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1 Introduction

Albert Einstein, after he completed the theory of special relativity in his annus mirabilis

1905, worked on a generally covariant theory of gravitation. In August 1912 Einstein

returned to Zürich and began to collaborate with his old friend Marcel Grossmann, who

was a professor of descriptive geometry. Grossmann helped him to understand tensor

calculus which became the required mathematical background for the later theory of

general relativity.

During their fruitful collaboration Einstein and Grossmann considered field equations

based on the Ricci tensor since this tensor was the natural choice fulfilling the mathemat-

ical requirements that came along with general covariance. In 1913 they came extremely

close to the final field equations of the year 1915; but they discarded their equations on

the grounds that they could not yield the correct Newtonian limit.

Einstein then showed his enormous independence of mind: If some approach or argu-

ment did not work, he tried something else, if necessary even the contrary of his first

approach or argument. Thus, not being able to find generally covariant field equations,

he then changed his mind and came up with two fundamental arguments against general

covariance - one of the essential principles he had so far assumed a good theory describ-

ing our world must have. The important and more general argument of those two is

Einstein’s hole argument, which will be discussed in this essay.

In short, the argument is as follows: Some field equations are assumed, which are

satisfied by the stress-energy tensor and a metric tensor on the whole spacetime. In

some region (the ‘hole’) the stress-energy tensor vanishes. Using general covariance, one

can attribute two different metric fields to the hole region that are nevertheless identical

everywhere outside the hole region. The hole argument concludes that general covariance

prevents the stress-energy tensor from uniquely determining the metric tensor and thus

the gravitational field.

Einstein and Grossmann published their new theory in 1913 (the Entwurf theory),

which proposes non-generally-covariant field equations. In 1915 Einstein became more

and more dissatisfied with the Entwurf theory, since it did not yield the right anomaly

in the motion of Mercury. He also found a mistake in the last step of the derivation of

the Entwurf field equations, which Einstein rejected in late 1915. After starting again

from almost generally covariant field equations in November 1915, he could finally derive

generally covariant field equations that reduced to the Newtonian limit. However, the
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history of how Einstein developed the final theory of general relativity shall not be the

focus of this essay. A detailed history can be found in Norton’s essay “How Einstein

found his field equations: 1912-1915”.

After Einstein finished his final version of the field equations he put the hole argument

into a new perspective: the metric field can still not be uniquely determined by the general

covariant field equations, if points of the spacetime manifold are taken as having an

independent individuality. But therefore, this assumption has to be abandoned. Instead,

spacetime points can only be distinguished by reference to the metric field (or maybe

some other tensor fields, if the stress-energy tensor is not 0), and therefore they have no

independent individuality. If one somehow removes the metric field, then nothing is left

(and in particular no spacetime manifold with individual points would remain).

For a long time, Einstein’s hole argument was seen as a rather simple mistake. Einstein

and Grossmann are commonly accused of having forgotten that restrictions to coordinate

systems were necessary in the recovery of the Newtonian limit. This is due to the fact

that generally covariant field equations hold by definition in any coordinate system,

whereas the theory of Newtonian gravitation only holds in certain coordinate systems.

The limiting restrictions are additional relations called ‘coordinate conditions’ that must

be satisfied by the solutions to the limit field equations. Einstein and Grossmann, it

is supposed, had ignored their freedom to apply coordinate conditions. Furthermore,

Einstein is supposed to have not recognized that in different coordinate systems a given

physical instance is expressed in terms of different mathematical functions.

In 1980, Stachel was the first author who rejected the common view and argued that

Einstein’s hole argument is based on nontrivial concerns. Norton strengthens this view

and gives evidence for his arguments by citing Einstein’s notebooks from his time in

Zürich (Norton 1984). He argues that Einstein knew about his freedom to apply coordi-

nate conditions that would yield the Newtonian form. Einstein’s concerns had a deeper

reason, which is based on the relationship between the spacetime manifold and the grav-

itational field. Following Norton’s reasoning, one can better understand Einstein’s final

reconciliation to the hole argument, after having developed his final version of the field

equations, that is based on denying individuality of points.

Due to this new interpretation of the hole argument, a discussion about substantivalism

in the context of general covariance arose. The centuries-old debate between substanti-

valists and relationists, having its roots in the debate between Newton and Leibniz, was

renewed. Earman and Norton argued that general covariance will lead to radical indeter-
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minism using the hole argument. They conclude that to avoid the failure of determinism,

which should only fail for a reason of physics, one must therefore deny substantivalism

(1987: 524).

However, in 1987 Butterfield analysed the definition of determinism that led to radical

indeterminism. Based on the initial value problem of general relativity, he constructed a

new definition, with the feature that substantivalism in combination with general covari-

ance does not violate determinism. This alternative definition is equally compatible with

the intuitive idea of determinism. In fact, in Earman and Norton’s arguments against

substantivalism no precise definition of determinism is stated. By using Butterfield’s

alternative definition of determinism, one can avoid the threat and have a deterministic

generally covariant theory without denying substantivalism.

First, some mathematical definitions will be needed to discuss the hole argument,

which will be explained in section 2. Secondly, substantivalism will be explained and

some aspects of the debate between substantivalists and relationists mentioned. In sec-

tion 4 Earman and Norton’s threat to substantivalism will be explained. To see why

determinism will be violated by general covariance, a first definition of determinism will

be discussed. Afterwards, in section 5, an alternative definition of determinism will be

developed and its consequences will be discussed. There is a technical and a philosophical

aspect to the alternative definition. This essay will be focussed on the technical aspect of

determinism. It will not describe the philosophical aspect in much detail. The interested

reader is referred to Butterfield’s essay “The Hole Truth” (1989).

2 The hole argument

To discuss Einstein’s hole argument and its consequences, some mathematical definitions

are needed.

To any spacetime theory there is a set of models such that each distinct model will

validate the theory. A model <M,Oi> contains one manifold M and a collection of

geometric objects Oi. These geometric objects are fields on the manifold. In general

these fields are not just scalar, vector and tensor fields but also connections, which in

combination with a metric encode the spacetime structure. In classical spacetime theories

there are a spatial and a temporal metric h and t as well as the 4-dimensional connection

D (not unique since the metric is degenerate) which captures the idea of constancy of
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a vector field along a curve. In relativistic spacetimes there is a single metric g and a

unique compatible 4-dimensional connection D (since g is non-degenerate). Matter fields

are also geometric objects, that describe how matter is “spread” on the spacetime. The

laws of the spacetime theory, which are partial differential equations, will be obeyed by

the geometric objects contained in a model of the theory. Nevertheless the models differ

from each other on initial values and boundary conditions. A theory is a set of models:

T = {models < M,Oi >}. Different models each represent physically possible worlds of

the spacetime theory. Thus a theory is a set of possible worlds: it is a set of different

ways the world could be like.

A diffeomorphism d on M is a smooth bijective (one-to-one and onto) map from M to

M. This map d on points induces a map d∗ on the geometric objects called the ‘drag-

along of d’. Any properties and relations of argument-points {p, q, r, ...} according to

geometric objects Oi will be the same properties and relations for the image-points

{d(p), d(q), d(r), ...} according to the dragged-along geometric objects d∗(Oi). For ex-

ample the distance according to a metric g between two points p and q is the same as

the distance between d(p) and d(q) according to the dragged-along metric d∗(g).

With a diffeomorphism d from M to M’ one can compare different models <M,Oi>

and <M’,O’i>. In general, the dragged-along objects d∗(Oi) need not coincide with the

geometric objects O’i on M’. But if they coincide in any region S, then using d one can

speak of agreement of the two models on the physical state on the region S.

There are two different ways to understand general covariance: a passive and and ac-

tive sense; though broadly speaking, they are equivalent. A physical theory is generally

covariant in the passive sense if the form of the physical laws is invariant under an ar-

bitrary smooth coordinate transformation. With the above definitions we can define an

active version of general covariance in terms of models of a spacetime theory:

General Covariance (GC):

If <M,Oi> is a model of the spacetime theory, and there is a diffeomorphism d of M onto

M, then <M,d∗(Oi)> is also a model of the theory.

Not being able to find generally covariant field equations during his collaboration with

Grossmann, Einstein thought about the reason why he was unsuccessful and wrongly

concluded that there could be no general covariant field equations at all. His reasoning

was based on the hole argument.
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Einstein presented the hole argument four times between the years 1913 and 1914.

The first three presentations are very brief. Norton argues that the hole argument being

so condensed is the reason for the widespread misunderstanding of it which led to com-

mentators accusing Einstein and Grossmann of having made a simple mistake (Norton

1984: 289). The argument for this focuses on the same topic as one of the two rival

explanations, about why they abandoned the Ricci tensor: namely, they were not aware

of their freedom to choose coordinate conditions. Following this assumption, one can ex-

plain away the apparent false conclusion in the hole argument. Thus Einstein is meant to

have failed to recognize that choosing coordinate conditions does not change the physical

content of the laws of the theory, but only alters their mathematical form in constraining

them to special coordinate systems.

However, the fourth presentation of the hole argument is more detailed. The additional

information given in this version is crucial for the understanding of the argument. Norton

argues that his interpretation of the fourth presentation, which does not accuse Einstein

and Grossmann of having made a simple mistake, can also be used for the three earlier

versions (ibid: 287-290).

The hole argument states that if there are generally covariant field equations, then

a given stress-energy tensor cannot uniquely determine the metric or the gravitational

field only using the field equations. The argument is as follows: Einstein assumes that

a stress-energy tensor and a metric tensor, which satisfy some field equations on the

whole spacetime-manifold M, are given in such a way that the stress-energy tensor is 0

in a specific region H - called the ‘hole’1. Einstein then argues that because of general

covariance, two different metric fields can be assigned to the hole H, that satisfy the

field equations and boundary conditions given by the tensors outside the hole. To show

this, Einstein applies a change of coordinate systems: starting with the first coordinate

system, which is defined on the whole manifold M (including the hole H) one can change

the coordinates such that one gets a second coordinate system which coincides with the

first system outside the hole H but is arbitrarily different inside the hole. This second

system is used to build a second metric field. Einstein concludes that because of general

covariance the stress-energy tensor can not uniquely determine the the metric tensor,

i.e. the material content of spacetime can not uniquely determine the gravitational field.

1Einstein chose the expression ‘hole’, which is misleading in this context. The ‘hole’ does not de-

scribe a real hole in the manifold but a special region with certain properties. For a more intuitive

understanding, the ‘hole’ argument should rather be called the ‘patch’ argument.
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This radical indeterminism convinced Einstein that there are no generally covariant field

equations.

It is a radical form of indeterminism for two reasons: the hole can have an arbitrary

metric field since the choice of the coordinate system in the hole is arbitrary as long as

the boundary conditions are satisfied. Also, the hole can be arbitrarily small. So even

the most exhaustive description of the fields outside the hole cannot uniquely determine

the fields inside the hole. This does not depend on the size of the hole region. So even

a very weak form of determinism, which assumes the fields of every region except for an

arbitrarily small hole are given, fails.

Norton argues that the change of coordinate systems used by Einstein does indeed

construct a different metric field (Norton 1984: 288-289). The change of coordinate

systems induces a related active diffeomorphism. Having this diffeomorphism one can

use it to induce a drag-along map which gives a second metric field. To be able to discuss

(in section 4 and 5) Butterfield’s solution of the threat to substantivalism by Earman

and Norton, this important construction of the second metric field will be developed in

a manner similar to Butterfield’s notation (Butterfield 1987: 22):

To start, one needs two different coordinate charts {x} and {x′} that have the same

open domain D which is a subset of the spacetime-manifold M. The hole H is an open

region and the closure of the hole is contained in the domain D. We take the two coor-

dinate charts to be identical outside the hole, i.e. x(p) = x′(p). Define a diffeomorphism

d from D onto D which sends a point p to a point q. The point q is to have the same

numbers in the coordinate chart {x′} as the point p has in the coordinate chart {x}.
This is equivalent to defining d by x′(d(p)) = x(p). Therefore d is the identity outside

the hole but not the identity inside, i.e. d|D-H = id|D-H and d|H 6= id|H. The drag-along

d∗ on geometric objects is induced by d. Since the metric tensor g is a geometric object

it is dragged-along to d∗g. The two metric tensor fields g and d∗g are different, because

points on D have metric relations according to d∗g which their pre-images have according

to g. This is illustrated in figure 1.

The point p in figure 1 lies outside the hole, so the diffeomorphism d sends it to the

identical point p. Inside the hole H, d sends q to r, r to s and similarly for the other

points. Because of the general covariance (GC) both models are a solution to the field

equations of the theory. But they are different, as r is at distance 2 from p in the first

model, whereas in the second model the distinct point s is at distance 2 from p and

therefore has the property of its pre-image.
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Figure 1: Points on a manifold M (left) are smoothly moved by a diffeomorphism d (right)

within the hole H but are identical outside the hole.

Now recall that Einstein created the hole argument to show that general covariance

leads to indeterminism, and therefore the theory of general relativity should not be gen-

erally covariant. Relying on this argument, Einstein was thus content that the Entwurf

theory by Einstein and Grossmann was not generally covariant. However, one step in the

derivation was not correct and the theory could not correctly predict Mercury’s anomaly.

In 1915, when he found the mistake in the derivation, Einstein got more and more dis-

satisfied with the Entwurf theory and started again to formulate a theory of general

relativity. This time he was successful in predicting the anomaly of Mercury’s motion.

Furthermore, the field equations of the theory were generally covariant. Having found

this result, he had to think again about his hole argument, since it contradicted his new

correct result.

In a letter to Besso in January 1916 Einstein described his new understanding of

the hole argument: The two models represent the same physical reality, since reality is

only the sum of spacetime point-coincidences. These spacetime point-coincidences are

conserved under a hole diffeomorphism d. Einstein writes that “it is most natural to

9



require of laws that they determine no more than the totality of timespace coincidences.

(...) This is already achieved with generally covariant equations” (Norton 1984: 291).

Einstein later used the hole argument to emphasize a different interpretation of the

nature of spacetime: that points on the spacetime manifold have no independent indi-

viduality and can only be distinguished by reference to a metric field. Thus a spacetime

manifold cannot exist without a metric field. So if one somehow removes the gravitational

metric field from the manifold, then nothing remains. Einstein later wrote “Spacetime

does not claim an existence of its own, but only as a structural quality of the field”

(Butterfield 1987: 23).

To sum up: in the beginning of his search for a general theory of relativity, the principle

of general covariance was very important for Einstein. And in the final stages it was

crucial in his struggles towards the final field equations. But in 1913, his hole argument

made him abandon it temporarily.

Shortly after he published his final theory, in 1917 Kretschmann argued that the re-

quirement of general covariance does not make an assertion about the content of the

theory as every spacetime theory can be expressed in a generally covariant way (Ander-

son, 1967: 338). Einstein accepted this objection. However, he probably assumed there

was some deeper meaning of the general covariance principle. For him, the principle of

general covariance was also a symmetry requirement. Today, in general relativity the

general covariance is viewed as a gauge symmetry freedom.

After this introduction of the hole argument, some aspects of its legacy will be discussed

in the next sections. In the following section substantivalism will be introduced so as to

understand the threat to substantivalism by Earman and Norton.

3 Substantivalism

Ever since Newton published his theory of gravitation, there has been a grand debate

between absolute versus relational theories of space and time (nowadays: spacetime).

It is hard to precisely define substantivalism as such, especially as its meaning varies

between authors. Philosophers of space and time distinguish between several different

versions of both substantivalism and relationism. Nevertheless, one can approach a defi-

nition and strengthen it by comparing it to relationism and describing the consequences

of a substantival nature of spacetime. In this section substantivalism will be described

and the rival theory, relationism, will be introduced so as to compare between the two
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doctrines. The approach to defining substantivalism will start from a scientific realist’s

point of view.

Scientific realism is a doctrine in the philosophy of science. It is the doctrine that the

best available theories are approximately true. For a scientific realist, what those best

theories postulate as existing does indeed exist.

If one applies scientific realism to general relativity, which is our best available theory

of gravitation and electromagnetism in spacetime, one has to analyse the ideas behind

the theory. Nowadays (and at the time Earman and Norton were first writing), most

books about general relativity introduced the idea of spacetime as a manifold of points2.

No further constraints on the nature of spacetime are imposed. Substantivalism is the

doctrine that spacetime points are genuine objects. If spacetime points are objects, then

regions, which are sets of points or aggregates of the points they contain, are objects, too.

Spacetime itself is then the mereological fusion of all the points. A scientific realist, who

takes general relativity (or other spacetime theories) seriously will therefore be inclined

to endorse substantivalism.

Before the theory of general relativity was established, a substantivalist would say that

spacetime is represented by a manifold and some additional geometric structure, called

its absolute structure. In Newtonian or special relativity theories, which are formulated

in a non-local way, a global absolute structure is defined ab initio, i.e. not as a physical

field emerging from field equations as in general relativity. For special relativity, one

could give the tuple <N, ηab> as a representation of spacetime.

The success of general relativity seemed to vindicate the relationist’s point of view,

since there is no ab initio global structure any more. It thus seemed that Newton’s

substantivalism was wrong, and Leibniz relationism was vindicated, after having been

overshadowed by the success of Newton’s substantival theory. But this common belief is

misleading. In fact, there are only three respects in which general relativity has vindicated

relationism (Butterfield 1987: 11-12).

The first vindication is based on the use of modern differential geometry to describe

spacetime. In any classical or relativistic theory a spacetime is required to have a 4-

dimensional connection to distinguish between accelerated and unaccelerated motion

independent of a coordinate system. Not knowing modern geometry, it was natural for

Newton to posit an absolute rest as this was the only way to define a connection. How-

2Maybe equipped with extra structure: e.g. a 4-dimensional Lorentzian manifold equipped with the

Levi-Civita connection.
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ever, with the use of modern differential geometry, the concept of absolute acceleration

can be achieved by a connection without positing absolute rest, for both classical and

relativistic spacetimes. Therefore, relationism if understood as denying an absolute rest

is vindicated.

The second vindication is due to special and general relativity. In classical spacetime

theories relationism fails, if it is defined as the assertion that motion can be described

by the relational metric structure only. This is due to the fact that the 4-dimensional

connection D is not uniquely determined by being compatible with spatial and temporal

metrics h and t, i.e. Dh = Dt = 0. For there are different connections that are compatible

with one pair of h and t. In relativistic theories, however, the metric g is non-degenerate.

The connection is determined by the definition Dg = 0 and thus only the metric structure

is needed to treat motion. Therefore relationism defined as claiming that motion is

described sufficiently using only the metric structure is vindicated.

The third vindication is due to the interaction in general relativity between matter and

geometric structure: they are influenced by each other. So the structure of the spacetime

is not independent of the content. So relationism is vindicated if understood as denying

spacetime as a fixed background for physical events independent of the distribution of

matter.

One should note that these vindications of relationism should not be understood as

supporting Mach’s principle, which fails in both classical and relativistic spacetimes.

Mach’s principle states that only relative motion between bodies exists. This is not

implied by the second and third vindication of relationism.

Even though relationism is vindicated in these three respects, there are good reasons

to take a substantivalist’s point of view; and in section 5 we will defend it against the

threat formulated by Earman and Norton.

Some aspects of substantivalism are widely accepted. Of course, the absolute rest of

Newtonian spacetime is not accepted. But the denial of Mach’s principle is definitely

accepted by substantivalists. So is the denial of Leibniz equivalence. Leibniz equivalence

in terms of models is the claim that diffeomorphic models (two models are diffeomorphic

if the geometric objects of one are the drag-along by a diffeomorphism of the geometric

objects of the other) represent the same physical situation. A good example for Leibniz

equivalence is the question whether there would be a different world if everything in the

world were translated ten inches West, conserving all the relations between every object

in the world. I shall take it that a substantivalist has to answer this question with a Yes
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(Earman and Norton 1987:521-522).

In the following section, the threat to substantivalism pressed by Earman and Nor-

ton will be discussed. To follow their argument, their definition of substantivalism is

adopted. For now we shall forget Einstein’s later interpretation of the hole argument as

denying independent individuality of the spacetime points, saying that they can only be

distinguished by reference to a metric field.

Earman and Norton take substantivalism as the view that the bare manifold M of the

models represent spacetime. They argue that all the geometric structure on the manifold

is defined by fields, which are determined by partial differential equations. Therefore

the metric and the connection are not inherent parts of the spacetime but physical fields

in it. Even though the metric field encodes information about spatial distances and

elapsed times, one excludes it from the spacetime. As the metric tensor comprises the

gravitational field and therefore carries energy and momentum, it is classified as a content

of the spacetime and not part of the spacetime itself (ibid: 518-519).

4 A threat to substantivalism

In 1987 Earman and Norton argued that general covariant field equations and substan-

tivalism lead to radical indeterminism. They use Einstein’s hole argument to develop

their dilemma that one either has to give up substantivalism or accept a radical failure

of determinism. But Earman and Norton’s threat lacks an exact definition of determin-

ism. Butterfield’s replies to the threat provide precise definitions for different forms of

determinism: of which one will be used in this section. First, an intuitive meaning of

determinism will be introduced, before a precise definition in terms of models is stated.

Determinism is a property of a physical theory. An intuitive understanding of deter-

minism is the Laplacian idea: a present state is the result of its past and the cause of its

future. Knowing everything about the present state on a time slice S (or in a weaker ver-

sion knowing everything about the present state on a time slice S and everything about

its past) one could predict the state everywhere in the future. In other words, deter-

minism says that a single physically possible world is uniquely identified by the physical

state on a specific region of spacetime, i.e. given the state on that specific region, there

is exactly one physical possibility for it (Butterfield 1987: 25).

In terms of models this means that if two models agree on a state at one time (or at

one time and in the past), they will also agree in the future. But there is no immediate
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meaning of ‘sameness of value’ in two different manifolds. For example what does it

mean for the vector at a point p in one model to be the ‘same’ as the vector at another

point in another model? This comparison can be made using a diffeomorphism, and the

drag-along map it induces on geometric objects, as described in section 2.

In general relativity not all the models have diffeomorphic manifolds, and therefore

they cannot all be compared globally by one diffeomorphism. It is thus natural to make

the definition of determinism conditional on the existence of a global diffeomorphism d

between the models of the manifolds. The definition is also conditional on the existence

of a region S of an appropriate kind S. If those two conditions are not satisfied, then

determinism will be true, but vacuously. Thus a first definition of determinism in terms

of models, call it Dm1, is as follows (Butterfield 1987: 14):

Determinism 1 (Dm1):

Let <M, Oi> be the models of a theory and let S be a kind of region occurring in

manifolds of the kind that occurs in the models. A theory is then S-deterministic, if and

only if: given any two models <M, Oi> and <M’, O’i> and any diffeomorphism d from

M onto M’, and any region S ⊂ M of the kind S:
If d(S) is of kind S and d∗(Oi) = O’i on d(S), which is of kind S too: then d∗(Oi) = O’i
on all of M’.

Note that S is some subset of M and not necessarily a submanifold (e.g. a slice is not a

submanifold). S is some preferred kind of region and the image under d of this region is

of the same preferred kind. Also note that in contrast to the intuitive understanding of

determinism the state on a region determines the state everywhere in the whole history.

Not only the future development is determined, but also the past.

This version of determinism will be violated if a substantivalist assumes general co-

variant field equations: if one takes a hole diffeomorphism d (a diffeomorphism of the

kind used in the hole argument in section 2), then the generally covariant field equations

are not sufficient to determine all of the spatio-temporal properties a substantivalist is

committed to. To see this, take two models <M, Oi> and <M’, O’i> and a hole dif-

feomorphism d on a domain D. Let the domain D contain a hole region H. Then d is

d|D-H = id|D-H and d|H 6= id|H. Take the identity map id on M with id∗(Oi) = O’i on

S where S = D - H. It is then obvious that id∗(Oi) 6= O’i on H. Because there are no

absolute objects that d needs to preserve under the drag-along, the diffeomorphism d
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is an example where Dm1 is violated for generally covariant field equations. And it is

violated in a radical way as discussed above in section 2 (page 8).

Note that the threat cannot be avoided by assuming determinism to require only

solutions that are unique up to an isomorphism. This is explicit in the example above.

Dm1 makes solutions only unique up to an isomorphism but is violated by the above pair

of models.

The threat is based on the denial of Leibniz equivalence. This leads to what Earman

and Norton call the verificationist dilemma. It is not possible to observe spatio-temporal

positions by themselves, because observables are just a subset of relations between struc-

tures on a spacetime manifold. Substantivalists must therefore either deny the Leibniz

equivalence or accept that they cannot distinguish distinct state of affairs by observa-

tions (Earman and Norton 1987: 522). Thus a substantivalist must make distinctions

that physics does not see. Earman and Norton then argue that the hole argument leads

to radical indeterminism as sketched on page 8 since the field equations cannot uniquely

determine the unobservably distinct states in the hole. The threat results in either the

acceptance of radical local indeterminism, or the acceptance of Leibniz equivalence which

is equivalent to denying substantivalism.

Earman and Norton’s threat is not based on the conviction that determinism is true or

should be true. They admit that there are many examples of how determinism can fail

in spacetime theories, in classical Newtonian physics (e.g. space invaders from spatial

infinity) as well as in general relativity (e.g. non-existence of a Cauchy surface). Also,

determinism fails in quantum theory. (However, there are controversies whether the

measurement process is really indeterministic, but this will not be important in this

essay). Thus there is no general need to vindicate determinism. Determinism might fail.

But if it fails it should not fail because of a philosophical doctrine but for a reason of

physics (ibid: 524). In Short: determinism should not be violated in a radical way as a

result solely of some general philosophical argument.

In the next section a new definition of determinism will be proposed so as to rec-

oncile substantivalism with general covariance. Then determinism will not be violated

by generally covariant theories like general relativity, and thus one can escape from the

threat.

15



5 An alternative definition of determinism

Three responses to the threat to substantivalism are possible: one can give up determin-

ism, one can give up substantivalism, or one can deny the threat and reconcile substanti-

valism and determinism. As above, determinism should only fail for a reason of physics

and not because of some general philosophical doctrine. Earman and Norton were willing

to give up substantivalism and they went on to discuss a way to formulate spacetime the-

ories without quantifying over points. Using a result of Geroch, only one initial reference

to points is needed in order to define geometric objects on a manifold: afterwards one can

refer to the algebra of smooth scalar fields. If one takes the algebra as the fundamental

object, representations would only be unique up to an isomorphism of spacetime models

<M, Oi>. One can then define determinism as requiring that there be a subalgebra that

determines the algebra; and so one can avoid the threat. This may very well be a feasible

approach. But it is not necessary to either give up determinism or substantivalism: it is

possible to reconcile the two (Butterfield 1987: 24-25).

To reconcile substantivalism with determinism, an alternative definition of determinism

(Dm2) will be needed. There are two aspects to a new definition of determinism: a

technical aspect and a philosophical aspect. Butterfield’s proposed new definition is not

just made up without a proper theoretical background. It is derived from the initial

value formulation of general relativity, which will be introduced in this section. One can

then see that for many well-known examples of spacetime theories, Dm2 will yield the

same verdicts about whether the theory is deterministic as Dm 1 yields. However, there

will be an example where Dm2 rules a theory as deterministic that Dm1 does not rule

as deterministic. This is the technical aspect of the new definition.

The philosophical aspect concerns the question, whether Dm2 satisfies the intuitive

idea of determinism as adequately as Dm1 does. Butterfield argues that Dm2 is faithful

to the intuitive meaning of determinism; thus the technical success will not be hollow.

Another concern of the philosophical aspect is whether Einstein’s idea of distinguishing

spacetime points by reference to a field is compatible with Dm2, whether it is necessary

for the reconciliation and, going even further, whether it is right. This essay will not

be focussed on the philosophical aspect of Dm2, but the main ideas will be introduced

briefly. For a more detailed discussion the interested reader is referred to Butterfield’s

article “The Hole Truth” (1989).

In section 4 it was shown how Dm1 is violated by generally covariant field equations

16



if one endorses substantivalism. But this result should not be automatically understood

as a proof that any generally covariant theory is indeterministic, since general relativity

textbooks prove uniqueness of solutions, if an appropriate initial value formulation is

used. The uniqueness of solutions strongly indicates that general relativity satisfies some

intuitive understanding of determinism. If one has control over initial conditions of

a system in classical physics, then its behaviour can be completely determined if the

system evolves in an isolated way, i.e. without interference from the outside. In practice

it is very hard to control initial conditions for gravitational problems, but in principle

it should be possible to control the initial conditions of the matter-distribution and the

gravitational field in a region much smaller than the cosmological scale. Assuming that

general relativity is not very different from other theories of classical physics, it is thus

physically reasonable that the initial data can be specified. Therefore with this initial

data, Einstein’s equation should determine the evolution of the region (Wald 1984: 243).

A theory has an initial value formulation, if initial data can be specified and the

dynamical evolution of the system is uniquely determined by this data. An initial value

formulation is well posed, if it satisfies two conditions. The first condition concerns the

intuitive understanding of determinism: small changes in the initial data should only

result in small changes in the solution over a compact region. Initial conditions can

only be measured to finite accuracy, so without this condition the theory would lose its

predictive power. The second condition is that changes in the initial data in a region

S will only affect the solution inside the causal future of S. Otherwise signals could

be transmitted faster than the speed of light, which violates the principles of relativity

theory. Wald argues that general relativity has such a well posed initial value formulation

(ibid: 244).

To present the initial value formulation, some definitions and restrictions to the space-

time manifold are needed. If S is a region of a manifold M, the future domain of depen-

dence is D+(S) and the past domain of dependence is D−(S). A Cauchy surface Σ is a

region of M such that M = D−(Σ) ∪D+(Σ). This means that Σ is a region of spacetime

that is intersected by every non-spacelike causal curve exactly once. In general relativity

there is no single manifold, and the spacetime manifold’s global topology and causal and

temporal structure can be of a peculiar kind. To achieve an initial value formulation, it

is assumed that the spacetime is globally hyperbolic (ibid: 255). A spacetime (M, gab) is

globally hyperbolic, if it possesses a Cauchy surface (ibid: 201).

The initial data can be expressed in an intrinsic form without reference to a space-
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time (M, gab) that the initial data is embedded in. The initial data consists of a triple

(Σ, hab,Kab), where Σ is a three-dimensional manifold, hab is a Riemannian metric on

Σ and Kab is a symmetric tensor field on Σ, that describes how Σ is embedded in M.

The idea is then that given such initial data there exists a globally hyperbolic spacetime

(M, gab), that satisfies Einstein’s equations and contains a Cauchy surface diffeomorphic

to Σ, and for which gab on this Cauchy surface induces the metric hab on Σ and the

induced extrinsic curvature on Σ is Kab (ibid: 256). Thus we take θ : Σ → M as the

diffeomorphism such that θ(Σ) is a Cauchy surface in M. Then we say that the triple

(M, θ, gab) is called a development of (Σ, hab,Kab).

Note that (M, θ, gab) is not unique: a development can always be the extension of

another and a development can be produced by dragging along another one with a hole

diffeomorphism that leaves Σ fixed. However, the freedom to apply a hole diffeomorphism

is included in the notion of an extension. An extension of a development is another

development, which contains a subset that is isometric to the original development. But

the converse inclusion is not correct. A development can extend a second one without

using a hole diffeomorphism. The first can either be non-isomorphic to the second, or it

can have a different base-set of points. But there exists a maximal development, which

is an extension of every other development and is unique up to a diffeomorphism. Two

maximal developments extend each other. (Butterfield 1987: 27).

These definitions and associated results will lead us to a notion of determinism appro-

priate for general relativity. To conclude the exposition the results, let us assume models,

(M, gab) and (M’, gab’). Then we have: if there is an initial data triple (Σ, hab,Kab) and

diffeomorphisms θ and θ’ such that (M, θ, gab) and (M’, θ’, gab’) are maximal develop-

ments of (Σ, hab,Kab), then (M, gab) and (M’, gab’) are isomorphic by an isomorphism

that preserves Σ, i.e. θ(Σ) is mapped to θ’(Σ) (ibid: 28).

This looks similar to the definition of Dm1. But there are two main differences in

the antecedents. First, because there is no reference of a global diffeomorphism in the

antecedent, which gives a matching on Σ, it has to be claimed in the consequent that a

global isomorphism exists. Secondly, the models are maximal and thus inextendible. In

general relativity this is a common assumption to make.

With this, an alternative general definition of determinism can be presented. It will be

expressed in terms of general models <M,Oi>, and Cauchy surfaces cannot be assumed

because they do not exist in classical spacetimes. Instead, regions S of an appropriate

kind S will be used, just like in section 4’s discussion of Dm1 (ibid: 28-29):
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Determinism 2 (Dm2):

Let <M, Oi> be the models of a theory and let S be a kind of region occurring in

manifolds of the kind that occurs in the models. A theory is then S-deterministic, if and

only if: given any two models <M, Oi> and <M’, O’i>, which contain regions S and S’

of kind S respectively, and any diffeomorphism α from S onto S’:

If α∗(Oi) = Oi’ on α(S) = S’, then: there is an isomorphism β from M onto M’ which

sends S to S’, i.e. β(S) = S’, and for which β∗(Oi) = Oi’ on all of M’.

This definition is different from Dm1: contrary to Dm1, the diffeomorphism α does

not need to be a global diffeomorphism, it is sufficient that it be defined on S only. Also,

the global isomorphism β does not need to extend α, i.e. it does not need to coincide

with α on S. Therefore Dm2 does not reduce to Dm1, even if α is given globally. Thus

Dm2 is a weaker definition of determinism than Dm1 is. However, since β does not need

to extend α, Dm2 is not violated by a hole diffeomorphism. Thus, in principle, it allows

generally covariant theories to be deterministic. Butterfield claims that this definition,

which was derived by analysing general relativity’s initial value formulation carefully, is

the proper definition for generally covariant theories.

There is another aspect of Dm2, besides allowing generally covariant field equations

to be deterministic from a substantivalist’s point of view, which makes it an attractive

definition of determinism. For most familiar spacetime theories, that assume a single

manifold with a structure, Dm2 will decide whether the theory is deterministic or not in

the same way as Dm1 does.

As an example, for theories using classical or Minkowski spacetime (globally R4),

determinism will be analysed for the two different definitions, where either a slice or a

sandwich is considered for determining the whole history. If α from the definition of Dm2

is a diffeomorphism between a slice or a sandwich on R4, then it can easily be extended

to a global diffeomorphism on R4. It is then obvious that Dm1 and Dm2 will only differ

by Dm2 being a weaker definition than Dm1, since β and α do not have to coincide. Thus

for classical and Minkowski spacetimes if Dm1 rules a theory as deterministic, Dm2 rules

it as deterministic, too.

The reverse is more interesting: Is there a spacetime theory that Dm1 rules as indeter-

ministic whereas Dm2, being a weaker definition, rules it as deterministic? The answer

is Yes. However, the example for this is a rather less familiar spacetime: Leibnizean

spacetime is a classical spacetime, which has neither an absolute rest nor a connection.
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Thus the models are <M, h, t>, where M is globally R4, and h and t are the spatial and

temporal metric as before. This spacetime has little structure and therefore many sym-

metries. The symmetries which are important for the difference between Dm1 and Dm2

are, such that they are the identity map upto the time t = 0 and differ smoothly from

the identity afterwards. Independent on the specific laws of the theory, such a symmetry

will map a model containing matter to a different model. Therefore Dm1 fails, because

if two models with the same manifold match by the identity map for t ≤ 0, they will not

match by the identity map for t > 0 and thus Dm1 is violated. On the other hand, Dm2

does not need to fail since the global match does not need to be the same map, that

initially matched the two models on the region S (here the region S is the entire past

before t = 0 and the initially matching map is the identity). For Dm2 the global match

can be given by the symmetry itself. Nevertheless, this example is a rather special case

and for most well-known spacetime theories Dm1 and Dm2 give the same verdicts about

whether the theory is deterministic.

All this technical success of the new definition would be in vain, if Dm2 did not

represent the intuitive idea of determinism as faithfully as Dm1 does. But Butterfield

argues that both definitions satisfy the intuitive idea equally faithful (ibid: 25).

Furthermore, he argues that Einstein’s idea of reconciling general covariance with

determinism (using the idea that points are distinguished with reference to a field: cf.

section 1 p. 4 and section 2 p. 10) is compatible with the alternative definition of

determinism. It is, however, not a necessary part of the reconciliation.

To discuss these assertions, take the two models from figure 1. Substantivalism must

deny that those two models represent the same physically possible world. This is because

a substantivalist believes that the points and their relations and properties are fixed by

a possible world. Thus different models cannot represent the same world. However, the

denial can be of two different forms: first, one can take each model as representing a

possible world. Then the two models violate the intuitive idea of determinism that a

single physically possible world is uniquely determined by a state on a specific region

of spacetime. But secondly, one can take at most one model as representing a possible

world. This approach does not threaten the intuitive idea of determinism (ibid: 26).

There are again two ways to justify the second form of the denial: one can follow

Einstein’s approach, which is to distinguish the points by reference to a field. Some

models will not represent a possible world, because they fail to assign the right properties

and relations of some of the points. But Butterfield argues that the second way is
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philosophically attractive: it is a way which denies that one object can be in two possible

worlds. In this case, it means that no point can be in two different worlds. Thus only

one of the two models in figure 1 can represent a physically possible world, because one

possible world could not share points with another one. Therefore Einstein’s approach

is not necessary to save determinism if one believes in substantivalism (ibid: 26).

6 Conclusion

On his way to developing a theory of general relativity, Einstein stumbled over the

hole argument. It took him two years to find the mistake in Einstein and Grossmann’s

non-generally covariant field equations of general relativity. In the end, having found

generally covariant field equations, he changed his view about the nature of the substan-

tival elements of spacetime. To him, points of the manifolds cannot have an independent

individuality. They can only be distinguished by reference to a field.

After he came up with his new perspective on the hole argument, Einstein did not

worry much about the consequences. But this was not the end of the relevance of the

hole argument. Its legacy led others to stumble as well. Earman, who used to be an

advocate of substantivalism, collaborated with Norton; and in 1987 they claimed that the

hole argument can be used to show that generally covariant field equations lead to radical

indeterminism if one is a substantivalist. They argued that, because substantivalism is

‘just’ a philosophical doctrine, one should not give up determinism, which should only fail

because of reasons of physics; but one should accept the principle of Leibniz equivalence

and thereby deny substantivalism.

Butterfield responded to this threat to substantivalism and derived an alternative defi-

nition of determinism called Dm2. His definition is based on the initial value formulation

of general relativity and is thus implicit in modern formulations of our best theory of

spacetime. This new definition Dm2 reconciles substantivalism with determinism for

generally covariant field equations; the hole argument is no longer a threat to substanti-

valism. Besides this technical success, Dm2 represents the intuitive idea of determinism

as faithfully as does Dm1, which is a stronger definition of determinism in terms of

models.

Butterfield’s alternative definition Dm2 is not a makeshift, but rather an attractive,

definition of determinism. Substantivalism takes the fundamental objects that a theory

states to exist as indeed existing. General relativity quantifies over points of a spacetime

21



manifold and therefore a substantivalist takes those points as genuine objects. Einstein’s

approach to take a combination of points and fields, that assign properties to the points,

as fundamental is, I would suggest, unsatisfactory, because those fields have to obey

the field equations of the theory. They are determined by partial differential equations

and thus not an inherent part of the spacetime but are a physical field in it; i.e. the

fields are a content of the spacetime. Dm2 allows a substantivalist to take ‘only’ points

on the spacetime manifold as fundamental objects and still secures determinism from

generally covariant field equations. This is, in my opinion, an attractive view of both

substantivalism and determinism and should be endorsed by a scientific realist.

I would like to thank Daniel Toth for discussions, Farrah Raza for proofreading and Jeremy Butterfield

for discussions and comments on previous versions.
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