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Abstract

In this paper, a concept of chance is introduced that is compatible with deterministic
physical laws, yet does justice to our use of chance-talk in connection with typical games
of chance, and in classical statistical mechanics. We take our cue from what Poincaré
called “the method of arbitrary functions,” and elaborate upon a suggestion made by
Savage in connection with this. Comparison is made between this notion of chance,
and David Lewis’ conception.

1 Probability, Chance, and Credence: a brief

history

As has been often pointed out, the word “probability” has been used in at least two
distinct senses.1 One sense, the epistemic sense, has to do with degrees of belief of a
rational agent. The other sense, which Hacking calls the aleatory sense, is the concept
appropriate to games of chance; this is the sense in which one speaks, for example, of
the probability (whether known by anyone or not) of rolling at least one pair of sixes,
in 24 throws of a pair of fair dice.

A particularly clear statement that there are two concepts that need to be distin-
guished is found in Poisson’s book of 1837.

In ordinary language, the words chance and probability are nearly synony-
mous. Quite often we employ one or the other indifferently, but when it is
necessary to distinguish between their senses, we will, in this work, relate
the word chance to events in themselves, independently of our knowledge of
them, and we will reserve for the word probability the previous [epistemic]
definition. Thus, an event will have, by its nature, a greater or less chance,
known or unknown; and its probability will be relative to the knowledge we
have, in regard to it.

1See Hacking (1975) for a masterful overview of the history.
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For example, in the game of heads and tails,2 the chance of getting heads,
and that of getting tails, results from the constitution of the coin that one
tosses; one can regard it as physically impossible that the chance of one be
equal to that of the other; nevertheless, if the constitution of the coin being
tossed is unknown to us, and if we have not already subjected it to trials,
the probability of getting heads is, for us, absolutely the same as that of
getting tails; we have, in effect, no reason to believe more in one than the
other of the two events (Poisson, 1837, p. 31).3

Note that Poisson’s use of “chance” refers to single events, and the chance of heads on
a coin toss is a matter of the physical constitution of the chance set-up (he says “the
constitution of the coin,” but clearly it matters also how the coin is tossed). This is
not a frequency interpretation.

Something happened on the way to the twentieth century: the notion of objective
chance—that is, single-case probability thought of as a feature of a physical situation—
largely dropped out of discussions. There remained that the idea that “probability” can
be taken in either an objective or an epistemic sense, but the objective sense became
identified with a frequency interpretation.

Thus we find de Finetti rejecting objective notions of probability on the basis of
a rejection of Laplacean and frequency conceptions (de Finetti 1937, pp. 16ff; 1980,
pp. 71ff). In a similar vein, Savage (1972, p. 4) identifies an objective conception of
probability with a frequency interpretation, and takes it as a virtue of the subjectivist
view that it is applicable to single cases. Absence of the notion of objective chance
in so many discussions of the foundations of probability led Popper (1957, 1959) to
conclude that he had an entirely new idea in single-case objective probabilities, which
he called “propensities.”

We also find some historians of probability have projecting a frequency conception
onto writers of previous centuries, in place of the notion of chance. For example,
though Hacking (1975, p. 12) initially characterizes this duality much as we have

2Poisson says “croix et pile”; heads and tails is our equivalent.
3Dans la langage ordinaire, les mots chance et probabilité sont à peu près synonymes. Le plus souvent

nous emploierons indifféremment l’un et l’autre; mais lorsqu’il sera nécessaire de mettre une différence
entre leurs acceptions, on rapportera, dans cet ouvrage, le mot chances aux événements en eux-mêmes et
indépendamment de la connaissance que nous en avons, et l’on conservera au mot probabilité sa définition
précédente. Ainsi, un événement aura, par sa nature, une chance plus ou moins grande, connue ou inconnue;
et sa probabilité sera relative à nos connaissances, en ce qui le concerne.

Par exemple, au jeu de croix et pile, la chance de l’arrivée de croix et celle de l’arrivée de pile, résultent
de la constitution de la pièce que l’on projette ; on peut regarder comme physiquement impossible que l’une
de ces chances soit égale l’autre; cependant, si la constitution du projectile nous est inconnue, et si nous
ne l’avons pas déjà soumis à des épreuves, la probabilité de l’arrivée de croix est, pour nous, absolument la
même que celle de l’arrivée de pile: nous n’avons, en effet, aucune raison de croire plutôt à l’un qu’à l’autre
de ces deux événements. I’l n’en est plus de même, quand la pièce a été projetée plusieurs fois: la chance
propre à chaque face ne change pas pendant les épreuves; mais, pour quelqu’un qui en connâıt le résultat, la
probabilit de l’arrivée future de croix ou de pile, varie avec les nombres de fois ces deux faces se sont déjà
présentées.
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here, later in the book the aleatory concept of probability identified with a frequency
interpretation: “On the one hand it [probability] is epistemological, having to do with
support by evidence. On the other hand it is statistical, having to do with stable
frequencies” (p. 43). Hacking is far from alone in this. For example, Daston (1988, p.
191) attributes a frequency notion to A. A. Cournot (1843), who distinguishes between
probability and what he calls degrees of physical possibility in much the same way that
Poisson distinguished between probability and chance. Howie (2002, p. 36) attributes
a frequency concept of chance to Poisson.

It’s not entirely clear what the reason is for the disappearance of chance from
discussions of probability. A plausible conjecture is that it had to do with increasing
acceptance that the laws that govern the physical world are deterministic, together
with the notion that objective chance and determinism are incompatible. Laplace
famously began his Philosophical Essay on Probabilities (1814) with a discussion of
determinism. A being that had complete knowledge of the laws of nature and the state
of the world at some time, and was able to perform the requisite calculations, would
have no need of the calculus of probabilities, according to Laplace. It is only because
our abilities depart from those of such a being that we employ probabilities. Laplace
then proceeds to characterize probability in epistemic terms; “[t]he theory of chance
consists in reducing all the events of the same kind to a certain number of cases equally
possible,” where “equally possible” means that we are equally undecided about which
of the cases obtain (Laplace, 1951, p. 6). It is not clear that Laplace is consistent in
maintaining an epistemic view throughout; there are passages in the Essay that suggest
that it is a matter of fact, which we can investigate empirically, whether events are
truly equipossible. Nevertheless, the official view, for Laplace, is an epistemic one.4

Though it may be that emphasis on determinism led to the decay of the notion
of objective chance, there is nevertheless a tension between the idea that chance and
determinism are incompatible, and the way that we talk about chances. We talk about
the chance of heads on a coin toss, casino owners worry about whether their roulette
wheels show discernible bias, and these seem to be matters that can subjected to
experimental test, by doing multiple trials and performing a statistical analysis on the
results.5 Yet we also think that, at least to the level of approximation required, these
systems can be adequately modelled by deterministic, classical physics.6 Nor does it
seem that Poisson was supposing any departure from determinism.

Of course, such talk might simply be deeply ill-conceived. David Lewis declared
that “[t]o the question how chance can be reconciled with determinism, ... my answer
is: it can’t be done” (1986, p. 118), and Schaffer (2007) has provided arguments
for this conclusion. It is the purpose of this paper to present a notion that may
appropriately be called chance, which fits quite nicely with deterministic evolution of a
certain kind, and which is suited to play the role of chance in our chance-talk. Schaffer

4See Hacking (1971; 1975, Ch. 14) for a lucid discussion.
5Though perhaps this should go without saying, it should be emphasized that taking frequency data as

evidence about chances is not tantamount to holding a frequency interpretation of chance.
6Though, it must be noted, Lewis (1986, p. 119) has suggested that this is false.
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(2007) distinguishes between genuinely objective chances and what he calls “epistemic
chances,” while noting that the latter can be objectively informed. “Epistemic chance”
is an apt name for the notion that we will be introducing, as it highlights the fact that
we will be interweaving epistemic and physical considerations.

In what follows, we will use the word “chance” for the aleatory concept; a chance
is an objective, single-case probability. When we are speaking of the belief states of a
(possibly idealized) agent, we will us the word “credence.” “Probability” will be used
when we want to be noncommittal.

2 Learning about chances

The chance of heads on a coin toss, if it is regarded as an objective feature of the
set-up, is ipso facto the sort of thing that we can have beliefs about, beliefs that may
be correct or incorrect, better or worse informed. Under certain conditions, we can
learn about the values of chances.

Particularly conducive to learning about chances are cases in which we have avail-
able (or can create) a series of events that we take to be similar in all aspects relevant
to their chances, that are, moreover, independent of each other, in the sense that oc-
currence of one does not affect the chance of the others. The paradigm cases are the
occurrence of heads on multiple tosses of the same coin, occurrence of a six on multiple
throws of the same die, and the like. Consider a sequence of N coin tosses. If, on each
toss, the chance of heads is λ, then the chance of any given sequence of results is

λm(1− λ)N−m,

where m is the number of heads in the sequence. Considered as a function of λ, this
is peaked at the observed relative frequency m/N , and becomes more sharply peaked,
as N is increased.

Let E be the proposition that expresses the sequence of results these N tosses, and,
for any λ, let Hλ be the proposition that the chance of heads on each toss is equal to
λ. Consider an agent who has some prior credences about the chance of heads, and
updates them by Bayesian conditionalization:

cr(Hλ) ⇒ cr(Hλ|E) =
cr(E|Hλ) cr(Hλ)

cr(E)
.

It seems natural to suppose—and, indeed, in the statistical literature this is typically
assumed without explicit mention—that our agent’s credences set cr(E|Hλ) equal to
the chance of E according to Hλ, as is required by what Lewis (1980) has dubbed the
Principal Principle. This has the consequence that our agent’s credence in chance-
values close to the observed relative frequency is boosted, and her credence in other
values, diminished. Moreover, since the likelihood function λm(1 − λ)N−m is more
sharply peaked, the larger the number of trials, relative frequency data becomes more
valuable for narrowing credence about chances as the number of trials is increased.
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Note that there are three distinct concepts at play here: chance, credence, and
relative frequency in repeated trials. None of these three is to be identified with any
of the others. They do, however, connect in a significant way: relative frequency data
furnish evidence on which we update credences about chances.

3 “Almost Objective” Chances

We take our cue from what Poincaré called the method of arbitrary functions (see von
Plato (1983) for the history of this). Poincaré’s analysis leaves some crucial questions
unanswered, and, in particular, leaves it unclear what notion of probability might be
in play. Savage (1973) argued that subjective credence has a role to play. And so it
does, but it is not a radical subjectivism that is needed, but a tempered personalism
that distinguishes between reasonable and unreasonable credence-functions.

3.1 Tempered personalism about credences

Objective Bayesians hold that there are, for any body of background knowledge, unique
credences that would be the degrees of belief of an ideally rational agent. At the
opposite extreme would be radical subjectivists (if there are any), who hold that the
only constraint on credences is the requirement of coherence, that is, that they satisfy
the axioms of probability; within the class of coherent credence functions, there can be
no grounds for judging one better or worse than another.7

The attitude that Abner Shimony (1971) has dubbed tempered personalism steers
between these extremes, finding cognitive virtue between two opposing vices. Without
supposing that there are uniquely rational credences, not all are equally acceptable;
excessively dogmatic credences are to be eschewed as obstacles to learning about the
world. In what follows, we will assume that there is a class of credences, perhaps
imprecisely defined, that represent the possible credences of a reasonable agent.

As an example relevant to the sorts of cases we are discussing, suppose that a
gambler in a casino becomes convinced that the next spin of the roulette wheel will
be 23, to the extent that he is willing to bet his life savings on it.8 Not because he
thinks the game is rigged; he takes it to be an ordinary roulette wheel, being spun in
the ordinary way, with the ordinary sorts of causal influences on the outcome. Though
the gambler’s credences need not violate coherence, we would nevertheless take such
a conviction to be unreasonable. If, further, our gambler claimed that his conviction
was based on a belief that the current state of everything causally relevant to the
outcome was such as to lead, via the unfolding of deterministic laws of physics, to
the result 23, we would, even if we shared his conviction in determinism, nevertheless
regard it as ludicrous to pretend to knowledge to the degree of precision that such a

7The parenthetical qualification is due to the fact that, though, in some passages de Finetti sounds like
a radical subjectivist, there are others that indicate a more moderate position.

8This example is inspired by the behaviour of the character played by James Garner in the comic western
Support Your Local Gunfighter (1971).
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conviction would require. In what follows, I will simply take it that the reader shares
this judgment, with the issue of what justification we might have for this to be left for
another occasion.

3.2 Poincaré and the method of arbitrary functions

Poincaré (1912, 1952) considered a simple, roulette-like game, in which a wheel, divided
into a large number n of sectors of equal size, alternately colored red and black, is spun,
and eventually comes to rest due to friction. Bets are to be placed on whether a pointer
affixed to the wheel’s mount will point to a red or a black sector when the wheel comes
to rest. The set-up is such that small differences in the initial impulse, too small to be
perceived or controlled, can make a difference between the outcome being red or black.

Poincaré supposes the probabilities of initial impulses to be given by a density
function φ, a function that is “entirely unknown” (1912, p. 148). This function yields,
via the dynamics of the set-up, a density function f over the angle θ at which the wheel
comes to rest. Suppose, now, that the function f is continuous and differentiable, and
that the derivative is bounded, so that, for some M , |f ′(θ)| < M for all θ. If the angle
(in radians) subtended by each sector is ε, then the difference between the probability
of red and the probability of black is at most Mπε. This goes to zero as ε goes to zero.

There are a number of questions left open by Poincaré’s discussion. First is the
status of the limit ε→ 0. We are, after all, considering the probability of a red or black
outcome on a spin of a particular wheel, with fixed number of sectors, not a sequence of
wheels with an ever-increasing number of sectors. We need not take Poincaré’s limit-
talk literally. What matters is that f vary slowly enough over intervals of size ε that
the probability of landing in any red sector be approximately equal to the probability
of landing in the adjacent black sector, and that any differences between probabilities
associated with successive sectors be small enough that they remain negligible when
n/2 of them are summed.

For our purposes, a more serious issue is the status of the function φ, which yields
probabilities over initial conditions. Poincaré calls φ an unknown function, which
suggests that there is a matter of fact about what function it actually is. In a discussion
of the game of roulette, Poincaré writes,

What is the probability that the impulse has this or that value? About this
I know nothing, but it is difficult for me not to admit that the probability
is represented by a continuous analytic function (Poincaré, 1912, p. 12).9

In a parallel discussion in Science and Hypothesis, he writes,10

I do not know what is the probability that the ball is spun with such a force
that this angle should lie between θ and θ+dθ, but I can make a convention.

9Quelle est la probabilité pour que cette impulsion ait telle ou telle valeur? Je n’en sais rien, mais il m’est
difficile de ne pas admettre que cette probabilité est representée par une fonction analytique continue.

10Note that there is a shift of notation between Calcul des Probabilités and Science and Hypothesis; φ is
here a density function over the final angle, that is, the function we have been calling f .
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I can suppose that this probability is φ(θ). As for the function φ(θ), I can
choose it in an entirely arbitrary manner. I have nothing to guide me in my
choice, but I am naturally induced to suppose the function to be continuous
(Poincaré, 1952, p. 201).

This, it must be admitted, is puzzling. Poincaré alternates between treating the prob-
ability as something objective but unknown, and treating it as something that we can
make arbitrary choices about.

Suppose, now, that we take the function φ to represent an agent’s degrees of belief
about the impulse imparted to the wheel. Applying the dynamics of the system to this
credence function yields a probability density f over the orientation of the wheel after
it has come to rest, at some later time t1. The probability function yielded by f might
not represent our agent’s degrees of belief about the final angle, if she doesn’t know
the dynamics of the set-up, or is unable to perform the requisite calculation; this will
be important in §3.3, below.

Suppose, now, that small changes in the initial conditions—too small to be con-
trolled or noticed by our agent—yield differences in the final angle that are large
compared to the width of a single sector. It is reasonable to suppose that an agent’s
credences would not vary much over such small scales; a credence function that changed
appreciably when shifted by an imperceptible amount would represent more detailed
knowledge of initial conditions than would be available to an agent in the epistemic
situation we are imagining. Then application of the system’s dynamics to the agent’s
credences will yield roughly equally probabilities of red and black outcomes. Moreover,
this conclusion does not depend sensitively on the function φ. Though, pace Poincaré,
it is not true that an arbitrary probability density over initial conditions, or even an
arbitrary density with bounded variation, yields equal probabilities for red and black,
it is true that a mild constraint on the density function φ—moreover, a constraint
that arguably any reasonable credence should satisfy—suffices to entail that f yield
approximately equal probabilities for red and black. The dynamics of the set-up ensure
that any reasonable credences about states of affairs at one time yield approximately
the same probabilities for certain coarse-grained propositions about a later state of the
system.

Generalizing, the situations of interest to us are ones in which we have a physical
set-up such that, for some proposition A (or class of propositions) about the outcome
of an observation undertaken at time t1, the dynamics of the set-up are such that any
reasonable credences about states of affairs at time t0 yield, as a result of the evolution
of the system, approximately the same value for the probability of A. There are four
interacting components at play here. One is a limitation on the knowledge of the
system available to the agent. Although it remains true that a being in possession of
precise knowledge of initial conditions and able to do the requisite calculation would
be in a position to have precise knowledge about the outcome, we suppose limits to
the precision of the knowledge available to our agents. Second is a judgment about
what sorts of credences are reasonable, given the knowledge available to our agents;
we are neither supposing uniquely reasonable credences, nor are we supposing that
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coherence is the only criterion of reasonableness. Third is a limitation of attention
to certain macroscopic propositions about the system’s state at a later time. Lastly,
and crucially, it should be a feature of the dynamics of the system that any differences
between reasonable credence-functions wash out; any reasonable credences about initial
conditions lead to approximately the same credence in the proposition A.

In situations like this—in which the dynamics of the system lead all reasonable
credences about the state of affairs at t0 to effectively the same probability for some
proposition A about states of affairs at a later time t1—we are justified, I think, in
calling this common probability the chance of A. What value these chances have
depends on the physics of the set-up, and, moreover, it makes sense to talk of unknown
chances, or in cases of disagreement about what the chances are, about one value
being more correct than another. The limitations on knowledge might be in principle
limitations. For an example that may or may not apply to the real world, consider the
de Broglie-Bohm hidden-variable interpretation of quantum mechanics. There, it is
provably impossible for an agent (who must interact with a system via physical means
to gain information about it) to gain enough information about corpuscle positions to
make betting at other than the quantum-mechanical probabilities reasonable. In other
cases, even if it might in principle be possible to gain further knowledge, obtaining such
knowledge is so far beyond feasibility that it might as well be impossible in principle.
Consider a real roulette wheel, to be spun by a human croupier, and take t0 to be some
time before the spin.11 Even if it is possible, in principle, to gain sufficient information
about the croupier’s physical state and all influences on it that would be sufficient to
make it reasonable to bet at other than the values we are calling chances, this matters
little to the credences of actual agents. Quantities of this sort have been called “almost
objective” (Machina, 2004). On the issue of terminology, see §5, below.

3.3 Learning about chances, revisited

The function φ is meant to represent an agent’s credences about states of affairs at t0;
f , the result of applying the system’s dynamics to this function. These dynamics will
often be imperfectly known to the agent, who might be unsure, say, whether the wheel
is biased in some way. Even if the dynamics are known, the requisite computation
might be intractable.

Nonetheless, our agent might believe that there is some value, unknown to her,
that gives the probability assigned to a proposition A by time-evolving, not only her
current credences, but those of any reasonable agent. This value is the degree of belief
in A that a reasonable agent would have if she knew the dynamics of the set-up and
could do the calculation, and in this sense represents credence that makes optimal use
of information available. Our agent can have credences about what this value is. For
any real number λ, let Hλ be the proposition that this value is equal to λ. It is a
reasonable constraint on our agent’s credences that they satisfy

cr(A|Hλ) = λ,

11After the ball has been released is another matter.
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and that, moreover, if E is any proposition whose truth-value could be ascertained by
the agent at t0,

cr(A|Hλ&E) = λ.

To see that this is a reasonable condition on an agent’s credences, recall that, if λ is
the chance of A, and our agent’s credences in A is not equal to λ, this is due to the
agent’s imperfect knowledge of the dynamical laws governing the system, or else to her
inability to apply these laws. Her conditional credence, conditional on the supposition
that her credence would be λ were these limitations lifted, is required to be λ.

Our constraint on credence suffices for our agent to learn about the chances of a
series of events that are regarded as having equal and independent chances, in the
manner outlined in section 2, above. The constraint is a cousin of Lewis’ Principal
Principle. The chief difference is that, in the Principal Principle, E may be any ad-
missible proposition, and, though Lewis does not explicitly define admissibility, he
takes all statements about the past to be admissible. This would be unjustified on our
treatment.

There is considerable literature on the justification of the Principal Principle; to
some it appears a mysterious constraint.12 About our constraint there is no mystery.

4 Chances in statistical mechanics

An appropriate physical set-up can wash out very considerable differences in credences
about initial conditions. Consider a gas in a box with with a partition down the middle.
Alice believes that at t0 the gas is initially in the left side of the box; Bob, that it is in
the right. The partition is removed, and, a few minutes later, at t1, some measurements
are to be performed on the gas. Let φA(t0) and φB(t0) be Alice and Bob’s credences
about the state of the system at t0, and let φA(t1) and φB(t1) be the result of applying
the actual dynamical evolution of the system to these credence-functions. That is,
the probability assigned by φA(t1) to a region ∆ of the system’s phase space is the
probability that φA(t0) assigns to the system being at t0 in some state that will evolve
into a state in ∆.13 Though this would be difficult to prove rigorously for anything
like a realistic gas, there is good reason to believe that, provided that their initial
credences don’t vary too rapidly within the respective regions of phase space on which
they are non-zero, the probability functions that result from applying the dynamics of
the system to Alice’s and Bob’s credences about initial conditions will yield virtually
the same probabilities for the results of any feasible measurements (that is, there is no
feasible experiment to be performed on the gas that will be informative about whether,
a few minutes earlier, the gas had been in the left or the right side of the box). This

12For some references to this literature, and skepticism about the possibility of a cogent justification, see
Strevens (1999).

13Once again, these time-evolved credence functions might not be Alice and Bob’s credences about the
states of affairs at t1, if they don’t know the dynamics of the system, or are unable to do the requisite
calculation.
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is true even though, in one sense, the time-evolved credences are as different as the
original ones: if there is no overlap between the regions of phase space that Bob and
Alice believe the gas to be in at t0, there will be no overlap in the regions assigned non-
zero probability by the time-evolved credence functions. Nevertheless, these two regions
will be finely intertwined in the phase space of the system, and macroscopic regions
will contain roughly equal proportions of both, so that the two probability functions
will agree closely on the probabilities of outcomes of macroscopic observations.

Here we see a role to play for the equilibrium probability measures used in statis-
tical mechanics. Provided the relaxation to the new equilibrium proceeds as we think
it does, Alice’s and Bob’s time-evolved credences about measurements will not only
agree with each other, but with those of a third agent, Charles, who believes that both
sides of the box initially contained gas of the same temperature and pressure. Charles
will take the removal of the partition to effect no change in macroscopically observable
properties of the gas, and his credences may be represented by an equilibrium distri-
bution, a probability measure that is invariant under dynamical evolution. If Alice
and Bob are convinced that this distribution yields the same probabilities for results
of macroscopic measurements as would their own credences, applied to the system,
then they may use the equilibrium distribution—which will typically be much more
tractable mathematically—as a surrogate for their own credences.

Taking statistical mechanical probabilities in this way removes some of the puzzles
that have been associated with them. The equilibrium distribution distinguishes no
direction in time. If we took it to represent Alice or Bob’s credences about the state
of the system at t1, this would clash with their beliefs about the state of the system
at t0, as the equilibrium distribution at t1 renders it overwhelmingly probable that
the gas was spread evenly over the box at t0. But this is not how it is being used;
Alice and Bob are using it as a surrogate for the more complicated functions φA(t1)
and φB(t1), and the justification for doing so is that the equilibrium distribution yields
what are effectively the same probabilities for the results of measurements performed
after t1. There is no justification for applying this distribution to past events, and hence
we do not encounter the disastrous retrodictions that prompt David Albert (2000) to
introduce his Past Hypothesis.

5 Chances, real or counterfeit?

As mentioned, some philosophers might be willing to accept all the substantive claims
made in this paper, yet resist the use of the word “chance” for the quantities we have
discussed. Lewis himself might be among these; with reference to ideas advanced by
Jeffrey (1965, §12.7) and Skyrms (1977, 1980), Lewis speaks of a “kind of counterfeit
chance” (Lewis, 1986, 120).

There is an argument, stemming from the Principal Principle, for the incompati-
bility of non-extremal chances with deterministic laws of nature (see Schaffer 2007, pp.
128–129). Recall that the PP says that a reasonable agent’s credences should have it
that, for any proposition A, any real number λ in [0, 1], and any admissible information
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E,
cr(A|E & ch(A) = λ) = λ.

Lewis does not offer a definition of admissibility, but he does declare that all proposi-
tions about past events and present states of affairs are admissible, “every detail—no
matter how hard it might be to discover—of the structure of the coin, the tosser, other
parts of the setup, and even anything nearby that might somehow intervene” (Lewis,
1980, p. 272). If the laws of nature are deterministic, then these laws, together with
sufficient information about events to the past of A, entail either A or its negation.
Suppose that laws of nature are always admissible. This means that, for a suitable
choice of admissible E, probabilistic coherence requires

cr(A|E) = 0 or 1.

This in turn entails that our agent must assign zero credence to any proposition that
asserts that the value of a chance lies in an interval not containing 0 or 1. An agent
whose credences satisfy Lewis’ PP must be certain that, in a deterministic world,
there are no non-extremal chances (that is, the agent must assign zero credence to the
conjunction of some proposition that entails that the laws are deterministic and some
proposition that entails that there are nonextremal chances). If we add the further
condition, as Lewis (1980, p. 267) does, that the agent assign zero credence only to the
empty proposition, true at no possible world, then the incompatibility of determinism
and non-extremal chances follows.14

If it is part of our notion of chance that reasonable credences must satisfy Lewis’
Principal Principle, with laws of nature and all propositions about the past of an event
counted as admissible, then Lewis is right; determinism and chance are irreconcilable.
This is a symptom of the fact that Lewis’ notion of chance differs from the concep-
tion we are trying to capture in this paper. On Lewis’ notion, chance requires chancy
laws. The notion we are trying to capture stems from the idea that, in the face of
unavoidable (or, perhaps, unavoidable for all practical purposes) limitations on acces-
sible information about the world, there might be some credences that are optimal for
an agent who makes maximal use of available information and dynamical features of
the systems involved. There is nothing incoherent in Lewis’ notion; indeed, as sug-
gested by quantum mechanics, the fundamental laws of physics probably are chancy.
We need not leave the notion of chance behind, however, when we emerge from the
domain in which quantum chanciness predominates and enter into the realm of systems
whose behaviour can be adequately modelled by classical mechanics. There is a useful
conception of chance that is compatible with determinism.

A terminological distinction between the two notions is in order. Schaffer’s term
“epistemic chance” seems to be an apt one, as a term that combines epistemic and
objective connotations. Lewisian metaphysicians may, if they choose, call such chances

14Note that, without this condition on credences, which Lewis calls regularity, nothing can follow about
what chances actually are like from the PP, which is a condition on the credences of a reasonable agent, and
hence can only tell us what a reasonable agent must believe.
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“counterfeit” chances, but we should not let this obscure the value that lies in the
concept, nor should we let it dissuade us from accepting such chances as valid currency
when appropriate.

12



References

Albert, D. (2000). Time and Chance. Cambridge: Harvard University Press.
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