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Abstract

The paper puts forward a theory of historical modalities that is
framed in terms of possible continuations rather than possible worlds
or histories. The proposal is tested as a semantic theory for a language
with historical modalities, tenses, and indexicals.

1 Motivations

Possible histories/worlds are philosophically demanding. They are posited
to analyze either modal discourse or indeterminism, or both. To qualify for
this task they must be in some sense real, but in which sense exactly? A
further problem concerns individuals: does an individual as a whole occur
in many possible worlds/histories, or does it have parts contained in those
worlds/histories, or is it contained in exactly one history? Still further, if
our world is indeterministic, the notion of ‘actual history’ does not seem to
be legitimate. A related complaint is that we do not have epistemic access
to histories, as these are differentiated by the minutest details, which might
be located in a remote future. In contrast, possible continuations of events
appear to be innocuous since they are local. After all, our talk of possible
continuations seems to be a natural translation of utterances like: “After
opening the fridge, I can take out either beer or milk”. That is translated
as: “There are two possible continuations of my opening the fridge: in the

∗The paper also owes very much to Thomas Müller’s and Nuel Belnap’s hints, correc-
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ian University WRBW grant and the MNiSW grant 3165/32. For comments and useful
suggestions I also thank Jacek Wawer, Leszek Wroński, and the audience of the Trends in
Logic conference, Brussels, December 2008. Support of the research grant K/PMN/000034
is gratefully acknowledged.
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first I take out a beer whereas in the second I take out milk”.1 Note that a
continuation may involve inconsistent events, as my taking a bottle of milk
out of the fridge will be followed by me either drinking it, or not.

There is also a theoretical concern motivating a search for a notion al-
ternative to that of history. In the branching space-times of Belnap (1992)
(henceforth BST1992), two possible events belong to one history if and only
if they have a common upper bound, where the ordering is defined in terms of
light cones. As Belnap explicitly acknowledges, this criterion for being a his-
tory will not do for some spacetimes of general relativity. Even simple general
relativistic spacetimes (e.g., Schwarzschild’s spacetimes) have pairs of events
that are not below any event. By applying a BST1992 criterion for history
to such a pair, we seem to get a result that the two events do not belong
to one history. For this to be possible, histories must split somewhere—this
is required by axioms of BST1992. A single spacetime or history does not
split from itself, however.2 The upshot is that BST1992 cannot model a
general relativistic spacetime of the mentioned sort.3 Finally, local objects
like continuations and events fit the spirit of branching theories better than
structures as large as histories. I take these motivations as sufficiently serious
to attempt a refurbishment of BST1992. The paper aims at two goals: to
construct a theory of possible branching continuations (BCont) and to show
that it can serve as a semantics for a language with indexicals, historical
modalities, and tenses. The further task of investigating whether the pro-
posed theory can accommodate the insights of general relativity is left for
some later project. The underlying spirit of this paper is a search for small
structures for representing indeterminism, shared by Müller (2010) as well.

The essay is organized as follows. The theory of branching continuations
is motivated and informally introduced in Section 2.1, while its axioms are
presented and discussed in Section 2.2. Section 2.3 investigates how contin-
uations branch and Section 2.4 describes some further developments of the
theory. Section 3.1 constructs semantic models for languages with tenses,
historical modalities and indexicals. The resulting semantic theory is then
tested by some puzzles in Section 3.2.

1It is perhaps a better English to say that a stage, rather than an event, has possible
continuations, but this way of talking brings in questions of endurantism, which are not
philosophically innocent.

2The idea underlying BST1992 is that in “physically interesting” BST models histories
are identifiable, or are isomorphic, to spacetimes of physics, e.g., Definition 16 of BST1992
introduces Minkowskian Branching Space-Times as BST models in which every history is
Minkowski spacetime.

3This issue was clarified to me by T. Müller.
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2 The theory of branching continuations (BCont)

2.1 Continuations rather than histories

In this section we will informally introduce the basic notions of the theory
of possible branching continuations, leaving the axioms for the next section.
We assume here the rudiments of any branching theory: a nonempty set W
partially ordered by �, with the usual interpretation. That is, W is the set
of possible point events, and e � e� means that e� lies in a possible future
of e.

Our point of reference is BST1992, which is an axiomatic theory com-
bining indeterminism with rudiments of relativity. For a discussion of its
axioms we refer the reader to the “Postprint” of Belnap (1992), and here we
merely list them in plain language. BST1992 defines histories as maximal
upward directed subsets of a base set W . The axioms require that W has no
maximal elements, the ordering � is dense on W , each lower bounded chain
in W has an infimum in W , and each upper bounded chain has supremum in
each history of which it is a subset. Finally, an axiom called the prior choice
principle says that if a lower bounded chain is contained in one history but
has no overlap with some other history, then there is a maximal element in
the intersection of the two histories that lies below the chain in question.
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Figure 1: A BST1992 model: two histories h1 and h2 with a single choice
event e. The shaded area indicates where h2 diverges from h1. Note that no
events on the rim of future light-cone of e belong to the overlap but e is in
the overlap.

A feature of BST992 that we want our theory to preserve is the so called
indeterminism without choice—cf. section 9 of Belnap (1992). To assist
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the explanation, we turn to a particular class of models of BST1992, called
Minkowskian Branching Structures (MBS’s), in which histories are isomor-
phic to Minkowski spacetime.4 Observe that the prior choice principle guar-
antees that every two histories intersect, and that there is at least one max-
imal element in their intersection. Such maximal elements are called choice
events of the corresponding histories. Another consequence of axioms of
BST1992 is that two histories with a single choice event e have separate fu-
ture light-cones of e, whereas the events that are space-like related to e or
are in the past light-cone of e belong to the overlap of the two histories – see
Figure 1. Notably, with the exception of e itself, events on the future light-
cone of e do not belong to the overlap. This pattern brings in a distinction
between chanciness and indeterminism without choice. Consider a maximal
chain joining an event in the overlap and some event above a choice event.
The chain has different topological features, depending on whether or not it
contains the choice event. If it does, there is in the chain the “last element”
from the overlap, namely e; if it does not, there is not in the chain the “last
element” from the overlap, but the first element from the difference of the
two histories.

Since diverging futures of a choice event e look like e’s continuations, a
glimpse at a BST1992 model above might suggest that x and y belong to a
same continuation of e provided that there is a V-like link above e, joining
x and y. In symbols, ∃z ∈ W : e < z ∧ z � x ∧ z � y. This is not a good
suggestion, however, since events on the future light cone of (and above) e
do not belong to the overlap of histories that split at e, and accordingly some
such events cannot be joined by a V-link above e. They can be joined by
some zigzagging line above e, however, which points to a need to generalize
V-links to (what we call): snake-links.

Definition 1 (snake-link)
�e1, e2, . . . , en� ⊆ W (1 � n) is a snake-link iff

∀i : 0 < i < n → (ei � ei+1 ∨ ei+1 � ei).

A snake-link is above (below) e ∈ W if every element of it is strictly above
(below) e.

Note that a single x above e as well as a chain above e constitute snake-links
above e.

Definition 2 (snake-linked)
For x, y ∈ W , x and y are snake-linked above e, x ≈e y, iff there is a snake-
link �e1, e2, . . . , en� above e such that x = e1 and y = en.

4Cf. Müller (2002) and Wroński and Placek (2009).
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Analogously one may define the relations of being snake-linked below e,
being snake-linked not-above e, being snake-linked not-below e, being snake-
linked in a subset of W , etc. For the record, we put down the definition of
the last concept:

Definition 3 (snake-linked in a subset of W )
Let W � ⊆ W and x, y ∈ W �. We say that x and y are snake-linked in W � iff
there is a snake-link �e1, e2, . . . , en� such that x = e1 and y = en and ei ∈ W �

for every 0 < i � n.

Clearly, being snake-linked above a point event is a special case of being
snaked-linked in a subset yet, for expository reasons, we gave both the defi-
nitions.

In BST1992, any two events can at worst be connected (ordering-wise) by
a path in the shape of an M (cf. Fact 14 of Belnap (1992)), which may raise
doubts as to whether we need snake-links in the present approach. First, a
model of BCont may fail to extend upward long enough, leaving no room for
an M -path above the two events considered. Secondly, in our construction
we aim to produce a snake-link joining two events, where typically the snake-
link is required to be above some third event e0; accordingly, although some
two events are joined by an M -shaped path, the region above e0 might be
too small to contain the bottom vertex of any such M -shaped path.

Observe now that for any x, y, z > e, the following is true about being
snake-linked above e:

1. x ≈e x;

2. if x ≈e y, then y ≈e x;

3. if x ≈e y and y ≈e z, then x ≈e z.

Perhaps the third property requires an argument. Thus, let x ≈e y and
y ≈e z be true due to the snake-links above e, �e1, . . . , en� and �f1 . . . , fm�,
respectively. Since en = f1 = y, the sequence �g1, . . . , gm+n�, such that
gk = ek if k � n and gk = fk−n if n < k � m + n, is a snake-link above e.
Also, g1 = x and gn+m = z. Hence x ≈e z.

The above properties mean that ≈e is an equivalence relation on the set
We = {e� ∈ W | e < e�}. Accordingly, ≈e induces a partition of the set We.
This has a particular significance for our construction, since we will identify
this partition with the set of possible continuations of e.

Definition 4 (continuations)
For e ∈ W we define Πe as the partition of We = {e� ∈ W | e < e�} by
the relation ≈e of being snake-linked above e. The elements of Πe are called
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possible continuations of e. By Πe�x� (e < x) we will mean the unique
continuation of e to which x belongs.5

As a simple consequence of the definition of ≈e, we get that two compa-
rable events located above some third event belong to the same continuation
of this event:

Fact 5
∀e, e�, eo∈W ((e � e� ∨ e� � e) ∧ e0 < e ∧ e0 < e� → ∃ H∈Πe0 e, e� ∈ H).

Events that have more than one possible continuation are called: choice
events.

Definition 6 (set CE of choice events)
For e ∈ W , e ∈ CE iff card(Πe) > 1.

We will not impose any limitation on the number of possible continuations
of events.

An important concept for any modal framework is that of consistency,
which is typically explained in terms of possible worlds/histories. BCont
thus poses a challenge of explaining consistency without an appeal to these
notions. As a first intuition, one might want to say that two events are
consistent in two cases: they are comparable by � or they are incomparable
but do not belong to different continuations of any choice event. This idea
will not do, however, unless we exclude cases reminiscent of EPR, or of law-
like connections.6 To illustrate, consider two incomparable choice events,
c1, c2 ∈ CE, each of which has two continuations, H+

1 , H−
1 and H+

2 , H−
2 ,

respectively, such that H+
1 ∩ H+

2 = ∅ and H−
1 ∩ H−

2 = ∅. Now, an event
e ∈ H+

1 and an event e� ∈ H+
2 such that c1 �< e� and c2 �< e belong neither

to alternative continuations of c1 nor to alternative continuations of c2. But
e and e� look like a paragon of inconsistent events, intuitively speaking. A
relevant observation is that to snake-link e and e�, some element of the snake

5Possible continuations of events generalize elementary possibilities open at events of
BST1992. An elementary possibility open at event e is some particular subset P of the
set H(e) of histories passing through e; since possible continuations of e are naturally
thought as occurring above e, it is better to identify continuations with sets of particularly
located events than to identify them with sets of histories. In this vein, a continuation C

corresponding to elementary possibility P open at e can be defined as C = {x ∈
�

P |
e < x}. Somewhat simpler, in Kowalski and Placek’s (1999) framework continuations of e

can be identified with the so-called atomic outcomes of e. In both frameworks, however,
continuations are definable in terms of histories, and hence will not suffice for the present
purpose.

6To use BST1992 terminology, these are cases of modal funny business, defined in
Belnap (2002), and intensively studied in Müller et al. (2008) and Placek and Wroński
(2009).

6



link will be neither above c1 nor above c2. To take care of any pattern of
choice events, we say that e and e� are consistent if they are snake-linked in
such a way that each element of a snake-link in question is either above all
choice events in the past of e or above all choice events in the past of e�. This
leads to the following definition:

Definition 7 (consistency)
For e, e� ∈ W , let We := {x ∈ W | ∀c(c ∈ CE ∧ c < e → c < x)} and
We� := {x∈W | ∀c(c∈CE ∧ c < e� → c < x)}.
We say that e and e� are consistent iff they are snake-linked within We∪We� ,
i.e., they are snake-linked by l such that l ⊆ We ∪We� .
A ⊆ W is consistent iff every two elements of A are consistent.
And we say that A ⊆ W is inconsistent iff A is not consistent.

This definition permits that two events are consistent, although they have
no common upper bound. Observe also that two comparable events are con-
sistent, and also that singleton {e} is a consistent subset of W . Moreover,
two events e and e� that belong to different continuations of some third event
e0 are inconsistent since they cannot be snake-linked above e0. Finally, the
present concept of consistency generalizes the BT/BST1992 notion consis-
tency: If e and e� are consistent in the BT/BST1992 sense, they belong to
one history, which entails that there is e∗ such that e � e∗ and e� � e∗, from
which it follows that e and e� are joined by a snake-link with a shape of

�
.

Each element of this link, i.e., e, e∗, e� is either above all choice events below
e or above all choice events below e�, so e is consistent with e�.

It remains to be seen that the two events e and e� of our EPR-inspired
illustration are indeed inconsistent. For reductio, let us suppose that they are
consistent. Then e and e� are linked by a snake-link l in We∪We� . Accordingly
l must have two consecutive comparable elements, say ti, ti+1 ∈ l such that
e and ti are snake-linked above c1 and ti+1 and e� are snake-linked above
c2, so (†) ti+1 ∈ Πc2�e�� = H+

2 . To be specific, let us assume ti � ti+1. It
follows that c1 � ti+1 and that e and ti+1 are snake-linked above c1. Hence
ti+1 ∈ Πc1�e� = H+

1 . This together with (†) contradicts H+
1 ∩H+

2 = ∅. (The
argument for the case ti+1 < ti is analogous.)

We will now define “large events”, l-events for short; they are consistent
and generalize the notion of point events, i.e., elements of W .

Definition 8 (l-events)
We say that A⊆W is an l-event, A ∈ l−Events , iff A �= ∅ and A is consistent.

Clearly every e ∈ W is an l-event. Since W is assumed to be nonempty,
l−Events is nonempty.
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One might ask at this point what the relation is between l-events and the
objects defined in BT/BST1992? There is an affinity between l-events and
the initial events of BT/BST1992, the latter being defined as upper bounded
subsets of histories. Since an upper bound of initial event I can be used to
snake-link every two events e, e� ∈ I in the region We ∪ We�, every initial
event is consistent in the BCont sense, i.e., it is an l-event. The implication
in the other direction fails, however, since an l-event might fail to be upper
bounded.

The present framework does not appeal to the notion of possible courses
of events, and accordingly abstains from identifying histories with maximal
upward directed subsets of a base set W . Nevertheless, a model of BCont has
maximal upward directed subsets of its base set. Since a model of BCont is a
nonempty partially ordered set �W,��, it follows from the Zorn-Kuratowski
lemma that every chain in �W, �� can be extended to a maximal chain in
W , and every upward directed subset of W can be extended to a maximal
upward directed subset of W .7 Thus each model of the theory of branching
continuations (BCont) has maximal chains (ie., BT histories) and maximal
upward directed subsets of the base set (i.e., BST1992 histories).

In the introduction, we spelt out our motivations for avoiding the notion
of possible courses of events, and its related notion of possible worlds and
possible histories. In this spirit, we recommend working with continuations
and l-events, and not ascribing any ontological significance to maximal chains
or maximal upward directed subsets of base set W . This decline of the role
of maximal upward directed subsets is somewhat reminiscent of how the
status of maximal chains in a base set changes from BT to BST. In BT
it is interpreted as a history, and in BST it has no ontological significance
(generally speaking), since in this theory histories are identified with maximal
upward directed subsets of W .8

2.2 Axioms

We proceeded thus far without paying any attention to axioms of our BCont
theory. Our policy is to refurbish any BST1992 axiom that is violated in our
construction. Here is a result of this policy.

Definition 9 (model of BCont)
A model of the theory of branching continuations (BCont) is a pair W =
�W, �� that satisfies the following axioms:

7For a proof that there are maximal upward directed subsets of W , see Belnap (1992).
8We say “generally speaking” since in some BST models, maximal upward directed

subsets of W are maximal chains in W .
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1. �W, �� is a nonempty partially ordered set;

2. the ordering � is dense on W ;

3. W has no maximal elements;

4. every lower bounded chain C ⊆ W has an infimum;

5. if a chain C ⊆ W is upper bounded and C � b, then there is a unique
minimum in {e ∈ W | C � e ∧ e � b};9

6. for every x, y, e ∈ W , if e �< x and e �< y, then x and y are snake-linked
in the subset W �>e := {e� ∈ W | e �< e�} of W ;

7. if x, y ∈ W and W�xy := {e ∈ W | e � x ∧ e � y} �= ∅, then W�xy has
a maximal element;

8. For every x, y ∈ W , if ¬∃c : c ∈ CE ∧ (c < x∨ c < y), then x and y are
snake-linked in the subset W �>CE := {e ∈ W | ∀c ∈ CE c �< e} of W .

Axioms (1)—(4) are exactly like in BST1992, and axiom (5) is reminiscent
of a BST1992 axiom of history-relative suprema. Axiom (6) requires that
any two events that are not above some third event e, are snake-linked in
the region not-above e. This is intended to enforce a distinction between
the future and the past of an event. That is, using the relation of being
snake-linked in the subset W �>e of W (which is an equivalence relation on
W �>e), one may define a concept opposite to that of continuations of e, call
it antinuations of e. Analogously to continuations, antinuations of e are
elements of the partition of W �>e by the relation of being snake-linked not-
above e. Against this background, axiom (6) says that for every e, every
two events in W �>e are snake-linked in this subset, which means that each
event has at most one antinuation. The opposition between (possibly) many
continuations and a single antinuation of an event is how the present theory
reflects the future–past asymmetry. Note that since the region not-above e
includes e, axiom (6) does not prohibit models with minimal elements (we
allow for a Big Bang). Axiom (7) is to exclude branching without a choice
event; it produces maximal elements of common pasts, which in appropriate

cases serve as choice events. Note that the partition of possible continuations
of an event is defined in a straightforward manner, since being snake-linked
is an equivalence relation—cf. Definition 4. This is in contrast to BST1992,
which need the axiom of prior choice principle (not assumed here) to ensure

9I write C � b for ∀x ∈ C : x � b. I owe the present form of axiom 5 to T. Müller and
N. Belnap.
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that a relation used to induce a partition of possibilities open at an event
is indeed an equivalence relation. Finally, the role of axiom (8) is similar
to the BT/BST1992 axiom that all histories intersect: at the bottom of a
model there is a consistent event in the sense of Definition 7. Observe that
continuity axioms (4) and (5), and axiom (3) require that the cardinality of
a BCont model must be (at least) that of the continuum.

The list of axioms above suggests another way to go, the aim of which
is to assure that a resulting theory be a generalization of BST1992 (as we
will shortly see, BCont is not a generalization of BST1992).10 Having a
nonempty partially ordered set W and Definition 7 of consistency, we may
define histories as maximal consistent subsets of W , and assume all axioms
of BST1992. In other words, the idea is to change the definition of history,
but leave intact the axioms. We do not develop this proposal here, since our
main objective is to show how to represent indeterminism without positing
possible histories.

It is interesting to learn what are the relations between models of BCont,
models of BST1992 in general, and a particular class of BST1992 models,
MBS’s, in which histories are isomorphic to Minkowski spacetime.

Lemma 10 Some models of BCont do not satisfy axioms of BST1992, some

models of BST1992 do not satisfy axioms of BCont, but every MBS satisfies

axioms of BCont.

Sketch of the proof: For a BCont model that is not a BST1992 model
consider a half-plane in R2 without the upper rim, i.e., W := {�t, x� ∈ R2 |
t < 0}, with Minkowskian ordering �M , defined as follows:

�t1, x1� �M �t2, x2� iff (x2 − x1)
2 � (t2 − t1)

2 and t1 � t2, (1)

(I assume here that the first coordinate is temporal and the second is spatial
and this is stated in units in which the speed of light c equals 1.) In this
model, the maximal upward directed subsets of W (i.e., BST histories) do
not satisfy the prior choice principle of BST1992.

For a BST1992 model that is not a model of BCont, consider a base set
W := {�t, x� ∈ R2 | t > 0} ∪ {�0, 0�} with Minkowskian ordering �M . This is
a one-history BST model. Axiom (6) of BCont fails with respect to �0, 0� and
two events that are SLR to, and located, respectively, left and right to �0, 0�,
for instance �1/2,−1� and �1/2, 1�. These events cannot be snaked-linked
not-above �0, 0�.11

10This alternative approach was suggested to me by T. Müller.
11One might think (incorrectly) that the problem stems from there being a minimal

element in this model. But axiom (6) is violated as well in the following model without

10



Finally, it is relatively easy to check that MBS’s satisfy axioms of BCont.
Since this task requires one to introduce a full machinery of MBS’s, we leave
it for a reader (for a construction of MBS’s, cf. Wroński and Placek (2009)).

�

2.3 Patterns of branching

BST1992 has a specific pattern of branching: every two histories intersect,
their intersection has at least one maximal element, called choice point, and,
if c is a choice point for two histories in a BST1992 model that permits
a notion of light-cones, then the events on the future light cone of c (and
different from c) do not belong to the intersection of the two histories.

We will argue informally that axioms of BCont enforce a similar pattern
of branching. More precisely, we will see that patterns of branching excluded
by BST1992 are forbidden by axioms of BCont as well.

t t

x x

z z

e'

e

c c

Figure 2: This diagram represents three structures: (1) the vertex �0, 0� and
events on its future light-cone do not belong to the overlap, (2) as in (1),
with the exception of c that belongs to the overlap, and (3) as in (1), with
the exception of vertex �0, 0�.

We will consider three structures produced by pasting together some re-
gions of two copies of R2, each equipped with the Minkowskian ordering �M ,
as defined by Equation 1 above.

minima: W = W1∪W2, where W1 := {x ∈ R |x � 0} and W2 := {�t, x� ∈ R2 | 0 < t}. The
BST ordering �· coincides with the natural ordering of reals on W1, and with Minkowskian
ordering on W2, and for the “mixed”case it is this: for y ∈ W1 and �t, x� ∈ W2: �t, x� ��
· y and y �· �t, x� iff �0, 0� �M �t, x�.
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Let the base set W of our first structure be the union of these three sets:

O0 = {�t, x� ∈ R2 | �0, 0� ��M �t, x�},
O1 = {�t, x, 1� | �t, x� ∈ R2 ∧ �0, 0� �M �t, x�},
O2 = {�t, x, 2� | �t, x� ∈ R2 ∧ �0, 0� �M �t, x�}.

(2)

The ordering ≤ is defined in terms of the Minkowskian ordering �M :

1. For �t1, x1�, �t2, x2� ∈ O0 : �t1, x1� ≤ �t2, x2� iff �t1, x1� �M �t2, x2�;

2. For �t1, x1, i�, �t2, x2, i� ∈ Oi (where i =1, 2): �t1, x1, i� ≤ �t2, x2, i� iff
�t1, x1� �M �t2, x2�;

3. Every �t1, x1, 1� ∈ O1 and every �t2, x2, 2� ∈ O2 are incomparable with
respect to ≤;

4. For �t1, x1� ∈O0 and �t2, x2, i� ∈Oi (i = 1, 2): (1) �t2, x2, i� �≤ �t1, x1�
and (2) �t1, x1� ≤ �t2, x2, i� iff �t1, x1� �M �t2, x2�.

We thus obtained two separate triangles O1 and O2, each with “its” separate
zero point �0, 0, i� (i = 1, 2) at the vertex—see Figure 2. O1 and O2 look like
possible continuations, but what are these continuations of? Our structure
has no choice event since (strictly) above every event z in O0 there is another
event in O0 that can be used to snake-link above z every event from O1 with
every event from O2. Accordingly, each z ∈ O0 has one possible continuation
and hence is not a choice event. Note however that any two events, each from
a different triangle, are not snake-linked within the union of the triangles;
this fact, however, does not induce a choice event.

Our structure has two maximal upward directed subsets of W , namely
O0 ∪ O1 and O0 ∪ O2, but their intersection, O0 has no maximal element,
which means that it is not a BST1992 model. Neither is the structure a
model of BCont, as it violates axiom 7. Take two events, e ∈ O1 and e� ∈ O2.
The common past of e and e�, i.e., the set W�ee� ⊆ O0, is nonempty, but
there is no maximal element inW�ee� . A contradiction with axiom 7.

To improve on the first construction, let us consider a seemingly better
structure in which some single event from a triangle’s side, say c = �1,−1�,
is assumed to belong to the joint region. That is, we redefine the subsets
of base set W �: O�

0 = O0 ∪ {�1,−1�}, O�
i = Oi/{�1,−1, i�}, where i = 1, 2.

Clearly, c is a maximal element of O�
0, and O�

0 is the intersection of two
maximal upward directed subsets of W �. Since c looks like a BST choice
point, it is natural to expect that it has more than one continuation, i.e.,
there are events above c that cannot be snake-linked above c. And this is
indeed so: {x ∈ O�

1 | c < x} and {x ∈ O�
2 | c < x} are two continuations of c,
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in the sense of Definition 4. Nevertheless the oddity that O�
1 and O�

2 are not
continuations is still there. This oddity need not trouble us, however, since
the structure is neither a BCont model nor a BST1992 model. It does not
satisfy axiom 7 of BCont, for the reasons already explained. And it fails to
satisfy the prior choice principle of BST1992.

To turn finally to a “good” structure, let its base set W �� be the union
of O��

0 = O0 ∪ {�0, 0�}, O��
1 = O1/{�0, 0, 1�} and O��

2 = O2/{�0, 0, 2�}. �0, 0� is
a maximal element in O��

0 , which is the intersection of two maximal upward
directed subsets of W ��: O��

0 ∪O��
1 and O��

0 ∪O��
2 . Thus �0, 0� serves as a witness

for the prior choice principle and it is easy to see that �W ��,≤� satisfies the
other axioms of BST1992. From a perspective of BCont, �0, 0� is a choice
event with two possible continuations, O��

1 and O��
2 . It is straightforward to

see that this structure satisfies the axioms of BCont.
The point of these constructions is that if one tries to implement branch-

ing on structures resulting from pasting copies of Minkowski spacetime, the
axioms of the present theory will enforce a pattern of branching assumed in
BST1992.

Another specific feature of BT/BST1992 branching is that histories do not
branch backwards. We finish this section with an argument that the BCont
axioms entail an analogue of “no backward branching”. The “no backward
branching” condition has a clear sense in the presence of histories: for all
events x, y, z, if y � x and z � x, then there is a history h to which both
y and z belong. In BST1992 this immediately follows from the definition of
history as a maximal upward directed subset of a base set. Since in BCont
we have continuations and l-events rather than histories, backward branching
does not have such a clear-cut meaning there. It may mean one of these two
conditions:

1. for some x, y, z such that y < x and z < x, y and z belong to separate
continuations of some event e;

2. some y, z, such that neither is above any choice event, are not snake-
linked in region W �>CE := {e ∈ W | ∀c ∈ CE c �< e}.

Note that the second case is explicitly forbidden by axiom (8). But the first
case cannot occur, either. For reductio suppose x, y, z are like in the premise,
that is, for some e: y ∈ H1 and z ∈ H2, where H1, H2 ∈ Πe and H1 �= H2.
It follows that there is no snake-link above e joining y and z. But obviously
there is a snake-link of this sort as y < x, z < x, and each x, y, z is above e.
Contradiction. Hence, there is no backward branching in the BCont theory.
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2.4 Further developments

In this subsection we will sketch how the BCont theory can handle three
concepts that have turned out to be particularly fruitful in the applications
of BST1992: basic transitions, the relation of being space-like related (SLR),
and spatiotemporal locations, s-t locations for short.

Basic transitions. In BST1992 and BT, a basic transition is a pair con-
sisting of an event e and a possibility H open at the event e, where the latter
notion is defined as a set of histories containing e and not divided at e. Basic
transitions are the building blocks of Belnap’s (2005b) theory of causation,
are indispensable for causal probability spaces of Weiner and Belnap (2006)
and Müller (2005), and play a crucial role in the stit account of agency–
cf. Belnap (2005a). A BCont analogue of basic transition is immediate to
recognize:

Definition 11 (basic transitions in BCont)
Let �W,�� be a model of BCont. A basic transition is a pair �e, H�, where
e ∈ W and H ∈ Πe is a continuation of e.

SLR. The BST1992 relation of being space-like related (SLR) generalizes
the relation of space-like separation of special relativity to the modal con-
text. Two BST events are said to be SLR if they are incomparable by the
BST ordering, but are consistent (in the sense of belonging to one history).
BCont gives the same definition, yet, with consistency newly explained by
Definition 7 above.

Definition 12 (SLR)
e, e� ∈ W are SLR iff they are consistent but incomparable.

Spatiotemporal locations and Instants. To link events of branching
theories to events of spacetime theories of physics, one needs to be able to
assign coordinates to the former events. A first step in this direction is the
BT concept of Instants and BST1992 concept of spatiotemporal locations
(s-t locations, aka space-time points).12 The idea underlying Instants is that
some events belonging to alternative histories occur at the same instant.
Analogously, in BST1992 one envisages events from different histories, yet
occurring at the same spatiotemporal location. Clearly, the concepts are
defined in BT and BST1992 in terms of histories. Can they be defined
without recourse to histories? Here is our proposal:

12For the former, cf. Belnap et al. (2001), and for the latter cf. Müller (2005).
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Definition 13 (s-t locations)
We say that a model �W, �� of BCont has spatiotemporal locations (s-t
locations) iff there is a partition S of W such that

1. For each l-event A and each s ∈ S, the intersection A ∩ s contains at
most one element;

2. S respects the ordering, that is, for all l-events A, B, and all s1, s2 ∈ S,
if all the intersections A ∩ s1, A ∩ s2, B ∩ s1, and B ∩ s2 are nonempty,
and A ∩ s1 = A ∩ s2, then B ∩ s1 = B ∩ s2,

3. and analogously for the strict ordering <; and

4. if e1 � e2 � e3, then for every l-event A such that s(e1) ∩ A �= ∅ and
s(e3)∩A �= ∅, there is an l-event A� such that A ⊆ A� and s(e2)∩A� �= ∅,
where s(ei) stands for a (unique) s ∈ S such that ei ∈ s, and

5. if L is a chain of choice events in �W, �� upper bounded by e0 and such
that ∃s∈S ∀x∈L ∃e∈W : (x < e ∧ s(e) = s), then
∃e∗(e∗ ∈

�
x∈L Πx�e0� ∧ s(e∗) = s).

We call S a set of s-t locations for �W,�� and we will call the triple �W, �, S�
a BCont models with set S of s-t locations.

Clause 1 is a weakening of the BT/BST1992 condition that each history
and each instant/s-t location intersect at a single event. Clause 2 and 3
weaken the conservativeness conditions assumed in these theories. Clause 4
allows one to extend an event, in rather specific circumstances, by an event
at a given s-t location. Finally, clause 5 permits one to transfer a structure
of s-t locations from one continuation to another continuation.

Let us next introduce a relation � on S, a candidate for a partial ordering
on S:

Definition 14 (ordering of s-t locations)
For s1, s2 ∈ S, let s1 �s2 iff ∃e1, e2 (e1 ∈ s1 ∧ e2 ∈ s2 ∧ e1 � e2).

In MBS’s, which is a physically motivated class of BST models, the set of
s-t locations is partially ordered, and the ordering is similar to the Minkowski
ordering. It is thus satisfying to see that � is a partial ordering, provided a
natural condition holds true:

Fact 15
If a BCont model �W,�, S� with set S of s-t locations is downward directed,
i.e., ∀e1, e2 ∈ W ∃e0 ∈ W (e0 � e1 ∧ e0 � e2), then � is a partial dense
ordering on S.
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Proof: Reflexivity holds since by the definition of partition, each s ∈ S is
nonempty, and hence ∃e∈ s (e � e) is true, which entails s � s. To prove
antisymmetry, let e1 ∈ s1, e2 ∈ s2 be a witness for s1 � s2 and e� ∈ s1,
e�� ∈ s2 be a witness for s2 � s1. This means in particular that (†) e1 � e2

but (�) e�� � e�. Clearly, A := {e1, e2} and B := {e�, e��} are l-events. By
clause 3 of Definition 13, we get: e1 < e2 iff e� < e��. Thus, e1 < e2 leads to
a contradiction with (�), so by (†): e1 = e2. By the definition of partition,
s1 = s2. Turning to transitivity, consider e1 ∈ s1, e2 ∈ s2 that witness
s1 � s2 and e�2 ∈ s2, e�3 ∈ s3 that witness s2 � s3. If {e1, e2, e�2, e

�
3} is

consistent, then by clause 1 of Definition 13: e2 = e�2, and by transitivity of
�: e1 � e�3, and hence s1 � s3. If {e1, e2, e�2, e

�
3} is inconsistent, then (since

�W, �� is assumed to be downward directed), there is e0 such that e0 � e1

and e0 � e�2. Now observe that since eo � e1 � e2 and s(e0)∩ {e0, e�2, e
�
3} �= ∅

and s(e2) ∩ {e0, e�2, e
�
3} �= ∅, by clause 4 of Definition 13 we get: there is an

l-event A� and e∗ ∈ W such that e∗ ∈ s(e1) ∩ A� and {e0, e�2, e
�
3} ⊆ A�. By

clauses 2 and 3 of Definition 13 applied to {e1, e2} and A� we get: e∗ � e�2.
Since e�2 � e�3 we get e∗ � e�3, which proves s1 � s3.
To prove density of �, let s1 � s3 and s1 �= s3. Then there is e1 ∈ s1 and
e3 ∈ s3 such that e1 < e3. By density of <, there is e2 such that e1 < e2 < e3.
By the definition of �, we thus have: s1 � s(e2) � s3. Since {e1, e2, e3} is an
l-event, clause 1 of Definition 13 dictates that s1 �= s(e2) and s(e2) �= s3. �

A distinctive feature of BT models is that, if they allow for the introduc-
tion of Instants, the set of Instants is linearly ordered. We prove a fact to
the effect that if a BCont model is like a BT model, then “its” set S of s-t
locations is linearly ordered:

Fact 16
Let �W, �, S� be a model of BCont with set S of s-t locations that is down-
ward directed, satisfies “no backward forks” condition, i.e., ∀e1, e2, e3 ∈
W (e1 � e3 ∧ e2 � e3 → e1 � e2 ∨ e2 � e1), and the following condition:
for all e, e� ∈ W , if e and e� are incomparable by �, then there are H1, H2 ∈
Πm such that H1 �= H2 and e ∈ H1, and e� ∈ H2, where m is a maximal
element of W�ee� = {y ∈ W | y � e ∧ y � e�}.
Then (1) S is linearly ordered by � and (2) every l-event of �W,�, S� is a
chain.

Proof: (1) The existence of m is guaranteed by the assumption of downward
directedness and clause 5 of Definition 9. Let us assume for reductio that for
some s, s� ∈ S: s �� s� and s� �� s, which entails ∀e∈s∀e�∈s� : (e �� e�∧e� �� e).
We will pick some e ∈ s and e� ∈ s� and aim to produce a chain of choice
events satisfying the assumptions of clause 5 of Definition 13. To begin, since
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e and e� are incomparable, by downward directedness and the condition of
our Fact, there is a choice event m0 such that e and e� belong to separate
continuations of m0. In particular, (�) m0 < e. No backward forks imply
that the events below e are linearly order. Moreover, the existence of mo

guarantees that there is a chain L of choice events, defined as follows:

m ∈ L iff m < e ∧ ∃e1(m < e1 ∧ e1 �∈ Πm�e� ∧ s(e1) = s�). (�)

Applying clause 5 of Definition 13 to L, we get (��) e∗ ∈
�

m∈L Πm�e� such
that (†) s(e∗) = s�. If e and e∗ are comparable, we immediately get that
s and s� are comparable. Suppose thus that they are incomparable, from
which it follows that there is a choice event m∗ such that ($) m∗ < e and (£)
m∗ < e∗, and (‡) e∗ �∈ Πm∗�e�. Due to ($), (£), (‡), and (†) we get that m∗

satisfies the right-hand side of (�), and hence m∗ ∈ L. But then by (��) we
have e∗ ∈ Πm∗�e�, contradicting (‡).
To prove (2), assume for reductio that there is an l-event A that is not a
chain, which means that A has incomparable elements e and e�. By the
assumption of the fact, e and e� must belong to separate continuations of
some m, which is a maximal element of W�ee� = {y ∈ W | y � e ∧ y � e�}.
Since clearly m ∈ CE, e and e� are not consistent, which entails that A is
not consistent, so it is not an l-event. Contradiction. �

3 Semantics without histories

3.1 A sketch of BCont semantics

In this section we will test the theory of BCont, asking if it yields a reason-
able semantics for a language with indexicals, tenses, and historical modali-
ties. Our point of reference is the branching-time semantics, as suggested in
S. Kripke’s letter to A. N. Prior (dated September 3, 1958, unpublished), dis-
cussed then briefly in Prior (1967), and worked out in Thomason (1970). We
take the Kripke/Prior/Thomason semantics for our reference theory, since it
is relatively simple and we have some intuitions concerning tenses. We do
not have comparable intuitions concerning relativistic notions, and for this
reason it will not be revealing to take BST for our reference theory.

We need thus to consider BCont models that are similar to BT models
with Instants, which we define as follows:

Definition 17 ((BT+Instants)-like model)
A model �W,�, S� of BCont with set S of s-t locations is said to be (BT+Instants)-
like if it satisfies these conditions:
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1. downward directedness,

2. no backward forks, and

3. for all e, e� ∈ W , if e and e� are incomparable by �, then there are
H1, H2 ∈ Πm such that H1 �= H2 and e ∈ H1, and e� ∈ H2, where m is
a maximal element of W�ee� = {y ∈ W | y � e ∧ y � e�}.

In fact, a (BT+Instants)-like model of BCont is a BT model with Instants,
since it has maximal chains (which BT identifies with histories), every two
of which overlap, and S of the former model interplays with maximal chains
exactly like Instants of BT interplays with BT histories. On a related note,
since l-events in a (BT+Instants)-like model of BCont are chains, from a
BT perspective, they are subsets (also improper subsets) of histories.

Facts 15 and 16 guarantee that the set S of each (BT+Instants)-like
model �W, �, S� of BCont is dense and linearly ordered by �. Accordingly,
for every (BT+Instants)-like model �W, �, S� there is a coordinalization,
that is, an order-preserving bijection X between �S,�� and a dense subset of
some linearly ordered set. What this latter set is, depends on the cardinality
of S, which is determined by the cardinality of maximal chains in W . By
BCont axioms (2)–(5) the cardinality of S is not smaller than the cardinality
of the set R of reals. Putting these together, if the cardinality of S is not
larger than that of the reals, |S| = |R|, S can be mapped on a dense subset of
R. In these cases we may use a given coordinalization X to define an interval
relation:

int(e1, e2, t) iff X(s(e2))−X(s(e1)) = t,

meaning “e1 is t units before e2”, where t is a real number. In terms of this
relation we will state the truth-conditions for metric tense operators.

We will ultimately opt for evaluating sentences at evaluation points that
are built out of l-events. Since l-events can be small, it is preferable to work
with metric tenses, F (x) and P (x), read as: “in x units, it will be the case
that . . . ” and “x units ago, it was the case that . . . ”, respectively, rather
than open-ended tenses “it will be the case” and “it was the case”. We
assume here that x ranges over the set R of real numbers. Accordingly, a
(BT+Instants)-like structure for this language requires a coordinalization
of S with R, which means that |S| = |R|. We will call a coordinalization
of S with R “real coordinalization” and we will assume it in the rest of this
paper.

To finally characterize the language L we consider, it is assumed that its
atomic formulas are significantly present-tensed, like “It is so-and-so now”.
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L has metric tense operators F (x) and P (x) with x ∈ R, the familiar truth-
conditional connectives: ¬, ∧, ∨, and→, modal operators Sett : (“It is settled
that”) and Poss : (“It is possible that”), and an operator Now : (“it is now
the case that”).

We define a structure and a model for language L:

Definition 18 (structure and model)
A structure for L is a pair S = �W , X�, whereW = �W,�, S� is a (BT+Instants)-
like model of BCont such that |S| = |R|, and X is a real coordinalization of
S.
A pair M = �S, J� is a model for language L, where S is a structure for L
and J : Atoms → P(W ) is an interpretation function and Atoms is the set
of atomic formulas of L.13

A novelty of Prior’s (1967) approach is that formulas are evaluated at
event-history pairs where an event is assumed to belong to the history in
question. Such pairs are written as e/h; accordingly e/h |= ϕ is read as
“formula ϕ is evaluated as true at evaluation point e/h.” What should we
use as evaluation points in the present theory? In particular, what should be
used in place of history? A natural answer is that an evaluation point is an
event/l-event pair �e, A�, subject to the condition that e is consistent with
A, that is {e} ∪ A is an l-event. We will write such pairs as e/A.

Accordingly, we assume this concept of evaluation points:

Definition 19 (evaluation points)
Let S = �W , X� be a structure for language L, where W = �W,�, S�.
Then �e, A�, written as e/A, is an evaluation point in S for formulas of L iff
(1) {e} ∪ A ⊆ W is an l-event and (2) A �= ∅.

Note that we do not require for an evaluation point e/A that e ∈ A.
What does it mean, however, that a sentence is true at an evaluation

point so defined, as the point involves an l-event? Perhaps what pops first to
someone’s mind is a reading in terms of information. On this interpretation
e/A |= ϕ means that at event e, given the available information about event
A, sentence ϕ is true. We oppose this reading since informational notions
are not wedded to BT/BST1992. The branching theories are naturally inter-
preted as attempts to capture what our indeterministic world is like rather
than what we know, or how we gather information about the world. We thus

13Another option is to take for the interpretation function J : Atoms → P(W×l−Events).
The situation exactly mimics a BT choice between an interpretation function sending
atomic formulas into subsets of W , or into subsets of W ×Hist, where Hist is the set of
BT histories – cf. Prior (1967, p. 123).
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recommend an unabashedly ontological reading. That is, we say: at event e
and a large event A sentence ϕ is true. We expect that a sentence might be
evaluated differently at e/A and e/A�, if A and A� lie above (or partly above)
e. For instance,

“I will drink the milk from my fridge in two minutes. ”

is likely to be evaluated as true at the event e of my present opening the
fridge and the l-event A of my taking out a bottle of milk from there in one
minute, but as false or indefinite at the same event e and l-event A� of my
taking out a beer from the fridge in one minute. It is also natural to require
that if ϕ is true at e and A, it is as well true at events larger than A, that is,
at e/A� such that A ⊆ A�. This is guaranteed by Lemma 26 below. Finally,
which l-event A in the past of e is considered, should not influence whether
or not ϕ is true at e/A, since event e fixes its unique past. That is, if ϕ is
true at e/A and A is in the past e, then ϕ is true at every e/A� such that A�

is in the past of e. This is the content of Lemma 27 below.
Truth, falsity, and indefiniteness at evaluation points is an objective mat-

ter, and should not be confused with our assessment, under available in-
formation, of whether sentences are true, false, or indefinite at evaluation
points. We might be mistaken in our beliefs that something is really possi-
ble, and mistakenly take something for an l-event. This kind of mistake is
not essentially different from other mistakes leading to incorrect assessment
concerning truth, falsity, and indefiniteness. Despite such mistakes, however,
since l-events are typically small and may have plenty of holes, we can form a
premonition, a hunch, a forecast, or a scientific prediction that there is such-
and-such future l-event and, moreover, that at this l-event combined with
an event of utterance, the uttered sentence is true/false/indefinite. Such
epistemic access to l-events is to be strongly contrasted with our lacking
epistemic access to histories. Since histories are maximally large (and there
are no holes in them), it is not in our power to form even an intuition of
which history will be realized. A semantic theory framed in terms of histo-
ries leads thus to a grave tension between ontology and epistemology, which
(we believe) is alleviated in our BCont framework.

An intuition underlying our notion of truth says that whether a formula
is (definitely) true at evaluation point e/A, depends on how things stand
appropriately high above e. That is, for a formula to be definitely true at
e/A, it should be fulfilled in every sufficiently long extension of e/A. We thus
need a few auxiliary notions before turning to definite truth. We will define
the following:

• An evaluation point e/A goes x-units-above e;
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• One evaluation point is an x-units-above-e extension of some other
evaluation point;

• A set of evaluation points is a fan determined by a given evaluation
point;

• An evaluation point fulfills a formula;

• A formula is definitely true at an evaluation point.

Let us then get to work.

Definition 20 (extensions of an evaluation point)
Let S = �W , X� be a structure for L, W = �W,�, S�, and e/A be an
evaluation point in S for L. Then we say:

e/A goes at least x-units-above e (0 � x) iff ∃e1 ∈W ∃e2 ∈ A (e1 � e2 ∧
int(e, e1, x));

e/A� is an x-units-above-e extension of e/A (0 � x) iff (1) A ⊆ A� ⊆ W and
(2) e/A� goes at least x-units-above e.

Observe that if an evaluation point is an x-units-above-e extension of e/A,
it is also an y-units-above-e extension of e/A for any 0 < y � x (by the
density of S and since X is an order-preserving bijection). The phrase “at
least” implies that an x-units-above-e extension of e/A can also be an (x+y)-
units-above-e extension of e/A for some y > 0. Also an evaluation point can
be an x-units-above-e extension of itself.

In a proof later on we will need the following fact concerning extensions:

Fact 21
Let S = �W , X� be a structure for L, W = �W, �, S�, and e2/B� be an x-
units-above e2 extension of e2/B and e1 < e2. Then e1/B� is an x-units-above
e1 extension of e1/B.

Proof: Let e2/B� be as in the premise. Then there is e� such that (�) e� � eB�

for some eB� ∈ B� and (��) X(s(e�))−X(s(e2)) = x � 0. Since {e2} ∪ B� is
an l-event, it must be a chain, and hence by (�) and no downward forks, e2

and e� must be comparable. By (��) e2 � e� and hence e1 < e2 � e�. Since S
is dense and X is bijective order preserving and onto R, there is s�� ∈ S such
that s(e1) < s�� < s(e�) and X(s��) −X(s(e1)) = x. We will now argue that
there is e�� ∈ s�� such that e1 < e�� < e�. If there is e�� ∈ s�� such that e�� < e�,
then by the condition of no downward forks e1 < e�� < e�. Otherwise we pick
some e ∈ s�� and, since it is incomparable with e�, by clause 3 of Definition 17,
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there is x ∈ CE such that x < e and x < e� and hence (by no downward
forks) e1 < x. This event x guarantees that the set l below is nonempty:

l := {x ∈ CE | e1 < x < e� ∧ ∃e��(e�� ∈ s�� ∧ x < e��)}.

By no downward forks, since all element of l are below e�, l is a chain. By
clause 5 of Definition 13, there is e�� such that (†) e�� ∈

�
x∈l Πx�e��∧s(e��) = s��.

It must be that e�� < e�. Otherwise e� and e�� were incomparable, so there
would be y ∈ CE such that e�� �∈ Πy�e��. But then y ∈ l and hence by (†)
e�� ∈ Πy�e��. Contradiction. Thus, e�� < e� and then by no downward forks
e1 < e�� < e�. The event e�� so constructed is a witness that e1/B� is an
x-units-above e1 extension of e1/B. �

We now define an auxiliary concept of a fan of evaluation points, which
considerably simplifies the truth conditions for sentences with Sett as a prin-
cipal operator.

Definition 22 (fan of evaluation points)
Let S = �W , X� be a structure for L, W = �W, �, S� and e/A be an evalu-
ation point in S for L.

Two l-events A1 and A2 of W are isomorphic instant-wise iff ∀e1 ∈ A1∃e2 ∈
A2 : s(e1) = s(e2) and ∀e2 ∈ A2∃e1 ∈ A1 : s(e1) = s(e2).

The fan Fe/A of evaluation points determined by evaluation point e/A is a
set of evaluation points subject to this condition:
e/A� ∈ Fe/A iff e/A� is an evaluation point in S and A and A� are isomorphic
instant-wise.

Note that while producing the fan out of a given evaluation point e/A, we
keep e fixed and vary A subject to the condition of instant-wise isomorphism
and the condition that a resulting A� is consistent with e. In many cases, the
only A� that satisfies this condition is A itself. Thus, many evaluation points
permit only trivial fans, i.e., singletons of themselves.

Since the formulas of L are significantly tensed, a formula can be eval-
uated differently at different contexts of use. The operators of L determine
that a single relevant aspect of the context of use is the moment of use,
symbolized by eC . In general, a moment of use eC of a sentence is different
from the event-part of evaluation point e/A for this sentence. In this respect,
sentences considered as stand-alone are somewhat exceptional, since for such
a sentence, the e of evaluation point e/A is identified with moment eC of use.
For embedded sentences e of e/A and eC may diverge.14 On a related issue,
we believe that a context of use does not determine which future l-event will

14For more on this issue, see Belnap et al. (2001) and Belnap (2007).
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occur. There is no future l-event of use, for quite similar reasons as there
is no history of use in the BT semantics – cf. Belnap et al. (2001). On
the other hand, if an l-event A is in the past of moment eC of use, it does
not add anything to the context, since, given the language we consider, all
relevant features of contexts of use are coded by moments of use. Thus, to
put it bluntly, there is no AC , though there is eC . We will accordingly define
what it means that a formula is evaluated as true in a model, at a moment of
use, and at a point of evaluation. But first we need a semi-technical notion:
“in a model a moment of use and an evaluation point fulfills a formula”. In
symbols: M, eC , e/A |≈ ψ.

Definition 23 (point fulfills a formula)
Let M = �S,J � be a model for L. Then

1. if ψ ∈ Atoms: M, eC , e/A |≈ ψ iff e ∈ J (ψ);

2. if ψ is ¬ϕ: M, eC , e/A |≈ ψ iff it is not the case that M, eC , e/A |≈ ϕ;

3. if ψ is β ∨ ϕ: M, eC , e/A |≈ ψ iff M, eC , e/A |≈ β or M, eC , e/A |≈ ϕ;

4. and similarly for ∧ and →;

5. if ψ is F (x)ϕ for x > 0: M, eC , e/A |≈ ψ iff there are e� ∈ W and
e∗ ∈ A such that e� � e∗ and int(e, e�, x), and M, eC , e�/A |≈ ϕ;15

6. if ψ is P (x)ϕ for x > 0: M, eC , e/A |≈ ψ iff there is e� ∈ W such that
{e�} ∪ A ∈ l−Events and int(e�, e, x), and M, eC , e�/A |≈ ϕ;

7. if ψ is Sett : ϕ: M, eC , e/A |≈ ψ iff for every evaluation point e/A� from
fan Fe/A determined by e/A: M, eC , e/A� |≈ ϕ;

8. if ψ is Now : ϕ : M, eC , e/A |≈ ψ iff there is e� ∈ s(ec) such that {e�}∪A
is consistent and M, eC , e�/A |≈ ϕ.

The historical possibility operator (Poss :) is defined as usual:

Poss : ψ iff ¬Sett : ¬ψ.

Finally, we have come to the definite truth: here is the notion of a formula
being definitely true in a model, at a moment of use, and at an evaluation
point, i.e., M, eC , e/A |= ψ.

15Note that the condition e
� � e

∗ ensures that {e�} ∪ A is an l-event, so e
�
/A is a

legitimate point of evaluation.
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Definition 24 (definite truth)
ψ is definitely true at M, eC , e/A, in symbols M, eC , e/A |= ψ, iff there is an
x � 0 such that for every x units-above e extension e/A� of e/A:
M, eC , e/A� |≈ ψ;

ψ is indefinite at M, eC , e/A, in symbols M, eC , e/A ?= ψ, iff there is no x � 0
such that for every x-units-above-e extension e/A� of e/A: M, eC , e/A� |≈ ψ
or for every x-units-above-e extension e/A� of e/A: M, eC , e/A� |≈ ¬ψ.

As the first consequence of this definition, consider the following theorem:

Theorem 25
For any formula ψ and any evaluation point e/A, exactly one of the following
three options must hold:

e/A |= ψ or e/A |= ¬ψ or e/A ?= ψ.

Proof: As for the fulfillment of a formula at extensions of e/A, these three
cases exhaust all possibilities:

1. there is an x � 0 such that for every x units-above e extension e/A� of
e/A: e/A� |≈ ψ, or

2. there is an x � 0 such that for every x units-above e extension e/A� of
e/A: e/A� |�≈ ψ, or

3. there is no x � 0 satisfying (1) or (2) above.

The first case means that e/A |= ψ. Given the definition of fulfillment (the
clause on negation) and the first clause of definition (24), the second case is
equivalent to e/A |= ¬ψ. And given the definition of fulfillment (the clause
on negation) the third case is equivalent to e/A ?= ψ. �

We need to check on the stability of the notion of truth. We have the
following lemma.

Lemma 26 If M, eC , e/A |= ψ, then for every extension e/A∗
of evaluation

point e/A: M, eC , e/A∗ |= ψ.

Proof: It follows from the premise that there is an x � 0 such that for every
x-units-above-e extension e/A� of e/A: M, eC , e/A� |≈ ψ. We need to check
that for an arbitrary extension e/A∗ of e/A there is z � 0 such that for every
z-units-above-e extension e/A�� of e/A∗: M, eC , e/A�� |≈ ψ. Put z := x. Since
A ⊆ A∗ ⊆ A�� and e/A�� goes at least x units above e, e/A�� is an x-units-
above-e extension of e/A. Accordingly, by the premise: M, eC , e/A�� |≈ ψ.
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�
Thus, a sentence definitely true at an evaluation point stays definitely true

as the extensions of the initial evaluation point become increasingly longer.
A sentence indefinite at some evaluation point may become definitely true
or definitely false at an extension of the initial evaluation point, whereby we
call a sentence definitely false iff its negation is definitely true. As for the
dynamics of definite truth, one would like to know if each sentence becomes
definitely true or definitely false at some sufficiently long extension of an
initial evaluation point. In general, the answer depends on the details of
coordinalization, however. But for (what we called) real coordinalizations,
every sentence is definitely true or definitely false at some (sufficiently long)
extension of an initial evaluation point.

Next we shall see that l-events in the past of e are irrelevant for the
evaluation of sentences.

Lemma 27 If ∀eA ∈A : eA � e, ∀eB ∈B : eB � e, and e/A |= ϕ, then

e/B |= ϕ.

Proof: By the premise, there is y � 0 such that for every y-units-above
e extension e/A� of e/A we have e/A� |≈ ϕ. Consider an y-units-above e
extension e/B� of e/B. Since {e} ∪ B� is an l-event, and hence a chain, and
∀eA∈A : eA � e, by no downward forks, {e} ∪ B� ∪ A is an l-event, yielding
the evaluation point e/B∗, with B∗ := A∪B�. Since e/B∗ is an y-units-above
e extension of e/A, we get e/B∗ |≈ ϕ. To finish the proof we should argue
by induction with respect to the complexity of formula ϕ that if e/B∗ |≈ ϕ,
then e/B� |≈ ϕ. Since the argument is straightforward, we present only the
case with F (x) as the principal operator of ϕ. That is, we assume that
ϕ := F (x)ψ and for every e�: if e�/B∗ |≈ ψ, then e�/B� |≈ ψ. e/B∗ |≈ F (x)ψ
entails that there is e∗ such that int(e, e∗, x) and e∗/B∗ |≈ ψ. It follows from
the induction step that e∗/B� |≈ ψ, and hence e/B� |≈ F (x)ψ. �

As a conclusion to this section, we state some simple observations of how
definite truth, definite falsity and indefiniteness mesh together.

1. If ψ is indefinite at a point, so is its negation.

2. if ψ is indefinite at a point, ψ ∨ ϕ is either definitely true or indefinite
at this point;

3. if ψ is indefinite at a point, ψ ∧ ϕ is either indefinite or definitely false
at this point;
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4. if ψ is indefinite at a point, ψ → ϕ is either definitely true or indefinite
at this point (same for ϕ → ψ).

5. settled cannot be indefinite: Sett : ψ is definitely true or ¬Sett : ψ is
definitely true.

3.2 Puzzles

The branching-time semantics of Kripke/Prior/Thomason has a few distinc-
tive features that make it different and (we believe) superior, to other systems
of tense logic. In this chapter we will check if the semantics based on BCont
theory that we have sketched above retains these features. Whether or not
a semantic theory has some aspects can often be seen by focusing on some
puzzles and asking how the theory analyzes them. It is this task to which we
will soon turn.

To list the features we alluded to, the Kripke/Prior/Thomason semantics
permits a distinction between what will happen and what will necessarily
happen, which Peircean approaches fail to draw. Second, it rejects the view
that sentences in the past tense, if true, are necessarily true. Third, it allows
for a careful analysis of the interplay of tenses, settledness, and indetermin-
ism, as involved in sentences like “Einstein was born a Nobel prize winner”,
asserted in an indeterministic context. That is, BT semantics analyzes this
sentence (assumed to be uttered now, in 2010) to be settled true, while grant-
ing that years ago it was possible that Einstein would fail to win a Nobel
prize. Finally, the theory could be naturally supplemented by Belnap’s (2001)
technique of double-time reference, which offers a persuasive model of how a
sentence that is not definitely true at one moment, becomes definitely true
at some later moment.16 Our aim now is to see if indeed these four aspects
of BT theory are preserved in the BCont semantics.

A Peircean future? No. For a sentence in the future tense, the Peircean
approach equates its being true at e with its being true in every possible
history to which e belongs. Since the truth-value of a future-tensed sentence
is thus defined in terms of the quantification over the set of possible histories,
the Peircean approach fails to accommodate a distinction between what will
happen and what will necessarily happen. In the present framework, however,
we similarly define definite truth by quantifying over possible extensions of an
evaluation point. One might thus suspect that we fail to draw the mentioned

16Needless to say, these features have either had antecedents, likely dating back to
antiquity, or are attempts to solve some issues, known and discussed since antiquity, cf.
Øhrstrøm and Hasle (1995).
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distinction and thus our account is a version of the Peircean approach. The
suspicion is incorrect, however: the present framework sharply distinguishes
between the definite true of F (x)φ and of Sett : F (x)φ. To see this, consider
a (BT+Instants)-like model M of BCont, as depicted on Figure 3.

e

A

¬!
1

C

!

0

Figure 3: Difference between Sett : F1φ and F1φ.

Horizontal lines indicate two elements of S, called 0 and 1, with s(ec) = 0.
The shadowed rectangle symbolizes the l-event A. F (1)φ is fulfilled by every
1-units-above-eC extension of eC/A, and hence: M, eC , eC/A |= F (1)φ. On
the other hand, no matter how large x � 0 is, every fan determined by
each x-units-above-eC extension of eC/A has an element lying on the right
branch of the model, where ¬φ is true at s-t location 1. Accordingly, we
have: M, eC , eC/A |= ¬Sett : F (1)φ.

Is the past always settled? There is a powerful intuition that, in contrast
with the future, the past is already settled. This intuition, interpreted as a
semantical claim:

(†) From P (x)ϕ it follows that Sett : P (x)ϕ,
was likely a premise of Diodor’s Master Argument as well as of some versions
of the argument from divine foreknowledge to the necessity of the future.17

A way of blocking these arguments, which the Ockhamist tradition and BT
semantics take, is to reject (†). A modern rationale for this move can be seen
in von Kutschera’s (1986) distinction between a sentence being about the past
and the sentence being in the past tense. The intuition about settledness of

17Cf. Øhrstrøm and Hasle (1995).
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Figure 4: M, eC , eC/A |= P (1)F (2)φ but M, eC , eC/A |= ¬Sett : P (1)F (2)φ.

the past is upheld if it concerns sentences about the past, but rejected if it
concerns sentences in the past tense but not about the past, e.g., sentences
like P (x)F (y)ϕ with x < y and ϕ an atomic formula. Since a formula in the
past tense is a formula with P (x) as the principal operator, the implication
(†) is rejected. But is it rejected in the present framework as well? Consider
the model of Figure 4, with the symbol conventions explained as above. Let φ
be an atomic formula and s(eC) = 1. P (1)F (2)φ is fulfilled by every 1-units-
above-eC extension of eC/A, and hence: M, eC , eC/A |= P (1)F (2)φ. On the
other hand, for any x � 0, every fan determined by each x-units-above-eC

extension of eC/A has an element lying on the right branch of the model,
where ¬φ is true at s-t location 2.

Accordingly, we have: M, eC , eC/A |= ¬Sett : P (1)F (2)φ, which shows
that (†) is not valid. On the other hand, it can be proved that if φ atomic
and P (x)φ is definitely true, so is Sett : P (1)φ. Thus, some sentences in the
past tense are settled true, and some are not.

3.2.1 “Einstein was born a Nobel Prize winner”

This conundrum sentence is ascribed to Arthur Prior. Let us suppose it is
asserted now (in 2010) and that the assertor grants that Einstein might have
failed to receive the Nobel Prize. Despite this indeterminism, the sentence
appears to be settled true now. That is, it is settled (now) that it was
true one hundred years ago that Einstein would receive the Nobel Prize in
11 years time (in 1921). In symbols, Sett: P (100)F (11)φ. This should be
compatible with the truth of the sentence that one hundred years ago it was
not settled that Einstein would receive the Nobel Prize in 11 years’ time,
that is, in 1921. We thus want to show that Sett: P (100)F (11)φ does not
imply P (100) Sett: F (11)φ. Consider Figure 5. Every element of every fan
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Figure 5: From Sett : P (100)F (11)φ it does not follow that P (100) Sett :
F (11)φ.

determined by any extension of eC/A lies on the left branch of the model,
where φ holds. Hence, M, eC , eC/A |= Sett : P (100)F (11)φ. On the other
hand, no matter how large x is, every x-units-above eC extension eC/A�

of eC/A fails to fulfill P (100) Sett : F (11) φ. Namely, in our model there
is exactly one e� such that int(e�, eC , 100) (which means that X(s(e�)) =
1910). No matter how large (or small) the extension eC/A� of eC/A is, some
element of the fan determined by e�/A� is on the right branch, where ¬φ
holds. Accordingly, Sett : F (11)φ is not fulfilled at M, eC , e�/A�, and hence
P (100) Sett : F (11)φ is not fulfilled at M, eC , eC/A�. As x is arbitrary, we
conclude that M, eC , eC/A |�= P (100) Sett : F (11)φ.

Double time reference. The double time reference is a BT/BST1992
technique developed by Belnap (2001) to explain how something that was
not settled true at one event, becomes settled true at an appropriately later
event. I have intentionally phrased this vaguely since a part of the problem
is what is an object which turns into settled truth?

In the BT framework, with metric rather than open tenses (to make it
more similar to BCont theory) and with Instants, the following variation of
Belnap’s story illustrates the problem. (Note that in the next paragraph |=
stands for the BT truth at an event/history pair, with Ins(e) standing for
the instant of event e.)

At e1 Themistocles makes the promise—“In t units of time Themistocles
will fight a sea battle”— in symbols: F (t)ϕ. It is reasonable to assume that
the core of the promise, “F (t)ϕ”, is not a settled truth at the event of making
the promise, and also that the promise is not already vitiated at this event.
So:

e1/h |�= Sett : F (t)ϕ and e1/h |= Poss : F (t) ϕ. (∗)
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(The reference to history h plays no role above, since the BT truth conditions
for Sett and for Poss require one to quantify over histories.) The event
at which the promise is satisfied is one e2 at which it is settled true that
Themistocles fights the battle. As for the timing of event e2, it may occur
during or after the battle as well as before it. What does it mean, generally
speaking, that the promise made at e1 is satisfied at e2? The double-time
reference yields this verdict:

Double-time reference—BT analysis

The promise “F (t)ϕ” made by Themistocles at e1 is satisfied at a later event
e2 iff ∀h : (e2 ∈ h → e1/h |= F (t)ϕ).

This analysis entails that at event e2 at which the promise made at e1 is
satisfied we have:

e2/h |= Sett : P (x)F (t)ϕ, where x = Ins(e2)− Ins(e1) > 0.18 (†)

(Again, the reference to history h is inessential). This consequence is desir-
able since at the event at which Themistocles’s promise is satisfied (say two
days after making the promise) Themistocles should truly say:

It is settled that two days ago it was the case that I would fight a battle
next day.

We may introduce a similar device in the present framework. (Warning:
from now on, we are again using |= and |≈ of the BCont theory.)

Double-time reference—BCont analysis

The promise “F (t)ϕ” made by Themistocles at e1 is satisfied at a later event
e2 iff

∀A (A ∪ {e2} ∈ l−Events → e1/A |= F (t)ϕ). (∗∗)

Since A ∪ {e2} is an l-event and e1 < e2, A ∪ {e1} is an l-event as well, so it
yields the evaluation point e1/A.

We need to check if this analysis has a consequence analogous to (†):

Fact 28
If the premise “F (t)ϕ” made at e1 is satisfied at e2 (e1 < e2), then for every
l-event A such that A ∪ {e2} ∈ l−Events

e2/A |= Sett : P (x)F (t)ϕ, where x is such that int(e1, e2, x). (‡)
18The condition on x results from allowing that the premise might be satisfied before t

units of time and from the left-hand side conjunct of (�).
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Proof: Let us assume that the premise “F (t)ϕ” made at e1 is satisfied at e2

(e1 < e2) and ($) int(e1, e2, x) is true; since e1 < e2, x > 0.
We will first show that e2/{e2} |= Sett : P (x)F (t)ϕ. Since e1 < e2,

{e1, e2} ∈ l-Events, so by the assumption and (∗∗), e1/{e2} |= F (t)ϕ, and
hence there is y � 0 such that (£) for every y-units-above e1 extension e1/A
of e1/{e2}: e1/A |≈ F (t)ϕ.

Consider now an arbitrary y-units-above e2 extension e2/B of e2/{e2}.
Since e1 < e2, by Fact 21 we get that e1/B is an y-units-above e1 exten-
sion of e1/{e2}. By (£) we get e1/B |≈ F (t)ϕ. By ($) and clause 6 of
Definition 23 we have e1/B |≈ F (t)ϕ iff e2/B |≈ P (x)F (t)ϕ. Accordingly,
e2/B |≈ P (x)F (t)ϕ. Pick now an arbitrary e2/B� ∈ Fe2,B. This is an y-units-
above e2 extension of e2/{e2}. By the reasoning above, e2/B� |≈ P (x)F (t)ϕ.
It follows that e2/B |≈ Sett : P (x)F (t)ϕ for an arbitrary y-units-above e2

extension e2/B of e2/{e2}. Hence e2/{e2} |= Sett : P (x)F (t)ϕ.
By Lemma 26 we get that for every l-event A, if e2 ∈ A, then e2/A |= Sett :

P (x)F (t)ϕ. To arrive at the sought-for conclusion (‡), it remains to show
that e2/B |= Sett : P (x)F (t)ϕ for any B such that e2 �∈ B. By the argument
above, the sentence is true at e/A, where A := B ∪ {e2}. Thus, it is enough
if we show that generally, for every l-event B and every formula ψ:

if A = B ∪ {e2}, then (if e2/A |= ψ, then e2/B |= ψ).

Now e2/A |= ψ means that there is y � 0 such that the family {e2/A�} of
y-units-above e2 extensions of e2/A is a witness for e2/A |= ψ. Consider now
an arbitrary y-units-above e2 extension e2/B� of e2/B. Clearly, e2/{B�∪{e2}
is an y-units-above e2 extensions of e2/A, so e2/(B� ∪ {e2}) |≈ ψ. The final
part of this proof is an inductive argument (with respect to the complexity
of ψ) to the effect that if e2/(B�∪{e2}) |≈ ψ, then e2/B� |≈ ψ. The argument
is exactly like the last part of the proof of Lemma 27. We conclude that
e2/B |= ψ. �

The fact shows that on our analysis the sentence:
It is settled that x days ago it was the case that Themistocles would fight

a battle in t days,
is evaluated true at the event at which Themistocles’s promise is satisfied
and which occurs x days after the promise was made.

4 Conclusions

We put forward a possible-worlds theory, of a branching variety, that works
in terms of possible continuations and large events rather than in terms of

31



possible worlds or histories. The theory has similar explanatory virtues as
BST1992. Some specific models of the theory, which we called (BT+Instants)-
like models, can be used to construct semantical models for languages with
indexicals, metric tenses, and historical modalities. The resulting semantical
theory preserves the distinctive insights of Kripke/Prior/Thomason seman-
tics.

It thus seems that we have here a philosophical paradise on the cheap: an
ontological theory for indeterminism (in the sense of an open future) that can
be used as a semantics for languages with tenses and modalities, and that is
shy about possible histories. The open problem (and a large project) is to
produce an ensemble of branching manifolds, i.e., a kind of generalization of
an individual manifold of general relativity.
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Placek, T. and Wroński, L. (2009). On infinite EPR-like correlations. Syn-

these, 167(1):1–32.

Prior, A. (1967). Past, present, and future. Oxford University Press, Oxford.

Thomason, R. H. (1970). Indeterminist time and truth-value gaps. Theoria,
36(3):264–281.

von Kutschera, F. (1986). Zwei Modallogische Argumente für den Determin-
ismus: Aristoteles und Diodor. Erkenntnis, 24:203–217.

Weiner, M. and Belnap, N. (2006). How causal probabilities might fit into
our objectively indeterministic world. Synthese, 149(1):1–36.
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