Information-Theoretic Statistical Mechanics without Landauer’s Principle
Abstract

This paper distinguishes two different senses of information-theoretic approaches to statistical mechanics that are often conflated in the literature: those relating to the thermodynamic cost of computational processes and those that offer an interpretation of statistical mechanics where the probabilities are treated as epistemic. This distinction is then investigated through Earman and Norton’s ([1999]) ‘sound’ and ‘profound’ dilemma for information-theoretic exorcisms of Maxwell’s demon. It is argued that Earman and Norton fail to countenance a ‘sound’ information-theoretic interpretation and describes how the latter inferential interpretations can escape the criticisms of Earman and Norton and Norton ([2005]) by adopting this ‘sound’ horn. This paper considers a standard model of Maxwell’s Demon to illustrate how one might adopt an information-theoretic approach to statistical mechanics without a reliance on Landauer’s principle, where the incompressibility of the probability distribution due to Liouville’s theorem is taken as the central feature of such an interpretation.
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1 Introduction

The debate over Maxwell’s demon between proponents of information-theoretic exorcisms and opponents of information-theoretic approaches has typically centred over the truth of Landauer’s principle. Landauer’s principle generally asserts that logically irreversible operations are necessarily dissipative in the sense that they are necessarily thermodynamically irreversible, and any putative demon must fail to violate the 2nd law as a result. In the course of erasing its memory (a logically irreversible operation) to reset itself in order to run anew, any heat extracted from the environment is at least offset by the erasure of the demon’s memory, thereby saving the 2nd law (e.g. Penrose [1970], Leff & Rex [2003]).

The seemingly central role occupied by Laudauer’s principle in debates over information-theoretic approaches to statistical mechanics (SM) is unfortunate. In fact, there is much to be said about SM from an information-theoretic perspective that eschews any reliance on Landauer’s principle. Further, for the present purposes, I remain agnostic regarding the truth of Landauer’s principle, as the central perspective of this paper is that an information-theoretic account of statistical mechanics need not endorse this principle. First and foremost, we may ask: how the 2nd law is to be interpreted on an information-theoretic understanding of statistical mechanics? Given such an understanding, we may then return to the question of Maxwell’s demon: given a statement of the 2nd law, is it possible for a sensitive demon to violate it? As it turns out, these two questions are rarely, if ever, separated in previous literature. This paper endeavours to explore the first of these questions. Although I try to spell out an answer to this question in terms of the Szilard engine with reference to the literature on Maxwell’s Demon, I do not pretend to offer any definite conclusions regarding the possibility of effecting a Maxwell’s Demon on an information-theoretic construal. Rather, the example of Maxwell’s Demon is used for ease of presentation and due to its prominence in the literature. 

The paper is structured as follows: the following section distinguishes two ways one might understand what an information-theoretic approach to statistical mechanics is. Section 3 discusses Earman and Norton’s ([1999]) dilemma for information-theoretic approaches to SM as a springboard, and a discussion of how their notion of a canonical thermal system serves to undercut information-theoretic approaches. Section 4 presents the example of Maxwell’s demon, while the following section elaborates on Norton’s criticisms of information-theoretic SM. Section 6 distinguishes several senses in which one might treat the demon as violating the 2nd law. 

2 Information-Theoretic SM

It will be useful to distinguish two different conceptions of statistical mechanics, each of which might be called an information-theoretic approach to statistical mechanics. On the one hand, there is the school of thought associated with Jaynes’ ([1983]) use of the maximum entropy formalism and considers the probability distribution associated with a statistical mechanics system to be a measure of one’s ignorance of the actual microstate of the system. On the other hand, there is the tradition following Szilard, Brillouin and Landauer that suggests a link between ‘information’, i.e. the possibility of transferring, erasing or copying information, and statistical mechanical processes. Among the best known claims of this line of thought is Landauer’s principle, which asserts that logically irreversible processes are necessarily thermodynamically irreversible.
 I distinguish these two veins of information-theoretic statistical mechanics, as this distinction is both important and rarely made explicit, and the literature often conflates them. 

In its rawest form, the immediate danger associated with the Landauer school is that it leaves one with the sense that information is reified, comprising its own ontological category. In speaking of information as something that can be moved, erased, stored or copied, this façon de parler leaves one with the sense that information is tangible, and often leads to slogans such as Landauer’s ‘information is physical’ or Wheeler’s ‘it from bit’.
 It is not the present purpose to evaluate the cogency of such claims.

Brillouin ([1956]) saw information and the thermodynamic entropy as being interchangeable, referring to information as negentropy. In short, he conceived of entropy as being a measure of the lack of information one has about the state of the system, so that the acquisition of information about the state of the system reduced the entropy. In defining information as a reciprocal concept to that of entropy, Brillouin merely offers a inauspicious mathematical definition, although it is one that suggests a ‘deeper’ link between information theory and thermodynamic concepts. Additionally, Brillouin argues that a measurement process is necessarily entropy generating.

We can divide Brillouin’s perspective into two distinct views, which I will label the ‘Landauer’ view and the ‘Jaynesian’ view. On the Landauer conception, one is primarily concerned with the physical implementation of information processing; that is, the necessary physical conditions under which computational or logical procedures, such as measurement or erasure, can be effected. Although the correctness of such claims can be disputed (as Norton [2005], for instance, disputes Landauer’s principle), there is nothing that is in principle objectionable here. To be sure, there are possible worlds where the physical instantiation of computational procedures will be subject to certain physical bounds, and perhaps our world is one of them. On this view, the ‘informational’ aspect is rather innocuous, and unfortunately misleading. Rather, the concern is to discover what physical bounds are universally placed on computational systems by the world in which we live. A moment’s thought will show that this task is constrained by both our best physical theories and also by our belief in computational operations being universally represented by the idealised physical models constructed to mimic computational procedures: for instance, one often represents a memory cell by means of a Szilard engine (a one-particle gas), or by means of a double potential well of some sort. Although the commonalities between these examples motivate the claim that all physically implemented computational procedures share certain common physical features, the claim that they all share these features must, of necessity, remain a conjecture. More recently, some have claimed that the truth of Landauer’s principle can be demonstrated as a theorem of Gibbsian statistical mechanics, rather than relying on suggestive physical models (e.g. Maroney [2005], Piechocinska [2000]).

It is not the intention here to evaluate this claim, but to note that these issues seem relatively orthogonal to any issue relating to the interpretation of statistical mechanics. Indeed, one could easily imagine being provided an independent interpretation of statistical mechanics, and discovering what the thermodynamic costs of computation are.
 Further, this project need not adopt a particular view regarding the probabilities appearing in the theory. One can adopt either an epistemic or physical interpretation of probability. It may well be the case that an objective, physical interpretation is preferable in pursuing this project.

This picture of information-theoretic statistical mechanics can be sharply contrasted with the interpretation offered by Jaynes ([1983]). On Jaynes’ view, statistical mechanics appears as a particular example of a more general pattern of inference based on the Maximum Entropy Principle, which is a generalisation of the Principle of Indifference and sharing the basic formalism of Gibbsian statistical mechanics. As a theory of inference, the contrast between the Jaynesian view and the tradition associated with Landauer should be clear. Jaynes’ approach is concerned with describing an inferential scheme that provides an algorithm for generating the best predictions and/or retrodictions possible given a set of constraints, and is in no way concerned with the ‘computational costs’ of performing such inferences. As with any algorithm, the computational cost of running it may be of considerable interest, but this is a separate question from the one that asks if the algorithm does the job it was intended to do. Rather, the Jaynesian programme sees statistical mechanics as being a schema for evaluating one’s practical ability to manipulate systems where one is uncertain about the system’s exact state. 

As such, the Jaynesian approach does not ‘piggy back’ on another standalone interpretation of statistical mechanics, but purports to offer its own interpretation. However, both these approaches may be combined. Indeed, Brillouin argues that there is an irreducible entropy cost to the measurement of a system, so that any increase in one’s information about the microstate of a system (through measurement) is necessarily accompanied by an increase in entropy. Is so doing, Brillouin adopts both approaches (though perhaps in a naïve way): the notion of entropy is identified with a measure of one’s knowledge as to the exact microstate of a system, and further he argues that the acquisition of knowledge has physical consequences by being a thermodynamic operation. As such, Brillouin endorses both versions of the information-theoretic approach, but one need not do so. Similarly, Bennett ([2003]) defends Landauer’s principle, but simultaneously seems to subscribe to the view that one should treat the probability distribution epistemically (witness his discussion of the differences between known and unknown data).

To further clarify this difference, note that the resolution of Maxwell’s Demon is often thought to be effected by describing the physical constitution and dynamics of any putative demon. As it is usually understood, one models both a system to be acted upon by the demon and the demon itself as physical systems. Supplemented with some additional assumptions about how such a demon must be constituted, the exorcism of the demon rests on the ineliminable costs of performing the computation required to extract work from the object system.

From the Jaynesian perspective, such exorcisms are utterly beside the point. Insofar as SM is taken to be a theory of inference or a theory about the dynamics of one’s knowledge, the computational costs associated with any inference are irrelevant. On this view, the possibility of a Maxwell’s demon must be determined on the basis of how this interpretation understands the nature of the second law and whether, subject to such an interpretation, permits violations of the law. By analogy, we might draw a parallel between this and the computational cost of implementing procedures for natural deductions in 1st order logic: whether an argument is valid or not does not depend on the presumptive computational cost of producing a proof of its validity (at least on most views of logic).

On the Jaynesian view, then, statistical mechanics is characterised as an inferential scheme where, as explained above, the physical process by which the inference is effected is not itself subjected to a physical, and a fortiori, statistical mechanical description: to ask whether the 2nd law is violated is to ask whether an inference that is (should be) made about (a set of) physical transformations is one that would count as a violation of the second law. In this sense, any physical system that we predict, on the basis of the statistical mechanical formalism, would operate as a perpetual motion machine that continually extracts heat from the environment to perform work while operating in a cycle would count as a violation, as potentially would other physical scenarios depending on how one understands the second law (to be discussed further below). On this view, one draws such inferences on the basis of any knowledge of the initial setup of the system and the dynamical evolution of the system.

The primary interest of this paper is to explore how an information-theoretic interpretation of statistical mechanics, conceived in the Jaynesian sense, will formalise a standard presentation of Maxwell’s demon. By a Jaynesian information-theoretic interpretation of SM, I mean the relatively weak and minimal characterisation that the probabilities appearing in the Gibbsian formalism of SM are to be interpreted as both objective and epistemic, and the goal of the theory is to draw inferences as to the state of the system as it evolves.
 Further, these probabilities are generated as an according to Jaynes’ Maximum Entropy Principle ([1983]) over the microstates x (on the appropriate phase space () compatible with one’s knowledge of the system in the form of the values of thermodynamic observables such that it maximises the information-theoretic entropy
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(1)

The thermodynamic entropy, by contrast, is expressed as a state function of the thermodynamic constraints operating on a system (S(T, V,…)). In cases where one’s knowledge is coextensive with this set of constraints, the two entropies will be equal when SI is scaled by Boltzmann’s constant, k (Jaynes [1983]). In other cases, such as the case where one is presented with a probabilistic mixture of n distinct thermodynamic systems with respective probabilities pi, the entropy is conveniently represented by
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where the Si is the thermodynamic entropy of the ith system.
The presentation here is intended to be descriptive and exploratory: I do not endeavour to justify the imposition of the Lebesgue measure as the right one to use in generation of SM predictions, nor do I attempt to explain why the probabilities (understood as being epistemic) evolve according to the dynamical physical laws appropriate to the system, whatever those may be.

What does it mean to suggest that SM is properly a theory of statistical inference applied to thermodynamic systems? Jaynes characterises his project as ‘predictive statistical mechanics’, where the objective of the Gibbsian SM formalism is to generate predictions as to the future values of observables on the basis of some initial set of constraints and the operations performed on the system. The algorithm is as follows: first, generate the appropriate probability distribution over microstates, achieved by maximising the entropy subject to the constraints initially operative on the system. Then this probability distribution is evolved dynamically according to the appropriate laws or later operations on the system, and at any later time the predicted values of future observables are identified on the basis the appropriate phase averages given this evolved probability distribution (Jaynes [1983]). We may illustrate this procedure by means of Jaynes ‘unbelievably short’ proof of the 2nd law. This ‘proof’ has been the subject of considerable criticism (e.g. Earman [1986], Sklar [1993], Frigg [2008], Parker [forthcoming]), however the purpose here is not to analyse the workings of the proof, but to provide an example of the general procedure.

The proof considers a system undergoing an adiabatic change.
 Define an arbitrary set of thermodynamic observables {Ω1(t), Ω2(t), Ω3(t), Ω4(t), Ω5(t)…} and suppose we have made a set of measurements made at t0, {(1(t0), (2(t0), (3(t0), (4(t0), (5(t0)…}. On the basis of these values, we find the probability distribution (0(t0) that maximises the information-theoretic entropy 
[image: image3.wmf] subject to the constraints
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and the thermodynamic entropy is given as a function of this probability distribution, by
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Although the information-theoretic entropy and the thermodynamic entropy are conceptually independent, in this case they yield identical values up to Boltzmann’s constant. If we allow the probability distribution to evolve, at some later time t, we predict the values of the observables {(1(t), (2(t), (3(t), (4(t), (5(t)…}, using
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Given these predicted observables, we define a new probability distribution according to these new constraints, and subject to maximising the information-theoretic entropy (call it ((t)):
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The new thermodynamic entropy is calculated according to the new probability distribution for the predicted values of the observables.


[image: image8.wmf]
Since

i. 
[image: image9.wmf] is invariant under Hamiltonian evolution.

ii. both (0(t) and ((t) satisfy the constraints provided by the values of the predicted observables.

iii. ((t), but not necessarily (0(t), maximises the information-theoretic entropy for the predicted values of the observables,

it follows that
[image: image10.wmf]. It is worth emphasising that the correct way to interpret this result is not that we should use the new canonical distribution ((t), since we would be throwing away our knowledge of the past history of the system. The evolved initial distribution characterises our actual knowledge of the system’s microstate, and the Hamiltonian dynamics establishes a lower bound on any future distribution we entertain. Given the initial set of constraints and description of how the system evolves, we make predictions about the system’s future state: the prediction of observables at t is intended only to compare the initial thermodynamic entropy to the entropy at t.
3 A dilemma?

The 2nd law of thermodynamics places constraints of the kinds of physical transformations that can be induced on a thermodynamic system. Although several statements are possible, the 2nd law, broadly construed, prohibits the extraction of work from thermodynamic systems without a corresponding increase in entropy. Taken as an absolute and unconditional statement, the 2nd laws prevent Maxwell’s demon from existing; that is, there can be no being that can transfer heat from the environment and use it to perform work at no entropic cost.

As far as thermodynamics is concerned, this point is uncontroversial. Yet once one introduces a statistical understanding of the laws of thermodynamics, as underwritten by its putative reducing theory, statistical mechanics, things are not nearly as clear. Maxwell, realising the laws of thermodynamics are not strict, thought that it might be possible to reliably violate the 2nd law by exploiting the statistical fluctuations that are to be expected as the result of the statistical nature of the reducing description, perhaps by a being who is sensitive to the microscopic features of thermodynamic systems. Earman and Norton ([1998] & [1999]) provide a useful historical survey of attempts to realise (or prevent the realisation of) a ‘Maxwell’s demon’, and conclude that all of them fail. However, they endorse Maxwell’s belief that there is nothing that, at least in principle, prevents such a being from existing.

A large part of the physics community apparently does not agree with their conclusion. Rather, there has been a broad swath of attempts to demonstrate that Maxwell’s demon cannot exist, generated on the basis of detailed models of how any putative demon must interact with a thermodynamic system in order to extract work from it (Leff and Rex [2003]). Broadly speaking, Earman and Norton claim that the majority of such ‘proofs’ rely on postulating a link between the thermodynamic entropy and the information-theoretic entropy, and then demonstrating that any apparent work that is extracted from the thermodynamic system is offset by considerations involving the operation of the demon itself, either by appealing to the entropic cost associated with the acquisition of information by the demon (Brillouin [1956]) or by appealing to the entropic cost associated with disposing of the information such that the demon is prepared to begin the work-extracting process anew (e.g. Bennett [1982], [2003]).

Earman and Norton divide these ‘proofs’ purporting to show the impossibility of a Maxwellian demon by posing a dilemma, where these exorcisms either adopt the sound or profound horn. The sound horn presumes that the thermodynamic system and demon together form a canonical thermodynamic system that is subject to the laws of thermodynamics, and thus assumes the truth of the 2nd law. The task of such exorcisms, then, is to provide a constructive explanation of why the 2nd law cannot be broken by showing how the operation of the demon must generate heat in its operation. The profound horn, on the other hand, typically postulates a link between information and entropy, and demonstrates that, given this link, the 2nd law is inviolable.

To adopt the sound horn is seemingly trivial, for it assumes that one cannot violate the 2nd law from the beginning; that is, it tells us that Maxwell’s demon cannot exist. As such, it demands that no (set of) system(s) operating in a cycle (where the system returns to its original state) can extract any net work from the environment. However, this does not (and cannot) speak to Maxwell’s belief that the statistical nature of the 2nd law might allow it to be violated. Rather, it just postulates this impossibility as a brute fact. So what is the point of a sound exorcism?

Well, one can view it as a constraint on the kinds of reduction relations that can obtain between thermodynamics and SM. Given a fundamental ontology of matter in motion and a set of probabilistic considerations, one might try to show how Maxwell’s demon is an impossibility, such that no set of thermodynamic systems interacting with each other can reliably violate the 2nd law. The interest in such an exorcism is thus exhausted in identifying at what stage in the thermodynamic cycle the demon must generate heat in order to prevent a violation of the law. This is the view taken by Bennett ([2003]) who defends Landauer’s principle, which states that there is a necessary thermodynamically irreversible operation associated with the erasure of the Demon’s memory.

On the profound horn, one might attempt to exorcise the demon by introducing a link between the laws of thermodynamics and (perhaps) some information-theoretic principle, such as Laudauer’s. In adopting this horn, the strategy (according to Earman and Norton [1999], p. 3) is to claim that something must be added to the usual statistical mechanical formalism, and thus the demon is not strictly subject to the laws of thermodynamics, but nonetheless cannot violate the laws of thermodynamics. Note that this need not commit one to the view that the demon is not a physical system, since we admit that there can be many physical systems that do not constitute thermodynamic systems, and thus the laws of TD are inapplicable to them.

My feeling is that Earman and Norton’s presentation leaves us with a false dilemma. On the surface, it appears the choice is an obvious one: either the demon is a canonical thermodynamic system or it is not. But in itself, this choice tells us nothing as to whether the demon can or cannot violate the 2nd law statistically conceived, since this possibility is raised only by downgrading the 2nd law to a ‘merely’ statistical truth. More starkly put, no system we encounter in nature is a classical thermodynamic system, so there is a sense in which any proposed exorcism must adopt the profound horn, not just with respect to the demon itself, but also with respect to the system upon which the demon operates: neither is a classical thermodynamic system and this is precisely the reason why one might think that the second law might be broken!

It is not the intention here to accuse Earman and Norton of having missed this obvious point (as they make the point themselves), but there is a puzzle as to what the upshot of posing the problem of Maxwell’s Demon is on the sound horn. If we presume that the demon obeys the laws of thermodynamics, then it is hardly worth inquiring into whether the demon can break those same laws. However, if we make the weaker assumption that we should understand the operation of the demon to be subject the formalism of statistical mechanics rather than classical thermodynamics
, the question appears to be an open one, as indeed was the purpose of Maxwell’s countenancing the demon. 

Earman and Norton thus recognise that their dilemma is in fact a scheme of dilemmas, since even in adopting the sound horn, the understanding of the dilemma will depend on how one understands what it is to be a canonical thermal system statistically conceived. Nonetheless, Earman and Norton adopt a restrictive definition of (or set of restrictions on) what one means by a canonical thermal system, requiring that the ‘microdynamics obeys Hamilton’s equations in its phase space and that it further has suitable properties (such as ergodicity and mixing) that ensure that the long term time averages of quantities approach phase averages’ ([1999], p. 3). In this way, we can see two forms of the ‘sound horn’: one which takes the laws of thermodynamics (strictly understood) as a constraint on the kinds of transformations possible on thermal systems, and another, more appropriate form, where the SM description of a thermal system possesses the features they demand. 

In what way are these demands overly restrictive? The contrast that Earman and Norton ([1999]) draw to illustrate the profound horn of their dilemma is illustrated by systems that do not obey the Hamiltonian equations of motion, introducing an external, non-physical element to the dynamics, perhaps characterised by information processing or something else, as demonstrated by their example of the Skordos system comprising a two dimensional system of disks and a membrane. But there are numerous construals of canonical thermal systems that do not obey the conditions Earman and Norton pose: for instance, modern proponents of the Boltzmannian approach to SM will admit Hamiltonian evolution, but deny the import of ergodicity and related notions (Albert [2000]).
 A charitable way of understanding Earman and Norton’s restrictions is as an example of the kinds of ways that one might construe what is meant by a canonical thermal system, and not intended to exclude other possible notions. However, what does appear to be ruled out is an epistemic, information-theoretic construal of the probability distribution that obeys the Hamiltonian equations.

To see how, consider whether the Hamiltonian equations of motion are fundamental to generating the SM probability distribution, or whether we only require that the probability distribution, however it is generated, evolve according to the Hamiltonian equations. Consider a single particle confined to a box of volume V. If a partition is inserted into the box, what it the probability distribution associated with the system? Norton ([2005]) argues that the right way to construct the ensemble distribution is to equate it, via ergodicity, to the sojourn time of the particle on the one side of the box it actually occupies. However, this has the effect of halving the accessible phase space of the particle, which once extended to the whole volume of the box, to half its original size.
Conversely, if the probability distribution remains invariant upon insertion of the partition, it must remain extended over both sides of the box.
 To be sure, this entails that the system is not ergodic, but the constancy of the phase volume is preserved, as is required by the Hamiltonian dynamics through Liouville’s theorem. Here, the fact that the phase space is conserved is the primary restriction on the evolution of the system, and is set as a fundamental constraint on the probability distributions we entertain.
 However, for Earman and Norton, the probability distribution is subject to no such constraint; although the dynamics are Hamiltonian, the probability distribution is determined by the physical constraints operative on the system, such as the partition limiting the particle to one side of the box. It is not simply the requirement that the dynamics be Hamiltonian, but that the actual accessible trajectories determine the probability distribution.

If one takes the probability distribution to be a feature of the physical system rather than interpreting it as a measure of one’s lack of knowledge of the exact microstate of the system, then it is clear that information-theoretic approaches to SM in the Jaynesian sense are doomed; for this is precisely what such approaches deny. In construing a canonical ensemble to be subject to this feature, Norton effectively blocks the possibility (essentially by stipulation) of an interpretation of a ‘canonical thermal system’ to be one where the probability distribution takes an information-theoretic or epistemic form, and the entropy being defined relative to this distribution. The lack of contact with the physical features of the system is sufficient to abandon information-theoretic approaches as counting as adopting the sound horn. In section 5, I will survey and discuss some of Norton’s reasons for this claim.

Conversely, these restrictions are neutral regarding information-theoretic approaches in the Landauer tradition. As discussed in the previous section, a commitment to Landauer’s principle does not fix the appropriate interpretation of statistical mechanics. One can both maintain the truth of Landauer’s principle and accept the conditions that Earman and Norton impose (though Norton [2005] argues that this is an unholy marriage), or one can adopt an entirely different view of statistical mechanics, such as the Boltzmannian conception. In either case, however, the added postulation of Landauer’s principle beyond one’s preferred formulation of statistical mechanics would count as an adoption of the profound horn of the dilemma.

In the next section, this conception of the Jaynesian approach as a sound one is applied to a ‘standard’ model of Maxwell’s Demon. The emphasis is not to demonstrate either the possibility or impossibility of such a demon violating the 2nd law, but to illustrate how a natural interpretation of SM along Jaynesian lines treats this standard example. After detailing the example, I endeavour to address some of the arguments that Norton (2005) offers against the use of the entropy described by (2), independent of a commitment of Landauer’s principle.

4 Maxwell’s Demon

From the Jaynesian perspective, inquiring into Maxwell’s demon on the sound horn requires one to treat how the demon and system behave, when they are considered as statistical mechanical systems in the information-theoretic sense. Recall that on the Jaynesian schema, one is provided with the initial state of the system and how the system operates, and the objective is to draw inferences as to the state of the system at each stage in its operation.
 To fix ideas, we imagine a Szilard engine, where a single particle gas is confined to a volume V, and a putative Maxwell’s demon whose memory is modelled by another single particle gas with volume V, both in thermal contact with a heat bath at temperature T.
 The demon’s memory begins in a ‘ready’ state, arbitrarily selected to be the left side of the box and thus confined to a volume V/2 by a partition. The demon operates as follows: a partition is inserted into the Szilard engine, trapping the particle to a volume V/2 on either the left or right hand side of the box. The demon then performs a dissipationless measurement to determine which side the particle is on, and correlates the result of the measurement to its memory cell, so that it remains on the left side if the particle is on the left side and ‘flips’ the cell so that the demon’s memory is on the right side if the Szilard engine’s particle is trapped on the right side. Based on the state of the Demon’s memory, a piston replaces the partition and the Szilard engine is isothermally expanded to its original state, extracting kTln2 units of work from the system.
INSERT FIGURE 1 ABOUT HERE

The actions of this demon are depicted in figure 1. To describe the demon according to the information-theoretic account, we imagine a probability distribution describing the combined demon-engine system at each step in the cycle, where we can expect contributions from both the thermodynamic entropy and the information-theoretic entropy due to the description of the system as being in a mixed state (i.e. the particle is confined to one side of the box, but with equal probability of being on the left or the right). The discussion here is intended to contrast the epistemic Jaynesian view with the ‘sound’ perspective of canonical thermal systems offered by Earman and Norton, though other proffered views claiming to adopt the sound horn may adopt a different interpretation of statistical mechanics and probability (e.g. Maroney [2009], Penrose [1970], Turgut [2009]) while admitting the contribution of the information-theoretic term such that their treatments may be formally similar.

In such a case the total entropy of this mixed state, assuming the states of the systems to be independent, can be conveniently written as
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where the entropy associated with the thermodynamic state of the demon or engine is klnV or k(lnV-ln2), depending on whether the particle is confined to one side of the box or not. Initially (stage 1), the engine’s particle occupies the full box, and the demon is in its ready state. The entropy of the joint system is then
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When the partition is inserted (stage 2), the engine is in the mixed state, either L or R with equal probability, while the demon’s state remains unchanged. So the entropy in this case is
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(5)

After the demon performs a dissipationless measurement (stage 3), the engine’s state remains unaltered, but the demon enters into a mixed state where its memory is either in the L or R state (with equal probability), but this state is correlated to the state of the engine, such that a single bit is sufficient to determine whether both the demon’s state and the engine are in the L or R state such that the systems are not independent, so the entropy is
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(6)

After the measurement, a piston is inserted into the engine and the system is isothermally expanded, doing kTlnV/2 units of work (stage 4). At this stage, the demon remains in the mixed state, but the engine returns to its initial state, so the entropy of the joint system is
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(7)

What is worth noting here is that the entropy of the system does not change throughout the operation of the demon, until the engine is expanded and work is done at the appropriate entropic cost, as is required by the demand that the probability distribution behave as an incompressible fluid as per Liouville’s theorem, which the Jaynesian takes as the primary constraint on our description of the evolution of SM systems. We can contrast this with the case of the ‘absolute’ thermodynamic entropy Norton favours reflecting which thermodynamic state the system is actually in (achieved setting pi=1 or 0 in the above equations), which effectively drops the ‘information-theoretic’ term from the above formulae, such that through these four stages the entropy is 2klnV-kln2 (4), 2klnV-2kln2 (5), 2klnV-2kln2 (6) and 2klnV-kln2 (7).

A proponent of Landauer’s principle could, in principle, adopt either of these notions of entropy, since there is nothing in the description thus far that involves erasure or a logically irreversible process in the demon’s operation. As such (and as noted before), there is nothing that demands that a proponent of Landauer’s principle should adopt the ‘information-theoretic’ version of this analysis, rather than the analysis that does not endorse an entropic contribution due to mixed states. Nonetheless, Norton seems to argue that the adherence to Landauer’s principle goes hand in hand with the information-theoretic conception of entropy described above. How does this come about? In the next section, I discuss Norton’s criticisms of information-theoretic approaches and argue that they are largely orthogonal to the truth or falsity of Landauer’s principle. 

5 The Cogency of the IT Account
In several of the stages described above, there exists a disagreement between the Jaynesian and  ‘absolutist’ views as to what the correct valuation of entropy is. In the former case, for instance, the fact that the demon remains in a mixed state after the work is extracted in the last stage entails an additional contribution to the total entropy of the system. On the standard Landauerian interpretation of erasure in this setup, the only way to transform this mixed state back to the demon’s ready state (and thus complete the cycle) is by removing the partition in the demon’s memory and compressing the system back to the ready state, requiring an expenditure of work. Norton objects to several writers (especially Bennett) calling the removal of the partition a ‘reversible’ process. The idea here is that since, on the IT construal, the probability distribution is already distributed over both sides of the memory cell, the removal of the partition does not affect the entropy associated with the system, and might thus be termed reversible. Conversely, the memory cell is in one macrostate or the other, so the removal of the partition is a paradigmatic example of an irreversible process, and could only be called reversible in the usual sense if the resultant state was obtained through a quasi-static expansion of the system. Of course, if we reserve the term ‘reversible’ only for quasi-static processes, then the insertion/removal of the partition does not count as reversible. However, is this merely a matter of an overly restrictive definition with no discernible consequences, or does extending the term ‘reversible’ to include the insertion or removal of the partition have dire consequences?

There is something rather pathological about this example. Typically, the insertion and removal of partitions to ordinary gases (i.e. many particle gases) is taken as a constant entropic, reversible and quasi-static process (as long as the partition is moved slowly). An N particle gas comprising identical yet distinguishable constituents will remain in equilibrium and canonically distributed throughout the insertion or removal of the partition, save for when the partition is fully inserted, as in this case the joint system will no longer be ergodic (if it ever was). Further, the probability distribution of this system remains unchanged throughout this procedure.
 This is unlike the single particle gas considered, where Norton takes it to be the case that the introduction or removal of the partition is an entropy reducing or generating process, respectively.

Further, Norton accuses Leff and Rex of playing fast and loose with this extended notion of reversibility, for it ‘directly contradicts the central assumption of the Szilard one-molecule gas engine…in which the replacement of the partition reduces the thermodynamic entropy of the one-molecule gas by kln2’ ([2005], p. 390, ff. 8). Again, this may or may not be a feature of a positive argument for Landauer’s principle. If a proponent of Landauer’s principle links her account to the Jaynesian account, then (as demonstrated in stage 2) there is no entropy reduction associated with the insertion of the partition, whereas the insertion is an entropy reducing step according to the construal of entropy Norton favours. What is objectionable, as Norton notes, is the careless mixing and matching of these two perspectives.
In any case, Norton claims that one should not consider the introduction or removal of partitions as reversible, for it implies that the entropy is not a state function. Of course, this depends on what Norton means by ‘state’: if he means that the entropy is not uniquely a function of the actual accessible states of a system, then he is surely right and the proponent of the entropy associated with (2) will freely admit this.
 As a consequence, Norton argues that conceiving of the entropy in the Jaynesian sense necessarily severs the link between entropy and the quantity of heat transferred.

This is developed through the claim that the accessible states of the system must determine the probability distribution, rather than allow the possibility of a distribution over a possible mixture of states, as discussed in section 3. But why should this be so?: certainly in quantum mechanics there is no such stricture. The argument Norton offers is that such an account would obviate the ‘standard’ derivation that links physical (quasi-static) operations corresponding to reversible processes, the quantity of work done to or on a system, and the specification of the thermodynamic entropy ([2005], p. 380-3). To Norton, these elements are essential to the justification of the use of the canonical ensemble to describe TD systems, and altering any of these notions would sever our ability to use the Gibbsian statistical mechanical formalism to describe thermodynamics, either by removing any contact it may have to the behaviour of thermodynamic systems, or by obfuscating the interrelations between these elements upon which a consistent theory of SM depends.

Why should the usual formulation of TD be treated as sacred?  For instance, Ladyman, Presnell and Short ([2008]) offer a generalised statement of the 2nd law, where they look for the appropriate entropic quantity for the case where the thermodynamic state is allowed to be treated as a probabilistic mixture. Here, the expected heat transfer for reversible processes is considered, rather than the actual heat transfer for a given process. In so doing, they extend the definition of a thermodynamic state to include mixed states, and arrive at an alternative definition of entropy, one that corresponds to (2). If such a generalisation is permissible as a procedure embracing the sound horn, then it is worthwhile to inquire what picture of statistical mechanics accords with this conception of TD as the putative reducer.

I take the conditional just stated as being relatively uncontroversial, but if the ‘absolutist’ interpretation of thermodynamics is treated as a fixed point rather than one extended to dealing with mixed states, and one further believes that reversible operations (as described in ‘standard’ TD) requires an exact analogue in the formalism of SM, then Norton’s position seems unassailable. He argues that that there is no single reversible operation performable on a mixed state corresponding to a reversible process ([2005], p. 409-11). To make this clear, he considers a Szilard engine in a mixed state between R and L, and notes that a reversible expansion to the full volume of the engine cannot be effected by a single reversible procedure, but requires one of two reversible procedures that depends on whether the particle is actually on the left or right side of the engine. The model of Maxwell’s demon described above (as well as Ladyman et al.’s proof) allows for this, as which reversible operation is performed on the system does in fact depend on the actual state of the engine: the demon operates by determining the state of the engine, correlating its memory state to the engine, and then performing the reversible operation. However, when the demon performs its measurement, the joint state of the demon and engine remains in a mixed state (either both to the left or both to the right). Internal to the system, the demon ‘knows’ which reversible operation to perform, though our external description of the process only allows us to expect that each reversible expansion of the engine will occur with equal probability.

An alternative reading of Norton’s point is that different operations can be performed on mixed states, where the probability distribution extends over both sides of the box (though only one side is actually occupied), and a gas sans partition where all states are dynamically accessible, yet they are both described by the same probability distribution. If one takes the probability distribution as the sole determinant of the state of the system, then these two seemingly distinct states are indistinguishable, even though they represent different physical situations and thus are susceptible to different physical operations.
 However, there seems to be no obvious reason to require that the probability distribution exhausts the specification of the physical situation, and that we should not recognise that the engine with and without the partition correspond to physically distinct states of affairs. This might be dangerous if the literature on Maxwell’s demon and Landauer’s principle applied physical operations indifferently to these two distinct states, but I can find no instance where this is done: quasi-static operations on mixed states are always described as operating on one or another of the states (with a certain probability), and each of these are associated with heat being extracted from or dissipated into the environment. It may be true that the augmented entropy does not characterise the actual heat generated or dissipated in a single operation but rather an average over many possible operations, but there is no complete disassociation of the entropy with the concept of heat, only a wrinkle added. Finally, the description of the insertion or removal of a partition applied to the Szilard engine as reversible may at worst be sloppy, but it is far from clear that there is any dire conceptual error at work.

A further remark may be added concerning the interpretation of the probabilities. Intuitively, there seem to be two kinds of probability distributions at work here: one describing the usual statistical mechanical probabilities associated with the usual ensembles, and another characterising a probability distribution over ensembles as mixed states. Norton seems to suggest that a distribution over ensembles must be understood epistemically ([2005], p. 397), though Ladyman, Presnell and Short ([2008]) assert that this need not compromise the probabilities’ status as objective. In a classical deterministic setting such as the one under discussion here, they note, we are forced to assume that it makes sense to speak of probabilities to apply SM at all. But need we apply the same interpretation of probability to both probability distributions; that is, could we be some form of frequentist with respect to the probabilities associated with the canonical distribution (as Norton apparently requires) but associate the distribution over ensembles with an epistemic interpretation?

If one is not committed to a universally correct interpretation of probability, there may be nothing immediately objectionable here. However, it does seem inelegant at the least to simultaneously apply two different kinds of probability distributions within the same theory. In addition, processes such as the insertion and removal of the partition would make these two incompatible kinds of probabilities interchangeable, switching from some notion of frequentist probabilities to epistemic ones and back again by means of physical operations. Conversely, the Jaynesian would take both probability distributions to be of the same ilk.
 This, of course, would depend on the full development of a consistent and conceptually satisfying Jaynesian interpretation of SM, but the development of such an account is beyond the scope of this paper. Rather, the claim proffered here is a conditional one: if such an account can be developed, then it provides a unifying and consistent treatment of the failure of Maxwell’s demon as a simple consequence of Liouville’s theorem, as long as distinct physical situations are attended to (as above). And this can be accomplished irrespective of the truth of Landauer’s principle.

6 Does Landauer’s Principle Save the 2nd Law?
So where is this supposed essential dependence on Landauer’s principle? Typically, the tale of Maxwell’s demon continues past the last stage described above because it is thought that in order to complete the cycle and begin the operation over again, the demon’s memory must be reset. Further, it is often argued that the only way this can be accomplished (without leaving some record of the memory state) is by removing the partition in the memory cell and then contracting the cell back to the ready state at a cost of kTln2 units of work, which exactly balances out the work extracted from the Szilard engine and saves the 2nd law. This operation is logically irreversible, in the sense that one cannot recover the previous state of the memory cell from its current position in the ready state. Laudauer’s principle asserts that any logically irreversible operation must be thermodynamically irreversible in the sense just described, and it is this principle that prevents the 2nd law from being broken (Bennett [2003]).
But even on the sound horn, it is not clear that Landauer’s principle will save the 2nd law from being broken, for this will depend on how one construes the content of the 2nd law in its statistical form. Let us remain focused on the memory cell before the erasure takes place. At this stage, the Szilard engine has returned to its initial state and kTln2 units of work have been extracted from the environment. The demon’s memory cell is in the same absolute thermodynamic state in which it began, occupying a volume V/2 at a temperature T. Here there is a crucial ambiguity in standard formulations of the 2nd law (Albert [2000]), when we state ‘It is impossible to perform a cyclic process with no other result than that heat is absorbed from a reservoir, and work is performed.’ For what does one mean by a cyclic process?
 Insofar as the absolute thermodynamic entropy (as well as the specific values of the thermodynamic parameters, which does not include the system’s position) of the system comprising the demon and Szilard engine is identical to its initial state, and work has been performed, one might claim that the 2nd law has already been broken. Indeed, this is the position taken by Albert ([2000]).
 In this case, what is meant by operating in a ‘cycle’ is that the absolute thermodynamic parameters of the system have returned to their original values: insofar as work has been extracted from the environment, the 2nd law has been broken and there is no reason why a Maxwell’s demon cannot exist, since at the last stage of the process the 2nd law has already been broken, without any logically reversible operation. Call this the weak sense of a thermodynamic cycle. This is one way of construing the meaning of the 2nd law in thermodynamics.
We can immediately note that such a demon cannot operate as a perpetuum mobile of the second kind. Unless the demon’s memory cell also returns to its ready state (viz. its exact initial state) to begin the process anew, work cannot be extracted indefinitely from the environment. Call this the strong sense of a cycle. For Hemmo and Shenker ([2006]), this reflects the trade off between the predictability and the uncontrollability of such a process: although work is extracted from the environment with no net increase in entropy, it is impossible to know which memory state the demon is in after the cycle is complete. If we wanted to ‘know’ the memory state of the demon, according to proponents of Laudauer’s principle, this could be accomplished by (say) returning the cell to its ready state, which can only be accomplished by an irreversible process. Thus, if one interprets the 2nd law in the strong sense, the falsity of Landauer’s principle, it is claimed, implies the possibility of violating the 2nd law (Bennett [2003]).

It is not the present intention to argue for the truth of Laudauer’s principle, because interesting claims about an information-theoretic approach to SM can be made without appealing to it. Indeed, whether the right way to interpret the 2nd law is by appealing to the weak or strong sense is not fixed by one’s views on Landauer’s principle: for instance a view of thermodynamics or statistical mechanics that endorses the weak sense of a cycle coupled with the restrictions on canonical thermal systems (statistically conceived) Earman and Norton impose is committed to claiming that the unreset demon constitutes a genuine violation of the 2nd law. Thus, the truth or falsity of Landauer’s principle is irrelevant to the problem of Maxwell’s demon when it is posed in this way.

How should such a procedure be modelled on the Jaynesian view? At the end of the procedure outlined above (before the erasure), the Szilard engine is guaranteed to return to its original state, the demon may or may not be in its original memory state, and work has been done. If we draw our inferences on this composite system as a whole, one’s knowledge of the operations of the demon on the engine is exhausted by the procedure outlined at the beginning of this section. We know that the initial setup of the system, and that at some point the demon will make a measurement and use that measurement to extract work from the system by means of a piston, leaving the end state before the demon erases its memory, all by mechanically reversible means. If the entropy of the system is a function of the probability distribution, we can walk through each step in the algorithm looking for the point at which the information-theoretic entropy changes (as depicted in figure 1).
As already noted, before the reset operation the Jaynesian analysis of Maxwell’s demon leaves the probability distribution describing the memory cell distributed over both possible distinct memory states, although physically only one cell is occupied. Since the probability distribution does not return to its initial state (although the initial thermodynamic state is recovered), no cycle has been completed on the information-theoretic view insofar as our knowledge of the state of the system is not the same in the initial and final states. For Albert ([2000]), Shenker and Hemmo ([2006]) as well as Norton, this uncontrollability is a necessary feature of such demonic systems; the violation of the second law is (in some sense) compensated for by our inability to control or predict which side of the cell the demon’s memory ends up. When we understand the 2nd law as uniquely a statement about the possible physical transformations between thermodynamic parameters, this lack of predictability is incidental; whether or not we can predict or control the final state of the system is immaterial to whether or not the 2nd law has been violated.

However, on the Jaynesian understanding, this point is anything but incidental, and is in fact constitutive of what is meant by the 2nd law. The 2nd law, on this view, is essentially a statement about the limitations of one’s ability to reliably predict and control the microstate of a physical system. The law is interpreted as a restriction on the practical, not physical, possibility of extracting work from the environment. Indeed, this is in keeping with Maxwell’s original presentation of the demon: Maxwell seemed to think that it was perfectly possible for a demon sensitive to the microscopic state of the system to violate the 2nd law. However, for being with our epistemic capacities, such a violation is, in practice, impossible. For instance, Jaynes writes:

‘We finally see the real reason for the second law: since phase volume is conserved in the dynamical evolution, it is a fundamental requirement on any reproducible process that the phase volume W’ compatible with the final state cannot be less than the phase volume Wo which describes our ability to reproduce the initial state.’ (1965, p. 396 emphasis original)

The focus on the ‘ability to reproduce the initial state’ is crucial. Here the initial state is not to be interpreted as the reproduction of the initial thermodynamic state, but the very same initial probability distribution, since this is the relevant notion of a cycle on the Jaynesian conception. To be sure, this involves giving up the notion that the relevant entropy is a state function of the system’s actual thermodynamic constraints. But, as noted in section 2, Jaynes is here pointing to the fact that Liouville’s theorem establishes a lower bound on one’s ability to describe the possible microstates accessible to a system over its evolution, and the relevant notion of a cycle involves returning the system to its initial phase volume, whereas the state before erasure is one corresponding to a mixed state.
7 Conclusion

Even in the absence of adherence to some profound principle such as Landauer’s, the absolutist and Jaynesian interpretations of thermodynamics sees themselves as adopting the sound horn of the dilemma. The Jaynesian information-theoretic interpretation of SM is intended to represent canonical thermal systems, though construing it as such requires a more expansive definition of what a canonical system is than Earman and Norton are willing to allow. Further, the Jaynesian offers an explanation of the content of the second law, in that it explains the impossibility of exploiting the statistical nature of thermal systems to generate work at no entropic cost. Although it does not claim to make direct contact with the thermodynamic entropy as it is usually conceived in thermodynamics, this is an inevitable feature of such interpretations. However, such interpretations can be buttressed with a ‘profound’ supplement, such as Landauer’s Principle, in order to seek out a more direct relation with thermodynamics, but it is by no means necessary (unless Landauer’s principle arises as a theorem of one’s preferred approach to SM). We have distinguished between two different conceptions of an information-theoretic approach to statistical mechanics, that of Landauer and that of Jaynes. Although one might remain sceptical of the supposed necessary connection between computational and statistical mechanical processes, this does not, in itself, exclude the interpretation of statistical mechanics from the Jaynesian perspective.
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Figure 1: The actions of the demon on the Szilard engine. The demon is represented as the lower box in each pairing and the engine as the upper box. Each pairing has p=1/2 indicating the state of the engine after the partition is inserted.
� Some authors (Bennett [2003], Leff and Rex [2003]) have denied that processes typically considered thermodynamically irreversible need be so. For instance, the removal of a partition of a one-molecule gas confining to one side of the box is considered reversible if it is not known on which side of the box the molecule is trapped. This extended notion of reversibility will be discussed in section 5.


� See Timpson ([2006]) for a criticism of the cogency of this way of speaking.


� What these costs are may well be interpretation dependent, e.g. it may depend on whether one adopts a Gibbsian or Boltzmannian notion of statistical mechanical entropy, and any further assumptions that may be introduced about the constraints operative on physical systems. Here, as throughout the paper, the term ‘interpretation’ is used in a loose sense, seeing as how different understandings of statistical mechanics may use entirely different formalisms, and even those agreeing on the basic formalism may disagree as to how it is to be employed.


� The current consensus in the literature (Leff and Rex [2003]) is that Brillouin’s claim is false, since measurements are merely the establishment of correlations between different systems, and there is no ineliminable dissipative cost associated with physical systems becoming correlated with one another. This consensus is exploited in the model of Maxwell’s demon described in section 4.


� Here and throughout, I assume the Gibbsian form of entropy, where the disagreements to be discussed involve the form and interpretation of the probability distribution generating the entropy function.


� This presentation is drawn from Lavis and Milligan ([1985]).


� This is the standard prescription according to Jaynes’ Maximum Entropy Principle.


� For concreteness, classical thermodynamics assures us that the insertion of a partition dividing a gas of n moles in equilibrium with a volume V into two boxes of volume V/2 leaves two gases each with n/2 moles (and this is reflected in SM when an n particle gas is divided into two gases of n/2 particles). For a finite gas, this will almost never be the case in any actual system due to fluctuations from equilibrium, and it is precisely this expected behaviour we are looking to exploit.


� Indeed, even Earman himself seems to deny the import of ergodicity in the explanation of thermodynamic behaviour (Earman and Redei [1996]).


� How one models this procedure (i.e. as the introduction of a newly introduced constraint, or as the mechanical insertion of the partition that is itself part of the system being modelled) is irrelevant to the present point. If the resultant system is a probabilistic mixture of two 1-pariticle systems in a volume V/2, the probability distribution remains unchanged, as does the entropy according to (2).


� If the probability distribution is treated as epistemic, then this will place a lower bound on one’s ability to determine the state of the system as it evolves, as illustrated in section 2, since without any additional known constraints on the system, the phase volume cannot decrease. However, if knowledge is somehow lost (knowing that the evolution is Hamiltonian is not in itself sufficient to track the evolution of the distribution) then the phase volume might conceivably increase. For the remainder of the paper, I will operate under this lower bound, and will not consider ‘increases’ in the entropy due to one’s inability to track the evolution of the system.


� Unless Landauer’s principle falls out as a straightforward theorem of SM in some way or another, as argued by Maroney ([2005], [2009]), Turgut ([2009]) and others.


� One should remain cognizant of the fact that it is not the demon that is drawing inferences about the state of the Szilard engine, but an agent external to the joint system who may be uncertain of both the state of the Szilard engine and the memory state of the demon. The demon itself is presumably aware of its own mental states.


� This presentation broadly follows that of Bub ([2001]). Norton seems to deny that any putative demon must be modelled in this way. Since the objective here is illustrative, rather than looking to draw any substantive conclusions about the possibility of Maxwell’s demon, this model should be unobjectionable.


� I shall speak of the removal and insertion of the partition as equivalent operations. However, nowhere in the procedure outlined above is there the removal of a partition, only an insertion. Because I eschew talk of the resetting operation of the demon, there is no need to discuss the removal. However, these cases may be interestingly different, since the removal of a partition of a N particle system confined to a volume V/2 and expanding to a full volume V is (as Norton emphasises) a paradigmatic case of an irreversible process, whereas the division of a gas of volume V into two separate gases (each of volume V/2) is not, and is generally understood as reversible.


� Presumably, for the sake of consistency Norton would require that a fully inserted partition would need to be described by two canonical distributions, corresponding to each half of the full box, and described by two separate probability distributions. However, it is not clear how this is to be modelled: upon completion of the insertion or the start of the removal, do we instantaneously switch from a single canonical distribution to two and vice versa or need there be some kind of continuity requirement for the dynamical description of the system (as Norton seems to insist that thermodynamic operations need to be modelled as evolutions of the distribution)? Further, if we take the particles as distinguishable, there is no obvious procedure for determining what these two canonical distributions are, since the insertion of the partition will generate two canonical distributions, but which distributions are generated depends on the identity of the particles on either side of the partition.


� It is unclear how one should describe the insertion of the partition applied to the single particle gas. If it is not reversible, and it is an entropy reducing process and thus not irreversible, then what is it? Standard thermodynamics takes these two possibilities as exhaustive. Norton ([2005], p. 394-395) presents arguments against treating the insertion as reversible in the usual sense, but it is not clear what positive alternative he envisions. Norton seems to suggest that right lesson to take is that one should not expect thermodynamics to be applicable to 1-particle gases. If this is right, then the same lesson applies to N particle systems (cf. footnote 4).


� Norton also claims that the extension of the notion of reversibility poses a serious threat to our understanding of thermal processes since it denies the additivity of the entropy function. As an example, Norton ([2005], p. 396) considers a collection of two state systems such as the memory cell or Szilard engine, noting that if we treat these as mixed states each with entropy S +kln2, many such systems will not have an entropy of NS, but the augmented entropy N(S+kln2). I fail to see how this is a failure of additivity. It merely points once again to the disagreement over whether the correct attribution of entropy to the unknown state is S or S + kln2.


� An anonymous referee has requested that the Jaynesian conception of ‘heat’ be clarified and expanded upon. Although I recognise the need for an account of the nature and role of heat in Jaynesian approaches, this is not a matter that can be addressed here. In the present context, the relevant distinction is between ‘heat’ and ‘expected heat’, and the hope is that that this distinction is sufficiently clear and can survive the bracketing of a detailed analysis of the concept of heat on the Jaynesian view.


� Cf. the discussion of the inserted partition to a full N particle gas above. Even though the partitioned and unpartitioned gases are attributed the same distribution, we distinguish between the operations that can be performed in each of these cases.


� This is what licenses the unproblematic equivalency between (1) and (2).


� Although Albert, Shenker and Hemmo adopt a Boltzmannian approach to statistical mechanics, the present point is directed towards the understanding of the laws of thermodynamics, independent of one’s favoured approach to statistical mechanics. Thus, although Earman and Norton endorse a Gibbsian reading of statistical mechanics, they will be equally committed to a violation of the 2nd law on the weak reading of a ‘cycle’.


� If one can reset the demon without the expenditure of work, as Norton ([2005]) seems to insist is possible, then one can also violate a strong version of the 2nd law.
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