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Abstract

This paper examines a fundamental problem in applied mathe-
matics. How can one model the behavior of materials that display
radically different, dominant behaviors at different length scales. Al-
though we have good models for material behaviors at small and large
scales, it is often hard to relate these scale-based models to one an-
other. Macroscale models represent the integrated effects of very
subtle factors that are practically invisible at the smallest, atomic,
scales. For this reason it has been notoriously difficult to model real-
istic materials with a simple bottom-up-from-the-atoms strategy. The
widespread failure of that strategy forced physicists interested in over-
all macro-behavior of materials toward completely top-down modeling
strategies familiar from traditional continuum mechanics. The prob-
lem of the “tyranny of scales” asks whether we can exploit our rather
rich knowledge of intermediate micro- (or meso-) scale behaviors in
a manner that would allow us to bridge between these two dominant
methodologies. Macroscopic scale behaviors often fall into large com-
mon classes of behaviors such as the class of isotropic elastic solids,
characterized by two phenomenological parameters—so-called elastic
coefficients. Can we employ knowledge of lower scale behaviors to un-
derstand this universality—to determine the coefficients and to group
the systems into classes exhibiting similar behavior?
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1 Introduction

In this paper I will focus on a fundamental problem in applied mathematics.
This is the problem of modeling across scales. Many systems, say a steel
girder, manifest radically different, dominant behaviors at different length
scales. At the scale of meters, we are interested in its bending properties,
its buckling strength, etc. At the scale of nanometers or smaller, it is com-
posed of many atoms, and features of interest include lattice properties, ionic
bonding strengths, etc. To design advanced materials (such as certain kinds
of steel) materials scientists must attempt to deal with physical phenomena
across 10+ orders of magnitude in spatial scales. According to a recent (2006)
NSF research report this “tyranny of scales” renders conventional modeling
and simulation methods useless as they are typically tied to particular scales.
[11, p. 29] “Confounding matters further, the principal physics governing
events often changes with scale, so the models themselves must change in
structure as the ramifications of events pass from one scale to another.” [11,
pp. 29–30] Thus, even though we often have good models for material be-
haviors at small and large scales, it is often hard to relate these scale-based
models to each other. Macroscale models represent the integrated effects
of very subtle factors that are practically invisible at the smallest, atomic,
scales. For this reason it has been notoriously difficult to model realistic ma-
terials with a simple bottom-up-from-the-atoms strategy. The widespread
failure of that strategy forced physicists interested in overall macro-behavior
of materials toward completely top-down modeling strategies familiar from
traditional continuum mechanics.

The problem of the “tyranny of scales” asks whether we can exploit our
rather rich knowledge of intermediate micro- (or meso-) scale behaviors in a
manner that would allow us to bridge between these two dominant method-
ologies. Macroscopic scale behaviors often fall into large common classes of
behaviors such as the class of isotropic elastic solids, characterized by two
phenomenological parameters—so-called elastic coefficients. Can we employ
knowledge of lower scale behaviors to understand this universality—to deter-
mine the coefficients and to group the systems into classes exhibiting similar
behavior? This is related to engineering concerns as well: Can we employ
our smaller scale knowledge to better design systems for optimal macroscopic
performance characteristics.

The great hope that has motivated a lot of recent research into so-called
“homogenization theory,” arises from a conviction that the “between-scales”
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point of view developed by Kadanoff, Fisher, and Wilson in the renormaliza-
tion group approach to critical phenomena in fluids and magnets, may very
well be the proper methodological strategy to overcome the tyranny of scales.
A number of philosophers have recently commented on the renormalization
group theory, but they seem to have missed what is truly novel about the
methodological perspective that the theory employs.

Philosophical discussions of the applicability of mathematics, in general,
have not, in my opinion, paid sufficient attention to contemporary work on
this problem of modeling across scales. In many instances, philosophers hold
on to some sort of ultimate reductionist picture: Whatever the fundamental
theory is at the smallest, basic scale, it will be sufficient in principle to tell
us about the behavior of the systems at all scales. Continuum modeling on
this view, represents an idealization—as Feynman has said, “a smoothed-
out imitation of a really much more complicated microscopic world.” [13,
p. 12–12] Furthermore, the suggestion is that such models are in principle
eliminable.

There is a puzzle however. Continuum model equations such as the
Navier-Stokes equations of hydrodynamics or the equations for elastic solids
work despite the fact that they completely (actually, almost completely—
this is crucial to the discussion below) ignore small scale or atomistic details
of various fluids. The recipe (I call it “Cauchy’s recipe”) by which we con-
struct continuum models is safe: If we follow it we will most always be led
to empirically adequate successful equations characterizing the behavior of
systems at the macroscopic level. Why? What explains the safety of this
recipe? Surely this requires an answer. Surely, the answer must have some-
thing to do with the physics of the modeled systems at smaller scales. If
such an answer cannot be provided, we will be left with a kind of sceptical
attitude expressed by Penelope Maddy and discussed below in section 3. The
worry is that without such an answer, we should not expect anything like a
unified conception of applied mathematics’ use of continuum idealizations.
If an answer is forthcoming, then we have to face the reductionist picture
mentioned above. Will such an answer—an answer that explains the robust-
ness and safety of employing continuum modeling—support the view that
continuum models are mere conveniences, only pragmatically justified, given
the powerful simplifications gained by replacing large but finite systems with
infinite systems? As noted, many believe that a reductionist/eliminitivist
picture is the correct one. I maintain that even if we can explain the safety
and robustness of continuum modeling, this reductionist picture is mistaken.
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It is a mistaken picture not only of how science works but also of how
the world works. I suggest that much philosophical confusion about reduc-
tion, emergence, atomism, and antirealism follows from the absolute choice
between bottom-up and top-down modeling that the tyranny of scales ap-
parently forces upon us. As noted, recent work in homogenization theory is
beginning to provide much more subtle descriptive and modeling strategies.
This new work calls into question the stark dichotomy drawn by the “do it
in a completely bottom-up fashion” folks and those who insist that top-down
methods are to be preferred.

The next section discusses the proposal that the use of continuum ideal-
izations present no particular justificatory worries at all. Recent philosoph-
ical literature has focused on the role of continuum limits in understanding
various properties of phase transitions in physical systems such as fluids and
magnets. Some authors, particularly Jeremy Butterfield [9] and John Norton
[20], have expressed the view that there are no particularly pressing issues
here: The use of infinite limits is perfectly straightforwardly justified by ap-
peal to pragmatic considerations. I argue that this view is mistaken and
that it misses an important difference in methodology between some uses
of infinite limits and those used by renormalization group arguments and
homogenization theory.

Section 3 discusses Maddy’s concerns. In section 4, I present an inter-
esting historical example involving nineteenth century attempts to derive
the proper equations governing the behavior of elastic solids and fluids. A
controversy raged throughout that century concerning the merits of starting
from bottom-up atomic description of various bodies in trying to arrive at
empirically adequate continuum equations. It turns out that the bottom-
up advocates lost the debate. Correct equations apparently could only be
achieved by eschewing all talk of atomic or molecular structure, advocating
instead a top-down approach supplemented, importantly, with experimen-
tally determined data. In section 5, I formulate the tyranny of scales as the
problem, just mentioned, of trying to understand the connection between
recipes for modeling at atomic scales (Euler’s recipe) and Cauchy’s recipe
appropriate for continuum models. Finally, I present a general discussion of
work on homogenization that provides at least the beginning of an answer to
the safety question and to the problem of bridging scales between the atomic
and the continuum. This research can be seen as allaying Maddy’s sceptical
worries about a unified applied mathematical methodology regarding the use
of continuum idealizations of a certain kind.
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2 Steel Beams, Scales, Scientific Method

Let’s consider the steel girder in a bit more detail. In many engineering ap-
plications steel displays linear elasticity. This is to say that it obeys Hooke’s
Law—its strain is linearly proportional to its stress. One phenomenological
parameter related to its stress/strain (i.e., stiffness) properties is Young’s
Modulus appearing in the equations of motion for solids as well as in equi-
librium and variational equations. At scales of 1 meter to 10−3 meters, say,
the steel girder appears to be almost completely homogeneous: Zooming in
with a small microscope will reveal nothing that looks much different. So
for behaviors that take place within this range of scales, the steel girder is
well-modeled or represented by the Navier-Cauchy equations:

(λ+ µ)∇(∇ · u) + ρ∇2u + f = 0. (1)

The parameters, λ and µ are the “Lamé” parameters and are related to
Young’s modulus.

Now jump from this large scale picture of the steel to its smallest atomic
scale. Here the steel, for typical engineering purposes, is an alloy that con-
tains iron and carbon. At this scale, the steel exhibits highly symmetric
crystalline lattice structures. It looks nothing like the homogenous girder
at the macroscales that exhibits no crystalline structure. Somehow between
the lowest scale of symmetric crystals and the scale of meters or millimeters,
the low level symmetric structures must disappear. But that suggests that
properties of the steel at its most basic, atomic level cannot, by themselves,
determine what is responsible for the properties of the steel at macroscales.

In fact, the story is remarkably complex. It involves appeal to various
geometrical properties that appear at microscales intermediate between the
atomic and the macro1, as well as a number of other factors such as marten-
sitic transformations.2 The symmetry breaking is effected by a combination
of point defects, line defects, slip dislocations, as well as higher dimensional
wall defects that characterize interfacial surfaces. All of these contribute to

1I call these intermediate scales “microscales” and the structures at these scales “mi-
crostructures” following the practice in the literature, but it may be best to think of them
as “mesoscopic”.

2These latter are transformations that take place under cooling when a relatively high
symmetry lattice such as one with cubic symmetry loses symmetry to become tetragonal.
Some properties of steel girders therefore depend crucially on dynamical changes that take
place at scales in between the atomic and the macroscopic. [22, pp. 547–548]
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the homogenization of the steel we see and manipulate at the macroscale.
And of course, in engineering contexts, the macro features (bending proper-
ties, for example) are the most important—we do not want our buildings or
bridges to collapse.

2.1 Limits, Averages, Continuum Models

A much simpler case than steel involves trying to connect the finite statistical
mechanical theory of a fluid at the atomic scale to the thermodynamic contin-
uum theory at macro scales.3 The relationship between statistical mechanics
and thermodynamics has received a lot of attention in the recent philosoph-
ical literature. Many of these discussions concern the nature and poten-
tial emergence of phase transitions in the so-called thermodynamic limit.
[9, 18, 7, 1] The debates revolve around use of the thermodynamic limit and
its role in understanding certain features of thermodynamic systems.4 It will
be instructive to consider this case once again in a different context than has
been explicitly discussed in the literature. This is the context in which we
consider the general problem of upscaling from atomic to laboratory scales,
as in the case of the steel girder discussed above. In doing this, I hope it will
become clear that many of the recent philosophical discussions miss a crucial
feature of the methodology of applying limits like the thermodynamic limit.

Let’s begin with Jeremy Butterfield’s discussion of the “Straightforward
Justification” for the use of infinite limits in physical modeling.

This Justification consists of two obvious, very general, broadly
instrumentalistic, reasons for using a model that adopts the limit
N =∞: mathematical convenience, and empirical adequacy (up
to a required accuracy). So it also applies to many other models
that are almost never cited in philosophical discussions of emer-
gence and reduction. In particular, it applies to the many classical
continuum models of fluids and solids, that are obtained by tak-
ing a limit of a classical atomistic model as the number of atoms

3Though simpler than the case of understanding how atomic aspects of steel affect its
phenomenological properites, this is, itself, a difficult problem for which a Nobel prize was
awarded.

4This is the limit in which the number of particles N in a system approaches infinity
in such a way that the density remains constant—the volume has to go to infinity at the
same time as the number of particles.
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N tends to infinity (in an appropriate way, e.g. keeping the mass
density constant).5 [9, p. 1080]

He continues by emphasizing two “themes” common to the use of many
different infinite models:

The first theme is abstraction from finitary effects. That is: the
mathematical convenience and empirical adequacy of many such
models arises, at least in part, by abstracting from such effects.
Consider (a) how transient effects die out as time tends to infinity;
and (b) how edge/boundary effects are absent in an infinitely
large system.

The second theme is that the mathematics of infinity is often
much more convenient than the mathematics of the large finite.
The paradigm example is of course the convenience of the calcu-
lus: it is usually much easier to manipulate a differentiable real
function than some function on a large discrete subset of R that
approximates it. [9, p. 1081]

The advantages of these themes are, according to Butterfield, twofold.
First, it may be easier to know or determine the limit’s value than the actual
value primarily because of the removal of boundary and edge effects. Sec-
ondly, in many examples of continuum modeling we have a function defined
over the finite collection of atoms or lattice sites that oscillates or fluctuates
and so can take on many values. In order to employ the calculus we often
need to “have each value of the function defined as a limit (namely, of val-
ues of another function).” [9, pp 1081–1082] Butterfield seems to have in
mind the standard use of averaging over a “representative elementary vol-
ume” (REV)6 and then taking limits N → ∞, volume going to zero, so as
to identify a continuum value for a property on the macroscale. In fact, he
cites continuum models of solids and fluids as paradigm examples:

For example, consider the mass density varying along a rod, or
within a fluid. For an atomistic model of the rod or fluid, that

5Note that Butterfield explicity claims that the “Straightforward Justification” applies
to many cases of classical continuum modeling of solids and fluids, including, I suppose,
the case of the steel girder.

6I’ve taken this terminology from [14, p. 1].
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postulates N atoms per unit volume, the average mass-density
might be written as a function of both position x within the rod
or fluid, and the side-length L of the volume L3 centred on x,
over which the mass density is computed: f(N,x, L). Now the
point is that for fixed N , this function is liable to be intractably
sensitive to x and L. But by taking a continuum limit N → ∞,
with L → 0 (and atomic masses going to zero appropriately so
that quantities like density do not “blow up”), we can define a
continuous, maybe even differentiable, mass-density function ρ(x)
as a function of position—and then enjoy all the convenience of
the calculus.

So much by way of showing in general terms how the use of an
infinite limit N = ∞ can be justified—but not mysterious! At
this point, the general philosophical argument of this paper is
complete! [9, p. 1082]

So for Butterfield most of the discussions concerning the role, and partic-
ularly, the justification of the use of the thermodynamic limit in the debates
about phase transitions have generated a lot of hot air. The justification,
on his view, for employing such limits in our modeling strategies is largely
pragmatic—for the sake of convenience. In addition, there is, as he notes, the
further concern that the use of such limits be empirically adequate—getting
the phenomena right to within appropriate error bounds. Much of his discus-
sion in [9] then concerns showing that the use of such limits can most always
be shown to be empirically adequate in this sense. Unfortunately, I think
that things are more subtle than the straightforward justification as outlined
here admits. In fact, there are very good reasons to think that the use of
the thermodynamic limit in the context of the renormalization group (RG)
explanation of critical phenomena—one of the cases he highlights—fails to
be justified by his own criteria for justification. It is a different methodol-
ogy, one that does not allow for the sort of justificatory story just told. The
straightforward story as described above cannot be told for the RG method-
ology for the simple reason that that story fails to be empirically adequate
in those contexts.

In order to see this, I need to say a bit about what the RG argument
aims to do. I will then give a simple example of why, one should, almost
always, expect the story above involving averaging over a representative vol-
ume element (REV) to fail. In fact, the failure of this story is effectively the
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motivation behind Wilson’s development of the distinct RG methodology.
I’ve discussed the RG in several publications [2, 3, 7] and Butterfield in

[9] and Butterfield and Bouatta in [10] present concise descriptions as well.
For the purposes here, as noted earlier, I am going to present some of the
details with a different emphasis than these other discussions have provided.
In particular, I want to stress the role of the RG as part of a methodol-
ogy for upscaling from a statistical theory to a hydrodynamic/continuum
theory. In so doing, I follow a suggestion of David Nelson [19, pp. 3–4]
who builds on a paper of Ken Wilson. [26] The suggestion is that entire
phases of matter (not just critical phenomena) are to be understood as de-
termined by a “fixed point” reflecting the fact that “universal physical laws
[are] insensitive to microscopic details.” [19, p. 3] Specifically, the idea is to
understand how details of the atomic scale physics gets encoded (typically)
into a few phenomenological parameters that appear in the continuum equa-
tions governing the macroscopic behavior of the materials. In a sense, these
phenomenological parameters (like viscosity for a fluid, and Young’s modulus
for a solid) characterize the appropriate “fixed point” that defines the class
of material exhibiting universal behavior despite potentially great differences
in microscale physics.

Let us consider a ferromagnet modeled as a set of classical spins σi on a
lattice—the Ising model. In this model, neighboring spins tend to align in
the same direction (either up or down: σi = ±1). Further, we might include
the effect of an external magnetic field B. Then the Hamiltonian for the
Ising model is given by

H[{σi}] = −J
∑
〈i,j〉

σiσj + µB
∑
i

σi,

with the first sum over nearest neighbor pairs of spins, µ is a magnetic mo-
ment. A positive value for the coupling constant J reflects the fact that
neighboring spins will tend to be aligned, both up or both down.

For ferromagnets we can define an order parameter—a function of the
net magnetization for the system—that exhibits a discontinuity or jump at
the so-called critical or Curie temperature, Tc. Above Tc, in zero magnetic
field, the spins are not correlated due to thermal fluctuations and so the net
magnetization is zero. As the system cools down to the Curie temperature,
there is singularity in the magnetization (defined as a function of the free
energy). (See figure 1.) The magnetization exhibits power law behavior near
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Figure 1: Spontaneous Magnetization at Tc

that singularity characterized by the relation

M ∝ |t|β,

where t is the reduced temperature t = T−Tc
Tc

. It is a remarkable fact that
physically quite distinct systems—magnets modeled by different Hamiltoni-
ans, and even fluids (whose order parameter is the difference between vapor
and liquid densities in a container)—all exhibit the same power law scaling
near their respective critical points: The number β is universal and charac-
terizes the phenomenological behavior of a wide class of systems at and near
criticality.7

The RG provides an explanation for this universal behavior; and in par-
ticular, it allows one to theoretically determine the value for the exponent β.
For the 3-dimensional Ising model, that theoretical value is approximately
.31. Experimentally determined values for a wide class of fluids and magnets
are found in the range .31–.36. So-called “mean field” calculations predict
a value of .5 for β. [26, p. 120] A major success of the RG was its ability
to correct mean field theory and yield results in close agreement with ex-
periment. In a mean field theory, the order parameter M is defined to be

7See [16, 2, 3, 7] for details.
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Figure 2: Bubbles within Bubbles within Bubbles . . . [After Kadanoff [15, p.
11–12].]

the magnetic moment felt at a lattice site due to the average over all the
spins on the lattice. This averaging ignores any large scale fluctuations that
might (and, in fact, are) present in systems near their critical points. The
RG corrects this by showing how to incorporate fluctuations at all length
scales, from the atomic to the macro, that play a role in determining the
macroscopic behavior (specifically the power law dependence—M ∝ |t|β ) of
the systems near criticality. In fact, near criticality the lattice system will
contain “bubbles” (regions of correlated spins—all up or all down) of all sizes
from the atomic to the system size. As Kadanoff notes, “[f]rom this picture
we conclude that critical phenomena are connected with fluctuations over
all length scales between ξ [essentially the system size] and the microscopic
distance between particles.” [15, p. 12]

So away from criticality, say below the critical temperature, the lattice
systems will look pretty much homogeneous.8 For a system with T � Tc in
figure 1 we would have relatively large correlated regions of spins pointing in
the same direction. There might be only a few insignificantly small regions
where spins are correlated in the opposite direction. This is what is responsi-
ble for there being a positive, nonzero, value for M at that temperature. Now
suppose we were interested in describing a large system like this away from

8Systems above the critical temperature will also appear homogeneous as the spins will
be uncorrelated, randomly pointing up and down.
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Figure 3: 50–50 Volume Mixture

criticality using the continuum limit as understood by Butterfield above. We
would choose a representative elementary volume of radius L around a point
x that is small with respect to the system size ξ, but still large enough to
contain many spins. Next we would average the quantity M(N,x, L) over
that volume and take the limits N → ∞, L → 0 so as to obtain the proper
continuum value and so that we would be able to model the actually finite
collection of spins using convenient continuum mathematics.

But near the critical temperature (near Tc) the system will look het-
erogeneous—exhibiting a complicated mixture of two distinct phases as in
figure 2. Now we face a problem. In fact, it is the problem that effectively
undermined the mean field approach to critical phenomena. The averaging
method employing a representative elementary volume element misses what
is most important. Somehow we will need to know how to weight the differ-
ent phases as to their import for the macroscopic behavior of the system. In
other words, were we to perform the REV averaging, all of the physics of the
fluctuations responsible for the coexisting bubbles of up spins and bubbles
of down spins would be ignored.

Here is a simple example to see why this methodology will often fail for
heterogenous systems. [25, p.11] Consider a composite material consisting of
equal volumes of two materials one of which is a good electrical conductor
and one of which is not. A couple of possible configurations are shown in fig-
ure 3. Suppose that the dark, connected phase, is the good conductor. If we
were to proceed using the REV recipe, then, because the volume fractions are
the same, we would grossly underestimate the bulk conductivity of the ma-
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terial in the left configuration and grossly underestimate its bulk insulating
capacities in the right configuration. REV averaging treats only the volume
fraction and completely misses microstructural details that are relevant to
the bulk (macroscale) behavior of the material. In this simple example, the
microstructural feature that is relevant is the topological connectedness of
the one phase vs. the other—that is, the details about the boundaries be-
tween the two phases.9 In more complicated situations, such as the steel
girder with which we began, such microstructural features include mesoscale
dislocations, defects of various kinds, and martensitic transformations.

The upshot, then, is that the straightforward justification for the use of
infinite limits will miss exactly what is important for understanding what is
going on for systems at and near criticality. There, they no longer appear
homogeneous across a large range of scales. If we are to try to connect (and
thereby extract) correct phenomenological macroscopic values for appropri-
ate parameters (e.g., β) we need to consider structures that exist at scales
greater than the fundamental/basic/atomic.

This is exactly what the RG does, by including in the calculations, the
effects of fluctuations or equivalently, the fact that bubbles within bubbles of
different phases appear near criticality. We need methods that tell us how to
homogenize heterogeneous materials. In other words, to extract a continuum
phenomenology, we need a methodology that enables us to upscale models
of materials that are heterogeneous at small scales to those that are homo-
geneous at macroscales, as is evidenced by the fact that only a very small
number of phenomenological parameters are required to characterize their
continuum level behaviors. It appears, then, that the straightforward justi-
fication of the use of continuum limits needs to be reconsidered or replaced
in those contexts where the materials of interest exhibit heterogeneous mi-
crostructures. Homogenization theory, and the RG employ a different kind
of continuum limit than the straightforward justification that Butterfield’s
offers.

In section 6 I will say a bit more about the nature and generality of
this different methodology. In the next section I’ll connect the discussion of
the use of continuum limits in modeling to some sceptical concerns raised
by Penelope Maddy. Maddy, unlike Butterfield, is worried that the use of

9One might object that all one needs to do to save the REV methdology would be to
properly weight the contribution of the different phases to the overall average. But this
is not something that one can do a priori or through ab initio calculations appealing to
details and properties of the individual atoms at the atomic scale.
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continuum limits are much too diverse to be captured by a simple set of
methodological directives and justifications. While Butterfield’s pragmatic
justication endorses the eliminability in principle of infinite limits, Maddy
apparently wants to deny the latter.

3 Maddy’s Concerns

In her interesting paper, “How Applied Mathematics Became Pure,” Pene-
lope Maddy presents a strong case for scepticism about whether there can
be a unified methodology for applied mathematics. Her primary reasons for
this scepticism reflect the reductionist/fundamentalist paradigm mentioned
above, as well as the idea that a straightforward correspondence between
mathematics and physics is rarely realized in applications. “There are rare
cases where [the relation between mathematical structure and physical facts]
is something like isomorphism—. . . but most of the time, the correspondence
is something much more complex, and all too often, it is something we simply
do not yet understand . . . .” [17, p. 33]

As noted, a standard picture of the hierarchy of the sciences tells us that
atomistic theories are fundamental and that from them we should be able
to account for all physical phenomena. But, Maddy notes, even a cursory
glance at contemporary applied mathematics and physics reveals a picture
quite unlike this. Solids, fluids, gases, etc. all exhibit macroscopic features
that are well-described and accounted for by venerable continuum theories:
Continuum mechanics, Fluid mechanics, and Thermodynamics. Yet, at the
same time, these systems are composed of atoms, molecules, etc., and obey
discrete equations of atomic and molecular dynamics.

We are faced with the following situation: Either the continuum models
at large length scales are eliminable in principle or they are not. If they are
eliminable, then any correspondence between those continuum models and
systems is unnecessary. After all, in that case all reference to continuum scale
properties will just be paraphrases of lower scale properties. If they are ine-
liminable there is a clear sense in which correspondence between system and
model fails—continuum models speak of continua, not of discrete particles.

To argue that continuum models are eliminable requires demonstrating
how such an elimination is to be carried out for even a remotely realistic
case. Maddy is sceptical that this sort of story can be told. It seems to me
that Maddy’s worry is reasonable, given the “tyranny of scales” mentioned
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in the introduction.10 If the “principal physics” can change with scales, it is
difficult to see how one will be able to carry out such an eliminativist story.

Maddy thinks that if one cannot tell such a story, then there is also little
reason to believe that the various different applications of continuum models
can be unified into a coherent methodology. After discussing a number of
examples in which continuum models are employed she concludes:

It appears unlikely that any general uniform account of how
mathematics applies to the world could cover the wide variety
of cases [she considers]. To take just a few of the examples [she
has discussed in her article], the point particle model of an ideal
gas works effectively for dilute gases because the occupied volume
is negligibly small compared to the total volume; the “continuum
hypothesis” works effectively in fluid dynamics because there is
a suitable “plateau” between volumes too small to have stable
temperature and volumes too large to have uniform temperature;
. . . .[17, p. 34]

I believe that Maddy’s scepticism about a unified methodology for applied
mathematics hinges upon an assumption that only a tale about correspon-
dence between model and system can yield a unified methodology.11 Since
that doesn’t seem to be in the offing, we appear to be out of luck: Continuum
models are neither eliminable nor are they capable of being understood in a
unified way. As she says, “[g]iven the diversity of the considerations raised
to delimit and defend these various mathematizations [the cases mentioned
above], anything other than a patient case-by-case approach would appear
singularly unpromising.” [17, p. 35]

I believe there is a way out, and that an interesting story can be told—one
that in effect will tell us how to bridge the scale separation between discrete
molecular modeling and continuum models in a principled way. But, and
this is the main point of the paper, being able to tell such a story in no
way vindicates the elimitivist or reductionist attitudes of those who take
continuum models and theories to be merely pragmatic conveniences.

10Note, again, that Butterfield does not seem to be moved by this sort of concern. He be-
lieves that continuum modeling is merely pragmatically justified as a shortcut for the much
more complicated, but in principle story to be told from the fundamental atomic/small
scale point of view.

11See [5] for a discussion of this kind of correspondence or mapping relation.
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In the next section I consider an interesting historical example that should
give pause to those who think continuum models are ultimately unnecessary.
This is the story of deriving appropriate continuum equations for the behavior
of elastic solids and gave rise to a controversy that lasted for most of the
nineteenth century.

4 Bridging Across Scales: An Historical Con-

troversy

Why are the Navier-Stokes equations named after Navier and Stokes? The
answer is not as simple as “they both, independently, arrived at the same
equation.” In fact, there are differences between the equation Navier first
came up with and that derived by Stokes. The differences relate to the
assumptions that each employed in his derivation, but more importantly,
these different assumptions actually lead to different equations. Furthermore,
the difference between the equations was symptomatic of a controversy that
lasted for most of the nineteenth century. [12, p. 86]

While the Navier-Stokes equation describes the behavior of a viscous fluid,
the controversy has its roots in the derivation of equations for the behavior
of an elastic solid. I intend to focus on the latter equations and only at the
end make some remarks about the fluid equations.

The controversy concerned the number of material constants that were
required to describe the behavior of elastic solids. According to Navier’s
equation, a single constant marked a material as isotropic elastic. According
to Stokes and Green, two constants were required. For anisotropic elas-
tic materials (where symmetries cannot be employed) the debate concerned
whether the number of necessary constants was 15 or 21. This dispute be-
tween, respectively, “rari-constancy” theorists and “multi-constancy” theo-
rists, depended upon whether one’s approach to the elastic solid equations
started from a hypothesis to the effect that solids are composed of interacting
molecules, or from the hypothesis that solids are continuous.

Navier’s derivation began from the hypothesis that the deformed state of
an elastic body was to be understood in terms of forces acting between indi-
vidual particles or molecules that make up the body. Under this assumption,
he derived equations containing only one material constant ε.

Navier’s equations for an elastic solid are as follows [12, p. 80]:
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ε4u+ 2
∂Θ

∂x
ρX = ρ

∂2u

∂t2
, (2)

ε4v + 2
∂Θ

∂y
ρY = ρ

∂2v

∂t2
, (3)

ε4w + 2
∂Θ

∂z
ρZ = ρ

∂2w

∂t2
. (4)

Here ε, Navier’s material constant, reflects the molecular forces that turn
on when external forces are applied to the body. x, y, z are the coordinates
representing the location of a material point in the body.12 u, v, w are the
displacement components in the directions x, y, z; X, Y, Z represent the ex-
ternal accelerations (forces) in the directions x, y, z; 4 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is

the Laplace operator; Θ = ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

; and ρ is the material density.
Cauchy also derived an equation for isotropic elastic materials by start-

ing from a molecular hypothesis similar to Navier’s. However, his equation
contains the correct number of material constants (two). It is instructive to
write down Cauchy’s equations and to discuss how, essentially, a mistaken,
inconsistent derivational move on his part yielded a more accurate set of
equations than Navier.

Cauchy’s equations for an elastic solid are as follows [12, p. 81] (Compare
with equation (1).):

(R + A)4u+ 2
∂Θ

∂x
ρX = ρ

∂2u

∂t2
, (5)

(R + A)4v + 2
∂Θ

∂y
ρX = ρ

∂2v

∂t2
, (6)

(R + A)4w + 2
∂Θ

∂z
ρX = ρ

∂2w

∂t2
, . (7)

R,A are the two material constants. Cauchy noted, explicitly, that when
A = 0 his equations agree with Navier’s when R = ε. [12, p. 81] How

12Note that in continuum mechanics, generally, a material point or “material particle”
is not an atom or molecule of the system, rather it is an imaginary region that is large
enough to contain many atomic subscales (whether or not they really exist) and small
enough relative to the scale of field variables characterizing the impressed forces. Of
course, as noted, Navier’s derivation did make reference to atoms.
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did Cauchy arrive at a different equation than Navier, despite starting, es-
sentially, from the same molecular assumptions about forces? He did so by
assuming that, despite the fact he is operating under the molecular hypoth-
esis, he can, in his derivation replace certain summations by integrations.
In effect, he actually employs a continuum condition contradictory to his
fundamental starting assumption.13

George Green, in 1839, published a study that arrived at the correct
equations—essentially (5)–(7)—by completely eschewing the molecular hy-
pothesis. He treated the entire body as composed of “two indefinitely ex-
tended media, the surface of junction when in equilibrium being a plane of
infinite extent.”14 He also assumed that the material was not crystalline and,
hence, isotropic. Then using a principle of the conservation of energy/work
he derived, using variational principles of Lagrangian mechanics, his multi-
constant equation.

Finally, following the discussion of Todhunter and Pearson [24], we note
that Stokes’ work supported the multi-constancy theory in that he was able
to generalize his equations for the behavior of viscous fluids to the case of
elastic solids by making no distinction between a viscous fluid and a solid
undergoing permanent—plastic—deformation. “He in fact draws no line be-
tween a plastic solid and a viscous fluid. The formulae for the equilibrium of
an isotropic plastic solid would thus be bi-constant. [24, p. 500.] This unifi-
cation of continuum equations lends further support to the multi-constancy
theory.

Of course one might wonder whether the debate between the rari-constancy
and multi-constancy theorists could be decided empirically. Todhunter and
Pearson examine a number of experimental “demonstrations” that suppos-
edly support the multi-constancy point of view. But interestingly, they raise
good reasons for not taking them to be decisive. They are responding to a
rather flippant dismissal of rari-constancy theories by Thomson and Tait:

The only condition that can be theoretically imposed upon these
coefficients (the 21 of Green) is that they must not permit w (the
work) to become negative for any values, positive or negative, of
the strain components . . . . Under Properties of Matter we shall
see that an untenable theory (Boscovich’s) falsely worked out by

13See [24, p. 224, pp. 325–327.] for details. Note also, how this limiting assumption
yields different and correct results in comparison to the finite atomistic hypotheses.

14Cited in [24, p. 495.]
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mathematicians, has led to relations among the coefficients of
elasticity which experiment has proved to be false.15

Todhunter and Pearson point out two things. First, the discrete/atomic
hypothesis of Navier and Cauchy is not actually the point particle theory
of Boscovich, and they find no mathematical mistakes in their derivations.16

Nevertheless, there are affinities with Boscovich’s atomistic theory. Second,
and more importantly, the experimental evidence to which Thomson and
Tait appeal, is suspect for interesting reasons.

In fact, Thomson and Tait appeal to properties of wires and plates to
show the “utter worthlessness” of the rari-constancy theory. [24, p. 499].
Todhunter and Pearson, while no friends of rari-constancy theory, point out
that wires and thin plates are far from the three dimensional isotropic bod-
ies to which the rari-constancy theorists apply their results. “These bodies
possess owing to their method of manufacture not only a cylindrical or pla-
nar system of elasticity, but extremely often an initial state of stress, both
conditions which lead rari-constant theorists to bi-constant formulae.” [24,
p. 499]

These historical debates represent just the tip of the iceberg of the com-
plexity surrounding both theoretical and experimental work on the behavior
of the supposedly simpler, isotropic, cases of elastic solids. Nevertheless, the
multi-constancy theory wins the day for appropriate classes of structures.
And, derivations that start from atomic assumptions fail to arrive at the
correct theory. It seems that here may very well be a case where a contin-
uum point of view is actually required: Bottom up derivation from atomistic
hypotheses about the nature of elastic solid bodies fails to yield correct equa-
tions governing the macroscopic behavior of those bodies. There are good
reasons, already well understood by Green and Stokes, for eschewing such
reductionist strategies.

de Boer reflects on the reasons for why this controversy lasted so long
and was so heated:

Why was so much time spent on molecular theory considerations,
in particular, by the most outstanding mechanics specialists and
mathematicians of the epoch? One of the reasons must have been

15Cited in [24, p. 498].
16Of course, Cauchy did illegitimately replace sums with integrals, but that mistake is

not present in Navier’s derivation.
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the temptation of gaining the constitutive relation for isotropic
and anisotropic elastic continua directly from pure mathematical
studies and simple mechanical principles; It was only later real-
ized that Hooke’s generalized law is an assumption, and that the
foundation of the linear relation had to be supported by experi-
ments. [12, pp. 86–87]

The upshot of this discussion is reflected in de Boer’s emphasis that the
constitutive equations or special force laws (Hooke’s law) are dependent, for
their very form, on experimental results. So a simple dismissal of continuum
theories as “in principle” eliminable and merely pragmatically justified, is
mistaken. Of course, the phenomenological parameters, like Young’s mod-
ulus (related to Navier’s ε), must encode details about the actual atomistic
structure of elastic solids. But it is naive, indeed, to think that one can, in
any straightforward way derive or deduce from atomic facts what are the phe-
nomenological parameters required for continuum model of a given material.
It is probably even more naive to think that one will be able to derive or de-
duce from those atomic facts what are the actual values for those parameters
for a given material.

This historical discussion, and the intense nineteenth century debate be-
tween the rari- and multi- constancy theorists apparently supports the view
that there is some kind of fundamental incompatibility between small scale
and continuum modeling practices. That is, it lends support to the stark
choice one must apparently make between bottom-up and top-down model-
ing suggested by the tyranny of scales.

A modern, more nuanced, and better informed view challenges this con-
sequence of the tyranny of scales and will be discussed in section 6. However,
such a view will not, in my opinion, bring much comfort to those who believe
the use of continuum models or idealizations are only pragmatically justified
and in principle eliminable. A modern statement supporting this point of
view can be found in [22]:

. . . [M]any material properties depend upon more than just the
identity of the particular atomic constituents that make up the
material. . . . [M]icrostructural features such as point defects, dis-
locations, and grain boundaries can each alter the measured macro-
scopic ‘properties’ of a material. [22, pp. 5–8]

It is important to reiterate that, contrary to typical philosophical usage,
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“microstructural features” here is not synonymous with “atomic features”!
Defects, dislocations, etc. exist at higher scales.

The historical controversy outlined in this section serves to support Mad-
dy’s conclusions that continuum models appear to be necessary for applied
mathematics and yet, somehow, remain detached from reality. In the next
section I will further develop the stark dichotomy between bottom-up mod-
eling and top-down modeling as a general philosophical problem arising be-
tween different recipes for applying mathematics to systems that exist across
a wide range of scales.

5 Euler’s and Cauchy’s Recipes

5.1 Euler

Applied mathematical modeling begins with an attempt to write down an
equation governing the system exhibiting the phenomenon of interest. In
many situations, this aim is accomplished by starting with a general dy-
namical principle such as Newton’s second law: F = ma. Unfortunately,
this general principle tells us absolutely nothing about the material or body
being investigated and, by itself, provides no model of the behavior of the
system. Further data are required and these are supplied by so-called “special
force laws” or “constitutive equations.”

A recipe, due to Leonhard Euler, for finding an appropriate model for a
system of particles proceeds as follows [27]:

1. Given the class of material (point particles, say), determine the kinds of
special forces that act between them. Massive particles obey the consti-
tutive gravitational force: FG = G

mimj
r2ij

. Charged particles additionally

will obey the Coulomb force law: FE = ke
qiqj
r2ij
.

2. Choose Cartesian coordinates along which one decomposes the special
forces.

3. Sum the forces acting on each particle along the appropriate axis.

4. Set the sum for each particle i equal to mi
d2x
dt2

to yield the total force
on the particle.
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This yields a differential equation that we then employ (= try to solve) to
further understand the behavior of our point particle system. Only rarely
(for very few particles or for special symmetries) will this equation succumb
to analytical evaluation. In many instances, further simplification employing
mathematical strategies of variable reduction, averaging, etc. enable us to
gain information about the behavior of interest.

5.2 Cauchy

As we saw in section ??, Cauchy played a critical role in the derivation
of equations for elastic solids. He derived what is now called the “Cauchy
momentum equation,” which is the continuum analogy of Newton’s second
law F = ma:

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ + f .17

This is the general dynamical principle one employs to find continuum model
equations. It is the starting point for what I will call “Cauchy’s” recipe. As
with Euler’s recipe, one now needs special force laws or constitutive equa-
tions. For a solid body we ask whether its stress is linearly related to its
strain: Does it obey Hooke’s law for an elastic solid? For a fluid, we ask
about its viscosity, its compressibility, and the nature of surface pressures
acting on it. These constitutive equations then enable us to derive equations
like those of Navier, Green, and Stokes that tell us how different materials
will behave under various kinds of manipulations.

5.3 Controversy

A question of pressing concern, particularly given Maddy’s worries, is why
the Cauchy recipe should work at all. We’ve seen in the historical example,
that it does, and in fact, we’ve seen that were we simply to employ an Euler
type (point particle) recipe, we would not arrive at the correct results. In
asking why the Cauchy recipe works on the macroscale, we are asking about
the relationship between the dynamical models that track the behavior of
individual atoms and molecules at the scale of nanometers and equations
like those of Navier, Stokes, Cauchy, and Green that are applicable at the

17ρ is the density, σ is the stress tensor, v is the velocity vector field, f are body forces
acting on the material—usually just gravity.
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scale of millimeters. Put slightly differently, we would like an account of why
it is safe to use the Cauchy momentum equation in the sense that it yields
correct equations with the appropriate (few) parameters for broadly different
classes of systems—from elastic solids to viscous fluids?

From the point of view of Cauchy’s recipe, one derives the equations for
elastic solids, or the Navier-Stokes equations, independently of any views
about the molecular or atomic makeup of the medium. In the nineteenth
century there were doubts about whether matter was atomistic.

To ask for an account of why it is safe to use the Cauchy recipe for
constructing macroscale models is to ask for an account of the robustness of
that methodology. The key physical fact is that the bulk behaviors of solids
and fluids are almost completely insensitive to the actual nature of the physics
at the smallest scale. The “almost” here is crucial. The atomic details that we
don’t know (and, hence, don’t explicitly refer to) when we employ Cauchy’s
recipe are encoded in the small number of phenomenological parameters that
appear in the resulting equations—Young’s modulus, the viscosity, etc. So
the answer to the safety question, will involve showing how to determine
the “fixed points” characterizing broad classes of macroscopic materials—
fixed points that are characterized by those phenomenological parameters.
Recall the statement by Nelson cited above in section 2.1. In the context
of critical phenomena and the determination of the critical exponent β, this
upscaling or connection between the Euler recipe and the Cauchy recipe, is
accomplished by the renormalization group. In that context, the idea of a
critical point, and related singularities plays an important role. But Nelson’s
suggestion is that upscaling of this sort should be possible even for classes
of systems without critical points. We would like to understand why, for
instance, Young’s modulus is the appropriate phenomenological parameter
for classifying solids as linear elastic, despite rather severe differences in the
atomic structure of members of that class. Finding answers to questions of
this latter type, is the purview of so-called “homogenization” theory, of which
one can profitably think the RG to be a special case.

In the next section, I will spend a bit more time on the RG explanation
of the universality of critical behavior, filling in some gaps in the discussion
in section 2.1. And, I will try to say something about general methodology
of upscaling through the use of homogenization limits.
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6 A Modern Resolution

To begin, consider a problem for a corporation that owns a lot of casinos.
The CEO of the corporation needs to report to the board of trustees (or
whomever) on the expected profits for the corporation. How is she to do it?
Assuming (contrary to fact) that casino gaming is fair, she would present to
the board a Gaussian or normal probability distribution showing the prob-
abilities of various profits and losses, with standard deviations that would
allow for statistical predictions as to expected profits and losses. The Gaus-
sian distribution is a function characterized by two parameters—the mean µ
and the variance σ2. Where will the CEO get the values for the mean and
variance? Most likely by empirically investigating the actual means and vari-
ances displayed over the past year by the various casinos in the corporation.
How does she know that these two parameters—properties of collections of
casinos offering different and varied kinds of games (roulette, poker, black-
jack, slots, etc.)—are the correct ones with which to make the presentation
to the board? In effect, by using the same reasoning applied in the RG to
determine that the order parameter M scales as |t|β near criticality.18 There
we exploit the fact that near criticality the system is composed of collections
of bubbles of up and down spins that all, collectively, contribute to the be-
havior of the system at the macroscale. We have, here a similar picture. See
figure 4.

Furthermore, a similar picture is possible regarding the upscaling of our
modeling of the behavior of the steel girder with which we started. Compare
the two cases, figure 5, noting that here too only a very small number of phe-
nomenological parameters are needed to model the continuum/macroscale
behavior. (E is Young’s modulus and I is the area moment of inertia of a
cross-section of the girder.)

The general problem of justifying the use of Cauchy’s recipe to determine
the macroscopic equation models involves connecting a statistical/discrete
theory in terms of atoms or lattice sites to a hydrodynamic or continuum

18For details see [6, 23]. These references stress similarities between RG methods and
a certain understanding of the central limit theorem. The difference between averaging
and homogenization is related to the difference between the law of large numbers and
the central limit theorem: Averaging or first order perturbation theory “. . . can often be
thought of as a form (or consequence) of the law of large numbers.” Homogenization or
second order perturbation theory . . . “can often be thought of as a form (or consequence)
of the central limit theorem.” [21, pp. 6–7]
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Figure 4: Gambles within Gambles within Gambles . . .
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Figure 5: Gaussian and Steel—Few (Macro) Parameters: [µ, σ2]; [E, I]

theory. Much effort has been spent on this problem by applied mathemati-
cians and materials scientists. And, as I mentioned above, the RG argument
that effectively determines the continuum behavior of systems near criticality
is a relatively simple example of this general homogenization program.

In hydrodynamics, for example Navier-Stokes theory, there appear den-
sity functions, ρ(x), that are defined over a continuous variable x. These
functions exhibit no atomic structure at all. On the other hand, for a statis-
tical theory, such as the Ising model of a ferromagnet, we have seen that one
defines an order parameter (a magnetic density function) M(x) that is the
average magnetization in a volume surrounding x that contains many lattice
sites or atoms. The radius of the volume, L, is intermediate between the lat-
tice constant (or atomic spacing) and the correlation length ξ: (a� L� ξ).
As noted in section 2.1 this makes the order parameter depend upon the
length L. [26, p. 123]

A crucial difference between the hydrodynamic (thermodynamic) theory
and the statistical theory is that the free energy in the former is determined
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using the single magnetization function M(x). In statistical mechanics, on
the other hand, the free energy is “a weighted average over all possible forms
of the magnetization M(x).” [26, p. 123] This latter set of functions is pa-
rameterized by the volume radius L. On the statistical theory due originally
to Landau, the free energy defined as a function of M(x), takes the following
form:

F =

∫ (
[∇M(x)]2 +RM2(x) + UM4(x)−B(M(x)

)
d3(x), (8)

where R and U are (temperature dependent) constants and B is a (possi-
bly absent) external magnetic field. [26, p. 122] This theory predicts the
wrong value, 1/2, for β–the critical exponent. The problem, as diagnosed by
Wilson, is that while the Landau theory can accommodate fluctuations for
lengths λ < L in its definition of M as an average, it cannot accommodate
fluctuations of lengths L or greater.

A sure sign of trouble in the Landau theory would be the depen-
dence of the constants R and U on L. That is, suppose one sets up
a procedure for calculating R and U which involves statistically
averaging over fluctuations with wavelengths λ < L. If one finds
R and U depending on L, this is proof that long-wavelength fluc-
tuations are important and Landau’s theory must be modified.
[26, p. 123]

The RG account enables one to exploit this L-dependence and eventually
derive differential equations (RG) for R and U as functions of L that allow
for the calculation of the exponent β in agreement with experiment. The
key is to calculate and compare the free energy for different averaging sizes
L and L + δL. One can proceed as follows19: Divide M(x) in the volume
element into two parts:

M(x) = MH(x) +mMfl(x). (9)

MH is a hydrodynamic part with wavelengths of order ξ and Mfl is a fluc-
tuating part with wavelength between L and L + δL. The former will be
effectively constant over the volume.

19Details in [26, pp. 125–127]
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By performing a single integral over m—the scale factor in (9)—we get
an interative expression for the free energy for the averaging size L + δL,
FL+δL, in terms of the free energy for the averaging size L:

e−FL+δL =

∫ ∞
−∞

e−FLdm. (10)

In effect, one finds a step by step way to include all the fluctuations—all
the physics—that play a role near criticality. One moves from a statistical
theory defined over finite N and dependent on L to a hydrodynamic the-
ory of the continuum behavior at criticality. “Including all of the physics,”
means that the geometric structure of the bubbles within bubbles picture gets
preserved and exploited as one upscales from the finite discrete atomistic ac-
count to the continuum model at the scale of ξ—the size of the system. That
is exactly the structure that is wiped out by the standard REV averaging,
and it is for that reason that Landau’s mean field theory failed.

6.1 Homogenization

Continuum modeling is concerned with the effective properties of materi-
als that, in many instances, are microstructrually heterogeneous. These
microstructures, as noted, are not always to be identified with atomic or
lowest scale “fundamental” properties of materials. Simple REV averaging
techniques often assume something like that, but in general the effective,
phenomenological properties of materials are not simple mixtures of volume
fractions of different composite phases or materials. Many times the mi-
crostructural features are geometric or topological including (in addition to
volume fractions) “surface areas of interfaces, orientations, sizes, shapes, spa-
tial distributions of the phase domains; connectivity of the phases; etc.” [25,
p. 12] In trying to bridge the scales between the atomic domain and that of
the macroscale, one needs to connect rapidly varying local functions of the
different phases to differential equations characterizing the system at much
larger scales. Homogenization theory accomplishes this by taking limits in
which the local length (small length scale) of the heterogeneities approaches
zero in a way that preserves (and incorporates) the topological and geometric
features of the microstructures.

Most simply, and abstractly, homogenization theory considers systems
at two scales: ξ, a macroscopic scale characterizing the system size, and a
microscopic scale, a, associated with the microscale heterogenieties. There
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Figure 6: Homogenization Limit [After Torquato [25, pp. 2, 305–306].]

may also be applied external fields that operate at yet a third scale Λ. If the
microscale, a, is comparable with either ξ or Λ, then the modeler is stuck
trying to solve equations at that smallest scale. However, as is often the case,
if a� Λ� ξ, then one can introduce a parameter

ε =
a

ξ

that is associated with the fluctuations at the microscale of the heterogeneities—
the local properties. [25, pp. 305–306] In effect, then one looks at a family
of functions uε and searches for a limit u = limε→0 uε that tells us what the
effective properties of the material will be at the macroscale.

Figure 6 illustrates this. The left box shows the two scales a and ξ with
two phases of the material K1 and K2. The homogenization limit enables
one to treat the heterogenous system at scale a as a homogenous system
at scale ξ with an effective material property represented by Ke. For an
elastic solid like the steel girder, Ke would be the effective stiffness tensor
and is related experimentally to Young’s modulus. For a conductor, Ke

would be the effective conductivity tensor that is related experimentally to
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the parameter σ—the specific conductance—appearing in Ohm’s law:

J = σE,

where J is the current density at a give location x in the material and E is
the electric field at x.

Let me end this brief discussion of homogenization by highlighting what
I take to be a very important concept for the general problem of upscaling.
This is the concept of an order parameter and related functions. The notion
of an order parameter was introduced in our discussion of continuous phase
transitions in thermodynamics, and the statistical mechanical explanations
of certain of their features, In effect, the order parameter is a microstructure
(mesoscopic scale) dependent function introduced to codify the phenomeno-
logically observed transition between different states of matter. As we have
seen, the magnetization M represented in figure 1 is introduced to reflect
the fact that at the Curie temperature the systems goes from and unordered
phase, above Tc to an ordered phase, below Tc. In this context, the di-
vergences and nonanalyticities at the critical point play an essential role in
determining the fixed point that characterizes the class of systems exhibiting
the same scaling behavior: M ∝ |t|β. But, again following Nelson’s sugges-
tion, entire classes of systems such as the class of linear elastic solids are also
characterized by “ fixed points” represented by a relatively few phenomeno-
logical parameters like Young’s modulus.

It is useful to introduce an order-like parameter in this more general
context of upscaling where criticality is not really an issue. For example,
consider the left image in figure 6. In upscaling to get to the right image,
one can begin by defining indicator functions for the different phases as a
function of spatial location. [25, pp. 24-25] For instance, if the shaded phase
occupies a volume Vs in the space and Vu is its complement, an indicator or
characteristic function of that phase is given by

χs(x) =

{
1, if x ∈ Vs
0, otherwise

One can also introduce indicator functions for the interfaces or boundaries
between the two phases.20 Much information can then be determined by
investigating n-point probability functions expressing the probabilities that

20These will be generalized distribution functions.
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n locations x1, . . . ,xn are to be found in regions occupied by the shaded
phase.21

Ssn(x1, . . . ,xn) = Pr {χs(x1) = 1, . . . , χs(xn = 1)} .

In this way many features other than simple volume fraction that exist at
microscales can be represented and employed in determining the homogeniza-
tion limit for complex heterogeneous systems. The introduction of such field
variables, correlation functions, etc., allow us to characterize the heteroge-
neous structures above the atomic scales. In some cases, such as the bubbles
within bubbles structure of the different phases at a continuum phase tran-
sition, much of this additional apparatus will not be necessary. (Though, of
course, it is essential to take into consideration that structure in that par-
ticular case.) But for many more involved upscaling problems such as steel,
the additional mathematical apparatus will be critical in determining the
appropriate effective phenomenological theory at the continuum level. As we
have seen these microstructures are critical for an understanding of how the
phenomenological parameters at the continuum scale emerge.

The main lesson to take from this all-too-brief discussion is that physics
at these micro/meso-scopic scales need to be considered. Bottom-up mod-
eling of systems that exist across a large range of scales is not sufficient to
yield observed properties of those systems at higher scales. Neither is com-
plete top-down modeling. After all, we know that the parameters appearing
in continuum models must depend upon details at lower scale levels. The
interplay between the two strategies—a kind of mutual adjustment in which
lower scale physics informs upper scale models and upper scale physics cor-
rects lower scale models—is complex, fascinating, and unavoidable.22

21See [25] for a detailed development of this approach.
22Much of my work in recent years, though often framed in terms of relations between

theories, can and should be understood as supporting this more complex point of view.
Relations between theories that are asymptotically related to one another do not fit with
a simple all or nothing dichotomy between “fundamental” theories that get the ontology
correct, and “theories emeritus” that are false, but still useful. The latter term is Belot’s.
See [2, 8, 4].
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7 Conclusion

The problem of the tyranny of scales has been formulated as one of seeing if
it is possible to exploit microstructural scale information (intermediate be-
tween atomic scales and macroscopic scales) to bridge between two dominant
and apparently incompatible modeling strategies. These are the traditional
bottom-up strategies associated with a broadly reductionist account of sci-
ence and pure top-down strategies that held sway in the nineteenth century
and motivated the likes of Mach, Duhem, Maxwell, et al. Despite great
progress in understanding the physics of atomic and subatomic particles, the
persistence of continuum modeling has led to heated debates in philosophy
about emergence, reduction, realism, etc. We have canvassed several differ-
ent attitudes to the apparent ineliminability of continuum level modeling in
physics. On the one hand, there is the view of Butterfield and others, that
the use of continuum limits represents nothing more than a preference for the
mathematical convenience of the infinite. On the other hand, Maddy holds
that such continuum models, employing infinite idealizations, are apparently
necessary. But she despairs about finding a unified understanding of why
and how that is possible.

I have tried to do two things in this paper. First, I’ve tried to show that
neither of these attitudes are ultimately acceptable. Regarding Maddy’s
scepticism, there is hope that with homogenization theory a unified method-
ology can be formulated for the diverse uses of continuum limits in various
modeling instances. One does not need to think of those cases as in someway
floating free from reality. Regarding Butterfield et al.’s belief that continuum
models are simply mathematical conveniences posing no real philosophical
worries, I’ve tried to show that this fails to respect some rather deep dif-
ferences between kinds of continuum modeling. In particular, the strategies
employed in the renormalization group and in homogenization theory dif-
fer significantly from those employed in standard representative elementary
volume (REV) averaging scenarios. The significance of Wilson’s renormal-
ization group advance was exactly to point out why such REV methods fail
and how that failure can be overcome. The answer, as we have seen, is to
pay attention to “between” scale structures as in the case of the bubbles
within bubbles picture of what happens at phase transitions. Incorporat-
ing such structures—features that cannot be understood as averages over
atomic level structures—is exactly the strategy behind upscaling attempts
that connect Euler type modeling recipes to Cauchy type continuum recipes.
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Homogenization lets us give an answer to why the use of Cauchy’s recipe is
safe and robust. It provides a satisfactory justification for the use of such
continuum models, but not one that is “straightforward” or pragmatically
motivated.

Secondly, I’ve tried to focus attention on a rather large subfield of applied
mathematics that should be of interest to philosophers working on specific
issues of modeling, simulation, numerical methods, and idealizations. In
addition, understanding the nature of materials in terms of homogenization
strategies can inform certain questions about the nature of physical properties
and issues about realism. For instance, we have seen that many materials
at macroscales are characterized by a few phenomenological parameters such
as the elastic constants. Understanding the nature of materials requires
understanding why these constants and not others are appropriate, as well
as understanding from where the constants arise. One important lesson is
that many of these material defining parameters are not simply dependent
upon the nature of the atoms that compose the material. There is a crucial
link between structure at intermediate scales and observed properties at the
macroscale.

It may do to end with an nice statement (partially cited earlier) from Rob
Phillips’ excellent book Crystals, Defects, and Microstructures expressing
this point of view.

Despite the power of the idea of a material parameter, it must
be greeted with caution. For many features of materials, cer-
tain ‘properties’ are not intrinsic. For example, both the yield
strength and fracture toughness of a material depend upon its
internal constitution. That is, the measured material response
can depend upon microstructural features such as the grain size,
the porosity, etc. Depending upon the extent to which the ma-
terial has been subjected to prior working and annealing, these
properties can vary considerably. Even a seemingly elementary
property such as the density can depend significantly upon that
material’s life history. The significance of the types of observa-
tions given above is the realization that many material properties
depend upon more that just the identity of the particular atomic
constituents that make up that material. . . . [M]icrostructural
features such as point defects, dislocations, and grain boundaries
can each alter the measured macroscopic ‘properties’ of a mate-
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