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Abstract

Assignment: One approach to solving the measurement problem in quantum
theory proposes that a certain quantity Q is `preferred' in that a quantum
system always has a de�nite value for it. So Q needs to be chosen so that:

1. its de�nite values appropriately explain the de�niteness of the macro-
realm, and this will presumably involve equations of motion for the values
that mesh suitably with the quantum state's unitary evolution;

2. its de�nite values do not violate various no-go theorems such as the
Kochen-Specker theorem.

The best-developed example is the pilot-wave approach of de Broglie and Bohm
[28], [12]. This approach can be adapted to �eld theories: indeed, Bohm's orig-
inal paper [9] gave a pilot-wave model of the electromagnetic �eld. In general,
the approach faces di�culties in constructing models that are relativistic in a
more than phenomenological sense. But recently there has been considerable
progress, and clari�cation of the various options: both for particle ontologies
[15] and for �eld ontologies [36]. The purpose of the essay will be to review
these developments.

Summary: Pilot wave theory (PWT), also called de Broglie-Bohm theory or
Bohmian Mechanics, is a deterministic nonlocal `hidden variables' quantum
theory without fundamental uncertainty. It is in agreement with all experi-
mental facts about nonrelativistic quantum mechanics (QM) and furthermore
explains its mathematical structure. But in general, PWT describes a nonequi-
librium state, admitting new physics beyond standard QM.

This essay is concerned with the problem how to generalise the PWT ap-
proach to quantum �eld theories (QFTs). First, we brie�y state the formu-
lation of nonrelativistic PWT and review its major results. We work out the
parts of its structure that it shares with the QFT case. Next, we come to the
main part: We show how PW QFTs can be constructed both for �eld and
particle ontologies. In this context, we discuss some of the existing models as
well as general issues: most importantly the status of Lorentz invariance in the
context of quantum nonlocality. The essay concludes with a more speculative
outlook in which the potential of PWT for open QFT questions as well as
quantum nonequilibrium physics are considered.
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1 Introduction

Nonrelativistic pilot wave theory (PWT) is a deterministic quantum theory of point
particles moving according to a nonclassical (nonlocal) continuous law of motion. As
such, it recovers the standard textbook formulation of quantum mechanics (QM) as
its statistical equilibrium theory and disposes of the usual quantum paradoxes. His-
torically, PWT was mainly developed by de Broglie [49] and Bohm [8], [9]. Amongst
other successes, it led Bell to refute von Neumann's �awed theorem [5] and to his fa-
mous inequalities [4], indicating (together with their experimental veri�cation) that
every realistic quantum theory has to be nonlocal.

While the nonrelativistic case is well developed (see e.g. [12], [28] and [22]),
although not well known, approaches to PW quantum �eld theory (QFT) have not
yet reached the maturity attained by the nonrelativistic theory. This is mainly due
to questions which are not explicit in standard QFT (see e.g. [33]) because of the
latter's physical vagueness [1, p. 179]. Put plainly, it is not clear what standard
QFT is about. It could describe �elds [36], particles2 [1], [15], [41] or even both,
depending on the particular case [37]. Besides, because of the explicit nonlocality
of PWT, the problem how quantum theory and Special Relativity (SR) combine is
immediately brought into the focus of attention.

In this essay, we give a short exposition of nonrelativistic PWT, presenting its
major results. We discuss which structures apply also to the QFT case. Next, we
show how candidates for possible PW QFTs can be constructed. At this stage, we
brie�y comment on questions of gauge theory and quantisation. Some existent mod-
els both for �eld and particle ontologies are presented and discussed. Furthermore,
we review di�erent results concerning the status of Lorentz invariance in PWT. Fi-
nally we come to a general discussion, ending with a more speculative discussion
about QFT questions on which PWT might shed new light, and also about PW
nonequilibrium.

This section concludes with (a) a list of special vocabulary used, and (b) a
collection of possible criteria for a scienti�c theory.

Vocabulary: See table 1

Criteria for a scienti�c theory: These are only suggestions. The reader is
invited to modify or supplement the following list:

1. Agreement with experiments, testable in principle;

2. Simplicity (Ockham's razor3) and completeness of explanation;

3. Precisely de�ned quantities, sound internal logic and no paradoxes;

4. Locality (if possible! );

2We will try to use the word particle in its clear meaning of a point-like object, if not otherwise
indicated.

3This criterion is often misunderstood: the best explanation in its sense is not necessarily the
simplest, but the one with the fewest and most logical premises, that can still give a complete

explanation of the phenomenon in question. Historically, it was invented to oppose superstition.
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ontology philosophical study of the nature of being
beable physical property that exists independently of an observer

(Bell's proposed replacement for the physically ambiguous
notion of an observable [6])

hidden variables historical expression for beables besides the QM wave function
standard QM Copenhagen interpretation and its modern reformulations

projection postulate postulate of standard QM that immediately after performing
an experiment the wave function discontinuously collapses
to an eigenfunction of the operator that represents the
experimental situation

measurement problem problem of how (of if) wave function collapse occurs
particle point-like object

Table 1: De�nition of most important special vocabulary

5. Implies previous successful theories in appropriate limits;

6. Determinism;

7. Robustness and compatibility with future theories: a small variation in the
formalism (e.g. an arbitrarily small addition of a term to the governing equa-
tions) should not be incompatible with the principles of the theory (bearing
in mind the previous points).

Remark concerning 1: One should be careful not to fall for extreme positivism: in
the common situation in which two di�erent theories agree with experiment, the
other criteria should be given priority.

2 Nonrelativistic pilot wave theory

We review the mathematical formulation of nonrelativisitic PWT, mainly following
Dürr and Teufel [22]. Since our essay topic is PW QFT, the argumentation will
be brief. We therefore refer the interested reader to a graduate course in PWT by
Towler [39], an entry in the Stanford Encyclopedia of Philosophy by Goldstein [24]
as well as the books by Dürr and Teufel [22] (from a recent perspective), by Bohm
and Hiley [12] and by Holland [28]. The latter two use a second order `Newtonian'
formulation of PWT which is considered not to be adequate by many authors,
but the books are useful in many other respects. The most important historical
references are the papers of de Broglie (see [49] for an English translation) and
Bohm [8], [9].

2.1 Formulation

Nonrelativistic pilot wave theory is a theory of N point-like particles with masses
m1, ...,mN and (actual) positions Q1, ...,QN ∈ R3. These are the beables of the
theory. Let Q = (Q1, ...,QN) be the con�guration of the system in con�guration
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space Q = R3N . The physical idea of PWT (responsible for the name "pilot wave")
is that the particles are guided by a wave function

ψ : R3N × R → C,
(q, t) 7→ ψ(q, t).

This means, the k-th particle is supposed to follow a trajectory de�ned by the so-
called guidance equation:

dQk

dt
=

~
mk

Im

(
∇kψ

ψ

)
(Q, t). (1)

Note the di�erence between q (an arbitrary point in con�guration space) and Q (the
con�guration the system actually has)! The above equation implies the important
feature of explicit nonlocality : The time dependence of Qk is in�uenced by the
simultaneous positions Qi also with i 6= k.
Finally, the wave function is taken to satisfy the N -particle Schrödinger equation:

i~
∂ψ

∂t
(q, t) = Hψ(q, t), (2)

where H is the Hamiltonian of the system. Eqs. (1) and (2) govern a unique contin-
uous and deterministic behavior4. Since the wave function is a �eld on con�guration
space rather than physical space, the question of its role arises. Because of eq. (1),
it in�uences the behavior of trajectories which are regarded as physical. Must the
wave function therefore be ontological, too? The author's opinion is that it might
rather encode the law of motion.

Some remarks on the physical meaning of the de�ning equations and their mo-
tivation are appropriate. The meaning of the guidance equation can be seen if one
decomposes ψ = |ψ|eiS in polar form and inserts this into eq. (1):

dQk

dt
=

1

mk

∇kS|qi=Qi
. (3)

This can be phrased as follows (de Broglie, see [49, p. 40]):
"At each point of its trajectory, a free moving body follows in a uniform motion the
ray of its phase wave, that is (...), the normal to the surfaces of equal phase."
In short, de Broglie postulated that classical mechanics is to quantum mechanics
what ray optics is to wave optics. For the case of a single particle, this is shown in
�g. 1. Further illustrations, e.g. simulations of scattering processes, can be found
in reference [25].
Concerning motivation, it is shown in [22, ch. 8.1] that one arrives at eqs. (1)
and (2) if one assumes a simple and minimal theory of point particles, Galilean
invariance of the velocity �eld, time-reversal invariance, as well as agreement with
classical mechanics (in Hamilton-Jacobi formulation) in a suitable limit (elaborated
further in [22, ch. 9.4]).

4The existence and uniqueness of solutions for eq. (1) are not entirely trivial because of the
possibility of nodes of ψ (see [22, p. 153] and references therein).
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Figure 1: Illustration of the guidance equation (3) in the case of a single particle

2.2 Major results

In the previous section we made only two postulates:5

1. Existence of a wave function ψ ∈ Q satisfying the Schrödinger equation;

2. Existence of point particles with exact positions guided by ψ.

In particular, we did not assume the following statements (characterising standard
QM):

1. The Born rule: ρ = |ψ|2 (ρ: statistical distribution of particles);

2. The uncertainty principle;

3. The projection postulate;

4. The correspondence principle, i.e. a presupposition of a classical world existing
on the physical scales of everyday life;

5. Necessity of describing the system in terms of Hilbert space.

In the following paragraphs, we show which of these statements are still appropriate
in PWT and how these can be recovered as theorems6. We thereby discuss how this
resolves the usual quantum paradoxes.

Origin of the Born rule: In PWT, we did not presume that ρ = |ψ|2 is valid.
Nevertheless, in all known experiments (if they contain large enough statistics), this
simple relation seems to be the basis of the success of QM. In PWT there are two
ways to recover the Born rule as a statistical theorem:

1. Typicality analogous to Boltzmann's theorems about classical statistical physics
[22, ch. 11];

5The existence of positions of objects need not be seen as a genuinely new postulate but might
rather be necessary to recover classical mechanics. As Dürr and Teufel put it [22, p. 150]: "After all,

classical physics is supposed to be incorporated in quantum mechanics, but when there is nothing,

then there is nothing to incorporate, and hence no classical world."
6For a discussion of the classical limit, we refer to [22, ch. 9.4].
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2. Dynamical relaxation into equilibrium for a large class of "non-pathological"
initial conditions [10], [42], [50] and [40].

These two approaches might after all not be too di�erent since the "non-pathological"
initial conditions for relaxation into equilibrium may be viewed as requiring some
kind of "typicality"7.

Remarks:

• If ρ(t0) = |ψ(t0)|2 is true for some t0, then ρ(t) = |ψ(t)|2 ∀t (equivariance, [22,
p. 152]). In the thus de�ned quantum equilibrium, one recovers the statistical
predictions of standard QM (see e.g. [12] and [28] for a variety of physical
examples).

• The derivation of the Born rule essentially builds on the concepts of position
and trajectories (consider point 2, sec. 1).

• In PWT, it is not excluded a priori that ρ = |ψ|2 may be violated in very rare
situations. In such a case of quantum nonequilibrium, predictions di�erent
from standard QM arise, yielding a whole spectrum of new physics (see sec.
4.3).

Uncertainty and the role of `observables': Since PWT always has a precisely
de�ned position for particles, there is no ontological uncertainty as in the Copen-
hagen interpretation (see point 3, sec. 1). The only "uncertainty" is a statistical
relation between outcomes of certain experiments. This is easily understood: ψ
has properties of a wave, and thus the statistical distribution ρ = |ψ|2 in quantum
equilibrium obeys the same "uncertainty" relations as do classical waves (a result of
Fourier analysis).

In PWT, the Hilbert space simply arises from the set of solutions of the linear
Schrödinger equation if one restricts to normalisable functions. Note that it is
secondary to (but useful for) the theory. It only works if one assumes that the
linearity of the Schrödinger equation is valid exactly.8 Contrary to standard QM
(and some of its interpretations), PWT does not require exact linearity as a postulate
and could in principle work well without it (consider point 7, sec. 1).

Finally, what is the role of "observables" (self-adjoint operators on a Hilbert
space) in PWT? Using the words of Dürr and Teufel [22, p. 228], "(...) the operator
observables of quantum mechanics are book-keeping devices for e�ective wave func-
tion statistics". Roughly speaking, one may say that such an "observable" de�nes
a map from the initial (statistical) experimental situation to the �nal one. See ref-
erence [22, chs. 12, 13, 15] for mathematical details and a generalisation to positive
operator-valued measures (POVMs).

An obvious but important feature resulting from this role of "observables" is con-
textuality : The outcomes of an experiment depend on the way how it is performed.

7A notion of "typicality" is also required for the global existence and uniqueness of trajectories.
As in Newtonian mechanics, the equations alone are not enough to guarantee this.

8Experiments have not ruled out the possibility of small nonlinear terms that e.g. arise if one
assumes the Schrödinger equation to be the lowest order of a series expansion.
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Surely, this is not paradoxical if one does not insist on the view9 that experiments
just reveal pre-existing properties of the system. Rather, as Bell remarks [5, p. 166]:
"Quantum experiments are just not like that, as we learned especially from Bohr.
The results have to be regarded as the joint product of `system' and `apparatus', the
complete experimental set-up. But the misuse of the word `measurement' makes it
easy to forget this and then to expect that the `results of measurements' should obey
some simple logic in which the apparatus is not mentioned."
This is also how one should read the well-known Kochen-Specker theorem (see [27] for
a discussion): there exists no non-contextual model of QM with `hidden variables'.

Solution of the measurement problem: Probably the most important problem
of standard QM is the measurement problem. In section 2.1 we found that the time
evolution in PWT is deterministic and always continuous. Bohm showed how this
solves the measurement problem [9, 1952]:

If a particle interacts with another quantum system but with a large (thermody-
namic) number of degrees of freedom, the wave function branches in con�guration
space with negligible overlap between the di�erent parts. This fact is known as de-
coherence. However, decoherence alone does not solve the measurement problem10:
In standard QM the system would still be in a macroscopic superposition (with the
resulting paradox of Schrödinger's cat).

The crucial point in PWT is the following: Depending on the initial position of
the N -body system, under a complicated, chaotic but continuous and deterministic
time evolution, the system ends up in the support of only one of the branches (see
�g. 2). It is then justi�ed as a sensible approximation to replace the wave function
of the system by the e�ective ("collapsed") wave function of the branch in which
it ended up. This step is based on the fact that in PWT, the system always has
an actual con�guration Q. Thus, in PWT there is only an apparent collapse and
therefore no measurement problem (consider point 3, sec. 1). Note also that no
division of the world into "classical" or "quantum" was required, in particular no
di�erent status for "measured objects" and "observers".

Remark: Note that the results of this section depend only on structural aspects so
that similar reasoning applies to the QFT case.

2.3 Conclusions

We have seen that PWT provides a simple realistic, continuous and deterministic but
explicitly nonlocal11 account of quantum phenomena. The predictions of standard
QM follow from PWT as its equilibrium statistics. PWT is independent of an
ambiguous division of the world into "classical" and "quantum" parts. Concerning
empirical predictions in (ubiquitous) quantum equilibrium, one should not see PWT

9Called "naive realism about operators" in [22, p. 244/45].
10Some arguments using the density matrix formalism, that claim this are �awed, because the

ignorance interpretation is incorrect for improper mixtures.
11As Bell showed [4], the nonlocality seems inevitable if one tries to develop a realistic quantum

theory.
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Figure 2: Illustration of the apparent collapse via decoherence

as a rival theory of standard QM but rather as an explanation for it on a microscopic
basis.

Nevertheless, the theories are neither equivalent conceptually nor equivalent con-
cerning physical predictions: PWT might give answers where standard QM is silent
or impractical to apply.12 Possible examples are quantum chaos, scattering theory,
semiclassical trajectories as well as dwell and tunnelling times [24, sec. 15]. Fur-
thermore, out of quantum equilibrium, new predictions in con�ict with standard
QM arise (see section 4.3). Also, PWT could be compatible with modi�cations such
as nonlinear Schrödinger equations − should they ever become necessary. Interest-
ingly, in the recent decades, the bene�ts of PWT for a numerical implementation
and visualisation of quantum processes have also been realised [51], [17], [38], [34].

It is left to the reader (and his/her modi�ed version of the criteria in section 1) to
compare PWT with standard QM and di�erent interpretations. Whatever the result
should be, please note that PWT provides an explicit counter-example to various
claims about the impossibility of theories with beables, or about the necessity of
indeterminism and uncertainty in every quantum theory. The critical reader may
also be interested in an article by Passon [32] who discusses common objections to
PWT.

3 Pilot wave QFT

Sticking to his criteria for a scienti�c theory, the author �nds it worthwhile to study
PWT approaches to QFT. We are now coming into an area of "working ground"
− the models discussed are not clari�ed fully and should be regarded as developing
candidate theories. We set ~ = c = 1 in the following, unless stated otherwise.

3.1 General remarks

Reconsidering nonrelativistic PWT, one may ask which features of the theory will
remain general also in a QFT context. At �rst, aiming for a realistic and precise
description, we will need beables for the theory. It turns out that (at least) two
choices are possible: �elds and particles. Models for these choices will be studied in
sections 3.2 and 3.3, respectively.

12That is, in order to remain in the standard QM formalism, more and more of the system would
have to be taken to be "on the quantum side".
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Next, one will have a generalised version of the ψ-function, Ψ, ful�lling an appro-
priate wave equation. Ψ will encode the law of motion for the beables via a new
guidance equation. Working in the same spirit as before, experimental predictions
of standard QM should follow from analysing the quantum equilibrium statistics.

Additional criteria a PW QFT has to ful�l: The very precision of a model
with beables demands new criteria to be ful�lled. Roughly speaking, the beables
should re�ect the empirical impression of macroscopic objects. The assumption that
the beables are distributed according to the quantum equilibrium distribution is not
su�cient for this to be the case [36, p. 19/20]. Additionally, di�erent macroscopic
states have to correspond to di�erent typical13 beable con�gurations [15, p. 20].
To clarify the meaning of the above requirements, consider the following aspects:

1. At the discussion of the solution of the measurement problem in PWT (sec.
2.2), we saw that outcomes of experiments get recorded14 if the con�guration of
the system ends up in the support of one of the approximately disjoint branches
of the wave function. We will assume that also for a general PWT the wave
functions/functionals corresponding to macroscopically distinct states must
not have signi�cant overlap. This is ensured if the above statement about
typical beable con�gurations is satis�ed [15, p. 20]. Conversely, the named
statement is satis�ed in quantum equilibrium (and presumably also in mild
nonequilibrium) if the property about the overlap of macroscopically distinct
states is given.

2. The term "beable" implies a certain materialistic aspect. This is not a very
strong point, as properties of objects may be characterised by subtle relations
among the beables. Nevertheless, there exist situations where it is intuitively
clear that the mere density of beables (e.g. particle positions) characterises
macroscopic properties. An example is the di�erence between matter and
empty space.
Colin and Struyve developed this idea in [15, sec. 4.2], arriving at a useful (but
crude) criterion to judge about the empirical adequacy of beable theories: If
one can de�ne a suitable "beable density" (e.g. the number density of particles
or the mass density of massive �elds), average density �uctuations in quantum
equilibrium have to be much smaller than the di�erence in density of materials
which are distinct on an empirical basis in an experimentally accessible volume
V . This criterion will be of crucial further use and deserves its own name: (C).

For further discussion and clari�cation about these additional points that have to
be clari�ed for a viable model, we refer to [36, pp. 19-20, 27-30, 34, 49-51] and [15,
sec. 4.2]. Examples for the application of the additional criteria will be presented
in sections 3.2.2, 3.2.3 and 3.3.3.B.

13For our purposes, this is taken to mean "distributed according to the quantum equilibrium
distribution".

14This is a necessary property to be able to speak about "outcomes of experiments".
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Spin: In the QFT case, we naturally have to do with objects involving spin. In
PWT, the simplest possibility to model spin is to assume a multi-component wave
function [5], [22, ch. 8.4]. This means that spin is not necessarily an intrinsic
property of a particle. See however [28, ch. 10] for an alternative view. In the
context of spin it is important to recognise that every experiment is �nally only
concerned with positions of objects15, namely the pointer of an apparatus (see also
�gs. 3 − 6 for an illustration of the Stern-Gerlach experiment which is commonly
used to de�ne spin).

Indistinguishable particles: So far, we have not discussed indistinguishable par-
ticles in PWT. One might suspect that in PWT particles might be labelled according
to their trajectories and therefore are distinguishable. However, point particles with
identical properties like mass and charge (regardless of their position) are physi-
cally indistinguishable. The label is arbitrary and carries no physical meaning. The
true question is why physicists did not realise this in classical mechanics. A pos-
sible answer is that in classical mechanics one usually regards point particles as
an overidealisation for objects which are actually distinguishable by properties like
masses, charges or shapes16. Having understood this point, by topological arguments
one straightforwardly arrives at wave functions which have to be either symmetric
or antisymmetric [22, ch. 8.5]. Concerning terminology, we use the words "bosons"
and "fermions" for objects (not necessarily particles) guided by symmetric or anti-
symmetric wave functions, respectively.

3.2 Field ontologies

3.2.1 How to construct a �eld ontology

Gauge theory is concerned with the question how to dispose of redundancy in
the mathematical description of physics. Questions of gauge theory arise in the
presence of constraints [18]. It is therefore a general question in �eld theory (and not
exclusively associated with "quantisation"). For a PW �eld ontology it is expected
to play an important role as well, since the word "beables" used in Bell's sense [6,
p. 52/53] is also supposed to carry the distinction between physical and unphysical
degrees of freedom. A detailed analysis how gauge theory and canonical quantisation
can be used to construct PW QFTs was carried out by Struyve [36, sec. 2]. However,
a general remark on quantisation seems appropriate.

Quantisation: Consider what "quantisation" means: Schematically, it is used as
a map

Q : classical theory 7−→ quantum theory.

But it is not clear that such a recipe should be available. Actually only Q−1 has to
exist (see point 5, sec. 1)!
In this respect the author agrees with Tumulka [41, p. 22]:
"It is obvious that quantization as a method of obtaining quantum theories has its

15Ironically, these are not described by standard QM and said to be "hidden variables".
16This is probably why Gibb's paradox arose historically in classical statistical physics.
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limitations, as one would not have guessed the existence of spin, or the Dirac equa-
tion, in this way. Even less meaning is attributed to quantization rules from the
Bohmian perspective, since quantization rules focus on the operators-as-observables,
but these are no longer the central objects of the theory (...)"
And he concludes: "(...) the program of �nding all covariant linear wave equations
(...) is more in the Bohmian spirit than quantization."
Indeed, Bell [3, p. 33/34] developed an idea how to construct a PW model without
starting from a classical theory. While it is applicable to particle ontologies (see
sec. 3.3), the author is not aware of a generalisation to �eld ontologies. There are
possibilities how to motivate PW models with �eld ontologies starting from classical
theories. Examples are mentioned in the next section.

3.2.2 Bohm's model of the electromagnetic �eld

The �rst and historically most important PW QFT model with a �eld ontology
is Bohm's model of the electromagnetic �eld [9]. The following presentation is a
combination of the work of Bohm and Struyve [36]:

Let Aµ = (A0,A) denote the vector potential for the electromagnetic �eld.
Choose the Coulomb gauge divA = 0. As a consequence, the remaining physi-
cal degrees of freedom (the beables) are those of the transverse part of the vector
potential AT . One can use any suitable way of "deriving" a guidance equation for
AT (or an equivalent set of beables) as well as an equation for a wave function (or
functional) guiding the beables. Examples for such a construction procedure are
those: (i) of Bohm, taking the discrete Fourier components of AT to de�ne beables
qk,µ and obtaining equations of motion by analogy with Hamilton-Jacobi theory,
and (ii) of Struyve who uses canonical quantisation and gauge theory to formally
arrive at the following equations:

1. Guidance equation:

∂AT (x, t)

∂t
=
δS[AT , t]

δAT (x)

∣∣∣∣
AT (x)=AT (x,t)

, (4)

where S is the phase of the wave functional Ψ[AT , t] = |Ψ|eiS.

2. Functional Schrödinger equation:

i
∂Ψ[AT , t]

∂t
=

1

2

∫
d3x

(
− δ

δAT

· δ

δAT

−AT · ∇2AT

)
Ψ[AT , t]. (5)

The resulting model is gauge independent [36, p. 31]. The quantum equilibrium
distribution (cf. sec. 2.2) is given by |Ψ[AT , t]|2DAT . Here, DAT is a "continuum
measure" which is, as in standard QFT, ill-de�ned due to the non-existence of an
in�nite-dimensional generalisation of the Lebesgue measure. This calls for a suitable
regularisation, e.g. a momentum cuto�17. Alternatively, one has to consider eqs.

17Note that such a cuto� violates Lorentz invariance already at the level of the wave equation.
But this violation is mostly for mathematical convenience and the cuto� is thought to be taken to
in�nity at the end of the calculation.
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(4) and (5) as purely formal expressions which are shorthand for a very tight lattice
(or Bohm's discrete Fourier components). In quantum equilibrium, the claim is that
this PW model yields the same statistical predictions as standard QFT.

The electric �eld E can be obtained from AT and Ψ via E = − δS
δAT

and the
magnetic �eld B via Bi = εijk∂jAT,k. As in the nonrelativistic part, the crucial
di�erence from standard QM is that at all times and independent of observers, there
is an actual �eld con�guration AT (x). One could go on to discuss experiments like
the photoelectric e�ect or the Compton e�ect [9], and it is also not excluded to run
a corresponding computer simulation.

What about the additional criteria for beable theories discussed in section 3.1?
Struyve [36, p. 34] �nds:
"Wave functionals representing macroscopically distinct states of the electromagnetic
�eld describe distinct classical electric and magnetic �elds. This implies in particular
that the wave functionals give approximately disjoint magnetic �eld distributions.
Since di�erent magnetic �elds Bi correspond to di�erent �elds ATi , we have that
these wave functionals also give approximately disjoint distributions for the �elds
ATi ."

An interesting observation about the conventional de�nition of "particles" in
QFT (not referring to localised objects) is the following (see also [36, sec. 4.2.3]):
Consider a state |N〉 describing a de�nite number of these "QFT-particles". The
electric (or magnetic) �eld operator Ê (B̂) is a linear combination of terms involving
creation and annihilation operators. Thus, the result of applying such an operator
to |N〉 is orthogonal to |N〉. We conclude that only states with an inde�nite QFT-
particle number yield a non-vanishing expectation value of Ê (B̂). Since one �nds
electromagnetic �elds with non-vanishing expectation values in experiments, it fol-
lows that the corresponding states have an inde�nite QFT-particle number. What
does this mean?

For PWQFT (and possibly every realistic QFT), the QFT-particle number seems
to be meaningless for ontology. If the QFT-particle number is just a certain basis-
dependent characterisation of wave functions/functionals resulting from the use of
perturbation theory (see the discussion in [30, ch. 9]), it poses no problem to super-
pose states with a di�erent "particle" number. If, on the contrary, the "particles"
were to refer to point-like spots seen on detector screens, such a superposition would
seem questionable, to say the least.

In his article Struyve also discusses how Bohm's model could be generalised to
other bosonic �elds, as well as to a PW Standard Model [36, sec. 8]. While the �rst
point faces no particular di�culties, the main problems for the latter seem to be the
following:

1. Description of fermions by a �eld ontology (see next section and discussion)

2. Dealing with nonlinear constraints in non-Abelian gauge theories (such as
Yang-Mills theories). For technical reasons it is then di�cult to identify gauge
invariant variables (candidate beables).
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3.2.3 Failure of fermionic �eld ontologies

So far, there have been two suggestions for fermionic �eld ontologies:

1. Holland's model with Euler angles in momentum space as beables [28, ch.
10.6.2]

2. Valentini's model with Grassmann-valued �elds as beables [44], [36, sec. 9.2]

However, Struyve has shown that both models su�er from di�erent problems [36]:

1. In order to discuss criterion (C) from sec. 3.1, Struyve considered a similar
model with Euler angles in position space as beables.18 Suggesting a suitable
"beable density", Struyve found that even for optimistically chosen numbers,
a cubic region of space �lled with matter should have a length of about 10−5 m,
in order to be distinguishable from empty space. This clearly stands in con�ict
with our empirical impression of the world.

2. For Valentini's model there exists an even more serious problem: The wave
functional Ψ operating on Grassmann �elds is Grassmann-valued, too. Thus,
one has no basis for adopting a guidance equation. Furthermore, it is unclear
which measure should be considered for the quantum equilibrium distribution.
In conclusion, the model seems to be only a formal construction.19

3.2.4 Minimalist picture

Inspired by the problems of fermionic �eld ontologies described above, Struyve and
Westman suggested a radically minimalistic model (here summarised following [36,
sec. 10] and [37, sec. 3.4]): Considering the example of quantum electrodynamics
(QED) they only introduced beables for the bosonic degrees of freedom while the
fermionic are taken to be only an appearance via the bosonic degrees of freedom.
This means, the �eld con�guration can in some cases behave as if matter was present
(see also �g. 4). For the bosonic parts, the model strongly resembles Bohm's model
of the free electromagnetic �eld (see sec. 3.2.2). More concretely, the beables are
those of a transverse vector potential AT (x), and a hint of the fermionic degrees of
freedom is re�ected in an additional label f of the wave functional Ψf [AT , t]. Ψf is
taken to satisfy an appropriate functional wave equation involving the Hamiltonian
of scalar QED. The guidance equation is similar to eq. (4):

∂AT (x, t)

∂t
= Im

∑
f Ψ∗f [AT , t]

δ
δAT (x)

Ψf [AT , t]∑
f |Ψf [AT , t]|2

∣∣∣∣∣
AT (x)=AT (x,t)

. (6)

The quantum equilibrium density is given by
∑

f |Ψf [AT , t]|2 as usual.
Struyve and Westman argued that this model is capable of passing the additional

criteria for beable theories in sec. 3.1. Furthermore, they pointed out the possibility
to introduce additional beables via local expectation values of operators such as the

18For Holland's original model, the ontology in physical space is not speci�ed.
19From this perspective it is interesting that in standard QFT (i.e. without a clear ontology)

one can use Grassmann �elds to calculate fermion statistics [33, sec. 9.5].
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charge or mass density operators. The thus de�ned beables would behave similarly
to the mass density in objective collapse theories.

Considering the proposal of Westman and Struyve, one is immediately led to the
question whether such an indirect model can be appropriate. Having in mind the
discussion of the simplicity criterion in sec. 1, one may ask if it gives a complete
explanation of fermionic degrees of freedom at all. The author therefore agrees with
Struyve when he admits [37, p. 7]: "Nevertheless such a model seems rather far
removed from our everyday experience of the world and probably takes minimalism
too far."
Besides, the model only bene�ts from simplicity as long as no further beables are
introduced. The way this is done via operator observables was already questioned
in the discussion of quantisation (see sec. 3.2.1). The resulting objective collapse
furthermore seems to violate the spirit of nonrelativistic PWT where there exists
only an apparent collapse in the measurement problem (see sec. 2.2).
The question how fermionic degrees of freedom can be described adequately in PWT
therefore remains and will be one of the central subjects of the next section.

3.3 Particle ontologies

The choice of �elds as beables is far from unique. Historically, the �rst PW QFT
model with a particle ontology was developed by Bell [1] who was motivated to
develop a precise alternative to the standard QFT description of fermions (which he
found too vague for a professional physicist).

In contrast to the present situation for �eld ontologies, particle ontologies seem
to be capable of describing both fermions and bosons. Contrary to what Bohm,
Hiley and Kaloyerou thought [11, sec. 5.2], it seems for example to be possible to
introduce trajectories for photons [41, p. 23], [23].

In the following, we present a method for constructing guidance equations for
particle ontologies. Subsequently, we brie�y review Bell's prototype model and
sketch two possible continuum generalisations: a model of particles and antiparticles
with stochastic jumps by Dürr et al. [20], [21] and a deterministic Dirac sea model
by Colin and Struyve [15].

3.3.1 How to construct a particle ontology

In section 3.2.1, we argued that quantisation should be avoided to motivate a PW
model and brie�y mentioned an alternative method by Bell [3, p. 33/34]. It can be
applied to particle ontologies with positions Qk, k = 1, ..., N as follows:

1. Find all covariant linear wave equations for a wave function Ψ(q1, ...,qN).

2. Analyse the equations if they have conserved currents jk and density ρ and
pick a suitable one to de�ne the theory.

3. De�ne guidance equations by dQk

dt
= jk

ρ
(cf. eq. (1)).

Examples for this method can be found in the following sections.
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Figure 3: Schematical setup for a Stern-Gerlach experiment. The straight lines stand
for the magnetic �eld, the wavy lines for the electromagnetic radiation around the
pointer and black areas/dots represent matter (picture credit: [37]).

Figure 4: Stern-Gerlach experiment in the minimalist model (a) before and (b) after
the experiment (picture credit: [37]). Radiation may in certain situations behave as
if it had been scattered o� or emitted by the pointer.

Figure 5: Stern-Gerlach experiment in the models of Bell and Dürr et al. (picture
credit: [37]). The outcome of the spin experiment is recorded in the con�guration
of the pointer.

Figure 6: Stern-Gerlach experiment in the Dirac sea model of Colin and Struyve,
with a momentum cuto� rendering the number of particles in every volume �nite
(picture credit: [37])
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Remark: Although this procedure does not use a classical theory to arrive at a
quantum theory, it can also be seen only as a motivation for the �nal equations, not
as a proper "derivation". Ultimately, the criteria in sec. 1 have to be consulted.

3.3.2 Bell's lattice model

In [1], Bell considered a spatial lattice with points labelled by l = 1, ..., L. At
each point, he de�ned fermion number operators ψ†(l)ψ(l) with eigenvalues F (l) =
1, 2, ..., 4N where N is the number of Dirac �elds. The complete speci�cation of
the system is taken to be (|t〉, n(t)) where |t〉 is a (nonlocal) state20 satisfying the
Schrödinger equation and n(t) = (F (1), ..., F (L)) is the list of fermion numbers
at the lattice points (which is a local beable). Figure 5 illustrates the impression
resulting from the model.

Bell prescribed a stochastic development for the fermion number con�guration:
In a time interval dt he assumed that there are m jumps to con�guration n with
probability dt Tnm, where:

Tnm = Jnm/Dm ·Θ(Jnm), (7)

Jnm =
∑
pq

2 Re 〈t|nq〉〈nq| − iH|mp〉〈mp|t〉 (current), (8)

Dm =
∑
q

|〈mq|t〉|2 (density), (9)

where Θ(x) is the step function. From the equations above, the time evolution of a
probability distribution Pn over con�gurations n is found to be:

d

dt
Pn =

∑
m

(TnmPm − TmnPn) (10)

As a consequence of Schrödinger's equation for |t〉, Dn satis�es the same equation
as Pn, and it follows that if at an initial time Pn(0) = Dn(0), then Pn(t) = Dn(t)∀t.
That is, we obtain the equivariance property. Like in nonrelativistic PWT, the
model is thus capable of obtaining the standard predictions as its equilibrium statis-
tics. Bell, however, sees the stochastic element as unwanted: the reversibility of the
Schrödinger equation speaks against a stochastic law. He suspects that this stochas-
tic element might disappear in the continuum limit. Note also that the model heavily
relies on a special status of time compared to space (see sec. 3.4).

3.3.3 Continuum generalisations

3.3.3.A Model of Dürr et al. The model of Dürr et al. (here summarised
following [20] and [41, sec. 3.1.2]) ascribes positions to both particles and antiparti-
cles, the beables of the model (see also �g. 5). It can be applied to either bosons or
fermions. The motion along trajectories is deterministic but interrupted by stochas-
tic jumps corresponding to creation and annihilation events.

20Contrary to ψ in nonrelativistic PWT, |t〉 de�nitely has beable status in Bell's model: "Other-

wise its appearance in the transition probablities would be quite unintelligible" [1, p. 177].
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For a more precise formulation, consider particles and antiparticles (as point-
like objects). Each species is described by a position beable Qt in con�guration
space Q =

⋃∞
n=0Q[n] where Q[n] = R3n/Sn and Sn is the group of permutations of n

objects. Qt is guided by a wave function Ψt in Fock space. Ψt may be a superposition
of states with a di�erent "QFT-particle" number (used as in sec. 3.2.2). This is
�ne, since the QFT-particle number is seen only as a way to characterise states in
Fock space. The actual particle number N(t) is given by the number of entries in
Qt

21. The equations governing the deterministic part of the evolution of the system
are:

1. The wave equation:

i~
dΨt

dt
= HΨt, (11)

where H = H0 +HI is the Hamiltonian of the system, composed of a free and
an interaction part.

2. The guidance equation:

dQt

dt
= Re

Ψ∗t (Qt)( ˙̂qΨt)(Qt)

Ψ∗t (Qt)Ψt(Qt)
, (12)

where q̂ is the "Q-valued position operator"22 in the Heisenberg picture. Note
that for the Schrödinger Hamiltonian, eq. (12) reduces to the familiar guidance
equation (1) of nonrelativistic PWT.

Finally, the stochastic (jump) part of the evolution is given by a rate of σΨ(dq|Qt) dt
jumps to the in�nitesimal element dq in Q in time dt, de�ned by:

σΨ(dq|q′) =
2

~
[Im Ψ∗(q)〈q|HI |q′〉Ψ(q′)]+

Ψ∗(q′)Ψ(q′)
dq, (13)

where x+ = max{x, 0}. Equations (12) and (13) together de�ne a Markov process
(which is analysed further in reference [21]).

Some comments seem appropriate. By construction, the model has the equivari-
ance property and is thus capable of reproducing the standard QFT predictions as
equilibrium statistics, while maintaining most bene�ts of nonrelativistic PWT. Fur-
thermore (setting aside the question of Lorentz invariance until sec. 3.4), one may
criticise the stochastic element (which, we recall, Bell hoped would disappear in the
continuum limit). In e�ect, the creation/annihilation events cannot be explained
further. Also, the existence of antiparticles is an input to the model. Concluding,
the model is an interesting (and quite universal) suggestion how a particle ontology
of PWT can be extended to the QFT case; but the stochastic element makes it
look rather provisional − at least according to the spirit of the PWT approach. Of
course, standard QFT is an entirely statistical theory − not just concerning particle
creation/annihilation.

21Note that Qt ∈ Q[N(t)] for �xed t.
22See reference [20] for a detailed explanation of the term.
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3.3.3.B Dirac sea model of Colin and Struyve In Colin's and Struyve's
model [15], the Dirac sea picture for QFT is taken seriously: Position beables are
associated with fermions in both negative energy states (those in the Dirac sea) as
well as positive energy states of the many-body Dirac equation (see �g. 6). Colin
and Struyve de�ne the fermion number Fd as the number of positive energy particles
plus the number of negative energy particles. The idea is that in the regime in which
the fermion number is superselected,23 one can restrict the fermionic Fock space to
a N -particle Hilbert space where N is �xed for all times. As usual in the Dirac sea
picture, antiparticles are interpreted as holes moving in the �lled Dirac sea. One
thus arrives at a deterministic PW QFT which has the possibility of explaining
particle creation/annihilation.

For a more precise presentation, consider the Hamiltonian

H = HB +HF
0 +HI , (14)

where HB is the bosonic part of the Hamiltonian, HF
0 the free fermionic part and

HI includes the interactions. In the following we focus on the fermionic part; (this
will be justi�ed shortly). The construction of the PW model goes as follows [15, p.
6]: we start from a wave equation:

i~
d|ψ(t)〉

dt
= H|ψ(t)〉. (15)

Suppose, we have a POVM (the generalisation of an operator observable) P (d3x1...d
3xN)

for position.24 This determines a probability density ρψ(x1...xN) via:

ρψ(x1...xN) d3x1...d
3xN = 〈ψ(t)|P (d3x1...d

3xN)|ψ(t)〉. (16)

From the wave equation (15), we obtain the following time evolution of ρψ:

∂ρψ

∂t
d3x1...d

3xN + 〈ψ(t)|i~[P (d3x1...d
3xN), H]|ψ(t)〉 = 0. (17)

If one can �nd vector �elds vψk so that the second term in eq. (17) becomes

〈ψ(t)|i~[P (d3x1...d
3xN), H]|ψ(t)〉 =

N∑
k=1

∇k · (vψk ρ
ψ)d3x1...d

3xN , (18)

then one can use vψk to de�ne guidance equations :

dxk
dt

= vψk , (19)

where xk are the positions of the fermions both in and above the Dirac sea. The
equilibrium density is given by ρψ, and an equivariance property ensures that one

23Note that the Standard Model predicts a violation of fermion number superselection as a
non-perturbative e�ect e.g. in weak processes. Tests of this have so far not been accessible to
experiment [15, sec. 1].

24A familiar example is P (d3x1...d
3xN ) = |x1...xN 〉〈x1...xN |d3x1...d3xN from nonrelativistic

quantum theory.
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recovers the predictions of standard QFT as equilibrium statistics. Note also that
from eq. (18) only the parts of H that do not commute with P (d3x1...d

3xN) con-
tribute to the guidance equation. In [15], it is shown that only HF

0 contributes which
justi�es our considering the fermionic part of the theory separately.

While this de�nes a model capable of reproducing standard QFT predictions,
the precision of a model with position beables demands other criteria to be ful�lled.
Most importantly, since the Dirac sea involves a potentially in�nite number of par-
ticles in each region of space, one may ask if one can distinguish macroscopic matter
distributions from the Dirac sea "vacuum" (criterion (C), sec. 3.1). The threat is
that density �uctuations might make this impossible. Colin and Struyve showed
that this question can be answered if one chooses a regularisation scheme which at
the same time makes the number of particles in every volume �nite.

The need for regularisation arises because of (a) the usual �eld theoretical diver-
gencies and (b) the non-existence of a generalisation of the Lebesgue measure to an
in�nite-dimensional space which would be needed for well-de�ned probabilities [15,
sec. 3.6]. Both problems can be circumvented if one assumes a �nite volume V with
suitable boundary conditions and introduces a momentum cuto� Λ, keeping space
continuous. The disadvantages of this regularisation are that the commutation rela-
tions are altered and that an additional term appears in the guidance equation [15,
sec. 4], which Colin and Struyve write as:

dxk
dt

= vψk + ṽψk . (20)

The hope seems to be that a su�ciently large natural momentum cuto� Λ exists so
that the additional term ṽψk can be neglected. Note that the cuto� breaks Lorentz
invariance already on the level of the wave equation.

We now come to the discussion of criterion (C). The crucial point is that because
of the above regularisation, there only exists a �nite number of modes in V which
is cuto�-dependent. Since the fermion number is �xed, the fermion number density
operator can be written as:

Fd(x) =

∫ N∑
i=1

δ(x− xi)P (d3x1...d
3xN). (21)

We can now introduce an operator corresponding to the number of fermions in a
region B as Fd(B) =

∫
B

d3xFd(x). With these operators one can evaluate criterion
(C) in detail, calculating the average density and comparing it with average �uctu-
ations. This was done in [15, sec. 4.2], with the following results:
Neglecting interactions, the volume V of a region should satisfy V � (Λ/ρ2)3/5

where ρ is the particle density of ordinary matter [37, p. 9]. For a cuto� at the
Planck scale (Λ ∼ 1035 m−1) and a particle density of ρ = 1030 m−3, a spherical
region of space should have radius b� 10−6 m. While the lower bound of 10−6 m is
relatively large, the result should improve when interactions are taken into account
[15, sec. 4.2] and can be made smaller by considering a smaller cuto� − as long as
this is not excluded by experiment. One can thus say that (C) is ful�lled.
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A potential problem for the model:25 We have seen that a �nite cuto� Λ is essential to
distinguish matter from the Dirac sea vacuum. In essence, this builds on the property
that with the cuto� a �nite volume V contains only a �nite number particles, so
that density �uctuations do not render macroscopic objects indistinguishable from
the vacuum [15, p. 20]. But how does the Dirac sea vacuum, thus de�ned, combine
with the invariance of physical predictions under Lorentz boosts? Equivalently, why
does a particle detector �nd a constant rate of particles when moving through the
vacuum with di�erent but constant velocities v, v′?

One might think that as the standard quantum mechanical predictions are re-
produced due to the equivariance property, this question does not arise. But the
standard quantum mechanical predictions have only been shown to be reproduced
in [15] for Λ = ∞. This demonstration seems to be invalid since, as we noted, one
cannot actually take Λ → ∞. Thus, the model seems to stand in con�ict with the
predictions of standard QFT.

The author hopes not to have missed an obvious counter-argument when he
claims that it is also physically implausible that the Dirac sea vacuum with �nitely
many particles in every volume of space should be invariant under Lorentz boosts.
It could be seen as a gas of particles, and a particle detector moving in such a gas
will detect a di�erent rate of particles bouncing against it, depending on its velocity.
Note that the statistical predictions for Λ = ∞ are indeed invariant under Lorentz
boosts, as the mentioned rate would always be in�nite. Whether the statistical
violation of Lorentz invariance is observable in known experiments, is a di�erent
question − but one that calls for a separate analysis: criterion (C) yields upper
bounds on the cuto� that are speci�c to the model of Colin and Struyve.

Concluding, it seems that the model cannot reproduce the standard predictions
about the Lorentz invariance of the "vacuum" − not even on a statistical level.
Note that this feature arises for any regularisation which makes the number of
particles in every volume �nite and can thereby ful�l criterion (C). This constitutes
a crucial di�erence to the case of standard QFT where the regularisation mainly
serves mathematical purposes.

3.4 The question of Lorentz invariance

J. S. Bell26: "[The usual quantum] paradoxes are simply disposed of by the 1952
theory of Bohm, leaving as the question, the question of Lorentz invariance. So one
of my missions in life is to get people to see that if they want to talk about the prob-
lems of quantum mechanics − the real problems of quantum mechanics − they must
be talking about Lorentz invariance."

In this section, we present the apparently essential con�ict of Special Relativity (SR)
with quantum nonlocality − which is manifest in PWT. This motivates developing
an alternative to Einstein's view on SR, that involves absolute space and time.
The issue with Lorentz invariance (as opposed to causality) is shown to be subtler,
and there is no agreement on it in the PWT community. The section ends with a
presentation of the two main standpoints.

25The author thanks W. Struyve for a discussion about this question.
261990, interview with philosopher Renee Weber.
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The basic problem with Lorentz invariance is how it combines with the
apparent nonlocality of quantum mechanics. PWT makes this nonlocality explicit:
In the guidance equations − also for processes in QFT − happening with a speed
comparable to that of light (e.g. eqs. (4), (12) and (19)) the movement of one
coordinate (of a �eld or particle) instantaneously depends on the position of other
coordinates throughout space, evaluated at a �xed time. The latter notion requires
a notion of absolute simultaneity − which stands in clear contrast to Einstein's
interpretation of SR where simultaneity is relative to a frame.27 It seems sensible
to re-examine SR, aiming for an interpretation that is more suitable for PWT.

3.4.1 An alternative view on Special Relativity

Consider the old problem of the division between kinematics (structure of space
and time) and dynamics (laws of motion in space and time). It should be clear that
one can usually compensate changes in the supposed structure of space and time
by changes in dynamical laws (and vice versa). Thus, the question of the "true"
structure of spacetime seems to be meaningless. The choice of spacetime is rather
a question of convenience, the main considerations being criteria like internal logic,
simplicity and consistency with other theories.

The following is inspired by Bell [2]: Consider a system consisting of matter which
is held together by interactions travelling at a certain speed c in one given, arbitrary
inertial frame F . Let that object gently accelerate until it moves with speed v close
to c. As seen in F , the object will look contracted because the interactions need
time (de�ned by a clock in F ) to reach the bound components, thus altering the
e�ective strength of interaction. In the moving system S, if one de�nes distances by
comoving rods and time by the events of interactions reaching so-de�ned distance
marks (i.e. by Einstein's operational de�nitions), then everything will seem normal
and uncontracted/dilated− although this is a physical process associated with forces
(see Bell's "spaceship paradox" in [2]). The speed of the interactions in S with these
de�nitions will also seem to be c (although in F the speed would be di�erent). Note
that this was not postulated from the beginning. Note also that it would not be
paradoxical if certain objects or interactions could travel at speed c′ > c. The notion
of causality depends on the de�nition of time.

Taking now c = the speed of light, we are led to the question if it is sensible
to accept Minkowski spacetime for our kinematics (which is equivalent to accepting
Einstein's operational de�nitions of distance and time). This clearly leads to para-
doxical situations if certain processes are allowed to happen at speed c′ > c. Indeed,
nonlocal correlations in QM seem to involve the speed c′ = ∞28. But there is no
need to view them as paradoxical − the price being to reject Einstein's principle of
contiguity [29, p. 157] ("causal e�ects are propagated via a chain of local events").

In order to fully develop the alternative view, one can, with Valentini [48], suggest
a di�erent operational de�nition of time. Valentini shows that for PWT (and a gene-

27For precision of terminology we distinguish between (a) a frame (associated with a state of
motion) and (b) a foliation of spacetime into hypersurfaces (de�ning "space at a given time"). Yet
another distinct notion is (c) a coordinate system (referring to a mathematical choice of language
for the description of spacetime in a frame). Note that up to choices of zeroes and of units for
measurements of space and time, a coordinate system is naturally induced by an inertial frame.

28See [13] for a discussion of the hypothetical speed involved in quantum correlations.
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ral class of beable theories) nonlocal correlations in quantum nonequilibrium can
be used for nonlocal instantaneous signalling29. Even if one believes that quantum
equilibrium is ubiquitous, nevertheless, since the justi�cation of the Born rule goes
by statistical arguments (see sec. 2.2), one should in PWT expect small, usually
undetectable �uctuations around the equilibrium state which correspond to a weak
noise of instantaneous disturbances.

If one accepts these arguments as a motivation to consider instantaneous signals,
one can operationally de�ne an absolute time by taking a clock in one inertial system
(like F above) and communicating the time it shows via instantaneous signals. This
notion of time is di�erent from the time de�ned by moving clocks in other frames.
One might be tempted to think that the inertial frame in which the absolute time
coincides with the time measured by clocks constitutes a preferred frame. But as
one can both change the state of motion of the clock and the coordinates in the
thus de�ned frame, the statement has to be weakened to "there exists a preferred
foliation of spacetime" (see footnote 27 for terminology).

Note that for the argument given in this subsection, it is not of primary impor-
tance that nonlocal signalling is practically feasible. It is rather the mere possibility
of something happening at an in�nite speed that is enough to make the change of
view about SR plausible.30 In any case, one arrives at an alternative interpretation
of SR that seems to be required for the guidance equations of PWT.

3.4.2 Two views on Lorentz invariance in pilot wave theory

De�nition: A theory is Lorentz-invariant if the Lorentz-transformed solutions of the
governing equations are themselves solutions of these equations. The equations are
then said to be `Lorentz-covariant'.

Some facts about the models presented: Indeed, some of the models above are not
fundamentally Lorentz invariant. For example, the wave equation (5) in Bohm's
model of the electromagnetic �eld is not manifestly Lorentz-covariant (but it is
Lorentz-covariant). More importantly, the guidance equation (4) which encodes the
microscopic processes is not Lorentz-covariant.

View 1: A detailed microscopic description of QM must violate funda-

mental Lorentz invariance: Considering the possibility of quantum nonequili-
brium, Valentini argues [43, p. 6]:
"The equilibrium distribution P = |Ψ|2 has special features which are not funda-
mental to the underlying theory (...). Two such features are signal-locality and
uncertainty (...). One also generally expects that a maximum-entropy (statistical)
equilibrium state will show an especially high degree of symmetry. And indeed, the
symmetry of Lorentz covariance holds only for P = |Ψ|2 (in the context of the pilot
wave theory of �elds [11].)"

In the paper Valentini refers to, Bohm, Hiley and Kaloyerou conclude their re-
view of Bohm's model of the electromagnetic �eld with the following words [11, p.

29In quantum equilibrium, one recovers the usual no-signalling theorems as a statistical conse-
quence [43].

30What is counted as kinematics or dynamics may anyway only be a matter of convenience.
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356]:
"It follows that the non-covariant ground state in our interpretation will not be ac-
cessible to observation as long as the quantum theory in its current form is valid.
And so no violations of relativity will be obtained. However, it is possible, as pointed
out in the earlier paper [9], that quantum theory will fail to hold in some, as yet,
unexplored domain. For example, if we extend our theory to include stochastic pro-
cesses in the manner suggested earlier, there will be some relaxation time, τ , for the
probability function to approach the usual one, |ψ|2. Measurement in times shorter
than τ might show this discrepancy and these results would not be covariant. If this
should happen then relativity would evidently hold only as a statistical approxima-
tion valid for distributions close to equilibrium in the stochastic process underlying
quantum mechanics."
The mentioned stochastic processes refer to a special way used by Bohm et al. to
enforce relaxation into equilibrium in the second order formulation of PWT used in
Bohm's original papers [8], [9].

However, Valentini seems to think that the violation of Lorentz invariance men-
tioned by Bohm et al. is a general feature of every detailed microscopic process. A
similar opinion can be found in Bohm and Hiley [12, ch. 12] and Holland [28, ch.
12] where several examples showing this con�ict are analysed.

Furthermore, in a di�erent paper [45], Valentini argues that even the Galilean
invariance of nonrelativistic PWT (in �rst order formulation) should be regarded
as a �ctitious symmetry, like the invariance of Newtonian mechanics under certain
changes involving a constant acceleration. He sketches an Aristotelian universe with
the natural state being that of rest, and with spacetime E×E3 where E is the a�ne
real line, so E3 is Euclidian 3-space. Valentini concludes that, in an analogous way,
the Lorentz symmetry of an relativistic extension of PWT would also be merely
�ctitious and only a statistical consequence of the equilibrium distribution.

The latter view might be seen to �nd support in general results such as claimed
by Hardy in [26]: Hardy argues that "realistic hidden variables theories" seem to
be incompatible with fundamental Lorentz invariance, in the sense that "if we as-
sume realism and we assume that the `elements of reality' corresponding to Lorentz-
invariant observables are themselves Lorentz invariant, we can derive a contradiction
with quantum mechanics."

Note that from the viewpoint described in this paragraph, Lorentz invariance
is an emergent symmetry, valid exactly in quantum equilibrium. As we argued
in section 3.3.3, the Dirac sea model of Colin and Struyve seems to necessarily
break Lorentz invariance also on a statistical level − carrying even more radical
implications.

View 2: A fundamentally Lorentz invariant account of detailed micro-

scopic phenomena is not excluded: To make sense of this viewpoint, one has
to answer results like Hardy's �rst. Berndl et al. analysed this issue in [7, p. 4]:
"There have been a number of arguments to the e�ect that a Bohmian theory must
involve a preferred frame of reference, and thus must violate Lorentz invariance.
The most interesting such argument has been put forward by Hardy [26], who by
discussing an intriguing experiment (...) claims to have shown that every realistic
quantum theory must possess a preferred frame of reference, and thus that there can
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be no Lorentz invariant realistic quantum theory.
However, because it rests on an unsuitable `reality criterion' (...), Hardy's argument
is wrong. There are even counterexamples to Hardy's argument (...)"

It is crucial to logically separate (a) nonlocal instantaneous e�ects and signals
from (b) violations of Lorentz invariance. Goldstein phrases the situation as follows
[24, sec. 14]:
"However − unlike nonlocality − violation of Lorentz invariance is not inevitable. It
should be possible, it seems, to construct a fully Lorentz invariant theory providing
a detailed description of microscopic quantum processes."

Supposing one is given a hypothetical PWT model accounting for relativistic
phenomena including interactions which is mathematically consistent in the sense
of global existence and uniqueness of solutions out of quantum equilibrium, Dürr31

thinks that such a model could be both Lorentz invariant and allow for nonlocal
signals. The signals could not be used to create causal loops. (This can be seen by
considering the alternative view of SR described above − according to which, each
signal has a de�nite causal order in absolute time. Butter�eld stresses a similar point
in the context of a general discussion of relativistic causality [14, end of sec. 7.1.3.1].)

A suggestion for a fundamentally Lorentz invariant model: First steps towards fun-
damentally Lorentz invariant models have been made by Dürr et al. with so-called
"Hypersurface-Bohm-Dirac models" [19]. These describe noninteracting but entan-
gled relativistic N -particle systems in the framework of PWT using a preferred
foliation as an (arguably) additional spacetime structure. Setting aside particle cre-
ation and annihilation, this idea could be applied to particle ontologies in PW QFT.
In our presentation we mainly follow a review by Tumulka [41, sec. 3.3.1].

To de�ne a division between time and space, consider a preferred time foliation
F of spacetime into spacelike hypersurfaces Σ, called time leaves. The purpose of F
is to de�ne which parts of spacetime are considered to be space at a given (absolute)
time. This simultaneity structure is required by guidance equations like (12) and
(19). Besides, it allows us to deal with the problem that quantum equilibrium
cannot hold in all Lorentz frames [19, p. 13]. With the aid of F , the relativistic
generalisation of N -particle guidance equations is straightforward:

dXµk
k

dτ
∝ jµ1...µN (X1(Σ), ..., XN(Σ))

∏
i 6=k

nµi(Xi(Σ)). (22)

Here, Xk(τ) is the world line of the k-th particle, Σ is the time leaf containing Xk(τ),
n(x) is the normal vector on Σ at x ∈ Σ, Xi(Σ) is the intersection point of the world
line of particle i with Σ and

jµ1...µN = ψ(γµ1 ⊗ ...⊗ γµN )ψ (23)

is the current of an N -particle Dirac equation for a wave function ψ on
⋃

Σ∈F ΣN .
In order to arrive at a fundamentally Lorentz invariant theory, it is crucial that

the time foliation F is itself regarded as dynamical, with a Lorentz invariant law for
its time evolution. The importance of this aspect is stressed in [19, sec. IV] where

31D. Dürr, private communication (4/2011).
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also possible suggestions for the law are made. But one should note that the nature
of this hypothetical law is not yet clari�ed. It is also not clear to what extent the
time foliation is to be counted as an additional structure: it might be generated by
the wave function, a structure which is already at hand.

The possibility of a foliation of spacetime and its philosophical implications are
discussed by Maudlin [29]. In [41, sec. 3.3.2], Tumulka reviews di�erent proposals
to make PWT relativistic − but they either seem to su�er from certain di�culties
or have a similar tension with SR.

4 Discussion and outlook

4.1 Summary of the QFT parts

In this essay, we have seen several examples for possible PW QFTs. First, Bohm's
model of the electromagnetic �eld was presented which seems to work formally
(having "only" the usual mathematical problems of QFT). Similar models can be
developed for bosonic �elds [36]. While these make it possible to discuss physical
e�ects from a realistic nonlocal perspective [9], it is not immediately clear how
to �nd a sensible de�nition of "particles" in a �eld ontology (see also the next
section). Once basic questions like these are clari�ed, it might be desirable to
develop a PWT version of (the bosonic sector of) the Standard Model. At the
moment, technical problems with nonlinear constraints in gauge theory seem to
make immediate progress di�cult.

Next, we reviewed Struyve's discussion of models with fermionic �eld ontolo-
gies which were shown to su�er from di�erent serious problems. This motivated
introducing minimalistic models. These seem to be formally able to reproduce the
standard predictions but they give no further explanation of physical questions about
all fermionic matter (viz. by somehow still containing fermionic degrees of freedom
but not explicitly referring to them).

Finally, we discussed models with particle ontologies that developed from a
stochastic lattice model by Bell. The �rst continuum generalisation by Dürr et al.
seems to be appropriate for both fermions and bosons − but it includes stochastic
jumps (corresponding to particle creation and annihilation). The second possible
continuum generalisation by Colin and Struyve takes the Dirac sea literally and
would be an interesting way to explain particle creation/annihilation for a particle
ontology. But we found a discrepancy between the ambitions both to have invariance
under Lorentz boosts and to be able to distinguish matter from the vacuum. The
problem we found has to be answered before the model can be seriously considered.

Concerning the status of Lorentz invariance, the explicit nonlocality of PWT
served as a motivation to develop an alternative view on Special Relativity involv-
ing absolute space and time. Einstein's operational de�nition of spacetime is im-
plemented in this framework as the problem of rods and clocks which are distorted
due to real physical e�ects that are present in a movement near the speed of the
interactions holding the moving matter together. This change of view is put forward
by the idea that in PWT quantum nonequilibrium can be considered (and in some
sense has to be considered, so as to motivate the Born rule) which, according to
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Valentini, would allow for instantaneous nonlocal signalling. This would provide an
operational de�nition of absolute simultaneity. Furthermore, two con�icting views
on the status of Lorentz invariance in PWT were presented:

1. A detailed microscopic account of nonlocal quantum phenomena in PWT must
violate fundamental Lorentz invariance.

2. Fundamental Lorentz invariance might be achieved and could potentially be
compatible with nonlocal instantaneous signals.

Both views violate the spirit of Special Relativity, as a notion of absolute simultane-
ity seems to be required to de�ne guidance equations in PWT.

4.2 Discussion of the QFT parts

In the author's opinion the most important questions about PW QFTs are the
following:

1. Localisation and the concept of particles and antiparticles;

2. The description of particle creation and annihilation;

3. The description of fermions;

4. Uniqueness of beables (�elds, point particles, ...);

5. The status of Lorentz invariance.

It seems worthwhile to analyse these questions brie�y: Field ontologies could in
principle describe particles as soliton-like excitations. This seems not to be done
usually (and in standard QFT for "probability solitons" only). Another question
is whether such a strict concept of localisation is required32 to explain spots on a
detector screen, images of single atoms and trajectories in a bubble chamber. Since
PW QFTs provide more than a probabilistic description, one may hope PWTs have
some potential for a precise analysis of these questions, e.g. by running computer
simulations for various experimental situations. On the other hand, there is so far
no working PW QFT with a fermionic �eld ontology. As indicated in [1, p. 173], one
possibility besides the minimalistic approach is that fermions might be composite
"particles" of bosons. An example for the converse is the collective description of
interacting fermions in one-dimensional Luttinger liquids.
Particle ontologies on the other hand do possess a simple and strict concept of
localisation: "particles" as point-like objects. This seems to be an overidealisation
− but one that is happily accepted in classical mechanics. Furthermore, particle
ontologies can be applied to both fermions and bosons (e.g. in the model of Dürr et
al.).

However, particle ontologies cannot easily explain creation and annihilation events.
One either has to apply a stochastic description [20], or to imagine that the particles
are not really created or annihilated at all. The latter idea is found in the Dirac sea

32Or even appropriate − considering e.g. the quark gluon plasma.
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model of Colin and Struyve, but this seems to have its own potentially dangerous
unresolved question (see sec. 3.3.3). Also questions of gravity (e.g. "dark matter"
or the cosmological constant) immediately come to the mind when considering the
Dirac sea.
Another approach was taken by Nikolic [31] who considered the possibility that par-
ticle detectors could behave as if a particle was annihilated (created) if it came to
rest (was accelerated from rest). A related idea is to regard particles as bound states
of another species of particles which is (temporarily) regarded as irreducible. But
one may ask if this picture can give the impression of vacuum �uctuations expected
from standard QFT. Since the ideal PW QFT is deterministic, these could only be
statistical �uctuations. On the other hand, experiments in particle colliders should
not prove a problem for the idea.

Generally, for both �eld and particle ontologies one should work towards a clar-
i�cation of the concept of an "antiparticle". Possible ideas might be (speaking
�guratively) particles and antiparticles as the analogue of excitations of a "mem-
brane" in di�erent directions (for �eld ontologies) − or the Dirac sea for particle
ontologies33.

We come to the question of the uniqueness of beables. Considering the above
(largely not yet analysed) possibilities, one is far from answering the question if only
�elds or only particles can give a unique description of QFT phenomena. There
might be good reasons for using particles and �elds to model di�erent aspects of
QFT, say particles for fermions and �elds for bosons. It might even be possible
to adopt a completely di�erent ontology, say strings. But before speculating about
such questions, consider that even for theories like classical electromagnetism the on-
tology is not unique. While Maxwell's well-known presentation uses �elds, Wheeler-
Feynman absorber theory contains only particles [22, sec. 2.5]. One may take a step
further and ask if the question "what nature really is" is a sensible one. The answer
might not be unique. Rather, it seems to be most relevant to develop a further
understanding of detailed physical (and logical) questions like those given above for
PW QFT.

Concerning the question of Lorentz invariance, there seem to be three classes of
opinions: Firstly, the Dirac sea model by Colin and Struyve seems to be incompa-
tible with fundamental Lorentz invariance even on a statistical level. Secondly, one
can imagine Lorentz invariance to be only an emergent symmetry of the quantum
equilibrium distribution. Thirdly, it seems not to be excluded by a rigorous theorem
that fundamental Lorentz invariance could be achieved − even in quantum nonequi-
librium. This attitude stands in con�ict with Valentini's idea of an Aristotelian
spacetime. The main question seems not to be on which level Lorentz invariance is
possible, but on which it is appropriate.
All viewpoints share a pronounced tension with Einstein's interpretation of Spe-
cial Relativity but they violate it on di�erent levels. A common feature is that
PWT's explicit nonlocality requires a structure that de�nes absolute time, leading
to a di�erent understanding of causality. While there is a debate on these issues in
philosophy [16], it is an open question to what extent this discussion will in�uence
the future of physics as long as no further experimental clues become available.

33It is perhaps worth a thought if this asymmetric description of particles and antiparticles e.g.
allows for bound states of antiparticles.
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4.3 Conclusion and outlook

One should remember the primary reasons to do PW QFT: Practically all the ben-
e�ts of the nonrelativistic approach (see sec. 2.2) carry over to the QFT case. One
can see it as a merit that PWT makes questions explicit for which the statistical
description of standard QFT usually gives only vague answers: the status of Lorentz
invariance, the de�nition of a particle as well as particle creation and annihilation.
In trying to develop an explicit deterministic and realistic example for a PW QFT,
one can hope to learn more about these questions. Perhaps, PW QFT might allow
for a complementary approach to quantum gravity (see e.g. [41, sec. 4] for steps in
this direction and [35] for a surely controversial discussion). At present, one should
not forget that PW QFT has a developing status and many detailed physical ques-
tions need to be clari�ed. Finally, the status of causality and Lorentz invariance in
PWT leads to deep questions concerning the tension between quantum nonlocality
and Special Relativity.

Quantum nonequilibrium: The possibility of quantum nonequilibrium is an in-
teresting but perhaps experimentally inaccessible source of clari�cation of many of
the issues discussed here. It was pioneered mainly by Valentini in the context of
cosmology. If quantum nonequilibrium were present in physically extreme situa-
tions and e�ects such as near the hypothetical "Big Bang", this would lead, for relic
cosmological particles and the hypothetical Hawking radiation around a black hole,
to predictions of statistical anomalies in PWT [47], i.e. in con�ict with standard
QM. Speculating further, nonequilibrium of this sort might (among similarly spec-
tacular possibilities) be used as a theoretical motivation of nonlocal signalling [43]
and measurement with unlimited precision [46]. The latter point would allow us to
resolve individual events in PWT whereby the question of Lorentz invariance could
be attacked directly. Note that the usual impossibility proofs e.g. of nonlocal sig-
nalling and measurement with unlimited precision depend on statistical arguments
valid only in quantum equilibrium. In PWT, they thus have a status similar to the
second law of thermodynamics (which might be conceived to be violated microscop-
ically, e.g. by Poincare recurrence). But like the second law of thermodynamics,
quantum equilibrium would be dominant for all practical purposes.
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