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Abstract

The status of the geodesic principle in General Relativity has been a topic of some interest
in the recent literature on the foundations of spacetime theories. Part of this discussion
has focused on the role that a certain energy condition plays in the proof of a theorem due
to Bob Geroch and Pong-Soo Jang [“Motion of a Body in General Relativity.” Journal of
Mathematical Physics 16(1), (1975)] that can be taken to make precise the claim that the
geodesic principle is a theorem, rather than a postulate, of General Relativity. In this brief
note, I show, by explicit counterexample, that not only is a weaker energy condition than
the one Geroch and Jang state insufficient to prove the theorem, but in fact a condition still
stronger than the one that they assume is necessary.

The status of the geodesic principle in General Relativity (GR), which states that free

massive test point particles traverse timelike geodesics, has received considerable attention in

the recent literature on the conceptual and mathematical foundations of spacetime theories.3

This interest was prompted in large part by Harvey Brown’s discussion of inertial motion

in Physical Relativity (Brown, 2005). Much of the discussion has focused on a theorem

originally due to Bob Geroch and Pong Soo Jang (Geroch and Jang, 1975) that makes

precise the claim that the geodesic principle can be understood as a theorem, rather than a

postulate, of GR. Following Malament (2011, Prop. 2.5.2), the Geroch-Jang result can be

stated as follows.

Theorem 1 (Geroch and Jang (1975)) Let (M, gab) be a relativistic spacetime, with M
orientable. Let γ : I → M be a smooth, imbedded curve. Suppose that given any open

1I am grateful to David Malament for helpful comments on a previous draft of this paper, including
several suggestions both on how to formulate the statements of the propositions in the paper and on how
to simplify their proofs. I am also grateful to Bob Geroch and Wayne Myrvold for helpful conversations on
topics closely related to this paper.

2weatherj@uci.edu
3See, for instance, Brown (2005), Malament (2010), Weatherall (2011a), and Sus (2011).
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subset O of M containing γ[I], there exists a smooth symmetric field T ab with the following
properties.

1. T ab satisfies the strengthened dominant energy condition, i.e. given any timelike cov-
ector ξa at any point in M , T abξaξb ≥ 0 and either T ab = 0 or T abξa is timelike;

2. T ab satisfies the conservation condition, i.e. ∇aT
ab = 0;

3. supp(T ab) ⊂ O; and

4. there is at least one point in O at which T ab ̸= 0.

Then γ is a timelike curve that can be reparametrized as a geodesic.

Of particular interest has been the role of the strengthened dominant energy condition,

condition 1, in proving the theorem. The reason this condition is of interest is that a

strong general assumption regarding the nature of matter appears to be at odds with the

claim, apparently supported by some commentators (c.f. Brown (2005) and Sus (2011), but

also older works, such as Carmeli (1982)), that the geodesic principle is a consequence of

(just) the geometrical and geometro-dynamical structure of GR (including Einstein’s field

equation). The status of this energy condition was clarified by Malament (2010), who showed

the following.

Theorem 2 (Malament, 2011, Prop. 2.5.3) Let (M, gab) be Minkowski spacetime, and
let γ : I → M be any smooth timelike curve. Then given any open subset O of M containing
γ[I], there exists a smooth symmetric field T ab on M that satisfies conditions 2, 3, and 4 of
Theorem 1.

Malament’s result shows that the energy condition is necessary, in the sense that the other

three conditions together are not sufficient to prove the theorem. Indeed, at least in Minkowski

space, matter satisfying conditions 2 - 4 can be constructed in arbitrarily small neighbor-

hoods of any timelike curve at all.

In this short note, I offer a further remark on the status of this energy condition. It is

a small point, but I think it is nonetheless worth making, if only to lay out the terrain for

future discussions on this topic. The remark concerns a question that arises in conjunction

with Malament’s result. While Malament shows that some additional condition on T ab,

2



besides conditions 2 - 4, is necessary, he does not prove that the full strengthened dominant

energy condition is necessary. One might thus wonder whether a weaker energy condition

would be sufficient.

Resolving this question is of some foundational interest. The point is most striking in

the context of recent work on the status of the geodesic principle in geometrized Newtonian

gravitation (Weatherall, 2011a), since there, too, an energy condition of sorts is necessary.

That condition, sometimes called the mass condition, is the requirement that mass density

ρ = T abtatb, where ta is the temporal metric of geometrized Newtonian gravitation, is strictly

positive. One might take this condition to be a benign and unsurprising characterization

of what we mean by “massive particle” in Newtonian gravitation (Weatherall, 2011b). If

one does so, it is natural to ask if the corresponding energy condition in the Geroch-Jang

theorem supports a similar interpretation. The Newtonian mass condition is most closely

analogous, at least superficially, to the so-called “weak energy condition” in GR, which

requires that for any timelike covector field ξa, T abξaξb ≥ 0. The weak energy condition, like

the mass condition, is naturally interpreted as the requirement that energy-momentum as

determined by any observer is always non-negative; it is to be contrasted with the strictly

stronger strengthened dominant energy condition, which additionally requires that the four-

momentum of a matter field, as determined by any observer, be timelike (no such additional

constraint is required in the Newtonian case). Given these considerations, it seems salient

to ask whether the weak energy condition, in conjunction with conditions 2 - 4, is sufficient

to prove the Geroch-Jang theorem, since if so, one might similarly interpret the energy

condition in the Geroch-Jang theorem as part of what we mean by a massive particle.4

The answer to this question is no, as can be seen from the following proposition.5

4At least two people with whom I have discussed this topic have suggested that the interpretation that the
energy condition captures what we mean by a massive particle is merited even if the strengthened dominant
energy condition is required, since what we mean by a massive particle in GR is a particle with positive mass
that propagates causally. Perhaps this is right—but if so, the theorem in the Newtonian case is all the more
intriguing, since in that context one gets causal propagation, in addition to geodesic motion, for free from
the weaker condition. One way or the other, one is left with the question of why matter propagates causally
in GR in the first place.

5I am indebted to David Malament for this formulation of the proposition.
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Proposition 3 There exist a relativistic spacetime (M, gab) and a smooth, imbedded space-
like curve γ : I → M satisfying the following condition. Given any open neighborhood O
containing the image of the curve, there exists a smooth, symmetric rank 2 tensor field T ab

satisfying conditions 2− 4 relative to O and also satisfying the weak energy condition.

Proof. Let (N, ηab) be 2 dimensional Minkowski spacetime, and let t, x : N → R be a global

coordinate system on (N, ηab) relative to which the metric takes the form η = diag(1,−1).6

We will takeM to be the manifold defined by associating points (t, x) ∈ N and (t, x+1) ∈ N ,

yielding a cylinder (see Fig. 1). We then take the metric gab on M to be pointwise equal

to ηab. This will be the spacetime used to substantiate the existential claim made in the

proposition. Note that the x and t coordinates can be used to define two constant vector

fields, which we will write as

xa =

(
∂

∂x

)a

and ta =

(
∂

∂t

)a

.

Since xa is a constant spacelike field, its integral curves are spacelike geodesics; because of

the topology of M , these are closed curves. So pick some o ∈ M (for convenience, suppose

t(o) = 0) and let γ : I → M be the maximal integral curve of xa through o. This will be the

curve described in the proposition.

It remains to show that with this choice of spacetime and curve, given any neighborhood

O of the curve, there exists a smooth, symmetric field T ab satisfying the four required

conditions. We will exhibit this field explicitly. Let O be any neighborhood of the curve.

Because the curve is closed, it must be possible find a minimal radius for O, that is, there

must be some value t0 such that the (closed) tube {p ∈ M : |t(p)| ≤ t0} is a subset of O.

(This follows because the manifold is compact in the x direction.) Let α be a smooth scalar

field such that (a) α = 1 on γ, (b) α = 0 outside of the (open) tube {p ∈ M : |t(p)| < t0},

(c) α ≥ 0 everywhere, and (d) xa∇aα = 0. One candidate for α would be the scalar field

6The following construction is easiest to picture in 2 dimensions, so I will develop it there. It should be
clear however that the dimension does not actually play a role in what follows.
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Figure 1: The spacetime (M, gab) is constructed by taking 2 dimensional Minkowski space-
time and wrapping it up into a cylinder in the spacelike direction. The metric remains the
same, and so the lightcones are unchanged by the transformation. The integral curves of xa,
however, are now closed curves.

defined by

α(t) =

(
f(t+ t0)

f(t+ t0) + f(−t− t0/2)

)
×

(
f(t0 − t)

f(t0 − t) + f(t− t0/2)

)
, (1)

where

f(s) =


exp(−1/s) if s > 0

0 if s ≤ 0

.

We can then define T ab = αxaxb. T ab clearly satisfies conditions 3 and 4 by the construction

of α. This T ab also satisfies the conservation condition, since ∇aT
ab = xbxa∇a(α) = 0, again

by construction. Finally, T ab also satisfies the weak energy condition, since for any timelike

vector ξa, T abξaξb = α(xaξa)
2 ≥ 0, since α ≥ 0. Note, however, that it manifestly does not

satisfy the strengthened dominant energy condition. �

The preceding proposition settles that the weak energy condition is not sufficient for the

Geroch-Jang theorem. But one can say even more. Let me first draw attention to a subtle

distinction between the energy condition stated above as condition 1 of the Geroch-Jang
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theorem (what I call the “strengthened dominant energy condition,” following Malament)

and the condition stated in the original Geroch-Jang paper, sometimes called the “strict

dominant energy condition”. They are different.

Strengthened Dominant Energy Condition: An energy momentum field
T ab satisfies the strengthened dominant energy condition if, given any timelike
covector ξa at any point inM , T abξaξb ≥ 0 and either T ab = 0 or T abξa is timelike.

Strict Dominant Energy Condition: An energy momentum field T ab satis-
fies the strict dominant energy condition if, given any two co-oriented timelike
covectors ξa and ηa at any point in M , either Tab = 0 or T abξaηb > 0.

The strengthened dominant energy condition is strictly stronger, as can be seen from the

following equivalent formulation:

Strengthened Dominant Energy Condition∗: An energy momentum field
T ab satisfies the strengthened dominant energy condition if, given any two co-
oriented causal covectors ξa and ηa at any point in M , either Tab = 0 or T abξaηb >
0.

With this reformulation, the strict dominant energy condition is a restriction on the product

of T ab with pairs of co-oriented timelike vector fields; the strengthened dominant energy

condition is a restriction on the product of T ab with pairs of the larger class of future-directed

causal vector fields, which is more restrictive.

It turns out that the strict dominant energy condition, already a strong energy condition

by any standard, is still not strong enough.

Proposition 4 There exists a relativistic spacetime (M, gab) and a smooth, imbedded null
curve γ : I → M satisfying the following condition. Given any open neighborhood O contain-
ing the image of the curve, there exists a smooth, symmetric rank 2 tensor field T ab satisfying
conditions 2− 4 relative to O and also satisfying the strict dominant energy condition.

Proof. We will begin with the cylindrical spacetime (M, gab) and coordinate system t, x

defined in the proof of the last proposition, modified as follows: we now consider a new

metric, g′ab, defined by:

g′ab =
1

2
((dat)(dbx) + (dbt)(dax)) .

6



Figure 2: The spacetime (M, g′ab) is constructed by taking (M, gab), the cylindrical spacetime
described in proposition 3, and rotating the lightcones so that xa and ta are null fields with
respect to the new metric. The integral curves of xa, however, remain closed curves.

This new spacetime, (M, g′ab), can be thought of as the original spacetime with the lightcones

rotated so that, with respect to g′ab, the constant vector fields ta and xa are now null vector

fields (see Fig. 2). Relative to the new metric, the curve γ we considered in proposition

3 is now a null curve (because its tangent vector field is now everywhere null). From here

we proceed identically to in proposition 3. Once again, in any neighborhood of γ, we can

construct an energy-momentum field T ab = αxaxb, with α defined as in Eq. (1). Now,

however, xa is null, and so the field satisfies the strict dominant energy condition. �

These results indicate that one requires a strong energy condition indeed to prove the

geodesic principle as a theorem of GR, at least by the Geroch-Jang method. It is perhaps

interesting to point out that the two propositions proved here differ in an important way

from Malament’s result: Malament shows that if one drops the energy condition altogether,

one does not even get geodesic motion, much less timelike geodesic motion. My focus has

been slightly different, on how strong an energy condition is required to prove that the

propagation of test matter is timelike (as opposed to spacelike or null). In both cases, my
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counter-examples have involved geodesics (either spacelike geodesics, or null geodesics). I do

not know whether some weaker energy condition, say the weak energy condition, is sufficient

to prove geodesic motion for test particles (without prejudice for whether the worldlines are

timelike, spacelike, or null). It may be that this would be an interesting question to settle.

That said, at least for some foundational purposes, it seems to me that one is most interested

in the conditions that are necessary to prove the geodesic principle as ordinarily understood

(i.e., as concerning timelike curves).
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