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Abstract
One diagnosis of Bell’s theorem is that its premise of Outcome

Independence is unreasonably strong, as it postulates one common
screener system that purports to explain all the correlations involved.
This poses a challenge of constructing a model for quantum correla-
tions that is local, non-conspiratorial, and has many separate screener
systems rather than one common screener system. In particular, the
assumptions of such models should not entail Bell’s inequalities. We
prove that the models described do not exist, and hence, the diagnosis
above is incorrect.

1 Introduction
Bell’s (1964) theorem derives a testable probabilistic inequality from the

assumption that quantum mechanics can be completed by states more in-
formative than quantum states and that these “hidden” states satisfy some
intuitive assumptions.1 Since the inequality is violated by quantum mechan-
ical predictions, and over the years a consensus has grown that it is also

1Acknowledgment: We are very much indebted to Gábor Hofer-Szabó since an early
draft of his 2011 paper sparked our interest in models with separate screener systems for
quantum correlations; he later suggested a substantial simplification of our construction.
We also thank the audiences to which we read earlier versions of this paper: TP to the
audience of his lunch talk at the CPS of the University of Pittsburgh and LW to the
audience of his lunch talk at the Theoretical Philosophy Unit of Universiteit Utrecht,
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empirically violated, at least one of the premises of the derivation must be
false. Accordingly, Bell’s paper poses a challenge of explaining the theorem,
that is, arguing which of its premises is false and why. It is this project that
we want to contribute to in this paper.

In this paper we will focus on a later and more advanced version of Bell’s
theorem that assumes a probabilistic working of the hidden states in bring-
ing about outcomes of measurements. Two premises of the derivation draw
on the idea of locality, which says that an event can be influenced by a re-
mote event only by a mediation of neighboring (local) events. Since in the
setup relevant to Bell’s theorems, outcomes registered in one wing of the ex-
periment are space-like separated from the selection of settings made in the
other wing of the experiment, this idea leads to two independence conditions,
typically called “Parameter (or Context) Independence” (PI) and “Outcome
Independence” (OI). PI says that results at a nearby measurement apparatus
are independent from settings selected at a remote measurement apparatus.
OI requires that outcomes registered at a nearby apparatus are independent
from outcomes registered at the remote apparatus. The remaining premise of
the derivation, called “No Conspiracy" (NOCONS) postulates that selections
of measurement settings are free, that is, independent from hidden states.

Following a large part of literature, by “independent” we will mean here
“probabilistically independent”. Accordingly, the three conditions of PI, OI,
and NOCONS are given here this reading: (PI) Given each hidden state,
results at a nearby measurement apparatus are probabilistically indepen-
dent from settings selected at a remote measurement apparatus. (OI) Given
each hidden state, outcomes registered at a nearby apparatus are proba-
bilistically independent from outcomes registered at the remote apparatus.
Finally, (NOCONS) selections of measurement settings are probabilistically
independent from the hidden states.

A diagnosis of Bell’s theorem that we will here analyse (and argue against)
stems from observing a certain subtlety in Outcome Independence (the ob-
servation was first made by Belnap and Szabó (1996)). This assumption
bears an affinity to what is known as Reichenbach’s (1956) screening-off con-
dition, which concerns a pair of correlated events and a third event “screening
off” one of the events belonging to the pair from the other (for the rigorous

as well as to the audience of his talk at Ghent University. Our thanks go also to Alex
Malpass for checking the English. Our work has been supported by MNiSW research grant
668/N-RNP-ESF/2010/0.
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formulation see below). The difference that the above researchers noticed is
that in the context of Bell’s theorem, Outcome Independence posits a single
screening factor for many pairs of correlated results, and hence seems to be
unreasonably strong.

This “single vs. many” dialectics motivates a project of deriving Bell’s
inequalities from a weaker set of premises, with Outcome Independence be-
ing replaced by its more modest relative. A hope was that with the new
premise, Bell’s inequalities could not be derived, which would put blame for
the derivation on the “old” Outcome Independence.

Our results definitely shatter this hope, since we show that the class of
new models for Bell’s correlations is not more general than the class of old
models: given that there is a former model, there is also a latter model. This
entails that the assumptions of new models satisfy Bell’s inequality, as do
the assumptions of the old ones.

Our paper is organized as follows: The next section sketches the back-
ground of the project we criticize. Section 3 gives formal definitions per-
taining to the distinction we alluded to. With these definitions in hand, in
Section 4 we offer a survey of earlier results. The main Section 5 contains
our results, and is followed by a final section stating our conclusions.

2 Background: from Bell’s local causality to
separate systems of screeners

Bell proved a stochastic version of his theorem from a premise he called
“local causality”.2 As he explained (1975), the underlying idea is that if 1
and 2 are space-like separated regions, then events occurring in 1 should not
be causes of events occurring in region 2. Such events could be correlated, he
acknowledged, as they might have a common cause. Moreover, they may re-
main to be correlated, even if the probability is conditioned on a specification
Λ of the state of the events’ common past, i.e., P (A|ΛB) 6= P (A|Λ), where A
and B stand for events occurring in regions 1 and 2, respectively. However,
he claims that “in the particular case that Λ contains already a complete
specification of beables in the overlap of the two light cones, supplementary
information from region 2 could reasonably be expected to be redundant [for

2The stochastic version assumed probabilistic working of hidden states; there were
other premises of the proof.
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probabilities of events in region 1]”, which he takes for justification of this
screening-off formula:3

P (A|ΛB) = P (A|Λ)4.

Accordingly, Λ represents here a full specification of the state in the common
past and the backward line-cone of A. The formula is tacitly universally
quantified, that is, it should read “for every possible state in region . . . , if Λ
is its full specification, then . . . ”.

Almost two decades earlier, Reichenbach (1956, p. 159) hit upon a similar
idea, while attempting to analyze the arrow of time in terms of causal forks:

In order to explain the coincidence of A and B, which has a
probability exceeding that of chance coincidence, we assume that
there exists a common cause C. [. . . ] We will now introduce the
assumption that the fork ACB satisfies the following relations:

P (AB|C) = P (A|C)P (B|C) P (AB|¬C) = P (A|¬C)P (B|¬C)

P (A|C) > P (A|¬C) P (B|C) > P (B|¬C).

The two formulas on the top are called the (positive and negative) screening-
off conditions, whereas the two at the bottom are known as the conditions of
positive statistical relevance. It is easy to note the same motivation behind
both Bell’s causal locality and Reichenbach’s screening-off condition. Since
P (AB|C) = P (A|C)P (B|C) is equivalent to P (A|BC) = P (A|C) if P (C) 6=
0, the two concepts are formally similar as well, though the former allows
for any number of factors (“screeners”) to be conditioned upon, whereas the
latter is dichotomous, since it admits as screeners an event and its negation
only.

In the 1970’s and 1980’s Reichenbach’s project was continued by W. Sal-
mon. It was most likely van van Fraassen (1982) who first saw the connection
between Bell’s local causality and the screening-off condition. The screening-
off condition, generalized to any number of screeners and applied to pairs of
outcomes, with screeners identified with hidden states, is just Outcome In-
dependence. But this condition—taken together with two more premises—
entails Bell’s inequalities, which are both violated by quantum mechanics

3At this point in his paper Bell changes notation, introducing variables for states in
each event’s backward light-cone. For a recent analysis of Bell’s local causality, cf. Norsen
(2006) and Seevinck and Uffink (2011).

4We frequently omit the “∩” sign between names of events.
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and most likely experimentally falsified. Since the two other premises look
intuitive, a popular diagnosis was to reject OI. This means, however, to re-
ject the screening-off condition, generalized from dichotomous screeners to
any number of screeners. But since the screening-off condition (so general-
ized) appears to be a mathematical tautology,5 how could it be empirically
falsified?

A diagnosis that seems to resolve the conflict came from Belnap and
Szabó’s (1996) distinction between common causes and common common
causes. Observe that in Reichenbach’s approach one posits a system of
screeners, i.e., C and ¬C, for a single pair of events. In contrast, in the
context of Bell’s theorem, one envisages a large number of correlated pairs
of results, produced in mutually exclusive measurements (i.e., represented by
non-commuting observables). Bell’s local causality postulates a single set of
screeners (full specifications of states in a relevant region) for all these cor-
relations. The set might be arbitrarily large, but, importantly, each element
of it is supposed to apply to all correlated pairs, making the events indepen-
dent, conditional on each screener. In the recent terminology of Hofer-Szabó
(2008), standard Bell-type theorems assume a common screener system, i.e,
every element of this system pertains to all correlations under consideration—
in contrast with separate screener systems.

With this distinction at hand, it is tempting to believe that, while the
screening-off condition (as applicable to a single correlation) is correct, what
lands us in trouble in the context of Bell’s theorem is its extension which
requires a common system of screeners for all the correlations. To put it dif-
ferently, moving from a common screener system to separate screener systems
relaxes Outcome Independence and Parameter Independence. The usual OI
postulates that every correlation considered is screened off by every factor
from the common screener system. The modified condition, call it OI’, re-
quires that every correlation is screened off by every factor from the screener
system for this correlation only. A similar change affects Parameter Inde-
pendence.

To justify or reject this belief, starting from work reported in Szabó
(2000), researchers have attempted to construct models of Bell-type correla-

5Especially since the following simple fact holds: let 〈Ω,F , P 〉 be a probability space.
Let G =

{
{Ai, Bi}

}
i∈I
⊆ F2 be a finite family of pairs of correlated events in F . Then

there exists a partition C of Ω such that for any C ∈ C and for any i ∈ I, P (AiBi|C) =
P (Ai|C)P (Bi|C). To construct this partition simply take all Boolean combinations of all
correlated events, throwing out the empty ones should they arise.
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tions that would assume the existence of separate screener systems, satisfy
the weakened premises of Parameter Independence (PI’) and Outcome In-
dependence (OI’), meet the No Conspiracy requirement, and would not be
committed to Bell-type inequalities.6 7 This paper present no go results for
this project. We will prove that every model with separate screener systems
for Bell-type correlations that assumes PI’, OI’ and NOCONS is committed
to Bell’s inequalities. Accordingly, such models do not exist for probabilities
violating Bell’s inequalities.

3 Screener systems: formal definitions
In the late 1990’s the “Budapest school” of M. Rédei, L. Szabó, G. Hofer-

Szabó, B. Gyenis and others, building upon the “common common causes
vs. common causes” distinction, launched two projects8—to be briefly stated
as below:

1. Is Reichenbach’s common cause principle, or its generalization in form
of some common common cause principle tenable?

2. Are there models for Bell’s correlations which are local, non-conspira-
torial, have separate screener systems for each correlation, and are not
committed to Bell-type inequalities?

The projects are different: the first must pertain to the (generalizations of)
positive statistical relevance conditions, which are not required by the models
of Bell’s correlations. In turn, Bell’s theorem brings in the issues of locality
and no conspiracy which are not present in the discussions of common causes.
Despite these differences, the method of handling these questions is the same
in the Budapest school, and it boils down to asking if probability spaces
respecting certain probabilistic constraints exist.

We are here concerned with the second question and thus the models
we discuss are probability spaces, constrained by some conditions which are
supposed to capture the spatiotemporal aspect inherent in locality as well

6In some papers following Szabó’s work these conditions are called Locality, No Con-
spiracy, and Screening-off, resp.

7Szabó paper reports on his computer simulations aimed to construct such models.
8Cf. Hofer-Szabó et al. (1999) and Szabó (2000).
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as the modal aspects inherent in the conditions of no conspiracy and non-
commutativity of quantum observables. We will introduce these constraints
in turn. First let us recall the definition of a (classical) probability space.

Definition 1 (probability space) A probability space is a triple 〈Ω,F , P 〉
such that:

• Ω is a non-empty set (sometimes called ‘sample space’);

• F is a σ-algebra of subsets of Ω (sometimes called ‘algebra of events’);

• P is a function from F to [0, 1] ⊆ R such that

• P (Ω) = 1;

• P is countably additive: for a countable family G of pairwise dis-
joint elements of F , P (∪G) =

∑
A∈G P (A).

P is called the probability function (or measure).

During our argument we will start with a probability space modelling
the Bell-Aspect experiment. Then we will construct a chain of transforma-
tions of the space, such that the probabilities of the events representing the
measurement results and detector settings are preserved under them and
the “fine-grained” space we end up with has interesting properties regarding
screening-off (see lemma 8, p. 15).

Now let us introduce the concept of a screener system.

Definition 2 (screener system) Let 〈Ω,F , P 〉 be a probability space and
A,B ∈ F . A partition {Ci}i∈I of Ω satisfying for any i ∈ I

P (AB|Ci) = P (A|Ci)P (B|Ci) (1)

is called a screener system for 〈A,B〉.9

9This is in essence definition 5 of a screener-off system of Hofer-Szabó (2008); in contrast
to his definition, the screener system is defined here for a pair of events, regardless of
whether or not they are correlated. In the sequel we frequently omit the brackets when
speaking about correlated pairs of events.
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Since the sum of the probabilities of the elements of a screener system
equals 1, only countably many of them can be positive (see e.g. Theorem
10.2 in Billingsley (1995)). And so, while screener systems may be infinite,
they are at most countably infinite, otherwise some conditional probabilities
would not be defined.

A straightforward calculation proves the following fact:

Fact 3 If {Ci}i∈I is a screener system for 〈A,B〉, then it is also a screener
system for each of the following pairs: 〈A,B⊥〉, 〈A⊥, B〉, and 〈A⊥, B⊥〉,
where X⊥ = Ω \X.

This fact notwithstanding, the above definition leaves open how it should
be applied to many pairs of events, if these pairs are not algebraic combi-
nations of one another, as displayed above. As an example, consider two
pairs, 〈A,B〉 and 〈D,E〉 such that 〈D,E〉 is identical to neither of these
pairs: 〈A,B⊥〉, 〈A⊥, B〉, 〈A⊥, B⊥〉 (A,B,D,E ∈ F). We may then postu-
late two separate systems of screeners, {Ck

AB}k<K(AB)
10 and {Ck′

DE}k′<K(DE),
one for 〈A,B〉 and the other for 〈D,E〉, that is: for every k < K(AB) and
k′ < K(DE),

P (AB|Ck
AB)=P (A|Ck

AB)P (B|Ck
AB) and P (DE|Ck′

DE)=P (D|Ck′

DE)P (E|Ck′

DE).

Alternatively we may postulate a single common screener system {Ci}i∈I
for the two pairs satisfying, for every i ∈ I:

P (AB|Ci)=P (A|Ci)P (B|Ci) and P (DE|Ci)=P (D|Ci)P (E|Ci).

To rigorously introduce the weakened versions of Outcome Independence
(OI’) and of Parameter Independence (PI’), and No Conspiracy (NOCONS),
let us recall the setup of Bell’s theorem. A source emits pairs of objects,
and the members of each pair travel in separate “wings” of the experiment
towards remote detectors. For each emission, in the left wing it is possible
to choose one of the two settings, a1, a2, of the left measuring device, and

10From now on, for two eventsX and Y ,K(XY ) is a natural number being the size of the
screener systems for these two events. We say “the” screener system even though of course
many different screener systems may exist for some given events, but one particular will
always be intended by the context. If we allow for an infinite screener system, we should
understand by K(XY ) an index set of cardinality equal to the cardinality of the screener
system and write α ∈ K(XY ) rather than k < K(XY ). If X = Ai and Y = Bj we will
use the expression K(ij).
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in the right wing—one of the two settings, b3, b4, of the right measuring
device. Given that the setting selected on the left is ai, one of the two
results, A+

i or A−i occurs, and given that the setting selected on the right is
bj, one of the two results, B+

j or B−j occurs. Some pairs of remote results
like Ami , Bn

j (m,n ∈ {+,−}) are correlated; in the spirit of local causality, we
assume “hidden states” (complete states, or, at least, states more complete
than the quantum mechanical states), which are supposed to remove the
correlations, were the probabilities conditioned on each such a state. By
the Bell-Aspect correlations we will understand 16 pairs of the form Ami , B

n
j ,

with their probabilities agreeing with quantum mechanical predictions. Since
these 16 pairs can be seen as four groups of correlated pairs connected in the
similar way as the pairs featured in Fact 3, by that fact it would be superfuous
to consider more than 4 screener systems for them—therefore we posit one
screener system for every pair of detector settings.

We will model the experiment in a single classical probability space11

〈Ω,F , P 〉, which of course means that (the representations of) a1, a2, b3, b4,
Ami , Bn

j and the hidden states belong to F . These events should satisfy the
following natural conditions:

Ami ⊆ ai, Bn
j ⊆ bj, a2 = Ω \ a1, b4 = Ω \ b3, (2)

A−i ∪ A+
i = ai, B−j ∪B+

j = bj for i = 1, 2; j = 3, 4;m,n ∈ {+,−}. (3)

Note that this already incorporates some modal claims, e.g., that the result
Ami must occur in the measurement of ai (not of aj), and that Ami cannot
occur together with Amj if i 6= j. Notice also that in the single space approach
we are using here the Bell-Aspect correlations are conditional correlations,
for example:

P (A+
1 B

+
3 | a1b3) > P (A+

1 | a1b3)P (B+
3 | a1b3),

and so we will say that an event C screens off such a correlation between A+
1

and B+
3 whenever

P (A+
1 B

+
3 | a1b3C) = P (A+

1 | a1b3C)P (B+
3 | a1b3C).

11We choose the single space rather then the many-space approach not because we prefer
it (in fact we do not), but because it is employed in the majority of the literature on the
subject of the connections between separate- and common common causes (or screener
systems) and the Bell inequalities.
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Note that due to our just introduced conditions (3) and fact (3), C will also
screen off A+

1 from B−3 , and so on for other results under the same detector
settings.

The conditions PI’, OI’, and NOCONS are expressed as follows:

P (Ami | aibjCk
ij) = P (Ami | aibj′Ck

ij) PI’

P (Bn
j | aibjCk

ij) = P (Bn
j | ai′bjCk

ij) PI’

P (Ami B
n
j | aibjCk

ij) = P (Ami | aibjCk
ij)P (Bn

j | aibjCk
ij) OI’

P (aibjA) = P (aibj)P (A) NOCONS

where A is any algebraic combination of the elements of four partitions {Ck
ij}

(i = 1, 2, j = 3, 4) and all formulas are quantified for all i ∈ {1, 2}, j ∈ {3, 4},
m,n ∈ {+,−} and k < K(ij). We do not require a screener system for one
correlation to satisfy Parameter Independence (and Outcome Independence)
with respect to another correlation. (In Hofer-Szabò’s papers, PI’ and OI’
are called, respectively, Locality and Screening-off.)

Notice that PI’ can be equivalently phrased as P (Ami | aibjCk
ij) =

P (Ami | aiCk
ij) (similarly for other settings); the setting of the “remote” de-

tector is to be irrelevant for the probability of a given result at the “nearby”
detector.

Finally, here are our main definition of models for Bell-Aspect correla-
tions:

Definition 4 (models with separate or common screener system(s))
Consider a probability space 〈Ω,F , P 〉 which contains events ai (for i ∈
{1, 2}) and bj (for j ∈ {3, 4}) corresponding to detector settings and events
Ami and Bn

j (for i’s and j’s as before and m,n ∈ {+,−}) corresponding to
measurement results under the appropriate settings. Suppose that the model
exhibits Bell-Aspect correlations.

The probability space is a local non-conspiratorial model with separate
screener systems (or a separate-ss model) for the Bell-Aspect correla-
tions if there exist four partitions of Ω consisting of elements of F , {Ck

ij}k<K(ij),
one for each pair of detector settings, such that for each such a pair ai,bj the
partition {Ck

ij}k<K(ij) meets the conditions of Outcome Independence (OI’),
Parameter Independence (PI’) and No Conspiracy (NOCONS) with regard
to the correlations arising at the detector settings ai and bj.

The probability space is a local non-conspiratorial model with a common
screener system (or a common-ss model) for the Bell-Aspect correlations
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if there exists a single partition of Ω consisting of elements of F , {Ck}, which
meets the conditions of PI’, OI’, and NOCONS with regard to all of those
correlations.

We call such models “local” since both OI’ and PI’ are motivated by
locality.

4 A survey of earlier results and the issue of
reducibility

A first attempt at a local non-conspiratorial separate-ss model for Bell-
Aspect correlations was a construction of Szabó (2000). However, it turned
out that the model violates NOCONS with respect to intersections of screen-
ers from (separate) screener systems (but satisfies NOCONS with respect
to each screener). A significant development was a local non-conspiratorial
separate-ss model of Grasshoff et al. (2005) et al for Bell-Aspect correlations
produced in a setup with parallel settings: in this model Bell-Clauser-Horne
inequalities are derivable. However, as Hofer-Szabó (2008) showed, Grasshoff
et al.’s model is reducible to a model with a common screener system. All
one needs to do to create a common screener system out of separate screener
systems is to take intersections of elements of all separate screener systems,
that is, sets like Cα

13∩C
β
23∩C

γ
14∩Cδ

24, i.e., intersections of elements of all the
screener systems. This, since Grasshoff’s model is a common-ss model, the
Bell-type inequalities are derivable.

This result cast a new light on the project of constructing separate-ss
models for Bell-Aspect correlations: such models should not be reducible to
common-ss models. But what does this new desideratum involve? If C13,
C23, C14, C24 are partitions of the sample space Ω, the set of intersections of
their elements, i.e.,

C =
{
Cα

13 ∩ C
β
23 ∩ C

γ
14 ∩ Cδ

24 | α<K(13), β<K(23), γ<K(14), δ<K(24)
}

is also a partition of Ω. Note also that if a separate-ss model satisfies NO-
CONS with respect to every screener system {Cij} (i = 1, 2, j = 3, 4), it
satisfies NOCONS with respect to the common-ss system C. Thus, the only
way that a separate-ss model may stop to reduce to a common-ss model is if
PI’ or OI’ fails with respect to an intersection like the one above. This points
to an interesting feature of non-reducible separate-ss models that goes against
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Bell’s intuitions. To recall, Bell believed that the correlation between space-
like related events should disappear if a complete specification of a state in a
relevant region is taken into account (cf. Section 2). Clearly, an intersection
of elements of screener systems corresponds to a more complete state descrip-
tion than a single element of a screener system. Accordingly, non-reducibility
entails that less complete states meet PI’ and OI’, whereas more complete
states lose one of these properties. Now, our result (that non-reducible lo-
cal non-conspiratorial separate-ss models for Bell-Aspect correlations do not
exist) offers an ironical support for Bell’s idea: the most complete state
descriptions available in a model with separate screener systems make the
correlations disappear. The irony is that the assumptions of the model entail
Bell’s inequalities.

5 Our results
Our central theorem, stated informally, says that if there is a local non-

conspiratorial separate-ss model for some Bell-Aspect correlations, then there
is a local non-conspiratorial common-ss model for the same correlations. Our
argument will proceed in three steps. Let us explain what roles these steps
play.

(1) The algebra F of a separate-ss model may be arbitrarily large and, in
particular, may have no atoms. Our first move is to carve from F a smaller
algebra F ′, which has atoms of the form Ami ∩ Bn

j ∩ Cα
13 ∩ C

β
23 ∩ C

γ
14 ∩ Cδ

24

and whose every element is a union of some of its atoms (i.e., F ′ is atom-
istic.12) Now, our Lemma 5 says that if 〈Ω,F , P 〉 is a local non-conspiratorial
separate-ss model for Bell-Aspect correlations, then so is 〈Ω,F ′, P ′〉, where
F ′ is the atomistic algebra carved from F and P ′ = PF ′ .

(2) F ′ may have atoms of probability zero (in such cases P ′ is called an
“unfaithful measure”). Our next move is to construct a probability space with
a faithful probability measure by removing from F ′ all atoms with probability
zero; the new algebra and measure are labelled F ′F and P ′F, respectively. Our
Lemma 7 then says that if 〈Ω′,F ′, P ′〉 is a local non-conspiratorial separate-
ss model for some Bell-Aspect correlations with F ′ atomistic, then so is the
probability space 〈Ω′F,F ′F, P ′F〉 obtained from 〈Ω′,F ′, P ′〉, with the faith-

12 Recall: an algebra of sets is atomic if for every non-minimal element p there exists
an atom a such that a ⊆ p; an algebra of sets is atomistic if it is atomic and such that
every non-minimal element is a union of atoms.
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ful measure P ′F assigning to every “new” event the measure of its “original
version” given by P.

(3) In the final step we transform the space we constructed in the second
step into a local non-conspiratorial common-ss model for the correlations.
Our Lemma 8 says that if 〈Ω,F , P 〉 is a local non-conspiratorial separate-ss
model for Bell-Aspect correlations with F atomistic and having atoms of
a specific form, while P is a faithful measure on F , then there is a local
non-conspiratorial common-ss model 〈Ω∗,F∗, P ∗〉 for the same Bell-Aspect
correlations.

In sum, the above steps provide a recipe how to transform any local non-
conspiratorial separate-ss model for Bell-Aspect correlations into a local non-
conspiratorial common-ss model for the same correlations. The construction
guarantees that the new model contains images of “observational events”,
i.e., outcomes and settings, of the first model, with probabilities of these
events and their images being equal. Thus, if in the new model the Bell
inequalities hold referring to events which are images of events from the
original model, then the Bell inequalities also hold in the original model.
We already know from the literature that the Bell inequalities hold in any
local non-conspiratorial common-ss model (since it satisfies NOCONS and
the “old” OI and PI), and so we establish that they hold in any local non-
conspiratorial separate-ss model too.

Since screener systems investigated in the literature are typically finite,
our proofs assume a finite number of screeners in each screener system. How-
ever, our theorems below remain correct for infinitely large screener systems
(we have already remarked that they can be at most countably infinite). In
some footnotes and a remark at the end of section 5.4 we indicate how to
modify our proofs for the general case.

5.1 To an atomistic algebra of events

A separate-ss model 〈Ω,F , P 〉 for Bell-Aspect correlations might be al-
gebraically very large; without any loss of generality, we may consider its
“pruned” cousin, in which a (new) algebra F ′ will be atomistic with atoms
being the nonempty elements of the following set:13

13If we allow for infinite screener systems, we should write α ∈ K(13), etc., as suggested
in footnote 10.
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A :=
{
Ami ∩Bn

j ∩ Cα
13 ∩ C

β
14 ∩ C

γ
23 ∩ Cδ

24 | m,n ∈ {+,−}, i ∈ {1, 3},
j ∈ {2, 4}, α < K(13), β < K(14), γ < K(23) and δ < K(24)

} (4)

Lemma 5 Let 〈Ω,F , P 〉 be a local non-conspiratorial separate-ss model for
Bell-Aspect correlations. Then the probability space 〈Ω,F ′, P ′〉 also is a local
non-conspiratorial separate-ss model for (the same) Bell-Aspect correlations,
where

• X ∈ F ′ iff for some A ⊆ A of Eq. 4: ∪A = X;

• P ′ = P|F ′.

Proof: Immediate. Notice that the first item above says in effect that F ′ is
atomistic.

5.2 From unfaithful to faithful

The measure P of a local non-conspiratorial separate-ss model 〈Ω,F , P 〉
need not be faithful, that is, it may be that for some nonempty X ∈ F :
P (X) = 0. Our final construction, however, requires probability spaces with
faithful measures. The algebra of events of the model whose existence is
guaranteed by lemma 5 is atomistic and has countably many atoms (since
all four screener systems involved are countable). In such a case there is a
simple procedure of arriving at another probability space which will also be
a local non-conspiratorial separate-ss model for the same correlations, but
whose measure will be faithful.

Suppose 〈Ω,F , P 〉 is a probability space, with F atomistic and having
countably many atoms. Let A be the set of atoms of F , and let A+ be the
set of atoms of F whose probability is greater than 0. Since A is countable,
A+ is not empty. Atomicity means that for any E ∈ F there exists exactly
one set AE ⊆ A such that E = ∪AE. Consider a function f with domain
F defined in the following way: for E ∈ F , f(E) = ∪(AE ∩ A+). In effect,
the function f “strips down” events (which are unions of atoms, due to F
being atomistic) of their zero-measure parts. The algebra of events of the new
space, FF, will be simply the image of F through the function f : FF = f(F).
The probability function P F assigns to all events f(E) the measure of E in
the original space; the important difference is that if E ∈ F is a nonempty
measure zero event, then f(E) = ∅, which ensures that P F is faithful.
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Definition 6 (faithfulisation) Let S = 〈Ω,F , P 〉 be a probability space
with F atomistic and having countably many atoms. Let A be the set of
atoms of F , and let A+ be the set of atoms of F whose probability is greater
than 0. For any E ∈ F , let AE be the subset of A such that E = ∪AE.
Consider a function f : F → Ω: f(E) = ∪(AE ∩ A+).

The faithfulisation of S is a triple 〈ΩF,FF, P F〉, where:

• FF = f(F);

• P F
(
f(E)

)
= P (E);

• ΩF = f(Ω).

We leave checking the following simple lemma to the reader:

Lemma 7 If 〈Ω,F , P 〉 is a probability space such that F is atomistic and
has countably many atoms, then its faithfulisation 〈ΩF,FF, P F〉 is a proba-
bility space as well. Moreover, P F is faithful. If 〈Ω,F , P 〉 is a local, non-
conspiratorial separate-ss model for Bell-Aspect correlations, then its faith-
fulisation also is a local, non-conspiratorial separate-ss model for the same
correlations.

5.3 From separate-ss models to common-ss models

Lemma 8 Let 〈Ω,F , P 〉 be a local non-conspiratorial separate-ss model for
Bell-Aspect correlations with faithful measure P and F atomistic and having
the countable set A′ of atoms such that

A′ ⊆
{
Ami ∩Bn

j ∩ Cα
13 ∩ C

β
14 ∩ C

γ
23 ∩ Cδ

24 | m,n ∈ {+,−}, i ∈ {1, 3},
j ∈ {2, 4}, α < K(13), β < K(14), γ < K(23) and δ < K(24)

} (5)

Then there is a local non-conspiratorial common-ss model 〈Ω′,F ′, P ′〉 for the
same Bell Aspect correlations such that

• F is embedded into F ′ by means of ϕ ...

• ... such that P (Ami ∩Bn
j ∩ai∩bj) = P ′(ϕ(Ami ∩Bn

j ∩ai∩bj));

• P ′ is faithful.
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Proof: Let us first define the following four functions:

∧ (Ami , B
n
j ) := Ami ∩Bn

j , L(Ami , B
n
j ) := Ami ∩ (bj \Bn

j ),

R(Ami , B
n
j ) := (ai \ Ami ) ∩Bn

j , and ∅(Ami , Bn
j ) := (ai \ Ami ) ∩ (bj \Bn

j )

where i ∈ {1, 2}; j ∈ {3, 4};m,n ∈ {+,−}.
(6)

It will also be convenient to gather the names of the four functions (we will
omit any quoting devices) into the set I := {∧, L,R, ∅}.

The task is now to construct the probability space 〈Ω′,F ′, P ′〉. Let Ω′ be
an infinite set. F ′ will be an atomistic algebra of subsets of Ω′ such that the
cardinality K of the set of atoms of F ′ equals the cardinality of A′. We will
refer to the atoms of F ′ by labels of the following sort:

ija
αβγδ
xyzt , where i ∈ {1, 2}, j ∈ {3, 4}, α < K(13), β < K(14),

γ < K(23), δ < K(24), x, y, z, t ∈ I.
(7)

However, not all labels of this sort will denote atoms of F ′. The sole class
of exceptions are the labels ijaαβγδxyzt for which Ami ∩Bn

j ∩Cα
13∩C

β
14∩C

γ
23∩Cδ

24 /∈
A′. (In other words, Ami ∩Bn

j ∩Cα
13∩C

β
14∩C

γ
23∩Cδ

24 = ∅ ∈ F .)14 Such labels
will refer to ∅ ∈ F ′.

It is clear from the fact that screener systems are countable that F ′ will
have a countable set of atoms. If we look at cases in which there only are
finite screener systems (which is our default option), so that the numbers
K(ij) are well-defined, the number K of atoms of F ′ is finite as well. In
this case K equals the cardinality of the set A of Eq. (4) minus the number
of those elements of A that had probability zero before the faithfulisation.
Accordingly, K 6 1024 ·K(13) ·K(14) ·K(23) ·K(24) (there are 45 = 1024
combinations of detector settings and possible outcomes at all settings).

The measure P ′ is determined by assigning the following measure to the
atoms of F ′:

P ′(ija
αβγδ
xyzt ) = P (Cα

13∩C
β
14∩C

γ
23∩Cδ

24)P (aibj)P
(
x(A+

1 , B
+
3 ) | a1b3

)
·

P
(
y(A+

1 , B
+
4 ) | a1b4

)
P
(
z(A+

2 , B
+
3 ) | a2b3

)
P
(
t(A+

2 , B
+
4 ) | a2b4

)
.

(8)

Since F ′ is atomistic, Eq. 8 determines the measure on all its elements. It
is easy to check that P ′ is faithful (if for some label ijaαβγδxyzt P

′(ija
αβγδ
xyzt ) = 0,

then the label does not denote any atom of F ′, but rather the empty set).
14This may happen e.g. when the correlation between Am

i and Bn
j is perfect, i.e., when

P (Am
i B

n
j | aibj) = 1. Even though such a case is experimentally unrealisable, we cater for

it for more generality.
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The embedding of F into F ′ is the unique embedding ϕ which acts as
follows on the atoms of F :

for any x ∈ I, if Cα
13∩C

β
14∩C

γ
23∩Cδ

24∩ x(A+
1 ,B

+
3 ) 6= ∅, then

ϕ
(
Cα

13∩C
β
14∩C

γ
23∩Cδ

24∩ x(A+
1 ,B

+
3 )
)

=
⋃

y,z,t∈I
13a

αβγδ
xyzt ;

for any y ∈ I, if Cα
13∩C

β
14∩C

γ
23∩Cδ

24∩ y(A+
1 ,B

+
4 ) 6= ∅, then

ϕ
(
Cα

13∩C
β
14∩C

γ
23∩Cδ

24∩ y(A+
1 ,B

+
4 )
)

=
⋃

x,z,t∈I
14a

αβγδ
xyzt ;

for any z ∈ I, if Cα
13∩C

β
14∩C

γ
23∩Cδ

24∩ z(A+
2 ,B

+
3 ) 6= ∅, then

ϕ
(
Cα

13∩C
β
14∩C

γ
23∩Cδ

24∩ z(A+
2 ,B

+
3 )
)

=
⋃

x,y,t∈I
23a

αβγδ
xyzt ;

for any t ∈ I, if Cα
13∩C

β
14∩C

γ
23∩Cδ

24∩ t(A+
2 ,B

+
4 ) 6= ∅, then

ϕ
(
Cα

13∩C
β
14∩C

γ
23∩Cδ

24∩ t(A+
2 ,B

+
4 )
)

=
⋃

x,y,z∈I
24a

αβγδ
xyzt .

(9)

Next, the measure P on elements Ami ∩Bn
j ∩ai∩bj ∈ F agrees with the

measure P ′ on the ϕ-images of these elements, and so, by the conditions
from (3) (p. 9), P agrees with P ′ also on the (images of) elements of the
form ai∩bj. This is crucial since these events appear in the Bell inequalities.

As an example, let us calculate:

P
(
A+

2 ∩B+
4 ∩a2∩b4

)
= P (a2b4)P

(
∧ (A+

2 , B
+
4 ) | a2b4

)
=∑

αβγδxyz

P ′( 24a
αβγδ
xyz∧) = P ′

(
∪αβγδxyz 24a

αβγδ
xyz∧

)
=

P ′
(
ϕ(A+

2 ∩B+
4 ∩a2∩b4)

)
.

(10)

We claim now that the set S below is a common screener system for the
correlations and each element of S satisfies OI’, PI’, and NOCONS:

S :={Sαβγδxyzt | α < K(13), β<K(14), γ<K(23), δ<K(24), x, y, z, t ∈ I}
where Sαβγδxyzt := 13a

αβγδ
xyzt ∪ 14a

αβγδ
xyzt ∪ 23a

αβγδ
xyzt ∪ 24a

αβγδ
xyzt .

(11)

We need to show now that (1) S is a partition of F ′, and that every Sαβγδxyzt

satisfies (2) NOCONS, (3) OI’, and (4) PI’ with respect to every pair of
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settings. We use the tilde sign to refer to the image of an element X of F
by the embedding ϕ: X̃ = ϕ(X).
Ad. 1. A glimpse at Eq. 11 shows that S is a partition of F ′.
Ad. 2. We show that P ′(A | ãi′ b̃j′) = P ′(A | ãi′′ b̃j′′) where A is an arbitrary
Boolean combination of elements of S. Since elements of S have empty
intersection, it is enough to show that NOCONS is satisfied with respect
to every Sαβγδxyzt ∈ S. Note now that ãi′ ∩ b̃j′ ∩ Sαβγδxyzt = i′j′a

αβγδ
xyzt . Thus we

calculate (the crucial thing is that P ′(ãi′ b̃j′) = P (ai′bj′)):

P ′(Sαβγδxyzt | ãi′ b̃j′) = P ′(i′j′a
αβγδ
xyzt )/P ′(ãi′ b̃j′) =(

P (Cα
13∩C

β
14∩C

γ
23∩Cδ

24) · P (ai′bj′) · P
(
x(A+

1 , B
+
3 ) | a1b3

)
· P
(
y(A+

1 , B
+
4 ) | a1b4

)
·

P
(
z(A+

2 , B
+
3 ) | a2b3

)
· P
(
t(A+

2 , B
+
4 ) | a2b4

))
/P (ai′bj′) =

P ′(Sαβγδxyzt | ãi′′ b̃j′′) for any choice of i′, j′, i′′, and j′′.
(12)

Ad. 3. Let us note these identities, useful in our proof of OI’ and PI’:

Ãm1 ∩ B̃n
3 ∩ ã1 ∩ b̃3 ∩ Sαβγδxyzt =

{
13a

αβγδ
xyzt iff Am1 ∩Bn

3 = x(A+
1 , B

+
3 )

∅ otherwise
(13)

ã1 ∩ b̃3 ∩ Sαβγδxyzt = 13a
αβγδ
xyzt (14)

Ãm1 ∩ ã1 ∩ b̃3 ∩ Sαβγδxyzt =

{
13a

αβγδ
xyzt iff x ∈ {x′, x′′} and Am1 = x′(A+

1 , B
+
3 ) ∪ x′′(A+

1 , B
+
3 )

∅ otherwise
(15)

B̃n
3 ∩ ã1 ∩ b̃3 ∩ Sαβγδxyzt =

{
13a

αβγδ
xyzt iff x ∈ {x′, x′′} and Bn

3 = x′(A+
1 , B

+
3 ) ∪ x′′(A+

1 , B
+
3 )

∅ otherwise
(16)

To prove OI’, consider P ′(Ãm1 B̃n
3 | ã1b̃3S

αβγδ
xyzt ). Since measure P ′ is faith-

ful, all probabilities occurring in denominators are non-zero, and hence the
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appropriate conditional probabilities are defined. If x satisfies: (†) Am1 ∩Bn
3 =

x(A+
1 , B

+
3 ), then the above probability equals 1, as indicated by Eqs. 13 and

14. In this case x belongs to the set {x′, x′′} of Eq. 15 and to the set {x′, x′′}
of Eq. 16, so that each P ′(Ãm1 | ã1b̃3S

αβγδ
xyzt ), P ′(B̃n

3 | ã1b̃3S
αβγδ
xyzt ) equals 1. On

the other hand, if x does not satisfy (†), then it does not belong to the set
{x′, x′′} of Eq. 15 or it does not belong to the set {x′, x′′} of Eq. 16, and hence
both P ′(Ãm1 B̃n

3 | ã1b̃3S
αβγδ
xyzt ) and P ′(Ãm1 | ã1b̃3S

αβγδ
xyzt ) · P ′(B̃n

3 | ã1b̃3S
αβγδ
xyzt ) are

zero.
Ad. 4. To see that PI’ is satisfied as well, let us check that the following is
true:

P ′(Ãm1 | ã1b̃3S
αβγδ
xyzt ) = P ′(Ãm1 | ã1b̃4S

αβγδ
xyzt )

Faithfulness of P ′ and Eq. 14 show that these probabilities are well-defined.
If (†) x ∈ {x′, x′′} such that Am1 = x′(A+

1 , B
+
3 ) ∪ x′′(A+

1 , B
+
3 ), then the LHS

above equals 1. But then Am1 = x′(A+
1 , B

+
4 ) ∪ x′′(A+

1 , B
+
4 ) as well, so RHS is

also 1. On the other hand, if x does not satisfy (†), LHS and RHS are zero.
The argument for other detector settings is analogous. �

5.4 The central theorems

By combining the chain of facts, lemmas, and theorems above, we obtain
the two central theorems of this paper:

Theorem 9 If there is a local non-conspiratorial separate-ss model for some
Bell-Aspect correlations, then there is a local non-conspiratorial common-ss
model for the same correlations.

Proof: Let 〈Ω,F , P 〉 be a local non-conspiratorial separate-ss model for some
Bell-Aspect correlations. By Lemma 5, there exists a local non-conspiratorial
separate-ss model for the same correlations whose algebra of events is atom-
istic and whose atoms have a specific form. Lemma 7 guarantees that in
such a case there exists a local non-conspiratorial separate-ss model for these
correlations whose measure is faithful. Finally, by Lemma 8, there is then a
local non-conspiratorial common-ss model for these correlations. �

Theorem 10 Bell’s inequalities are derivable in every local non-conspiratorial
separate-ss model for Bell-Aspect correlations.
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Proof: Let 〈Ω,F , P 〉 be a local non-conspiratorial separate-ss model for
some Bell-Aspect correlations. Bell’s inequalities, if derivable in this model,
are expressed in terms of ‘surface’ probabilities P (Ami B

n
j | aibj), P (Ami | ai)

and P (Bn
j | bj), which (given the assumptions in (3), p. 9), are definable in

terms of probabilities (†) P (Ami B
n
j aibj) = P (Ami B

n
j ). By Lemma 5, there

exists a local non-conspiratorial separate-ss model 〈Ω,F ′, P ′〉 for the same
correlations whose atoms have a specific form. The construction guarantees
that (?) P ′(Ami Bn

j ) = P (Ami B
n
j ). Next, by Lemma 7 there is a faithfulisation

〈ΩF,FF, P F〉 of 〈Ω,F ′, P ′〉, which is a local, non-conspiratorial separate-ss
model for the same Bell-Aspect correlations. If for Ami ∩Bn

j ∈ F ′: P ′(Ami ∩
Bn
j ) = 0, then Ami ∩Bn

j is identified with ∅ ∈ FF, and hence (‡1) P F(Ami ∩Bn
j ) =

0 = P ′(Ami ∩Bn
j ). And, if P ′(Ami ∩Bn

j ) 6= 0, the faithfulisation again leaves
the probabilities intact, that is (‡2) P F(Ami ∩Bn

j ) = P ′(Ami ∩Bn
j ), Further by

Lemma 8 there is a local non-conspiratorial common-ss model 〈Ω∗,F∗, P ∗〉
for the same Bell Aspect correlations such that FF is embedded into F∗ and
(†) P F(Ami ∩Bn

j ∩ai∩bj) = P ∗(Ãmi ∩B̃n
j ∩ãi∩b̃j)), where a tilde indicates images

of elements of FF by the embedding. Now, by combining Eqs. (?), (‡1), (‡2),
and (†), we get P (Ami ∩Bn

j ) = P ∗(Ãmi ∩B̃n
j ). Finally, since 〈Ω∗,F∗, P ∗〉 is is a

local non-conspiratorial common-ss model for Bell-Aspect correlations, Bell’s
inequalities are derivable in it, and they are defined in terms of probabilities
P ∗(Ãmi ∩B̃n

j ). Combining the last two facts, Bell’s inequalities are derivable
in the model 〈Ω,F , P 〉 we started with, which is a local non-conspiratorial
separate-ss model for Bell-Aspect correlations. �

6 Conclusions
The essence of the project we have analysed is the distinction between

(many) separate screener systems and (single) common screener system. Im-
portantly, the condition of Outcome Independence present in the usual de-
rivations of Bell’s theorem pertains to a common screener system since it
requires that a posited set of hidden states forms a common screener system
for all correlated pairs of results. Could one block the derivation of Bell’s
inequalities by assuming that the posited hidden states form (many) separate
screener systems rather than a common screener system? The success of this
programme would afford a nice diagnosis of Bell’s theorem by showing that
the original Outcome Independence is too strong.

Our proofs say “no” to the last question, which means that the purported
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diagnosis above is incorrect: If for some Bell-Aspect correlations there is a
local non-conspiratorial model with separate screener systems, then there is
a local non-conspiratorial model with common screener system for the same
correlations. And, since any local non-conspiratorial model with a common
screener system satisfies Bell’s inequalities, the new models (i.e., those with
separate screener systems) satisfy these inequalities as well. Accordingly,
there is no local non-conspiratorial model with separate screener systems for
those Bell-Aspect correlations that violate Bell’s inequalities.

The distinction “common screener system vs. separate screener systems”
does not explain Bell’s theorem.
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