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Abstract:  Recently it has been argued that typicality considerations play a crucial 

explanatory role in deterministic theories in physics (e.g. classical statistical 

mechanics and Bohmian mechanics). In this approach a sharp distinction is made 

between typicality and probability. We analyze in this paper the relation between the 

notion of typicality and probability, the question of the choice of measure in 

deterministic theories in physics, and the way in which probability and typicality arise 

and should be understood in such theories. We argue that in deterministic theories it is 

the notion of probability rather than typicality that may (sometimes) have explanatory 

value. 
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Probability and Typicality in Deterministic Physics 

 

1. Introduction: The Typicality Approach 

This paper analyses the meaning of typicality considerations in physics, and their 

relation to the notion of probability. The structure of the paper is as follows. We begin 

in this section by describing the so-called typicality approach (as framed in the 

context of deterministic theories in physics, e.g. classical statistical mechanics, 

Bohmain mechanics). In section 2 we describe the way in which probabilistic 

statements in classical statistical mechanics ought to be understood. In section 3 we 

examine arguments based on the classical dynamics to the effect that the Lebesgue 

measure is natural in statistical mechanics. In section 4 we analyze the significance of 

Lanford’s theorem in classical statistical mechanics, and we explain how the theorem 

ought to be understood without appealing to typicality. In section 6 we consider the 

typicality argument in Bohmian mechanics. Section 7 presents an open question for 

future research concerning indeterministic (stochastic) theories.  

 

In classical statistical mechanics the standard way of understanding the 

thermodynamic behavior of systems around us appeals to a probability distribution 

over the initial microstates of the systems (compatible with the initial thermodynamic 

macrostate). On the standard way of thinking one says that given the uniform 

probability distribution (relative to the Lebesgue measure) over the initial macrostate, 

it is highly probable that the system will, for example, approach equilibrium after 

some designated time. In this way, the behavior of the system is explained by the fact 

that its actual microstate is highly likely to sit on a trajectory, which will take it to 

equilibrium at the time in question. Here the high probability pertains to subsystems 

of the universe, and it is assumed further that the trajectory of the whole universe that 

gives rise to this high probability itself sits on an initial condition which has high 

probability. Note that here there are two notions of probability: a probability 

distribution over the initial macrostate (i.e. the microstates compatible with the 

macrostate at some present time) of subsystems of the universe, and a probability 

distribution over the initial conditions of the universe. 

 

Another important example of the central role played by the measure in explaining 

physical behavior in statistical mechanics is in Einstein’s (1905, 1926) account of 
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Brownian motion, as developed by Wiener (see Pitowsky 1992). As is well known, 

Wiener has proved that the so-called Wiener measure of trajectories in the phase 

space of a Brownian particle which are continuous but nowhere differentiable is one. 

The explanation of the actual behavior of Brownian particles is based on the 

assumption that their actual trajectories belong to this measure one set. Avogadro’s 

number is derived from this assumption.  

 

A question that immediately arises concerning this understanding is what could a 

probability distribution over the initial conditions of the universe possibly mean. A 

probability distribution suggests some sort of a random sampling of an initial 

condition out of the set of all possible conditions. But with respect to the initial 

conditions of the universe any such sampling (if it is to be physical) would be external 

(and prior) to the universe, and therefore this seems to suggest an empirically 

meaningless fairy tale. This problem does not arise with respect to subsystems of the 

universe, since one can ground a probability distribution over initial conditions in 

experience (as we show in Section 3). Moreover, probability in physical theories is 

usually conceived as involving (or as being tested by) repetitions of experiments, 

which in the case of the initial conditions of the universe are trivially impossible.    

 

We understand the typicality approach3 as an attempt to solve these problems by 

appealing to a certain natural measure over initial conditions, where the measure is 

not understood as a probability measure (see Maudlin 2007 for a similar construal).  

 

Here is an example of how the distinction between typicality and a probability 

distribution over initial conditions is made:  

 

“When employing the method of appeal to typicality, one usually uses the language of 

probability theory. When we do so we do not mean to imply that any of the objects 

considered is random in reality. What we mean is that certain sets (of wave functions, 

of orthonormal bases, etc.) have certain sizes (e.g., close to one) in terms of certain 

natural measures of size. That is, we describe the behavior that is typical of wave 

                                                        
3 For various formulations and extensive discussions of the typicality approach, see Dürr, Goldstein 
and Zanghi (1992), Maudlin (2007), Callender (2007).   
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functions, orthonormal bases, etc.. However, since the mathematics is equivalent to 

that of probability theory, it is convenient to adopt that language. For this reason, we 

do not mean, when using a normalized measure µ, to make an “assumption of a priori 

probabilities,” even if we use the word “probability.” Rather, we have in mind that, if 

a condition is true of most D, or most H, this fact may suggest that the condition is 

also true of a concrete given system, unless we have reasons to expect otherwise.” 

(Goldstein, Lebowitz, Mastrodonato, Tumulka and Zanghi, 2010a).  

 

And in another place (2010b), they say: 

 

“When we express that something is true for most H or most ψ relative to some 

normalized measure µ, it is often convenient to use the language of probability theory 

and speak of a random H or ψ chosen with distribution µ. However, by this we do not 

mean to imply that the actual H or ψ in a concrete physical situation is random, nor 

that one would obtain, in repetitions of the experiment or in a class of similar 

experiments, different H’s or ψ’s whose empirical distribution is close to µ. That 

would be a misinterpretation of the measure µ, one that suggests the question whether 

perhaps the actual distribution in reality could be non-uniform. This question misses 

the point, as there need not be any actual distribution in reality. Rather, Theorem 1 

means that the set of “bad” Hamiltonians has very small measure µ.” 

 

There are three different statements made here about the idea of typicality:  

 

(i) The set of initial conditions compatible with the initial macrostate of the universe 

is divided into two subsets, T1 and T2 such that all the microstates in T1 but not in T2 

give rise to some property F. The property F may be for example the approach to 

equilibrium in statistical mechanics, or the Born rule in Bohmian mechanics.  

 

(ii) There is some natural (normalized) measure µ over the initial conditions such that 

µ(T1) is close to one (and µ(T2) is close to zero). In this sense, most initial conditions, 

as determined by µ, are in T1 (and are called typical).  

 

(iii) In a given experiment, the actual initial microstate of the universe belongs to T1.     
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Let us explain these three statements in turn. The statement in (i) above expresses a 

contingent fact about the dynamics, namely a fact about how the initial conditions are 

mapped by the equations of motion into microstates at later times. There are theorems 

in both statistical mechanics and Bohmian mechanics that demonstrate that various 

special cases of (i) hold under some conditions, with some appropriate property F. 

Examples in classical statistical mechanics are Lanford’s theorem in which F is 

(roughly) entropy increase and the Birkhoff-von Neumann theorem in which F is the 

so-called pointwise ergodic theorem. In Bohmian mechanics a special case of (i) is 

the theorem by Dürr, Goldstein, and Zanghi (DGZ, 1992) in which F is the Born rule 

(the absolute square of the quantum mechanical wavefunction) which we discuss 

below. Statement (i) is not controversial in our discussion. 

 

The notion of most in statement (ii) above requires a measure over the phase space. 

That is, there are infinitely many ways to determine the size of subsets of a 

continuous set of points. The question is on what grounds one can justify the choice 

of measure, or the choice of some class of measures. Usually, in classical statistical 

mechanics the measure chosen is the Lebesgue measure (or the class of measures 

absolutely continuous with the Lebesgue measure), and in quantum mechanics the 

measure is given by the absolute square of the wavefunction. The grounds for these 

choices are that each of these measures has a preferred dynamical status in the theory.  

 

Statement (iii), as stated above, seems as expressing the brute fact, without further 

reasoning, that the microstate of the universe invariably (in every experimental set up) 

belongs to T1. But since there are microstates of the universe that don’t belong to T1 

this fact calls for a justification. It is evident that (ii) is taken in the typicality 

approach to completely justify (iii), that is if T1 were to contain only a small fraction 

of the microstates of the universe, one would not see (iii) as justified. It is important 

to stress that in this approach the justification of (iii) makes no appeal to probability. 

Rather, it is the measure of T1 that is supposed to do the whole work. This implies 

that, lacking reasons to expect otherwise, microstates of the universe that belong to T2 

are not realized.   
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In short, there are two questions that need be answered in the context of typicality: 

what justifies the choice of measure in (ii), and what justifies the passage from (ii) to 

(iii). In particular, the question we consider is whether there are grounds that justify 

the choice of measures in a way that explains the observed behavior of physical 

systems. If such grounds could be spelled out the problems concerning the meaning of 

probability distributions over the initial conditions of the universe would obviously 

evaporate together with the probability distribution itself. In the subsequent sections 

we attempt to answer these two questions. We will see that statements (ii) and (iii) are 

both wanting. Again, statement (i) is not controversial in the context of typicality. Our 

analysis will lead us to reject the typicality approach. 

 

2. Probability and the Choice of Measure 

In order to set the stage we need to go into some detail concerning the way in which 

probability statements arise in deterministic theories in physics and how precisely the 

choice of measure over the state space is carried out. We first focus on classical 

statistical mechanics.   

 

Consider the paradigmatic case of an ideal gas S, which is initially confined by a 

partition to the left half of a container, and then, by removing the partition, is allowed 

to expand, and finally fills out the entire container. Suppose that we set up a very 

large number of such gases S1...Sk, all of which are prepared in the same initial 

macrostate M0 in which the gas is confined to the left half of the container by a 

partition. We then remove the partitions and follow the spontaneous macroscopic 

evolution of these gases for a certain time interval Δt, and we see by simple counting 

that the overwhelming majority of the gases S1...Sk quickly reach and then remain in 

macrostate M1 in which they fill up the entire container. We now wish to predict the 

evolution of another system, call it Sk+1, which is prepared in the same initial 

macrostate as S1...Sk. We know that the dynamical equation of motion that governs the 

evolution of Sk+1 is the same as the ones governing S1...Sk , but we do not know the 

details of this dynamics, nor do we know the exact initial microscopic conditions of 

Sk+1 and therefore all we can rely on in this prediction is the above experiment. 

 

Can we infer from the experiment with S1...Sk that Sk+1 is highly likely to end up in 

macrostate M1? That is, can we use the experiment with S1...Sk in order to come up 
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with a probabilistic law, on which we can base our bets regarding the evolution of 

Sk+1? The answer is, of course, yes, we can infer the probabilities from the finite 

observed relative frequencies.4 This inference is valid just to the extent that we can 

infer from experience any other physical law or prediction, such as F=ma. However, 

the way in which our probabilistic predictions can be justified, and the extent to which 

they can be justified – are not always clear in the literature, as we show later.  

 

To see how to understand probabilistic statements in statistical mechanics let us 

describe the above experiment in the phase space of the gas. Classical mechanics tells 

us that the universe consists of microscopic particles, and that our experience is an 

effect of the microstate of the universe, which is the state of those particles. However, 

it is a physical fact that our senses are too coarse to reflect the full details of the 

microscopic structure of the universe; we can only perceive some of its general 

features. In this sense our experience is macroscopic. In the above experiment, we can 

only observe relative frequencies of transitions between macrostates of the gas. Let us 

see how these transitions are described in the phase space, and then how these relative 

frequencies are accounted for in the phase space. 

 

The phase space of a system (in our example, of any of the systems Si) is partitioned 

into sets of microstates, which are indistinguishable by an observer; these sets are 

called macrostates. The phase space regions corresponding to the macrostates express 

the observer’s maximal observational capability, and therefore while the observer can 

tell which macrostate contains the actual microstate of the system at the time of 

observation, it cannot tell which part of the macrostate contains that microstate. 

 

We now formulate what we take to be the essential way for calculating transition 

probabilities in statistical mechanics. Suppose that at time t0 an observer O finds the 

system S in macrostate M0 (as for example in our experiment above; see Figure 1). 

Suppose also that O knows the laws of classical mechanics, which govern S’s 

evolution in time. If O knows the Hamiltonian of S, that is: if O knows the equations 

of motion of S, then O can (in principle) calculate the evolution of all the trajectory 

segments that start out in the microstates contained in M0 and find out the end points 
                                                        
4 This inference is a subtle issue which depends on how probability is understood. We don’t address 
this question here.  
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of these trajectory segments after the time interval Δt. These end points make up a set, 

which we call the dynamical blob B(t0+Δt) of S at t0+Δt given that it was in M0 at t0. 

In general, the region covered by B(t0+Δt) overlaps with several macrostate regions; 

for instance, it may partially overlap with M1 (in which the gas fills our the entire 

container), and with some other macrostates, such as M2 or M3 in which the 

macrostate of the gas is different. If the system S, which started out in M0 at t0, is 

observed to be (say) in macrostate M1 at t0+Δt, then this means that the microstate of 

S is actually in the region of overlap between the region of macrostate M1 and the 

region of the dynamical blob B(t0+Δt). Now, in our above experiment, O carries out 

the experiment k times (or on k identical systems). In some of these experiments – 

actually in most of them (in our story) – at t0+Δt the system S is observed to be in M1 

and in other fewer experiments it is found in M2 or M3, or more precisely in the 

regions of overlap of the dynamical blob B(t0+Δt) with these macrostates, with some 

relative frequencies F1, F2 and F3 respectively. These relative frequencies are the 

empirical basis on which the probabilistic statements of the theory can be based, and 

on the basis of which these statements can be tested or justified.  

 

 
 

The next step towards constructing or justifying the probabilistic theory is as follows. 

Given the above experimental outcomes, we have the relative frequencies with which 

systems of type S that start out in M0 at t0 are found in the macrostates M1, M2 or M3. 

We conclude that the phase points of our k systems evolved into the regions of 

overlap of the dynamical blob B(t0+Δt) with the macrostates M1, M2 or M3. We then 

conjecture on the basis of our experience that this statistical behavior will be repeated 
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(more or less) in the future. Since any of the microstates in M0 is a possible initial 

condition of Sk+1 and since the phase space is continuous, such a generalization of our 

experience requires that we impose a measure on the phase space. We identify the set 

of probability measures that, if applied to the continuous phase space of S, yield a 

measure of the regions of overlap of the blob B(t0+Δt) with the macrostates M1, M2 or 

M3 that are (to a satisfactory approximation) identical with the relative frequencies F1, 

F2 and F3, respectively. There are many – possibly infinitely many – such measures, 

and all of them are empirically adequate. Among them we choose one measure, using 

pragmatic criteria such as simplicity, convenience, meshing with other theories, etc.. 

Call this measure µ. The (normalized) measures of the regions of overlap are then 

given by µ( M1)≈F1, µ( M2)≈F2, µ( M3)≈F3. This measure µ is 

imposed over the blob B(t0+Δt) and provides the basis for predicting the evolution of 

system Sk+1 in terms of transition probability (roughly) as follows:  

 

(*) The transition probability that Sk+1  will evolve to macrostate Mi at t0+Δt given that 

it was in macrostate M0 at t0, is equal to  

 

. 

 

That is, the transition probability from the macrostate M0 at t0 to Mi at t0+Δt is equal 

to the (normalized) measure of the region of overlap of the blob B(t0+Δt) with the 

macrostates Mi. This is the basis of our probabilistic theory. 

 

Note that in general  need not be equal to .5 

Note further that despite the deterministic dynamics these transition probabilities 

between macrostates are physically objective provided the partition to the macrostates 

is objective.6        

  

What is the significance of taking the µ (normalized) measure over the blob B(t0+Δt) 

as underwriting our probabilities for measurement outcomes? It is crucial to see that 

the probabilistic statements are about transitions from M0 at t0 to any one of the 
                                                        
5 This implies that the transition to a given macrostate need not be equal to the entropy of that 
macrostate, even if both are measured by the same measure µ. 
6 This last condition needs to be flashed out; we skip this here.  
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macrostates Mi. We don’t distribute probabilities relative to the µ measure over the 

initial macrostate M0 at t0. Of course, if the measure µ is invariant under the classical 

dynamics, e.g. if it happens to be the Lebesgue measure , then one can map, 

backwards (as it were), the measure of regions over the blob at later times to the 

corresponding regions over the initial mactostate. That is, in this case the measure of 

a set of points in M0 is equal to the measure of the time evolved set of points to which 

it is mapped by the dynamics. Once the (normalized) measure is fixed (by the 

probabilities) one can distribute uniform probabilities relative to the Lebesgue 

measure over the initial macrostate. But note that this interpretative move is 

derivative. In general, whether or not the measure that best fits our observations is the 

Lebesgue measure, or more generally a measure that is invariant under the dynamics, 

is a contingent matter.  

 

We can now see what justifies the choice of measure and what justifies probabilistic 

statements in classical statistical mechanics, and moreover how these two issues are 

related. First, probabilistic statements are grounded in the experience of relative 

frequencies in the way stated above. Second, the choice of measure is dictated 

inductively (not uniquely) by the observed relative frequencies. That is, the measure 

is implied by the probabilities rather than the other way around. We can only justify 

empirically transition probabilities as sketched in (*) above rather than distributions 

over initial conditions.  

 

The implications of this analysis for the typicality approach are as follows.  

 

(I) The probability measure µ is applicable only to subsystems of the universe. Of 

course, if the dynamics is deterministic, each microstate of all the subsystems of the 

universe can be mapped backwards to the initial conditions and the measure over the 

initial conditions will depend on the measure at the later times. But in this way the 

justification of the choice of the measure over the initial conditions is grounded in 

experience, and therefore it cannot be taken to explain (non-circularly) experience. 

Note that this argument applies to the question of the choice of the measure regardless 

of whether the measure is understood as determining the typical set of initial 
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conditions (as in the typicality approach) or as a probability measure over the initial 

conditions of the universe (as in standard approaches to statistical mechanics).  

 

(II) This strategy of grounding the measure over the initial conditions of the universe 

in experience can hold only with respect to a fraction of all possible initial conditions 

of the universe (compatible with the initial macrostate). It excludes by construction 

initial conditions that lead to a universe at the later times which is macroscopically 

different from what we see.   

 

(III) Our ignorance about the initial microstate of Sk+1 is often illustrated by appealing 

to some random sampling of a point out of M0.  Of course, this idea need not be taken 

too seriously (as describing a fairy tale about some mechanism of selection). 

However, the point to be stressed here is the following. A random sampling is a 

sampling that depends only on the measure. The measure with respect to which the 

sampling is random need only be the measure that fits the observed relative 

frequencies in experience. In particular the measure need not be the Lebesgue 

measure, and may not even be conserved under the dynamics. By appealing to the 

probability measure we can now justify statements about the probability of randomly 

sampling initial conditions for subsystems of the universe. Here unlike the statement 

(iii) of the typicality approach, the sampling is described in terms of probability rather 

than typicality. The role of the measure in our approach is derivative rather than 

fundamental and is patently probabilistic.  

 

3. Are There Natural Measures? 

In the literature there are attempts to justify the choice of the measure (in the 

typicality approach and in other approaches) on the basis of dynamical considerations.  

An argument sometime given for preferring the Lebesgue measure as ‘natural’ on the 

basis of the classical dynamics is the invariance of the Lebesgue measure under the 

dynamics as expressed by Liouville’s theorem. If a measure is invariant under the 

dynamics it means that the measure of a given set of points in the state space is equal 

to the measure of the set to which it is mapped by the time evolution equations for all 

times. Of course this feature has very attractive properties (simplicity, elegance, etc.) 

but it is unclear why this fact is relevant at all to the issue at stake, namely the 

explanation and prediction of physical behavior. 
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A similar argument is sometimes given in the case of ergodic dynamics. Obviously, 

the ergodic theorem gives a preferred status to the Lebesgue measure (or to any 

measure absolutely continuous with the Lebesgue measure) since it shows that the 

relative frequency of any macrostate M along an infinite trajectory is equal to the 

Lebesgue measure of M for a Lebesgue measure one of points in the phase space of 

the system. There are various senses in which the preferred status of the Lebesgue 

measure here is irrelevant for the issue at stake. First, the ergodic theorem yields no 

predictions concerning finite times, and therefore strictly speaking the theorem is not 

empirically testable. For example, it is extremely difficult to distinguish empirically 

between an ergodic system and a system with KAM dynamics (see Earman and Redei 

1996). Second, even if the dynamics of the universe is granted to be ergodic and even 

if one accepts the fairy tale about an initial random sampling, this does not imply that 

the sampling is random relative to the Lebesgue measure. One can say metaphorically 

that God could have used a non-Lebesgue sort of die in sampling at random the initial 

condition of the universe even if the universe were ergodic. Third, and with respect to 

the typicality approach. Consider again statement (iii) in section 1. Here the idea is 

that the fact that T1 has measure (close to) one suggests that the initial condition of 

the universe belongs to T1. Since the measure is not to be understood as a probability 

measure, this seems to mean that the measure zero set is excluded as impossible in 

some sense. But the measure zero set belongs to the initial macrostate of the universe 

and we don’t see what justifies this exclusion.     

 

Finally, it is important to stress in this context that in understanding the ergodic 

theorem as a theorem about probability one must identify from the outset that a set of 

Lebesgue measure zero (one) has zero (one) probability. This identification is not part 

of von Neumann’s and Birkhoff’s ergodic theorem, although the theorem is usually 

understood in probabilistic terms. However, whether or not the Lebesgue measure 

may be interpreted as the right probability measure for thermodynamic systems 

depends on whether it satisfies our probability rule (*).          

 

Another argument sometimes given for taking the Lebesgue measure as the natural 

measure in statistical mechanics is that the Lebesgue measure of a macrostate 

corresponds to the thermodynamic entropy of that macrostate. However, this 
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correspondence is true only if the Second Law of thermodynamics (even in its 

probabilistic version) is true. But as we argued elsewhere (see our 2010a, 2010b and 

Albert 2000, Ch. 5) the Second Law of thermodynamics is not universally true in 

statistical mechanics. 

 

4. Measure One Theorems in Classical Statistical Mechanics 

The above conclusion has implications for the significance of measure one theorems 

in statistical mechanics. We focus here as an example on Lanford’s theorem.7 Lanford 

proved on the basis of the classical equations of motion, that, roughly, given some 

specific initial macrostate, and some specific kind of Hamiltonian, a Lebesgue 

measure one of the microstates in that macrostate will evolve to a macrostate with 

larger entropy, after a certain short time.8 Can such a theorem endow the Lebesgue 

measure with a status that is stronger than that of an empirical generalization (as 

sketched in (*) above)? 

 

In terms of our transition probabilities Lanford’s theorem proves that the Lebesgue 

measure of the overlap between the blob B(t0+Δt) and the macrostate E of equilibrium 

(or some other high entropy macrostate) is 1. Of course, as we said above, since the 

Lebesgue measure is conserved under the dynamics, one may interpret Lanford’s 

theorem as referring to the Lebesgue measure of subsets of the initial macrostate M0 at 

t0. However, inferring anything about the measure of subsets of the initial macrostate 

is an artifact of the contingent fact that the Lebesgue measure matches the observed 

relative frequencies.  

 

Another crucial point in this context is the following. There are two different and 

logically independent ways of understanding the role of the Lebesgue measure in 

Lanford’s theorem. (A) The size of the overlap between the blob B(t0+Δt) and the 

macrostate E, as determined by the Lebesgue measure, is 1; (B) Upon a random 

sampling of a point out of the blob B(t0+Δt), one is highly likely to pick out a point 

from the overlap of the blob with E. The distinction between (A)-type statements 

about sizes of sets and (B)-type statements about probabilities is general.  
                                                        
7 For details concerning Lanford’s theorem see Uffink (2007).  
8 The fact that a Maxwellian Demon is compatible with classical statistical mechanics demonstrates 
that there can be no theorem in mechanics that implies a universal entropy increase. See Albert (2000, 
Ch. 5) and Hemmo and Shenker (2010, 2011). 
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Lanford’s theorem is about the size of the overlap with E, that is, it is only an (A)-

type theorem, whereas in order to make predictions about the future behavior of S-

type systems (such as our Sk+1 in the above example) one needs to add a (B)-type 

statement, which is not proven by Lanford’s theorem. In other words, assuming that 

we already know from experience that the Lebesgue measure of the overlap regions 

(of the blob with the macrostates) matches the relative frequencies of the macrostates, 

Lanford’s theorem provides possible mechanical conditions, which underwrite these 

observations.  

 

To appreciate this point, note that if the measure µ that matches our experience were 

not the Lebesgue measure, but some other measure (that may not be absolutely 

continuous with Lebesgue) then Lanford’s theorem would have a completely different 

significance: for instance, it could happen that by the measure µ the number of 

systems that go to equilibrium given Lanford’s Hamiltonian would be small. The 

theorem that a set of Lebesgue measure one of points has a certain property (such as 

approaching equilibrium after some finite time interval) would be empirically 

insignificant – unless this fact is supplemented by the additional fact that the 

Lebesgue measure happens to correspond (to a useful approximation) to the observed 

relative frequencies. 

 

The general structure of Lanford’s theorem is that it proves a certain statement about 

the dynamics of the form of (i) in the typicality approach (see section 2). That is, 

Lanford’s theorem shows that a certain subset of micrsostates T1 share some property 

F (entropy increase, for example), such that all the points in T1 are mapped by the 

dynamics to points in T1*. Moreover, the theorem shows that the subset T1 has 

Lebesgue measure one. But nothing in this theorem justifies the choice of the 

measure. In particular, the fact that T1 has Lebesgue measure one does not constitute 

such a justification. What’s important in Lanford’s theorem is that it identifies two 

sets T1 and T1* and proves that T1 evolves to T1* under the dynamics. That is, it is 

about the structure of trajectories. The fact that T1 has Lebesgue measure one is 

important only if there are independent reasons for preferring the Lebesgue measure. 

As we saw in section 3 such reasons can be grounded essentially only in experience.  
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6. Typicality in Bohmian Mechanics 

The question of typicality has been considered extensively and explicitly not only in 

classical statistical mechanics but also in the context of Bohm's alternative theory to 

quantum mechanics by Dürr, Goldstein and Zanghi (1992, hereafter DGZ). DGZ 

prove that a typical Bohmian trajectory exhibits relative frequencies of measurement 

outcomes that conform to the quantum mechanical Born rule. Here is what they say 

about their proof: 

 

“…To demonstrate the compatibility of Bohmian mechanics with the 

predictions of the quantum formalism, we must show that for at least some 

choice of initial universal Ψ and q, the evolution [given by Bohm’s velocity 

equation] leads to apparently random pattern of events, with empirical 

distribution given by the quantum formalism. In fact we show much more. 

 

We prove that for every initial this agreement with the predictions of the 

quantum formalism is obtained for typical – i.e. for the overwhelming 

majority of – choices of initial q. And the sense of typicality here is with 

respect to the only mathematically natural – because equivariant – candidate at 

hand, namely, quantum equilibrium.  

 

Thus, on the universal level, the physical significance of quantum equilibrium 

is as a measure of typicality, and the ultimate justification of the quantum 

equilibrium hypothesis is, as we shall show, in terms of the statistical behavior 

arising from a typical initial configuration.” (DGZ 1992, p. 859)  

 

In other words, DGZ argue that for every initial universal wavefunction and for a 

typical initial global configuration, the probability distribution over the Bohmian 

position of subsystems of the universe is given by the absolute square of the effective 

wavefunction of the subsystems (when an effective wavefunction exists). From this 

result they show that the conditions sufficient for the laws of large numbers to hold 

are satisfied in Bohmian mechanics with probability distribution that recovers the 

predictions of standard quantum mechanics as given by Born’s rule. Here the notion 
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of a typical global configurations is understood relative to the quantum mechanical 

measure, i.e. the absolute square of the universal wavefunction.  

 

What is the role of the typicality assumption in this argument? Typicality is meant to 

replace here probability over initial conditions of the universe, and thus explain the 

initial conditions while avoiding the fairy tale concerning the random or probabilistic 

choice of initial conditions. As we argued above, there are two problems with this 

approach. First, if the notion of typicality is non-probabilistic, it is unclear why a 

condition which is true for most initial conditions (relative to the measure) should be 

taken as true for a given system. The problem is to justify the choice of the measure 

of typicality (in this case, the absolute square of the universal wavefunction) in a non-

circular way. The argument given by DGZ for preferring the quantum mechanical 

measure as natural is that it is the only equivariant measure under the dynamics of the 

wave function and the Bohmian dynamics of the initial q. However this argument is 

irrelevant just as the classical Liouville's theorem is irrelevant as an argument for 

preferring the Lebesgue measure in the case of ergodic dynamics.  

 

It is important to stress that this criticism concerning the notion of typicality does not 

in anyway undermine the important results by DGZ concerning the probabilistic 

content of Bohm's theory. In fact, it seems to us that one can retain all these results by 

making the simpler assumption that the initial condition of the universe is as a matter 

of fact of the kind that yields the quantum mechanical predictions. This fact need not 

be further justified, in particular, it need not (and in our view cannot) be justified by 

reference to a set of typical initial conditions. We have no empirical access to the 

initial configuration of the universe and to the universal wavefunction. We construct 

the set of initial conditions and the wavefunction in a way that yields the probabilistic 

content of the theory, as it is given by the quantum mechanical Born rule (the absolute 

square of the (effective) wavefunction of subsystems of the universe in Bohm's 

theory), where the Born rule itself is subject to empirical tests in our experience. We 

then find a measure of typicality according to which the right sort of initial universal 

conditions turn out to be typical. But evidently, such a procedure can be meaningful 
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only if by construction the properties in which one is interested are the same for the 

vast majority of the admissible initial conditions.9  

 

 

7. Conclusion 

We argued that typicality considerations are not justified and don’t have a convincing 

explanatory value in classical and Bohmian mechanics. These theories, however, are 

deterministic. The question remains whether the above criticism is applicable in 

stochastic theories such as standard quantum mechanics (say, in von Neumann’s 

formulation) or the Ghirardi-Rimini-Weber collapse theory. Recall that the motivation 

for appealing to typicality as we understand it is the desire to dispense with the fairy 

tale associated with postulating probability distributions over the initial conditions of 

the universe. In stochastic theories, although the idea of a probability distribution over 

initial conditions may be relevant in more or less the same sense it has in 

deterministic theories, it may be that the choice of measure is dictated by the 

stochastic dynamics. This may have interesting implications for the idea of typicality. 

We leave this question open for future research.   
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