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Abstract
According to the semantic view of scienti�c theories, theories are classes of models. I show

that this view — if taken seriously as a formal explication — leads to absurdities. In particu-
lar, this view equates theories that are truly distinct, and it distinguishes theories that are truly
equivalent. Furthermore, the semantic view lacks the resources to explicate interesting theoreti-
cal relations, such as embeddability of one theory into another. �e untenability of the semantic
view — as currently formulated — threatens to undermine scienti�c structuralism.

1 Introduction

�e twentieth century saw two proposed formal explications of the concept of a “scienti�c theory.”
First, according to the syntactic view of theories, a theory is a set of axioms in a formal (usually �rst-
order) language. �is view predominated during the �rst half of the 20th century, and was dubbed
the “received view” byHilary Putnam. But during the 1960s and 1970s, philosophers revolted against
the received view, andproposed the alternative semantic view of theories, according towhich a theory
is a class of models. �us Bas van Fraassen states that, “. . . if the theory as such, is to be identi�ed
with anything at all — if theories are to be rei�ed — then a theory should be identi�ed with its
class of models” (van Fraassen, 1989, p. 222). Within a few short decades, the semantic view has
come to dominate philosophers’ thoughts about science. According to Roman Frigg (2006, p. 51),
“Over the last four decades the semantic view of theories has become the orthodox view on models
and theories.” One only has to glance at recent writings on the philosophy of science to verify Frigg’s
claim: the semantic view has become the default explication of the notion of a (formalized) scienti�c
theory.

�e received view was an attempt to give a precise explication to some vague notions. �e view
was, accordingly, judged by exacting standards; and we all know that it failed to meet these stan-
dards. It would be natural to assume, then, that the semantic view fares better when judged by these
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standards — else why do so many philosophers �nd the semantic view attractive? Sadly, philoso-
phers have been too quick to jump onto the semantic bandwagon, and they have failed to test the
semantic view as severely as they tested the received view. In this paper, I put the semantic view to
the test, and I �nd that it falls short. In particular, I show that the semantic view makes incorrect
pronouncements about the identity of theories, as well as about relations between theories. Con-
sequently, the semantic view must be �xed, as must any any position in philosophy of science that
depends on this inadequate view of theories.

2 What is at stake

�edebate between the semantic and syntactic views of theories might seem to verifyWittgenstein’s
claim that philosophers are in the business of clarifying their own internal confusion. Indeed, this
debate has no apparent connection to pressing societal issues, or even to the major philosophical
issues recognized by the general intellectual community. But of course, connections do exist, they
just happen not to be completely obvious. �us, I devote this section to reminding the reader of the
philosophical implications of the debate between the syntactic and semantic views.
First, I recall why some philosophers claim that the realism-antirealism debate hinges (partially)

on the tenability of the semantic view of theories. Second, I discuss the impact of the semantic view
of theories on the philosophy of the particular sciences.

2.1 �e realism-antirealism debate

Versions of the semantic view were already present in the work of Evert Beth as well as in the early
work of Patrick Suppes. But these philosophers did not press the semantic view into the service
of a particular philosophical agenda. �e semantic view �rst became philosophically charged in
the 1970s, in particular when Bas van Fraassen used it to rehabilitate antirealism in philosophy of
science.
At times, van Fraassen has indicated that his version of antirealism stands or falls with the se-

mantic view of theories — or at least that his version of antirealism leans upon the semantic view
of theories. For example, in responding to a criticism of the observable-unobservable distinction
(which is presupposed by van Fraassen’s antirealism), van Fraassen andMuller ascribe blame to the
syntactic view of theories:

“. . .we point to a �aw in these and similar criticisms [of the observable-unobservable
distinction]: they proceed from the syntactic view of scienti�c theories whereas con-
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structive empiricism is and has always been wedded to the semantic view.” (Muller and
van Fraassen, 2008, p. 197)

�us, the syntactic view supposedly provides premises for an argument against constructive em-
piricism; and rejecting the syntactic view allows one to neutralize these objections.

�e semantic view has not only been thought to help constructive empiricism. Some (such as
Ronald Giere and Fred Suppe) have also found the semantic view to be helpful for elaborating a
realist philosophy of science. But perhaps the most interesting and non-trivial application of the
semantic view is in developing a structural realist philosophy of science.
Recall that structural realism is the view that (stated loosely) what is important in a scienti�c

theory is the structure that it posits or describes. In particular, suppose that T is a theory of funda-
mental physics that we believe to be true. What sort of attitude is this belief in T? In old-fashioned
realism, believing T means believing in the existence of the entities in its domain of quanti�cation,
and believing that they stand in the relations asserted by the theory. But, as we very well know,
old-fashioned realism makes it look like we change our minds about ontology during every scien-
ti�c revolution. �us, structural realism counsels a modi�ed attitude towards T , namely we should
believe that the world has the structure that is posited by T .
Since James Ladyman’s seminal article of 1989, many structural realists have hitched their wagon

to the semantic view of theories. As Ladyman then urged:

“�e alternative ‘semantic’ or ‘model-theoretic’ approach to theories, which is to be
preferred on independent grounds, is particularly appropriate for the structure realist.”
(Ladyman, 1998, p. 417)

Ladyman then suggests that structural realists adopt Ronald Giere’s account of theoretical commit-
ment: to accept a theorymeans believing that the world is similar or isomorphic to one of its models.
For example, a model of the general theory of relativity is a four-dimensional Lorentzian manifold;
thus, believing the general theory of relativity means believing that spacetime has the structure of a
four-dimensional Lorentzian manifold. In the words of Paul �ompson,

“�e application of the model(s) to a particular empirical system requires the extra-
theoretical assumption that the model(s) and the phenomena to which they are in-
tended to apply are isomorphic . . . or homeomorphic.” (�ompson, 2007, p. 495)

Others, such as van Fraassen, claim that isomorphism cannot hold between a model and the world,
because “being isomorphic” is a relation that holds only betweenmathematical objects. Nonetheless,
van Fraassen and all other semanticists claim that a theory is adequate to the extent that one of its
models “represents” the world.
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2.2 �e semantic view applied to particular sciences

�e semantic view of theories has trickled down into the consciousness of philosophers of science
of generations X and Y . Many of these next-generation philosophers of science are, appropriately
enough, “philosophers of X,” where X is some particular science — for example, philosophers of
physics, philosophers of biology, philosophers of psychology. But these philosophers imbibed the
semantic view with their mother’s milk, and their Ausbildung in�uences, for better or for worse,
their judgment of issues in their subdisiplines. In this section, I remind the reader of some of the
more obvious ways in which the semantic view manifests itself in the philosophy of the particular
sciences.

2.2.1 Philosophy of biology

�e semantic view of theories has played a visible and central role in the philosophy of biology since
the 1980s. Already in 1979, John Beatty mounted a criticism of the “received view” of evolutionary
theory (Beatty, 1979, 1980), and in her 1984 PhD thesis “A semantic approach to the structure of
evolutionary theory,” Elisabeth Lloyd claims that

“. . . a semantic approach to the structure of theories o�ers a natural, precise framework
for the characterization of contemporary evolutionary theory. As such, it may provide
a means with which progress on outstanding theoretical and philosophical problems
can be achieved.” (Lloyd, 1984, p. iii)

See also (Lloyd, 1994) and (�ompson, 1983, 1989). For a recent review and further sources, see
(�ompson, 2007). Su�ce it to say that some of the most important recent work in the philosophy
of biology has rested upon, or drawn upon, the semantic view of scienti�c theories.

2.2.2 Philosophy of psychology

�e semantic view of theories has also impacted the philosophy of psychology — although less
visibly than it has the philosophy of biology. �e philosophy of psychology is, of course centrally
concerned with questions of how the mind can be reduced to the brain — rephrased in the lingo of
philosophers of science, of how naive folk theories of the mind can be reduced to neuroscience. But
when we ask what it means to say that one theory is reducible to another, the answer we give will
depend on our conception of what a “theory” is. As pointed out by Jordi Cat,

“�e shi� in the accounts of scienti�c theory from syntactic to semantic approaches
has changed conceptual perspectives and, accordingly, formulations and evaluations of
reductive relations and reductionism.” (Cat, 2007)
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As a speci�c example of Cat’s claim, John Bickle (1993) applies the semantic view of theories to sup-
port a claim that neuroscienti�c eliminativism is “principled.” See also (Hardcastle, 1994). Similarly,
in a very recent discussion, Colin Klein (2011) argues that multiple realizability arguments depend
for their plausibility on the syntactic view of theories, and that from the perspective of the semantic
view, these arguments are unmotivated.

2.2.3 Philosophy of physics

Up to this point, I have attempted only to describe cases where philosophers have explicitly claimed
that the semantic view of theoriesmakes a di�erence for some other philosophical thesis or position.
�at is, I wanted to remind the reader that there is a good deal of literature out there that talks about
how the semantic view bears upon philosophical issues in the particular sciences. But now I want
to make my own claim about logical dependence: I claim that in application to the philosophy of
physics, the semantic view of theories has led to false conclusions.
It is commonplace now for philosophers of physics to characterize theories in terms of their

classes of models. For example, we identify the theory of general relativity with the class of general
relativistic spacetimes (i.e. four-dimensional manifolds with a Lorentzian metric), and we identify
quantum mechanics with Hilbert spaces and certain operators on them. Almost everyone agrees
that these identi�cations are far superior to attempts to identify physical theories with sets of axioms
in a �rst-order language.
I claim, however, that the semantic view of theories has led philosophers of physics to draw

faulty conclusions. One such conclusion is:

Model isomorphism criterion for theoretical equivalence: If theories T and T ′ are equiv-
alent then each model of T is isomorphic to a model of T ′.

To clarify what I mean by this criterion, let me show you a couple of cases where I believe that it has
been (tacitly) invoked.
First, Jill North applies a version of the isomorphism criterionwhen she argues thatHamiltonian

mechanics and Lagrangian mechanics are inequivalent theories.

“�e equivalence of theories is not just a matter of physically possible histories, but
of physically possible histories through a particular statespace structure. Hamiltonian
and Lagrangian mechanics are not equivalent in terms of that structure. �is means
that they are not equivalent, period.” (North, 2009, p. 79)
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In other worlds, the statespaces of Hamiltonian and Lagrangian mechanics are non-isomorphic;
therefore the two theories impute di�erent structure to the world; therefore the two theories are
inequivalent.
Similarly, Erik Curiel applies a version of the model isomorphism criterion to argue that Hamil-

tonian and Lagrangianmechanics are inequivalent, ormore particularly, that Hamiltonianmechan-
ics does not have the resources to describe all the facts that Lagrangian mechanics describes. Curiel
says:

“. . . the family of kinematically possible evolutions of a dynamical system, in so far as
they are characterized by interactions with no prior assumption of a geometrical struc-
ture . . . cannot be naturally represented as Hamiltonian vector �elds on phase space, for
by de�nition an a�ne space is not isomorphic to a Lie algebra over a vector space. It
follows that there is no analogous structure in the Hamiltonian representation of a sys-
tem isomorphic to a dynamical system’s family of interaction vector �elds . . . ” (Curiel,
2009, p. 20)

In other words, Lagrangian mechanics imputes a�ne structure to the world; but Hamiltonian me-
chanics does not impute a�ne structure; therefore these theories are inequivalent.

�emodel isomorphism criterion should seemobviously correct to a structural realist who elab-
orates that position in terms of the semantic view of theories. For according to semantic structural
realism, to accept a theory is to believe that the world is isomorphic to one of its models. �us if
two theories posit di�erent structure — e.g. one posits a�ne structure, and one posits Lie structure
— then they cannot both be good representations of the structure of the world.
But if you think about it for amoment, youwill see that this view cannot be correct. For example,

Heisenberg’s matrix mechanics is equivalent to Schrödinger’s wave mechanics. But a matrix algebra
is obviously not isomorphic to a space of wavefunctions; hence, a simple-minded isomorphism
criterion would entail that these theories are inequivalent. So, something goes seriously wrong if we
take the semantic view of theories seriously.

Preliminary Precisi�cations

Before I begin my argument against the semantic view of theories, I should clarify the terms that I
will be using.

�e semantic view of theories claims that:

(S1) A theory is a class of models.
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In the �rst articulations of the semantic view, the word “model” was taken to denote some sort of
mathematical object. Many philosophers of science now disagree that models should be mathemat-
ical objects. I do not consider those views in this paper. I only consider views that try to explicate
the concept of a model using the tools of mathematics.
So, within the bounds of mathematics, what is a model? We begin with the standard “elemen-

tary” concept due to Alfred Tarski. If L is a (one-sorted) �rst-order language, then a L-structure
consists of a set S (the domain of quanti�cation) as well as an assignment R ↦ [[R]] ⊆ S ×⋯× S for
each n-place predicate symbol R of L. A �rst-order theory in L consists of a set T of sequents. Here
a sequent is of the form:

φ ⊢x ,y ψ,

where x is a sequence of variables containing all the free ones in φ, and y is a sequence of variables
containing all the free ones in ψ. I assume that the reader is familiar with the de�nition of when an
L structure [[⋅]] satis�es a sequent. If [[⋅]] satis�es all sequents in T , then it is said to be amodel of
T .
Note �rst that when the semanticists say that a theory is a class of models, then they do not

intend exactly the Tarskian de�nition of model — because then their de�nition would be circular.
(A theory would be a class of models . . .of a theory.) But to a �rst approximation, the semanticists
are just saying that:

(S2) A theory is a class of L-structures, for some language L.

But most semanticists — even those still aiming for a mathematical explication — will disavow
this �rst approximation, and for two reasons. First, the de�niens for “theory” should not contain
reference to a particular language L. Second, we should not restrict to “elementary” structures (those
that are structures for �rst-order languages).
Technically, (S2) does not contain reference to a particular language: rather its logical form is:

(S3)�eory(C) ≡ ∃L[C ⊆ Str(L)] .

(We currently ignore di�culties about using subset notation for proper classes.) Nonetheless, it
would still be the case that for each theory T , there is a language L such that T consists of L-
structures. �is concession is unacceptable to van Fraassen:

“�e impact of Suppes’ innovation is lost if models are de�ned, as in many standard
logic texts, to be partially linguistic entities, each yoked to a particular syntax. In my
terminology here themodels are mathematical structures, calledmodels of a given the-
ory only by virtue of belonging to the class de�ned to be the models of the theory.” (van
Fraassen, 1989, p. 366)
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So, van Fraassen would have us revise the de�nition of “model,” or more accurately, of “structure”:
structures are not mappings from languages to (the category of) sets, but are simply the resulting
“structured sets.” In other words, one way to get a class of models (in van Fraassen’s sense) is to
take a �rst-order theory T and construct its class Mod(T) of models. But once we have arrived at
Mod(T) we can throw away the ladder: we can forget that we used T , or even the language L in
which T is formulated. More generally, any other class C of mathematical structures will also count
as a theory. We don’t even need a language L to begin with.
But here we must pause and ask for clari�cation about what sorts of things are allowed to be in

the class C. What is amathematical structure? �e �rst-order case provides a paradigmatic example.
Suppose, for example, that the language L has one binary relation symbol R, and one unary predicate
symbol P. �en an L structure is a triple ⟨S , [[R]], [[P]]⟩ where S is a set, [[R]] a subset of S × S,
and [[P]] a subset of S. Let’s forget then that there was any language L, and just write down triples
⟨S , R, P⟩ where now R is a subset of S × S and P is a subset of S. Such is the paradigm example of a
mathematical structure.
Granted, for a structure such as S = ⟨S , R, P⟩, we can easily �nd a language L such that S is an

L-structure. To do so, just look at the arity of the relations (here R and P), and build a language with
appropriate relation symbols. But there are more complicated cases where such a procedure does
not obviously work to yield a �rst-order language. For example, topological spaces are pairs ⟨S , τ⟩
where S is a set and τ is an appropriate collection of subsets of S. �ere is no way to think of these
topological spaces as L-structures for some �rst-order language L.
At present, semanticists seem to like the account of mathematical structures given in Bourbaki’s

�eory of Sets. (�e phrasing used by Bourbaki is espèces de structure, i.e. species of structure.)
For an up-to-date account, see Da Costa and French (2003). Van Fraassen does not seem to have
taken any stand on a speci�c de�nition of mathematical structure, although he has always displayed
partiality towards Evert Beth’s “state space approach.”
But the argument of this paper will not hang on the details of a full speci�cation of the notion

of a mathematical structure. For my argument to go through, I only need the semanticist to grant a
weak su�cient condition on theory-hood: the class Mod(T) of models of a �rst-order theory T is
(the mathematical part of a) theory in their sense.1

1A point of clari�cation is in order: obviously, semanticists do not reduce theories to a mere class of models. As
explicated by Giere, Suppe, and van Fraassen, a theory is a class of models plus a theoretical hypothesis. But my attack
has nothing to do with this second component of the semantic view of theories. I mean only to show that the �rst
component is a mistake, i.e. a class of models is not the correct mathematical component of a theory.
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3 Identity crisis for theories

I �rst show that the semantic view gives an incorrect account of the identity of theories. Its failure
is complete: it identi�es theories that are distinct, and it distinguishes theories that are identical (or
at least equivalent by the strictest of standards).

3.1 �e semantic view identi�es distinct theories

According to the semantic view, a theory is a class of models. When are two theories, or presen-
tations of theories, really the same thing? What is the relation of isomorphism, or equivalence,
between theories? Let’s ignore for the time being the problems with the set/class distinction. Let’s
suppose instead that the semantic view identi�es theories with sets of models. �e only interesting
relation of isomorphismbetween sets is equinumerosity. So, if theories are sets (ofmodels), then two
theories are isomorphic when they have the same number of models. As you might immediately
suspect, this account yields a too coarse grained notion of isomorphism: it counts as isomorphic
theories which are truly distinct.
We begin with a simple example from propositional logic. In what follows, we use T or T ′ to

denote theories, where their individual languages (not assumed the same) are implicitly understood.
When we need to be explicit, we write L(X) for the language of theory X.

Example (Propositional �eories). Let L(T) be a propositional language with a countable in�nity
of 0-place predicate symbols (i.e. propositional constants) p1, p2, . . . . We work throughout with
classical logic, so L(T) is equipped with connectives ∧,∨,→,¬. Let T be the empty theory in L(T),
i.e. the theory whose only consequences are tautologies. Let L(T ′) add to L(T) a new propositional
constant q, and let T ′ be given by the in�nite set of axioms {q ⊢ pi ∶ i ∈ N}.

Fact. �eories T and T ′ have isomorphic (i.e. equinumerous) sets of models.

Proof. Obviously T has 2ℵ0 models, i.e. truth-valuations. For T ′, let v be a truth-valuation. On the
one hand, if v(q) = 1 then v(pi) = 1 for all i. On the other hand, v(q) = 0 is consistent with any
assignment of truth-values to the pi . �us T ′ has 2ℵ0 models.

But are these theories really distinct? A�er all, a die-hard semanticistmight transform themodus
ponens into a modus tollens: these two theories have isomorphic sets of models, therefore they are
really the same theory.
I do not want to argue over words. I merely wish to point out that there are obvious senses

in which T and T ′ are di�erent theories. In fact, these two theories are di�erent according to the
standard account of de�nitional equivalence of (syntactically formulated) theories.
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De�nition. Let T and T ′ be theories. Let F ∶ L(T) → L(T ′) be a map of the underlying languages
that takes variables to variables, and n-ary predicate symbols to w�s. F can then be canonically
extended to map terms of L(T) to terms of L(T ′), and formulae of L(T) to formulae of L(T ′). We
say that F is an interpretation of T in T ′ just in case for each axiom φ ⊢ ψ of S, F(φ) ⊢ F(ψ) is a
theorem of T ′.

For variations on this de�nition, see (Hodges, 1993, p. 219�) and (Szczerba, 1977, p. 133). We
allow predicate symbols to be mapped to formulas — thus allowing, for example, interpretations
that take a predicate to an open sentence. Of course, if there is no interpretation of T into T ′, then
the two theories cannot be de�nitionally equivalent.

De�nition. Let T and T ′ be theories, and let F ∶ T → T ′ and G ∶ T → T ′ be interpretations. We say
that G is a weak inverse of F just in case for each w� φ of L(T), GF(φ) is T-provably equivalent to
φ, and for each w� ψ of L(T ′), FG(ψ) is T ′-provably equivalent to ψ. If there is a weakly invertible
interpretation F ∶ T → T ′, then T and T ′ are said to be de�nitionally equivalent.

Fact. �e theories T and T ′ are not de�nitionally equivalent.

Proof. Suppose for reductio ad absurdum that F ∶ T → T ′ and G ∶ T ′ → T give a de�nitional
equivalence. �en Gq is a T-atom under the implication relation. Indeed, if r ⊢ Gq then Fr ⊢
FGq ≃ q. Since q is an atom relative to T ′ provability, either Fr ≃ � or Fr ≃ q. In the former case,
r ≃ GFr ≃ �; in the latter case r ≃ GFr ≃ Gq. �us, Gq is an atom relative to T provability, which is
a contradiction.2

To summarize this example: there is a standard criterion of equivalence of syntactically for-
mulated theories, namely de�nitional equivalence. By this criterion, the theories T and T ′ are in-
equivalent. But the semantic view of theories reduces T and T ′ to their respective sets of models,
Mod(T) and Mod(T ′). But these two sets Mod(T) and Mod(T ′) are isomorphic (i.e. equinumer-
ous). Moreover, the semanticist cannot distinguish Mod(T) from Mod(T ′) on the grounds that
the former consists of mappings from the language L(T) and the latter consists of mappings from
the language L(T ′). Indeed, the semanticist has precluded reference to language in individuating
theories. �erefore the semantic view identi�es theories that should be treated as distinct.

Example (FromPropositional to Predicate). �e semanticist might not know how to respond to the
previous example: when he thinks of “models,” his paradigm example is an L-structure where L is a

2It is perhaps easier to see what is going on here if one looks at the Stone Space of the corresponding Lindenbaum
algebras. �e Stone space for T is the Cantor space C. �e Stone space for T ′ is C ⊔ {∗}. �ese spaces have the same
cardinality, but are not homeomorphic.
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predicate language. Since the previous example uses 0-place predicates (i.e. proposition symbols),
one might worry that it is not typical. However, we can easily modify the example to overcome this
worry.
Let L(T) be the language with a countable in�nity of 1-place predicate symbols P1, P2, P3, . . . ,

and with a single axiom ∃=1x(x = x) (there is exactly one thing). Let L(T ′) be the language with a
countable in�nity of 1-place predicate symbols Q0,Q1,Q2, . . . , and with axioms ∃=1x(x = x) as well
as Q0x ⊢x Qix for each i ∈ N.
It’s obvious that T and T ′ have the same number of models. What’s more, the models of T and

T ′ are pairwise isomorphic. Indeed, models of T and T ′ both consist of a single thing, and of a
speci�cation of whether that single thing has or lacks each of a countable in�nity of properties.
Structurally, any two such models are isomorphic. If you lived inside one of these worlds (mod-
els), there would be no reason to endorse T over T ′ and vice versa. Or put slightly di�erently, the
structure of a T world is exactly the same as the structure of a T ′ world.
And yet, our gut tells us that these two theories are inequivalent. We might reason as follows:

the �rst theory tells us nothing about the relations between the predicates; but the second theory
stipulates a non-trivial relation between one of the predicates and the rest of them. In this case, our
gut feeling is correct: the theories T and T ′ are not de�nitionally equivalent. Indeed, similar to the
case of propositional theories, the predicate Q0x cannot be de�ned in terms of the theory T .

Example (Categorical�eories). For this example, we recall that there is a pair of �rst-order theories
T and T ′, each of which is κ-categorical for all in�nite κ, but which are not de�nitionally equivalent
to each other. (Many such examples can be found, for example, in thework of Boris Zil’ber on totally
categorical theories (Zil’ber, 1993). In fact, Zil’ber has classi�ed these theories in terms of geometric
invariants.)
By categoricity, for each cardinal κ, both T and T ′ have a unique models (up to isomorphism)

with domain of size κ. �us, there is an invertible mapping that pairs the size-κmodel of T with the
size-κ model of T ′. Hence, by the equinumerosity criterion, T and T ′ are equivalent theories.
Nor will it be easy for the semanticist to escape this conclusion. �e obvious rejoinder would

be to say that although models of T can be naturally paired with models of T ′, this pairing is not
an isomorphism of individual models; that is, the size-κ model of T is not isomorphic to the size-κ
model of T ′. But in what sense are those models not isomorphic? �e pairing preserves cardinality;
what else needs to be preserved? �e semantic account needs to answer such questions in order to
give an adequate account of the identity of theories.
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3.2 �e semantic view distinguishes identical theories

We have just seen that the semantic view would equate theories that ought to be distinguished. We
will now see that the semantic view also makes the opposite mistake: it would distinguish theories
that ought to be equated.
Here we must proceed tentatively, because semanticists have not — to my knowledge — clearly

enunciated a criterion of theoretical equivalence or isomorphism. (Chalk that up as another one of
the semantic view’s failures. How can a theory of theories be of any use to us if it does not provide
identity criteria for theories?) In the case of propositional theories, models lack internal structure.
�is is the reason why we could identify the sets of models of any two propositional theories with
the same number of models. In more realistic cases, we have the opposite problem: we do not know
how to compare the individual models of one theory with the individual models of another theory.
Hand me two collections C and D of models. When should I count C and D as the same, or as
isomorphic? We saw above that equinumerosity is too coarse. Perhaps then the key is to compare
C and D in terms of the internal structure of their objects. For example, let C be the class of groups,
and let D be the class of topological spaces. �en the semanticist might point out that a group has
di�erent structure than a topological space. In other words, the structures in C are not isomorphic
to the structures in D. �erefore, the semanticist might claim, the class C is distinct from D, and
these represent distinct theories.
But such an approach cannot be correct. First of all, there are obviously cases of alternative

axiomatizations of the same theory, using distinct languages L and L′. What do we mean by saying
that they are the “same theory”? �e semanticist might say that the two theory-formulations have
the same class of models. But if L ≠ L′, then a class of L-structures cannot be equal to a class of L′-
structures; indeed, there is no sense in which individual L-structures are isomorphic to individual
L′-structures. We illustrate this issue with a couple of examples:

Example (Autosets vs. Groups). We �rst formulate the theory of autosets, i.e. sets with a transitive
action on themselves. Let L(T) have one binary function symbol ○, for which we use in�x notation,
and let T have the following three axioms:

⊢x ,y,z (x ○ y) ○ z = x ○ (y ○ z) ⊢x ,y ∃z(x ○ z = y) ⊢x ,y ∃z(z ○ x = y).

A model of T is called an autoset.
We now formulate the theory of groups, for which we can take the language L(T ′) to consists

of a binary function symbol ○, a unary function symbol i, and a constant symbol e. Let T ′ consist
of the standard group theory axioms: associativity, identity, and inverses.
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A naive semantic view of theories is bound to say that T and T ′ are distinct theories. A�er all,
a model of T is a pair ⟨S , ○⟩ and a model of T ′ is a quadruple ⟨G , ○, i , e⟩. Two is not equal to four,
so an autoset is not a group. But any student of abstract algebra knows that the theory of autosets is
provably equivalent to the theory of groups. In particular, the theory T of autosets entails that the
predicate

Px ≡ ∃y(y ○ x = y = x ○ y),

is uniquely satis�able, hence we can introduce a constant symbol e. Similarly, T entails that the
relation

Rxy ≡ x ○ y = e ,

is functional, and hence we can introduce a function symbol i. In other words, although an au-
toset is not a group, each autoset carries de�nable group-theoretic structure (an identity element
and an inverse function). But the very notion of de�nability is not available via a purely semantic
approach: the notion of de�nability presupposes reference to the language in which the theories
were formulated.

Example (Trivial). �e following example is utterly trivial — and yet it poses a question for which
the semantic view has no obvious answer. Let C be the singleton set containing of a single group G.
Let D be a class consisting of several isomorphic copies of G. Are C and D equivalent? On the one
hand, every model of the �rst theory is isomorphic to a model of the second theory. On the other
hand, the second theory has several models, and the �rst theory has only one.

Example (Boolean Algebras). Let B be the class of complete atomic Boolean algebras (CABAs), i.e.
an element B of B is a Boolean algebra such that each subset S ⊆ B has a least upper bound ⋁(S),
and such that each element b ∈ B is a join b = ⋁ bi , where the bi are atoms in B. Now let S be the
class of sets.
What does the semantic view say about the relation between the theories B and S? Obviously

B ≠ S . Slightly less obviously, there is no canonical way to take an arbitrary set S and equip it
with operations that make it a CABA. �at is, there is no sense in which a set S implicitly de�nes a
Boolean algebra structure on S. It seems then that the semantic view must conclude that B and C
are inequivalent theories.
However, I claim that each set is naturally associated with a unique CABA, namely its powerset

P(S) with the operations of union, intersection, and complement. Furthermore, the set At(P(S))
of atoms of P(S) is naturally isomorphic to S. In the opposite direction, given a CABA B, its atoms
At(B) are a set such that B is isomorphic to P(At(B)). Perhaps B and C are, a�er all, the same
theory in di�erent guises?

13



�e previous example might not have convinced the semanticist to change his ways. He might
be willing to bite the bullet and say that these two classes do not represent the same theory. One
problem with the example is that we haven’t given enough independent reason for thinking that B
and S are the “same theory.” In the next example, we display two de�nitionally equivalent theories
T and T ′ such that the models of T are not in any sense isomorphic to the models of T ′. Let me be
more precise about what I mean:
An interpretation F ∶ T → T ′ gives rise, via composition, to a “model map” F∗ ∶ Mod(T ′) →

Mod(T). To see what is going on here, consider two prominent classes of examples. First, let L(T ′)
result from adding a new relation symbol to L(T), but let T ′ = T and let F ∶ T → T ′ be the obvi-
ous “embedding” of L(T) into L(T ′). �en F∗ takes a model of T ′ and “forgets” what that model
assigned to the new relation symbol. Second, let L(T ′) = L(T), but let T ′ result from adding some
new axioms to T , and let F ∶ T → T ′ be the interpretation of T into T ′ that results from the identity
map on L(T) = L(T ′). �en F∗ takes a model of T ′ and shows us that it is also a model of T .

�us, interpretations induce model maps and, in particular, de�nitional equivalences induce
model maps.

Proposition. A de�nitional equivalence of theories does not necessarily entail that these theories have
isomorphic models. In particular, there is a de�nitional equivalence F ∶ T → T ′, and a model m of T ′

such that the cardinality of m is not equal to the cardinality of F∗(m).

Proof. �e proof of this claim is so simple that we include it in the main text. Let T be the empty
theory formulated in a language with a single binary predicate R. Let T ′ be the empty theory formu-
lated in a language with a single ternary predicate S. Myers (1997) proves that there is a de�nitional
equivalence I ∶ T → T ′.
Nowweprove that there is node�nitional equivalence J ∶ T → T ′ such thatCard(n) = Card(J∗(n))

for all models n of T ′. For this, we only need the simple fact that de�nitional equivalences are con-
servativewith respect to isomorphisms between models; that is, if J∗(n) ≡ J∗(n′) then n ≡ n′. (�is
follows from the fact that J has an pseudo-inverse I, and I∗ preserves isomorphisms. �at is, if
J∗(n) ≡ J∗(n′) then n ≡ I∗J∗(n) ≡ I∗J∗(n′) ≡ n′.) Now let A be the set of isomorphism classes of
models n of T ′ such that Card(n) = 2. Let B the set of isomorphism classes of models m of T such
that Card(m) = 2. Clearly B is a �nite set that is larger than A. By conservativeness, J∗(B) is larger
than A, hence there is a n ∈ B such that J∗(n) /∈ A. But then Card(n) = 2 and Card(J∗(n)) ≠ 2.

From this proposition, we draw a crucial interpretive corollary:

�eoretical Equivalence is Global: An equivalence between two classes of models is not
necessarily induced pointwise by isomorphisms of individual models.
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�at is, two classes ofmodels C andDmight be equivalent evenwhen there is no sense in
which their individualmodels are isomorphic. (Here the phrase “no sense” is validated by
the fact that the paired models can have domains of di�erent cardinality; hence, these
models are not isomorphic in any traditional sense.)

Before proceeding, we draw two further philosophical corollaries.
First, the global nature of equivalence shows the incorrectness of the “model isomorphism cri-

terion for theoretical equivalence.” Recall that the model isomorphism criterion would rule two
theories inequivalent if the models of the one theory are not isomorphic to the models of the other
theory. (I claimed that such a criterion is at work in recent arguments for the inequivalence of
Hamiltonian and Lagrangian mechanics.) But we have seen that there are de�nitionally equivalent
theories T and T ′ whose models are not isomorphic. �erefore, pointing out that two theories have
non-isomorphic models does not settle the question of whether those theories are equivalent.
Second, the globality of theoretical equivalence spells trouble for structural realism — at least

those versions that cash representation out in terms of isomorphism or similarity. According to
these versions of structural realism, a theory is true just in case it accurately represents the structure
of the world, or more precisely:

A theory is true just in case it has a modelM that is isomorphic to the world w.

Butwhich formulation of the theory shouldwe choose? Suppose that the theory could be formulated
either by the class C or by the class D of models, but that objects in C are not isomorphic to objects
inD. �en which formulation of the theory should we use to evaluating the isomorphism claim? If
the world is isomorphic to a model in C, then it is not isomorphic to any model in D.
Of course, the standard realist response to this problem would be to assert privilege for a cer-

tain formulation of the theory. Although there might be a mathematical equivalence between the
classes C and D, the realist will take one of the classes as dividing nature at the joints. But such a
response will hardly be attractive to a structural realist, who would not ascribe ontological import
to di�erences of formulation.3

�ere are numerous other cases like the two we have just described — cases where prima fa-
cie di�erent classes of mathematical structures have been shown to be (globally) equivalent, even
though the individual structures from the �rst class are in no sense isomorphic to the individual
structures from the second class. Some of the most intriguing examples of this sort are “dualities”
where one category of mathematical objects is shown to be equivalent to another category of a very

3�anks to Kyle Stanford for this point.

15



di�erent sort, for example, a category of geometric structures is shown to be equivalent to a cate-
gory of algebraic structures. In Table 1 we list some of these dualities. Semanticists have (so far)

Table 1: Some categorical dualities

Geometric category Algebraic category Discoverer of duality
Stone Spaces Boolean Algebras M. Stone
Compact Hausdor� Spaces C∗-Algebras I.M. Gelfand
Finite Distributive Lattices Finite Posets G. Birkho�
A�ne Schemes Commutative Rings A. Grothendieck
Lorentzian Manifolds Spectral Spaces A. Connes

ignored the interesting relations that can hold between classes of models, in particular the relation
of “equivalence of categories.” As a result, the semantic view — as it has been elaborated to date —
gives an inadequate account of the identity of theories.

4 Relations between theories

We have already shown that the semantic view fails miserably at individuating theories: it con�ates
distinct theories, and it is blind to some equivalences between theories. But one might hope that
these are only failures in theory, and that in practice, the semantic view gets things right. What I
mean here by, “in practice,” is the use to which philosophers of science put the semantic view of
theories. Philosophers of science have used the semantic view to support their views of the ob-
servable/unobservable distinction, and of intertheoretic reduction, among other things. One might
hope that the failures of the semantic view noted above do not taint these more consequential dis-
cussions, or the conclusions drawn therefrom. But I have bad news: the semantic view also gives
wrong answers about when one theory is a subtheory of another, and about when one theory is re-
ducible to another. All in all, conclusions drawn from the semantic view of theories are completely
unreliable.
Let us look closely now at the famousmotivating example given by van Fraassen in�e Scienti�c

Image (van Fraassen, 1980). Consider the following geometric axioms:

A1 For any two lines, there is at most one point that lies on both.

A2 For any two points, there is exactly one line that lies on both.

A3 On every line there lie at least two points.
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A4 �ere are only �nitely many points.

A5 On any line there lie in�nitely many points.

Van Fraassen then de�nes three theories: the core theory T0 has axioms A1, A2 and A3; theory T1
results from adding A4 to the core theory, and theory T2 results from adding A5 to the core theory.

Figure 1: Seven Point Geometry
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According to van Fraassen, a semantic approach gives a superior account of the relationship
between these theories than does a syntactic approach. In particular, he claims �rst that a syntactic
view can see only that T1 and T2 are inconsistent.

“Logic tells us that [T1 and T2] are inconsistent with each other, and there is an end to
it.” (van Fraassen, 1980, p. 43)

In contrast, van Fraassen claims that a semantic view sees interesting relationships between T1 and
T2: in particular, each model of T1 is embeddable in a model of T2.

“. . . that seven-point structure can be embedded in a Euclidean structure . . .�is points
to a much more interesting relationship between the theories T1 and T2 than inconsis-
tency: everymodel of T1 can be embedded in (identi�edwith a substructure of) amodel
of T2. �is sort of relationship, which is peculiarly semantic, is clearly very important
for the comparison and evaluation of theories, and is not accessible to the syntactic
approach.” (van Fraassen, 1980, pp. 43–44)

�us, a semantic view is supposed to show its superiority as ameans for analyzing relations between
theories.
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In the years since van Fraassen �rst used “embeddability” to formulate constructive empiricism,
several philosophers have been at pains to argue that embeddability — and other interesting re-
lations between theories — can also be explicated via syntactic means; see, for example, (Turney,
1990). If that’s so, then the syntactic approach can do just as much as the semantic approach. But
I wish to take a harder line: I claim that the semantic approach cannot explicate the relation of
embedding between theories.
Consider amodelM1 of T1, and somemodelM2 of T2 in whichM1 can supposedly be embedded.

What does it mean to say that M1 is embeddable in M2? What is the de�nition of an “embedding”
that is being used? Obviously, an embedding is not just any function; for we could always just choose
a function that maps everything to one point. Similarly, an embedding cannot just be a one-to-one
map; because such maps can also mess-up geometrical relations.

�e claim thatM1 can be embedded intoM2 is true in context, namely the context of the back-
ground theory T0. In particular, if we think of M1 and M2 as being represented by drawings on
transparencies, then there is a rigid motion that carries M1 on top of M2. But recall that “rigid mo-
tion” is a theory-laden concept: it denotes a transformation that preserves the relations de�nable in
the core theory T0. Generalizing from this example, we derive the following take-away point:

�eory-dependence of embedding:�enotion of a “permissible embedding” of one struc-
ture/model into another structure/model depends on some background theory. In par-
ticular, “M is embeddable into N” is a relation between models M and N of a single
theory.

An obvious corollary of the theory-dependence of embedding is that “embeddable” is not a relation
that holds between models of two di�erent theories; and so this notion cannot immediately be used
to explicate concepts such as “empirical adequacy of a theory” or “reducibility of one theory to
another.”
On a conciliatory note, I do grant that there is an interesting relation between van Fraassen’s

theories T1 and T2 — but the relation probably shouldn’t be called “embeddability”, since that term
already has a technical use inmodel theory, as a relation betweenmodels of a single theory. Rather, T1
and T2 are both, by de�nition, specializations of the theory T0. �at is, they result from T0 by adding
some axioms. Whenever a theory T ′ is a specialization of T , then there is obviously a syntactic
interpretation map F ∶ T → T ′, namely the identity map. In the case at hand, we thus have two
interpretations

Π1 ∶ T0 → T1, Π2 ∶ T0 → T2,
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and these yield model maps

Π∗1 ∶Mod(T1) →Mod(T0), Π∗2 ∶Mod(T2) →Mod(T0).

Furthermore, it is clear that for each modelM1 of T1 there is a modelM2 of T2 such that Π∗1 (M1) is
embeddable (relative to the theory T0) into Π∗2(M2). In short, the key to comparing the models of
T1 and the models of T2 is the fact that these models can be thought of as models of the common
core theory T0, and this core theory does have a notion of embeddability among its models. But
without the syntactically speci�ed theory T0, we wouldn’t know how to compare models of T1 with
models of T2.
To further clarify issues here, it might help to look at a simpler example that shares the relevant

features of van Fraassen’s example. Consider the following two theories:

E2 = there are exactly two things.
E3 = there are exactly three things.

Following van Fraassen’s line of reasoning, we might say: On the one hand, there is no interesting
syntactic relation between E2 and E3; they are simply inconsistent. On the other hand, each model
of E2 can be embedded in a model of E3, an important fact that is visible only from a semantic
perspective. Is this a good analysis of what is going on here?
Let’s unpack the example. For each i ∈ N, de�ne the �rst-order sentences E≤i (there are at most

i things), E≥i (there are at least i things), and Ei (there are exactly i things). �en for all i , j ∈ Nwith
i ≤ j,

Ei ⇐⇒ E≤i ∧ E≥i , E≤i ∧ E≤ j ⇐⇒ E≤i .

Note also that E≥i is pure existential, i.e. a string of existential quanti�ers applied to a quanti�er-free
sentence. In particular, E3 results from E≤3 by adding a single existential axiom. From these facts
we note the obvious further fact that both E2 and E3 are specializations of E≤3:

E2⇐⇒ E≤3 ∧ E2, E3⇐⇒ E≤3 ∧ E≥3.
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as depicted in the diagram of interpretations:

E2 E3

E≤3

E2

I2

��������������
E≤3

E3

I3

��????????????

where I2 and I3 are the identity interpretations. �us, we conclude:

�ere is an interesting syntactic relation between E2 and E3, namely, they are special-
izations of a common theory E≤3; moreover, E3 is a pure existential specialization of
E≤3.

I claim further that any interesting semantic relation between E2 and E3 is nothing but a mirror
image of this basic syntactic relation.

5 �eories versus formulations

We turn to a �nal purported advantage of the semantic view of theories. To see this, recall that any
non-trivial �rst-order theory admits alternative formulations. First, within a single language L, a
given theory can be axiomatized in distinct ways, say with axiom set T or axiom set T ′. Of course,
this super�cial di�erence can be remedied by taking a theory to be a set of sentences that is closed
under the consequence relation; thusCn(T) = Cn(T ′) is the same theory. Amore seriously di�cult
is posed by theories formulated in di�erent languages, say L(T) ≠ L(T ′).
Frustration with trying to give conditions for equivalence between theories in di�erent lan-

guages may be responsible for the semanticists search for “invariant” formulations of theories. Ac-
cording to Suppe,

“. . . theories are not collections of propositions or statements, but rather are extra-linguistic
entities whichmay be described or characterized by a number of di�erent linguistic for-
mulations.” (Suppe, 1977, p. 221)

Similarly, van Fraassen indicates that the class of models is the invariant that lies behind di�erent
formulations:

“. . .while a theory may have many di�erent formulations, its set of models is what is
important.” (van Fraassen, 2008, p. 309)
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Even more strongly, van Fraassen and Muller state:

“In the semantic approach, we pride ourselves on not being so languagebound as one
was during the hegemony of the syntactic view. Here a theory is not identi�ed with
or through its formulation in a speci�c language, nor with a class of formulations in
speci�c languages, but through or by a class of models.” (Muller and van Fraassen,
2008, p. 201)

Finally, van Fraassen attributes the failure of the syntactic view of theories to its attachment to for-
mulations rather than to the underlying invariant:

“In any tragedy, we suspect that some crucial mistake was made at the very beginning.
�e mistake, I think, was to confuse a theory with the formulation of a theory in a
particular language.” (van Fraassen, 1989, p. 221)

�e picture given by semanticists is of a many-to-one relationship between formulations of a theory
in a particular language (syntax) and a single class of models (semantics). In a picture:
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where T1, T2, . . . are theory formulations, and C is the ‘invariant’ class of models. �us, the semanti-
cists think of the relation between syntactic axiomatizations and classes of models as many-to-one,
and analogous to the relation between coordinates and underlying geometric objects, or to the re-
lation between sentences and propositions.

�e picture of the class of models as an ‘invariant’ carries some initial plausibility — witness,
e.g., the case of di�erent axiomatizations of group theory, or di�erent axiomatizations of vector
space theory. Why would we call two di�erent syntactic theories di�erent formulations of the same
theory unless they had the same class of models? But it is now clear that in the interesting cases of
di�erent formulations, not only are the formulations di�erent, but so are the classes of models.
But there is a correct picture lurking in the neighborhood: when we say, correctly but impre-

cisely, that two theories T and T ′ have the “same” models, we mean that the models of T are some-
how interconvertible with the models of T ′. For example, every group can be converted into an
autoset by “forgetting” its inverse operation and its identity element; similarly, every autoset can be
converted into a groupwhenwe see that theremust be a neutral (identity) element of an autoset, and
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each element must have an inverse. In fact, model theorists have a name for this sort of intercon-
vertibility: it is called “mutual de�nability.” However, the notion of de�nability requires reference
to language, and so is not available on a pure semantic view of theories.
As we have now detailed at great length, there are equivalent theories (e.g. di�erent axiomati-

zations of group theory) that have distinct classes of models. �us, as opposed to the many-to-one
picture, a more accurate picture of the relation between syntactic structures and semantic structures
(for a single theory) is the following:

C1

T1

OO C2

T2

OO C3

T3

OO C4

T4

OOC1 C2oo //_______ C2 C3oo //_______ C3 C4oo //_______

T1 T2oo //_______ T2 T3oo //_______ T3 T4oo //_______

Here the dotted lines are supposed to indicate some sort of equivalence, a notion which should be
discussed at greater length. On the bottom (syntactic) row, we already have many good examples
of equivalence, such as di�erent axiomatizations of group theory. And for the top (semantic) row,
we also have some fairly simple, but uncontroversial examples of equivalence, e.g. models of group
theory versus models of autoset theory.

6 Esquisse d’un programme

�e semantic view of theories is plagued by many ills. But can it be cured? In order to apply a
cure, we need to diagnose the problem. Some might say that the problems here is caused by over-
technicalizing the concept of a scienti�c theory, i.e. with trying to provide a formal analysis of the
concept. Perhaps that is our problem. Perhaps all the problems would go away if we just shunned
mathematical analyses. Such seems to be the view of Gabriele Contessa:

“Philosophers of science are increasingly realizing that the di�erences between the syn-
tactic and the semantic view are less signi�cant than semanticists would have it and that,
ultimately, neither is a suitable framework within which to think about scienti�c the-
ories and models. �e crucial divide in philosophy of science, I think, is not the one
between advocates of the syntactic view and advocates of the semantic view, but the one
between those who think that philosophy of science needs a formal framework or other
and those who think otherwise.” (Contessa, 2006, p. 376)
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I agree, and disagree. I agree that the debate between syntactic and semantic views is less signi�cant
than was advertised by the semanticists. However, Contessa’s implication is that we have to make
an either–or choice between a “formal framework” for philosophy of science and some alternative.
But what would “informal philosophy of science” look like? Should the informal philosopher of
science eschew all use of mathematical notation or concepts? But how then should the informal
philosopher of science discuss quantum mechanics or general relativity or string theory?
Indeed, there is another crucial divide that lies even deeper than the one indicated by Contessa:

the divide between those who want to give a uni�ed framework for all the sciences, and those who
do not aspire for such a framework. For those who do not aspire for a uni�ed framework, it would be
legitimate to employ a formal framework for those sciences that themselves employ a formal frame-
work (e.g. mathematical physics), and a less formal framework for those sciences that themselves
are less formalized (e.g. evolutionary biology).
Patrick Suppes famously said that, “philosophy of science should use mathematics, and not

meta-mathematics” (see van Fraassen, 1980, p. 65). But the fact is that meta-mathematics is part
of mathematics, and there is no clear distinction to be drawn between the two approaches. Further-
more, for some sciences, there is no distinction to be made between discussing a scienti�c theory
“in its own language”, or we might say “on its own terms,” and discussing a scienti�c theory “in for-
mal language.” Philosophers of science need not be afraid of using all the tools that scientists use,
including formal logic!
Indeed, the defects in the semantic view that I have identi�ed are not due to over-technicalization

per se; rather, these defects are due to inadequate technicalization. More precisely, the semantic
view was not wrong to treat theories as collections of models; rather, it was wrong to treat theories
as nothing more than collections of models. Beginning with a syntactically formulated theory T , we
can construct its class Mod(T) of models. But we have more information than just the collection of
models: in particular, we have information about relations between these models. For example, any
sentence φ of L(T) induces a relation on Mod(T), namely the relation “M assigns the same truth
value as N to φ.” �ere are other such relations, but none of these relations can be seen if we reduce
a theory to a bare set of models.

�is point has long been known; indeed, it this point is an obvious corollary of Stone’s duality
theorem for Boolean algebras.
Given a propositional theory T , consider its set Mod(T) of models. Can we recover T from

Mod(T)? Does the set Mod(T) contain as much information as the syntactic object T? Obvi-
ously not: as we have seen, there are distinct theories T and T ′ whose sets of models Mod(T) and
Mod(T ′) are indistinguishable qua bare sets. How then should Mod(T) and Mod(T ′) be distin-
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guished from each other? �atwas the question thatMarshall Stone took up in the 1930s; and Stone’s
answer was that Mod(T) and Mod(T ′) have natural topological structure in terms of which they
di�er. In particular, de�ne a topology on Mod(T) by saying that a sequence (mi) of models con-
verges to a modelm just in case for each proposition p of L(T), the truth valuemi(p) converges to
the truth valuem(p) (in the obvious sense). �en the theory T can be recovered (up to de�nitional
equivalence) by extracting the compact open subsets of the topological space Mod(T). In other
words, the topological space Mod(T) does contain all the information as the syntactic object T .
Fine, you might say: for the trivial case of propositional theories, we could rehabilitate the se-

mantic view of theories by taking a theory to be a structured set of models, namely a topological
space of models. But this strategy will not obviously work in the general case — because Stone’s
theorem only works for propositional theories.
But here there is good news to report: generalizations of Stone’s duality theorem have been

proven by Michael Makkai (1993), and more recently by Steve Awodey and Henrik Forssell (2008;
2010). �e technical details of these results are far too complex to summarize here. Su�ce it to say,
however, that the question of what structure is naturally possessed by a class ofmodels is highly non-
trivial, and calls for some serious mathematical research. But the outcome of these investigations
holds interest for anyone who wishes to understand the identity criteria for (formalized) theories,
and the relations that can hold between (formalized) theories — in particular, for all philosophers
of the exact sciences. Despite philosophy of science’s recent trend towards de-formalization and im-
precision, mathematicians and logicians continue to provide us with invaluable tools for discussing
philosophical issues with clarity and rigor. We have only ourselves to blame if we do not take ad-
vantage of these tools.
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