mn | 0 ≤ x}

by m ≥ 2 copies
Vi := V × {i}, i = 1, . . . ,m

and adjust the ordering and the topology accordingly. These structures em-
body both the order-theoretic aspects of BST and the topological aspects of
GTR, and thus are good candidates for bringing the two frameworks together.

Details of the pasting. There are a number of choices for how to proceed,
and it is important to be explicit. We certainly want to make copies of the
interior of the forward light-cone, but there are at least three sensible choices
of whether the rim of the forward light-cone,

∂J+(0) = {x ∈Mn | 0 ≤ x & ds2(0,x) = 0}

should be replaced by copies as well:

(1) We can fully replace ∂J+(0) by m copies, so that indeed V = J+(0);

(2) we can leave ∂J+(0) intact and only replace the whole interior of J+(0)
by copies, so that V = I+(0) = J+(0)− ∂J+(0), or

(3) we can replace the whole of ∂J+(0) except for the origin itself by m
copies, and leave the origin intact, so that V = J+(0) − {0} = {x ∈
Mn | 0 < x}.
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No matter how we proceed, we arrive at a branching structure that can be
viewed as consisting of overlapping layers Lni , i = 1, . . . ,m. Using V̄ :=
Mn − V and Vi := V × {i}, the layers are13

Lni := (V̄ × {1}) ∪ Vi

and the global structure is

Mn
m :=

m⋃
i=1

Lni .

We use normal variables x, y . . . to range over elements of Mn
m.

The partial ordering on Mn
m is defined as the union of the obvious partial

orderings on the m layers:

x ≤ y ⇔df there is i ∈ {1, . . . ,m} s.t. x, y ∈ Lni and x ≤i y,

where ≤i is the standard Minkowskian ordering on the i-th layer. Note that
by this construction of the ordering, events above the origin in different lay-
ers are incomparable. Such events may even occur at the same space-time
point, like 〈x, i〉 and 〈x, j〉 for i 6= j, but they are modally incompatible and
thus do not occur together in any one space-time. A crucial issue in what
follows will be to translate this intuitive verdict, which has a natural order-
theoretic explication in terms of BST92’s definition of histories as maximal
directed sets, into a topological setting. From the point of view of the par-
tial ordering, elements above the origin in different layers are classified as
modally incompatible since they do not have a common upper bound (and
thus, there is no directed set containing them both); intuitively, there is no
perspective available from which one could say that both events have oc-
curred. The question is how to express someting like this without invoking
a global ordering, employing instead suitable local, topological notions.

Before we address this issue, however, we need to decide between options
(1)–(3) above. How are we to choose the right kind of pasting? Topological
considerations play a crucial role here. One important observation can be
made by considering certain upward directed chains. Consider M2

2 according
to one of our three options (we choose n = m = 2 for simplicity; the example
works for any n ≥ 2 and m ≥ 2). We define the two upper bounded chains

C0 := {〈−1/k, 0, 1〉 | k ∈ N}
13The extra label 1 for events outside V is just a convenience—it allows for uniformly

addressing elements ofMn
m as n+1-tuples, and it identifies the first layer Ln

1 withMn×{1}.
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C
C

1
0

Figure 3: Two chains C0 and C1 in layer 1 of M2
2 . See text for details.

and
C1 := {〈1− 1/k, 1, 1〉 | k ∈ N}.

Both chains lie in the intersection of the two layers of M2
2 , in all three pasting

options (no element of the chain is above the origin in the Minkowskian
ordering); see Fig. 3. Yet, there is a difference when we look at the set of
limit points of the chains. According to (1), both chains have two minimal
upper bounds, one in each layer. According to (2), on the other hand, both
chains have a unique minimal upper bound, which is their supremum, lying in
the intersection of both layers. According to (3), however, C0 has a supremum
in M2

2 , viz., the origin 〈0, 0, 1〉, while C1 has no supremum, despite being an
upper bounded chain in a continuous structure. The reason for this behavior
is that on the pasting (3), the origin is not a “doubled point”—there is just one
event with coordinates of the origin, 〈0, 0, 1〉 ∈ V̄ × {1}, but at coordinates
〈1, 1〉 there are two events, one in each layer. In layer i, 〈1, 1, i〉 is the layer-
relative supremum of C1; in M2

2 , this qualifies these points as minimal upper
bounds of the chain, but not as the supremum (which, if it exists, is unique).

Convergent sets having different limit points is typical for non-Hausdorff
structures; in fact, according to most topologies (see the discussion below), we
have 〈1, 1, 1〉Y 〈1, 1, 2〉. Belnap (1992, 413) has given an extensive discussion
of the merits of pasting option (3) based on causal considerations. That
option allows one to single out the choice points that are crucial in BST92’s
prior choice postulate (see §1.2). With respect to pasting option (3), Belnap
has called the behavior of C1 “indeterminism without choice”, to be contrasted
with the “indeterminism due to choice” that happens at C0. A more extensive
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discussion of the appropriate topology for Mn
m reveals reasons that speak

against pasting option (3) and in favor of option (1), requiring us to move
away from the axiomatic basis of BST92 and to find a replacement for the
prior choice principle.

Defining the topology. The fine details about doubling the rim of the
light cone that led to the three options (1)–(3) above lead to further con-
siderations of a topological nature. There seems to be no full discussion of
these topological issues in the literature, so we will try to be very explicit in
what follows.

Earman (2008, 198f.) discusses a simple one-dimensional analogue of
options (1) and (2); option (1) is illustrated in Figure 1 above, option (2)
in Figure 2.14 He remarks that option (2) leads to a space that is Hausdorff
but not locally Euclidean, while (1) gives a locally Euclidean space that is
not Hausdorff. Strictly speaking, the choice of the pasting is a separate issue
from the definition of a topology, but indeed, a number of constraints arises.

From the point of view of physics, a very natural constraint is the follow-
ing:

(E) A topological space that can be useful for GTR has to be locally Eu-
clidean and in fact, a (perhaps generalized) manifold.

We follow Earman (2008, 198f.) in his argument for (E): “topological spaces
that are not locally Euclidean cannot be assigned a differentiable structure,
and such a structure is essential in formulating the very notion of a Lorentzian
metric and in formulating the Einstein field equations” . Thus, if we want to
remain close to GTR, we had better arrive at a generalized manifold.

As a precondition for fulfilling (E), we require that the topology on Mn
m

be defined on the basis of the open balls in the different layers,

Bi(x, r) := {y = 〈y, j〉 ∈ Lni | d(x,y) < r},

where i ∈ {1, . . . ,m}, x ∈Mn, r ∈ R+, and d is the n-dimensional Euclidean
distance.15

14Note that in one dimension, case (3) does not arise as a separate option; it coincides
with option (2).

15Note that we had to write y = 〈y, j〉 ∈ Ln
i , allowing for the index j = 1 in any layer

for events with coordinates in V̄ , where the layers overlap.
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There seem to be at least two options (a) and (b) for proceeding from
here.16

(a) We can use as a basis the open balls in each layer Lni separately, i.e., the
basis consists of all the sets Bi(x, r) defined above.

(b) We can coarse-grain this option and use as a basis the sets

B∗(x, r) := {y = 〈y, i〉 ∈Mn
m | d(x,y) < r},

i.e., the basis consists of balls in all layers simultaneously.

Pasting and choice of topology interact in interesting ways. The following
table gives the results, where “LE” stands for “locally Euclidean” and “H” for
“Hausdorff”:17

pasting (1) pasting (2) pasting (3)
topology (a) H − /LE+ not a top. not a top.
topology (b) H + /LE− H + /LE− H + /LE−

We see that the pasting options (2) and (3), according to which the origin is
not doubled, lead to a violation of the conditions on a topology if one tries
a definition according to (a): e.g., B1(0, 1/2) ∩ B2(0, 1/2) is not open as it
contains no Bk(0, r) for any k and r (the interior of the forward light cone
drops out, so to speak). A definition accordint to (b), on the other hand, leads
to “branching” open sets around the origin, which are not homeomorphic to
any open set of Rn. Option (1,a) therefore remains as the only sensible way
for fulfilling requirement (E), and we will accordingly adopt option (1,a) in
what follows.18

For the record, here is our official definition of the m-fold branching,
n-dimensional Minkowski space-time Mn

m as an ordered topological space:
16In fact we could try to create a third option somewhere in between (a) and (b), e.g.,

by going for (b) only around the origin. However, such an option will inherit the problems
of option (b) to be discussed below, so we do not discuss it separately.

17We are assuming m ≥ 2, for otherwise the topology obviously coincides with the
standard topology of Mn, and the pasting options (1)–(3) have no effect.

18An Mn
m-like construction is also given in Visser (1996, 251–255); the book contains

many pointers to relevant literature. Visser calls his construction a “branched spacetime”
(252), without however making any connections to the philosophical/logical discussions
about branching space-times. Visser opts for topological option (a) as we do, and also his
V is option (1), not Belnap’s option (3). Penrose (1979, 593) has a suggestive drawing
of a branching space-time; while Penrose is not explicit about the topology, and his Fig-
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Definition 13 (Mn
m) Them-fold branching, n-dimensional Minkowski space-

time Mn
m is defined from the n-dimensional Minkowski space-time Mn by

setting the to-be-multiplied region V to be the future light cone of the origin,
including the rim of the light cone and the origin itself:

V := J+(0) = {x ∈Mn | 0 ≤ x}; V̄ := Mn − V ; Vi := V × {i};

defining the m layers, for i = 1, . . . ,m, to be

Lni := (V̄ × {1}) ∪ Vi;

and pasting them via

Mn
m :=

m⋃
i=1

Lni .

The ordering ≤ is the union of the usual Minkowskian orderings in the layers,
and the locally Euclidean topology T is given via the countable basis of open
balls with rational center coordinates x ∈ Mn and rational radius r > 0 in
the finitely many layers i = 1, . . . ,m,

Bi(x, r) := {y = 〈y, j〉 ∈ Lni | d(x, y) < r}.

Note that the layers themselves, each of which is homeomorphic to Rn, are
open sets in this topology, and that for i 6= j, Lni − Lnj = Vi. Note also that
∂Vi = ∂J+(0)× {i}.

By our definition we now have a natural and locally Euclidean topology,
which qualifies our structures as Y -manifolds.19 The models Mn

m, considered

ure 12.3(a) may suggest choice points à la Belnap, he seems to have option (1) in mind as
well, since he writes: “on each branch the wavefunction starts out as a different eigenvector
. . . ” (Penrose, 1979, 594; italics TM). Deutsch (1991) refers to this discussion; his remarks
about “a larger object which has yet to be given a proper geometrical description” (3207)
may be read as pointing in the direction of something like our Mn

m structures, or their
generalizations discussed in §3.3 below. McCabe (2005) reproduces Penrose’s figure. He
remarks that such figures themselves are open to different interpretations and do not need
to be read as implying non-Hausdorffness; this is in line with our discussion of options
above. However, he does not discuss in much detail the price that has to be paid for drop-
ping local Euclidicity in avoiding non-Hausdorffness, remarking that “it is a debate which
has not been conducted in the literature” (McCabe, 2005, 670). We agree with Earman
that constraint (E) has to be taken very seriously, and we will continue to hold on to it.

19We can use an atlas with m charts, each mapping a layer Ln
i of Mn

m to Rn.

23



as orderings, are almost branching space-times according to BST92, and even
almost Minkowskian BST92 models (see note 11 above). From a BST92
point of view, there are m histories: the Lni are the maximal directed sets.20

However, the prior choice postulate, which requires the existence of maxima
in the intersection of histories that play a causal role, is violated: for i 6= j,
Lni ∩ Lnj = V̄ × {1} has no maximum whatsoever. We will comment on this
issue below: this is the price we have to pay for local Euclidicity, and thus,
for moving closer to the physics discussion. An alternative version of the
prior choice postulate can be built upon a novel, topological definition of the
notion of a choice point; §3.3 contains some suggestions on this issue.

In a way, the above discussion should suffice to alleviate Earman’s worry
that he has “been unable to get a fix on what Belnap branching involves”
(Earman, 2008, 192). To be fair, however, we have seen reasons to deviate
from BST92, and there are many issues that still need to be addressed. We
will start by discussing the question of modality from a topological perspec-
tive.

3.2 Modality in Mn
m

3.2.1 Modal consistency and inconsistency

We have already mentioned that the BST92 motivation for constructing
branching space-times was to capture (certain forms of) indeterminism. Re-
gions in different layers of Mn

m outside the overlap, i.e., any subsets Ri ⊆ Vi
and Rj ⊆ Vj, for i 6= j, are viewed as modally incompatible; they cannot
occur together in a single history. (This does not require them to be qual-
itatively different, though.) On the BST view, it is not that such regions
are “worlds apart”, like in the “divergence” view on modality championed by
Lewis and at least implicitly adhered to in most of the philosophy of science
discussion. Rather, Ri and Rj are related via suitable external relations—
viz., the causal ordering ≤—and can therefore be usefully viewed as parts of
one world; hence Belnap’s apt name Our World for models of BST92.21

20Obviously the layers are directed sets, being order isomorphic toMn, which is directed.
For maximality, observe that any “new” element to be added to Ln

i has to come from Vj

with j 6= i; by the definition of the ordering, the resulting superset of Ln
i is not directed.

For a detailed proof, see, e.g., Müller et al. (2008). (The fact that we have opted for
pasting à la (1), doubling the origin as well, has no influence on this result.)

21In BST92 it is provable that the worst case for such an external relation is an M-
shaped causal path; in the simpler structures at issue here, the worst case is a V-shaped
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Here comes the crucial issue. The notion of modal incompatibility has
a formally perspicuous and intuitively satisfactory definition in the order-
theoretic framework of BST92: events e and f in a model of BST92 are
modally compatible iff they have a common upper bound—in that case, they
belong to some directed set, which in turn must be (by Zorn’s lemma) a
subset of a history. Events that share a history do not need to be order-
related, but if they aren’t, then we know that they occur together in some
one space-time and are space-like separated. Their common upper bound
provides a perspective from which one can say that both have occurred.

This logical approach to modal consistency is still applicable to our ex-
ample structures Mn

m, which can be captured as a single partial ordering as
required by BST92. We have however already remarked that this feature of
BST92 makes it too narrow for applications to GTR. Thus, we are looking
for a purely topological definition of modal consistency and inconsistency,
which would also apply to such (generalized) manifolds that can no longer
be viewed as single partial orders.

The literature on topological issues in GTR that we have been able to
consult does not address this question explicitly. Modality is usually absent
from physical theorizing, and determinism seems to be viewed as a regula-
tive ideal for physics—despite a number of acknowledgments of the modal
presuppositions of, e.g., scientific experiment (see §2.3). This means that we
have to do some exploratory work.

3.2.2 From the order-theoretic to a topological characterization
of consistency

Intuitively and by the pasting construction, it is clear that the maximal
modally consistent subsets of Mn

m are exactly the layers Lni , i = 1, . . . ,m.
These cover the whole of Mn

m without any gaps or holes, and they are also
individually such that, intuitively speaking, each space-time point of Min-
kowski space-time Mn occurs exactly once. As remarked above, these layers
are also the histories in the sense of the usual, order-theoretic definition of
BST92: each layer is a maximal directed set inMn

m. Thus, the order theoretic
definition of modal consistency remains applicable even though we deviate
from the axiomatic basis of BST92. The question before us now is how to
capture the intuitive notion of modal consistency not in order theoretic, but

path.
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in purely topological terms. A guiding idea is to take seriously the point
that non-Hausdorffness should be shunned for individual space-times (histo-
ries), and thus to carve up our non-Hausdorff manifolds Mn

m into appropriate
Hausdorff submanifolds.

While the GTR literature is generally silent about the issue of modal
consistency, relegating, as we have seen, remarks about modality to the non-
formal parts of papers, Hajicek (1971) defines the useful notion of an H-
submanifold of a Y -manifold (where the “H” stands for “Hausdorff”):

Definition 14 (H-manifold) Given a Y -manifold M , a subset A ⊆ M is
an H-submanifold iff A is open, connected, Hausdorff, and maximal with
respect to these properties. (I.e., every proper superset of A is either not
open, not connected, or not Hausdorff.)

A straightforward application of Zorn’s lemma gives us that the set of all
H-submanifolds is an open cover of a given Y -manifold (cf. Hajicek, 1971,
Theorem 1).

Hajicek (1971) also suggests the notation Y L
M for the set of points in M

that are non-Hausdorff related to some point in L,

Y L
M := {x ∈M | ∃ y ∈ L xY y}.

We note some useful facts about the points in Mn
m that are non-Hausdorff

related to some other point (obviously there are no such points in casem = 1):

Lemma 1 Let M := Mn
m for some n ∈ N and some m ≥ 2. Then for

x = 〈x, i〉, y = 〈y, j〉 ∈M we have

xY y iff x = y, i 6= j, and x ∈ ∂J+(0).

Accordingly,

YM
M = {〈x, i〉 | x ∈ ∂J+(0) & i ∈ {1, . . . ,m}},

and for L := Lni a layer (i ∈ {1, . . . ,m}), we have

Y L
M = {〈x, j〉 | x ∈ ∂J+(0) & j ∈ {1, . . . ,m} & j 6= i} = YM

M − ∂Vi.

Proof: The second and third assertions follow immediately from the first.
For the first, we can argue as follows:
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“⇒”: Let 〈x, i〉Y 〈y, j〉. If we had x 6= y we could obviously separate them
via open balls of less than 1/2 their Euclidean distance. So x = y, and as
xY y implies x 6= y, we have i 6= j. So we have x ∈ Vi and y ∈ Vj. Now if we
had x 6∈ ∂J+(0), x would belong to the interior of Vi and y to the interior
of Vj (note again that ∂Vi = ∂J+(0)× {i}). So, as Vi ∩ Vj = ∅, the points x
and y could be separated by disjoint open sets, violating xY y.
“⇐”: Let x = y, i 6= j, and x ∈ ∂J+(0). Any open environment of one of
those points contains an open ball of radius rx and ry, respectively. These
balls overlap in the region V̄ . So indeed, the points cannot be separated by
disjoint open sets. �

We will also need the following Lemma:

Lemma 2 Let M := Mn
m for some n ∈ N and some m ≥ 2, and let A ⊆ M

be open and such that A contains elements of the forward light cone of the
origin in different layers, i.e., there are i, j ∈ {1, . . . ,m}, i 6= j, such that

Ai := A ∩ Vi 6= ∅, Aj := A ∩ Vj 6= ∅.

Then if A is connected, we have both Ai ∩ YM
M 6= ∅ and Aj ∩ YM

M 6= ∅.

Proof: Assume that Ai ∩ YM
M = ∅ (the case for Aj is symmetrical). Noting

that Lni ∩ YM
M = ∂Vi, this means that Ai ⊆ intVi, and as A is open, Ai =

A ∩ intVi, as an intersection of two open sets, is open as well. Now writing
B = A − Ai, we obviously have A = Ai ∪ B and Ai ∩ B = ∅. But we also
have

B =
⋃
j 6=i

A ∩ Lnj ,

so (noting that the Lnj are open), B is open as well. Ai is nonempty by
assumption, as is Aj, and we have Aj ⊆ B, so B is nonempty as well. Thus
A, being the disjoint union of nonempty open sets, is not connected. �

We can now prove that the layers of Mn
m are in fact H-submanifolds:

Lemma 3 Let M := Mn
m for some n, m, and let L := Lni ⊆ M be a layer

(i ∈ {1, . . . ,m}). Then L is an H-submanifold of M .

Proof: Hausdorffness, openness and connectedness are obvious: L is homeo-
morphic to Mn (and thus, L is even simply connected). As to maximality,
let A ) L be open and Hausdorff. Note that in the terminology of Lemma 2,
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Ai = A ∩ Vi = Vi 6= ∅. As A is a superset of L, A must also contain
a nonempty subset Aj of some Vj = Lnj − L, i 6= j, so the antecedent of
Lemma 2 is satisfied. Note that Ai ∩ YM

M = Y L
M = ∂Vi, so Y L

M ⊆ A. As
A is Hausdorff by assumption, we must have Aj ∩ YM

M = ∅. But then, by
Lemma 2, A is not connected, so L is in fact maximal w.r.t. the property of
being Hausdorff, open and connected. �

Unfortunately, this Lemma does not hold in the other direction: there are
intuitively weird H-submanifolds of M that do not correspond to layers. We
will illustrate this by a counterexample for M = M2

2 , which also paves the
way for our ultimate topological definition of modal consistency (the example
easily generalizes to other Mn

m, m,n ≥ 2).

Fact 1 M := M2
2 has an H-submanifold that is not equal to one of the layers

Lni , i = 1, 2.

Proof by example: We divide the rim of the forward light-cone of the origin
into a left and a right part, which are allowed to overlap at the origin:

Jl := {〈t, x〉 ∈ J+(0) | x ≤ 0}, Jr := {〈t, x〉 ∈ J+(0) | x ≥ 0}.

We have Jl ∪ Jr = J+(0) and Jl ∩ Jr = {0}. Now consider the set

A := M − ((Jl × {1}) ∪ (Jr × {2})),

i.e., A is the whole of the pasted space M without half of the rim of the for-
ward light-cone in each layer. Note that the origin in both layers is removed
in constructing A, which makes it intuitively weird. But as a fact, A is a H-
submanifold of M . For a proof, we can cite Hajicek (1971, Theorem 2). More
explicitly (since we need the proof to motivate our improved definition of a
history), we argue as follows. Hausdorffness is clear: the worrysome double
points have been carefully removed. Openness is also quite easy to prove.
V̄ ×{1} is an open set, so any point of A in there has an open environment in
A. The same holds for the interior of the two copies of the forward light-cone
of the origin. As for the remaining points of A on the rim of that light-cone,
is is also straightforward to prove that each point x on the left-hand side
has an open environment of the form B2(x, r), and similarly each point x
on the right-hand side has an open environment of the form B1(x, r). In
order to prove connectedness, we can easily show that A is path-connected;
Fig. 4 gives the idea. It turns out that A is even simply connected. This
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may seem strange, given that two points (at the origin) have been removed
from the (two-dimensional) manifold. But there is no closed curve circling
the origin: if a curve enters the forward light-cone from the left, into layer
2, then it cannot exit to the right, and the other way round. Finally, as to
maximality, we obviously cannot add any point from (Jl−{0})×{1} or from
(Jr−{0})×{2} without violating Hausdorffness (see Lemma 1). So the only
real candidate for adding is the origin in one of the layers, 〈0, 0, i〉, i = 1 or
2. But any open environment of 〈0, 0, i〉 has to contain an open ball Bi(0, r)
for some r > 0—and that ball then has to contain additional points from
Jl×{1} (for i = 1) or from Jr×{2} (for i = 2), violating Hausdorffness after
all. �

V x {2}

V x {1}

V x {1}

V x {1}

Figure 4: Idea of the proof that the set A exemplifying Fact 1 is path con-
nected.

We reject A as a serious contender to modal consistency: it contains obviously
incompatible points, filling in all the space-time points of the interior of J+(0)
twice and just avoiding a failure of Hausdorffness by some trick. This intuitive
assessment can be backed up by an order-theoretical argument: as a partial
ordering, A is not directed. But what can we say on the topological side?

The more properly local kind of critique of the example structure A seems
to be the following: in A, there are convergent sets C ⊆M wholly contained
in A such that C does not converge to any point in A. Note that it would
obviously be asking too much to require that A contain all limit points of such
C and thus be closed—if some set C has two or more non-Hausdorff-related
limit points in M , we obviously cannot require A, which must be Hausdorff,
to contain all of those. It does seem reasonable, however, to demand that at
least one limit point be contained in A. In fact, the example of the chain C0

given in §3.1.2 above (see Fig. 3) is an appropriate expression of this worry:
it is a subset of A with two limit points 〈0, 0, 1〉 and 〈0, 0, 2〉, but none of
these points is contained in or can be added to A.
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The two ways of criticizing the example A are complementary: according
to the order-theoretic point of view, the set is “too big”, containing points that
cannot occur together in one (directed) history. According to the topological
point of view, the set is rather “too small” in that it does not contain any
limit points for sets that converge in the full space, and it cannot be extended
to be “big enough” without violating the Hausdorff condition.

We can rephrase our topological considerations as follows: A set A con-
taining two or more non-Hausdorff-related points is obviously, or blatantly,
modally inconsistent; it runs together modal alternatives in one set, which
therefore cannot represent a possible scenario. A set may however be modally
inconsistent without being already blatantly inconsistent: there may be a
natural demand on completeness of any candidate for a possible scenario
such that the candidate scenario becomes blatantly inconsistent when com-
pleted. This is what we diagnosed to be the case for the example A from the
proof of Fact 1; the natural demand on completeness, apart from openness
and connectedness, was relative hole-freeness as laid out above.22

Based on these considerations we venture the following novel topological
definition of a maximal consistent set, or a history:

Definition 15 Given M = Mn
m for some n and m, a history in M is a subset

h ⊆ M that is maximal with respect to the properties of being (i) open, (ii)
connected, (iii) Hausdorff, and (iv) for each subset C ⊆ h, if ∂C 6= ∅, then
h ∩ ∂C 6= ∅ as well.

As a first test for the usefulness of this definition, we can now indeed prove
both directions of the analogue of Lemma 3:

Lemma 4 Given M = Mn
m for some n and m, a subset A ⊆M is a history

according to definition 15 iff A = Lni for some i ∈ {1, . . . ,m}.

Proof. “⇐” Let A = Lni for some i ∈ {1, . . . ,m}. By Lemma 3 we know
that A is (i) open, (ii) connected, and (iii) Hausdorff. As A is homeomorphic
to Mn, any convergent set in A also contains a limit point in A, so A also

22Note that we are only talking about relative hole-freeness: histories are not allowed
to contain holes relative to the background generalized manifold. This does not amount
to demanding that the histories themselves be “hole-free” as individual space-times, e.g.,
in the sense discussed by Earman et al. (2009). Such conditions can however be added
to the definition of the relevant class of generalized manifolds. See §3.3 below for some
discussion.
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fulfills condition (iv). Again by Lemma 3, A is already maximal w.r.t. (i)–
(iii), so it is also maximal w.r.t. (i)–(iv).

“⇒” Let A ⊆ M be a history according to definition 15. If we can show
that A ⊆ Lni for some i ∈ {1, . . . ,m} then we’re finished: As the layers
are themselves histories, A cannot be a proper subset of any layer, whence
A = Lni . We will use the following abbreviations for subsets of A:

Ak := A ∩ Vk; Rk := Ak ∩ YM
M = Ak ∩ (∂J+(0)× {k}).

Now assume that there is no i ∈ {1, . . . ,m} for which A ⊆ Lni : This means
that there are i, j ∈ {1, . . . ,m}, i 6= j, for which Ai 6= ∅ and Aj 6= ∅. By
Lemma 2, noting that A is open and connected by assumption, we therefore
have Ri 6= ∅ and Rj 6= ∅.

We now look at the set R of points on the rim of the forward light cone
of the origin occupied in A,

R := {x ∈ ∂J+(0) | ∃i ∈ {1, . . . ,m} 〈x, i〉 ∈ A}.

As A is open, we have that R is an open subset of ∂J+(0) (in the subspace
topology induced by ∂J+(0)). We now consider R̄ := ∂J+(0) − R, and we
will show that R̄ is also open (in the subspace topology).

If R̄ is empty, there is nothing to be shown. If R̄ 6= ∅, we will show
that it contains an open ball (in the subspace topology) around any of its
points. Assume not: let x ∈ R̄ s.t. R̄ contains no open ball around x. This
means that every open environment of x contains an element from R, so
for every open environment of x there is some 〈y, i〉 ∈ Ri ⊆ A. As there
are only finitely many layers, there must be some k ∈ {1, . . . ,m} for which
every environment of x contains some 〈y, k〉 ∈ Rk ⊆ A. So Rk contains
a subset converging on 〈x, k〉. By property (iv) of a history, therefore, A
must contain some 〈x, l〉, whence x ∈ R, contradicting the assumption that
x ∈ R̄. Thus, on the assumption that there is some x ∈ R̄, R̄ also contains
an open ball around x, meaning that it is open. This means that R is closed
(in the subspace topology). But the only clopen subsets of ∂J+(0), which is
connected, are ∅ and ∂J+(0) itself; by Ri 6= ∅, we must have R = ∂J+(0).

By Hausdorffness of A, we cannot have an x ∈ R and i 6= j for which
both 〈x, i〉 ∈ A and 〈x, j〉 ∈ A. So we have a total function

f : R = ∂J+(0) 7→ {1, . . . ,m} s.t. f(x) = i iff 〈x, i〉 ∈ A.
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Now chose some i ∈ {1, . . . ,m} and let x ∈ R be such that f(x) = i, i.e.,
〈x, i〉 ∈ A. As A is open, there is some Bi(x, r) ⊆ A, so there is an open
subset of R containing x whose f -image is i. Thus, f−1(i) is an open subset
of R, i.e., f is a continuous function from the connected set R to the discrete
set {1, . . . ,m}. Any such function must be constant. This means that there
is just one k ∈ {1, . . . ,m} for which Rk ∩ YM

M 6= ∅, and so we cannot have,
after all, Ri 6= ∅ and Rj 6= ∅, which however followed from our assumtion
that A overlapped more than one layer. Thus, A is a subset of, and hence
equal to, one of the layers of Mn

m. �

3.3 Going global

So far we have achieved two things: (1) we have constructed branching struc-
tures that are both partial orders (appropriate for the “logical” approach of
BST) and generalized manifolds (appropriate for the topological approach of
general relativity): our m-fold branching Minkowski space-times Mn

m; (2) we
have given a reasonable, purely topological definition of modal consistency,
Definition 15. The main reason for moving from an order-theoretic criterion
of modal consistency (BST92’s directedness) to a topological definition was
the possibility of generalizations to structures that can no longer be viewed
as partial orders globally. Such generalizations should therefore be the next
step.

In a certain sense, that step is trivial: we can simply take any generalized
manifold and identify its histories according Definition 15. Provably, if such
a generalized manifold is a properly generalized manifold (i.e., if it is not
Hausdorff), it will contain more than one history; in fact, if a point x in a
non-Hausdorff manifold M has k points non-Hausdorff related to it, M will
harbour at least k+1 histories, and each of these histories will be a Hausdorff
manifold.

This simple perspective on non-Hausdorff manifolds, however, does not
seem to be enough for bringing BST really closer to the physicists’ model
space-times. There are several issues that need to be addressed:

1. The class of generalized manifolds is very large. It is not clear that
carving up a generalized manifold into histories (Hausdorff submani-
folds) generally makes intuitive sense. Minimally, one will want the
resulting submanifolds (histories) themselves to be good candidates for
physical space-times; additionally, one will want to be able to interpret
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the branching of the histories in the sense of modal separation. Care
also needs to be taken to ensure that the class of histories fully covers
the initially given general manifold. This may not hold generally, as
a simple appeal to Zorn’s lemma, which was possible both in the case
of the directed sets of BST92 and in the case of H-manifolds (Defini-
tion 14), is not generally possible due to condition (iv) of Definition 15.

2. In BST92, choice points play a crucially important role, e.g., as initials
of indeterministic transitions. These choice points were defined to be
maximal points in the intersection of histories. In the Mn

m structures
defined above, however, the intersection of any two histories (layers)
has no maxima. This deviation from BST92 is due to the fact that we
needed to tweak the definition of the pasting such as to arrive at locally
Euclidean spaces, as laid out in detail above. Thus, an important
concept seems to be lost. Intuitively, however, the origin in Mn

m, which
is m-fold multiplied (and therefore has m− 1 non-Hausdorff twins just
like any point on the rim of its forward light cone), still seems to be
a special point. In terms of the ordering, it is the least point in the
structure that has a non-Hausdorff twin. That is however a partially
order-theoretic, not a purely topological characterization.23 If we want
to retain the topological outlook of our present approach, we need to
capture choice points in a different way.

3. In BST92, the prior choice principle secured a physically reasonable
interpretation of modal inconsistency as grounded in causal alternatives
represented by inconsistent transitions. That idea has led to a number
of applications, e.g., in probability theory. In order to retain, or at
least translate, these results, we need to identify transitions in the new
framework. This is linked to the previous point, as transitions in BST92
are from a choice point to one of its local possible futures.

4. Relatedly, the order-theoretic background of BST92 secured an intu-
itive interaction between modality and time: branching into incompat-
ible scenarios is always future-directed, simply due to the demand of
upward directedness of histories. This sense of temporal ordering is
retained in the Mn

m structures: if a chain in Mn
m has more than one

23Curiously, a topological characterization is available in BST92 with the Belnap pasting
leading to maxima in the intersection of histories: a choice point is characterized by having
no non-Hausdorff twin and no locally Euclidean environment.
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endpoint, then these endpoints are not just non-Hausdorff related, but
we know that the endpoints are at the future-pointing end of the chain.
Certainly, constraints will be needed to secure a similar feature in the
general case, both in order to secure temporal orientability of the indi-
vidual space-times and to secure the proper alignment of the temporal
orientation of different histories as well as the mentioned “future point-
doubling” feature.

5. If the theory of locally Minkowskian BST developed here is to have
physical applications, we need to show how differential equations be-
have on generalized manifolds. Such considerations may in turn lead
to constraints on reasonable global models.

As we can see, a lot of work remains to be done. In a sequel to this pa-
per, we will work out the following points which here are mentioned merely
programmatically:

(a) A generalized manifoldM will be a locally Minkowskian branching space-
time only if additional constraints are met.

(i) Minimally, we demand that the set of histories fully covers M .

(ii) We want to be able to define a pseudo-Riemannian metric gµν onM .
(It will be interesting to look at the interrelation of that criterion
with the definability of such a metric on each history separately.)

(iii) It seems reasonable to demand time-orientability of all histories,
i.e., the definability of a non-vanishing continuous time-like vector
field. (Again, it will be interesting to see whether this is equiva-
lent to demanding time-orientability of M as a whole; if not, it is
interesting to find out under which additional conditions it is.)

(iv) The time-orientation of each history has to be chosen such that
branching happens to the future, i.e., if xY y, then there is a future-
directed causal path that has x and y as its endpoints. The possibil-
ity of such a choice translates back into a constraint on admissible
generalized manifolds.

(v) Additional constraints on the individual histories may be reason-
able, e.g., some criterion of hole-freeness (see, e.g., Earman et al.,
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2009);24 again, these translate back into constraints on admissible
M . In fact, to be on the safe sinde, we may demand the individ-
ual histories (individual space-times) within a generalized manifold
to be as physically well-behaved as we like, while still retaining a
non-Hausdorff, branching space-time structure globally.

(b) As to the intuitive understanding of the branching, the following seems
useful: In BST92, non-directedness was the sign of modal inconsistency;
the prior choice principle demands that any case of modal inconsistency
be explainable by a prior choice point.25 In the present setting, modal
inconsistency is a two-stage affair. Obviously, any points that are non-
Hausdorff related, are modally inconsistent; they cannot occur in a single
history simply because a history has to be Hausdorff. Let us call such
points, blatantly inconsistent : they amount to running together incom-
patible local alternatives and therefore do not demand any additional
explanation. (In this sense, two different transitions with the same ini-
tial are called “blatantly inconsistent” in Müller et al. (2008).) There is
no immediate topological answer to when two points that are not non-
Hausdorff twins, are modally inconsistent. The definition of a history
gives the following answer: such points are modally inconsistent iff they
belong to different maximal open, connected, Hausdorff, relatively hole-
free sets, i.e., iff no such sets contains both points. Is there a more “local”
criterion? One idea is the following: two points x, y are modally incon-
sistent iff there is a pair x0, y0 of blatantly inconsistent points (x0 Y y0)
and there are two future-directed causal paths, one starting in x0 ending
in x, and one starting in y0 and ending in y. According to that criterion,
two modally inconsistent points are in the future of a modal splitting,
which in turn explains their inconsistency.

(c) All of this may be captured by demanding that M be locally homeomor-
24Note again that condition (iv) in the definition of a history above only guarantees

relative hole-freeness: a history may not introduce additional holes when compared to the
global structure. This says nothing about the hole-freeness of that global structure itself,
nor about the absolute hole-freeness of the histories as individual space-times. See note 22
above.

25This issue is subtle: in order not to rule out “modal funny business” (Belnap, 2002),
one should not demand that the prior choice be in the common past of two inconsistent
points. So, two choice points may have to be invoked in an explanation of a pair of modally
inconsistent points.
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phic to some Mn
m. The following general demand on M may be on the

right track: if there is x ∈ M that has exactly k non-Hausdorff twins
y1, . . . , yk, then there is an open environment a of x containing all the yi
and an open subset b of Mn

k+1 such that a and b are homeomorphic, and
such that the light cone structure is also mapped in the right way (i.e.,
in such a way that the part of the rim of the light cone in b is mapped
onto a set of points all of which have non-Hausdorff twins).

(d) Given the above idea (when suitably worked out), it may be possible to
single out the candidate choice points as those points that are mapped
onto the origin by suitable homeomorphisms.

(e) Having candidate choice points as specific points with non-Hausdorff
twins, one may bundle together classes of pairwise non-Hausdorff related
sets of choice point candidates: choice-point candidates at the same
space-time location, so to speak. These clusters of points then corre-
spond, more properly, to a local set of alternatives, i.e., to a set of basic
transitions. In that sense, in M , a transition is identified with a point
(contrary to BST92’s idea that transitions have no “simple location”; see
Belnap (2003))—but with a point that carries a multiplicity within in,
in the sense of having multiple local alternatives. (A choice point in this
sense, then, is a point that already comes with a choice built in.) Given
basic transitions in that way, many of the already established results of
BST92 will carry over. Thus, e.g., we can import the causality theory of
Belnap (2005), and the probability theory of Müller (2005).

(f) A next step would be to look at the behaviour of differential equations—
paradigmatically, the Einstein field equations—on such M . It will be in-
teresting to see how additional variables selecting the individual branches
can be defined. As a first toy model, one may look at the idea of Pearle
(1976) to use a gauge freedom of the theory (in his case, the phase of
a quantum state). Facing m-fold splitting, one could e.g. divide up the
space of gauge transformations into m parts and propagate the solution
appropriately. Of course, a physically more reasonable mechanism, per-
haps along the lines of Ghirardi et al. (1986), is needed in the end. In
such a way, the philosophically motivated theory developed here could
perhaps become a useful model for a very classical theory combining
quantum indeterminism and general relativity.
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