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Abstract

In the paper we ask how the following two facts are related: (i) a set of correlations has
a local, non-conspiratorial separate common causal explanation; (ii) the set satisfies the Bell
inequalities. Our answer will be partial: we show that no set of correlations violating the
Clauser—Horne inequalities can be given a local, non-conspiratorial separate common causal
model if the model is deterministic.

1 Introduction

According to the standard interpretation a common causal explanation of a set of EPR correlations
consists in providing a so-called common common cause system that is a common screener-off for all
correlations of the set such that this common screener-off is local and non-conspiratorial. (For the
precise definitions see below.) However, it is well known that the assumption that a set of correlations
has a local, non-conspiratorial common common cause system results in various Bell inequalities.
Since these Bell inequalities are violated for appropriate measurement settings a common causal
explanation of the EPR correlations is excluded—at least according to this interpretation of the
common causal explanation.

However, in 1996 Belnap and Szabo6 came up with a weaker interpretation of the common causal
explanation (Belnap, Szabo, 1996). The idea was that a set of correlations may not have a common
common cause system but only a set of separate common cause systems explaining the correlations
separately. In 2000 Szabé raised the question whether this idea provides a satisfactory common
causal explanation for the EPR scenario (Szabd, 2000). To test his idea Szabo took a set of EPR
correlations violating the appropriate Bell inequalities and then developed a computer program to
generate local, non-conspiratorial separate common cause systems for the given set. The result of
the computer simulations was that the chosen set of EPR, correlations could be given a local separate
common causal explanation, however the common cause systems were conspiratorial in a very tricky
way. (See below.) Being unable to remove the unwanted conspiracies Szabo concluded the paper with
the conjecture that EPR correlation can not be given a local, non-conspiratorial separate common
causal explanation.

Szabé’s idea inspired a whole series of papers devoted to the clarification of the possibility of a sep-
arate common causal explanation of EPR correlations. In 2005 Grasshoff, Portmann and Wiithrich
derived the Wigner-type Bell inequalities from Szabd’s premises plus the assumption that the set of
correlations consisted of only perfect anticorrelations. (Grasshoff et al, 2005). The assumption of
perfect anticorrelations, however, had two unpleasant consequences. First, the fate of the separate
common causal explanation of the EPR scenario hinged on a precise experimental test of perfect
anticorrelations. Second, the assumption of perfect anticorrelations reduced the separate common



causal derivation of the Bell inequalities to a standard common common causal derivation. This
reduction has been shown by Hofer-Szab6 in (Hofer-Szabd, 2008). In the same paper Hofer-Szabo
has presented a derivation of Bell inequalities from local, non-conspiratorial separate common causes
without assuming perfect anticorrelations. Since a common cause is a special common cause sys-
tem (a common cause system of size 2) the result was not general enough. In 2007 Portmann and
Wiithrich have eliminated the restriction to common causes from the derivation and derived the
Clauser-Horne inequality from local, non-conspiratorial separate common cause systems in the con-
text of almost perfect anticorrelations (Portmann and Wiithrich, 2007). Hofer-Szabo generalized
this derivation for any Bell(d) inequality that is an inequality differing from some Bell inequality in
a term of order of § (Hofer-Szabo, 2011). In the light of this derivation a ¢ > 0 threshold could be
given for any set of correlations violating the standard Bell inequalities such that if an approriate
subset of the original set of correlations differ from perfect anticorrelations less then § then the set
can not be given a local, non-conspiratorial separate common causal explanation. These results have
settled the problem concerning the relation between the separate common causal explanations and
the EPR scenario. However, they have not settled the relation between the separate common causal
explanations and the Bell inequalities.

On closer examination the strategies used in the papers of the above authors (including the
author of the present paper) had a very baffling structure. The reaction of the authors to Szabd’s
inability to provide a local, non-conspiratorial separate common causal explanation for a set of
EPR correlations was the following. The chosen set of correlations cannot have a separate common
causal explanation since it violates a Bell inequality which can be derived from the assumption
that the given set has a local, non-conspiratorial separate common causal explanation. Of course,
the failure of a separate common causal explanation may result from other reasons as well since
separate common cause explanations may bring in other constraints between the probability of the
correlating events different from the Bell inequalities; still the idea motivating the explanation of this
fact was to derive some Bell inequalities from Szabd’s premisses. However, it was not that happened.
Instead of deriving the appropriate Bell inequality from the assumption that the original set of the
correlations chosen by Szabo has a local, non-conspiratorial separate common causal explanation,
all the mentioned authors have chosen another set containing only perfect anticorrelations. Then
from the assumption that this set of perfect anticorrelations has a local, non-conspiratorial separate
common causal explanation they have derived a Bell inequality for the correlations of the original
set. So the Bell inequality they reached did not pertain to the original set but to the newly chosen
set of perfect anticorrelations.

The effort of all the subsequent papers (Portmann and Wiithrich, 2007), (Hofer-Szabo, 2008) and
(Hofer-Szabo, 2011) was to release the strong requirement of perfect anticorrelations in the derivation
and to substitute perfect anticorrelations by almost perfect anticorrelations.

Of course, this strategy is impeccable as long as the aim of the proof is to exclude a local, non-
conspiratorial separate common causal explanation of the EPR scenario in general. However, it
does not explain why Szab6 could not provide a local, non-conspiratorial separate common causal
explanation for his own set of correlations. Since Szabd’s concern was not to give a separate common
causal explanation for the perfect anticorrelation set, the violation of Bell inequalities derived from
the assumption that the perfect anticorrelation set has a separate common causal explanation did
not explain Szabd’s failure of providing a separate common causal explanation for his own set. In
order to explain this fact one should derive some Bell inequalities from the assumption that Szabd’s
original set has a local, non-conspiratorial separate common causal explanation.

Here we will provide a partial answer to this problem. We will show that no set of correlations
violating the Clauser—Horne inequalities can be given a deterministic, local, non-conspiratorial sepa-
rate common causal explanation. Since the elimination of the requirement of determinism from the
proof is not straightforward, the general question whether correlations violating the Clauser—-Horne
inequalities can be given a (not necessary deterministic) local, non-conspiratorial separate common



causal explanation remains open.

In Section 2 we summarize the assumptions of a local, non-conspiratorial common common causal
and separate common causal explanation of a set of EPR correlations respectively. In Section 3 we
show in sketch the steps how these assumptions result in the Clauser—Horne inequalities if the set
for which we are looking for a local, non-conspiratorial separate common causal explanation is a set
of perfect or almost perfect anticorrelations. Finally, in Section 4 we drop these extra correlations
and derive the Clauser—Horne inequalities from Szabd’s original set of correlations for deterministic,
local, non-conspiratorial separate common cause systems.

2 Common causal explanations of EPR correlations

Consider the Bohm version of the EPR experiment with a pair of spin—% particles prepared in the
singlet state |¥,). Let a; denote the event that the measurement apparatus is set to measure the
spin in direction d@; in the left wing where i is an element of an index set I of spatial directions; and
let p(a;) stand for the probability of a;. Let b; and p(b;) respectively denote the same for direction b,

in the right wing where j is again in the index set I. (Note that i = j does not mean that a; and gj
are parallel directions.) Furthermore, let p(A4;) stand for the probability that the spin measurement
in direction @; in the left wing yields the result "up” and let p(B;) be defined in a similar way in

the right wing for direction gj. According to quantum mechanics the quantum probability of getting
“up” in direction @; in the left wing; getting "up” in direction b; in the right wing; and getting "up”
in both directions @; and b; are given by the following relations

TT(WIWS) (PAi (%9 I)) =
Tr(Wyw,y (I ® Pp,)) =

TT(W/N’s) (PA'L ® PBj)) =

N~ N~ DN

sin? (Q“T”J) (3)

where T'r is the trace function; W)y ) is the density operator pertaining to the pure state |¥); Pa,
and Pp; denote projections on the eigensubspaces with eigenvalue +1 of the spin operators associated
with directions a; and I_;j respectively; and 0,5, denotes the angle between directions a@; and I_;j.

The standard way to interpret quantum probabilities is to identify them with conditional proba-
bilities as follows:

p(Ailaib;) = Tr(Wg, (Pa, ®1)) (4)
p(Bjlaib;) = Tr(W,) (I ® Pg,;)) (5)
p(AiBjla;b;)) = Tr(Wg, (Pa, ® Ps;)) (6)

where the events A;, Bj, a;, and b; (i,j € I) respectively are elements of a classical probability
measure space (X,S,p) and the conditional probabilities are defined in the usual way. With this
identification quantum mechanics predicts correlation between classical conditional correlations for
non-perpendicular directions a; and gj:

p(AiBjlaib;)  #  p(Ailaib;)p(Bjlaib;) (7)

Specially, if the measurement directions a; and l;j are parallel then there is a perfect anticorrelation
between the outcomes A; and B;:

p(A;iBjlab;)) = 0 (8)



A further consequence of (4)-(5) is the so-called surface locality that is for any 4,4, 5,7’ € I the
following relations hold

p(Ailaib;) = p(Ailaby) 9)
p(Bjlaibj) = p(Bjlaiby) (10)

Now, let (A4;, B;) (i,j € I) denote a pair correlating conditionally according to (7) and let {(A;, B;)}ijer
stand for a set of correlating pairs pertaining to the index set I. What does a common causal expla-
nation of the set {(A;, Bj)}i jer of correlations consist in? In the following we expose the components
of such an explanation.

Let us begin with the definition of the common cause. Let (X,S,p) be a classical probability
measure space and let A and B be two (positively) correlating events. Then the common cause of
the correlation is the following;:

Definition 1. An event C in S is said to be the common cause of the correlation between events A
and B only if the events A, B and C satisfy the following relations:

p(AB|C) = p(A|C)p(B|C) (11)
P(AB|C™) p(A|CH)p(B|CT) (12)
p(AIC) > p(AICH) (13)
p(BIC) > p(B|CY) (14)

where C+ denotes the orthocomplement of C. Equations (11)-(12) are called screening-off properties
since conditioning on C and C* respectively screens off the correlation between A and B. Inequalities
(13)-(14) express positive statistical relevance of the cause C' on the two effects A and B respectively.

The above definition of the common cause goes back to Reichenbach (Reichenbach, 1956); (although
Reichenbach himself did not regard (11)-(14) as a sufficient condition for an event to be a common
cause). From the time of Reichenbach’s first characterization on the common cause concept has been
generalized in two important ways. First, it has been generalized for situations where there are more
than one causes present that is for a system of cooperating common causes (Hofer-Szabo, Rédei,
2004, 2006). Second, the inequalities expressing positive statistical relevance have gradually been
redarded as being too restrictive and hence have been dropped. As a result the common cause has
been characterized simply as a screener-off partition of the algebra defined as follows:

Definition 2. Let again (X, S, p) be a classical probability measure space and let A and B be two
correlating events in S. Then a partition {Cy},, in S is said to be the common cause system of
the correlation between events A and B if and only if the following factorization holds for all k € K:

p(ABI|Cy) = p(A|Cy)p(B|C) (15)

where | K|, the cardinality of K is said to be the size of the common cause system. A common cause
system of size 2 is called a common cause.

Definition 2 of the common cause system referred to a single correlation. However, generally we
are looking for the causal explanation for a set of correlations. This explanation can be understood in
two different ways. Either we provide a separate common cause system for each separate correlation
of the given set; or we are looking for a so-called common common cause system that is a partition
screening off all correlations of the set. This latter option puts extra requirements on the explanation
since it demands that the common cause system pertaining to the different correlations be the same.



Now, let us apply the concept of common cause systems to EPR correlations. First note that
EPR correlations are conditional correlations in the sense of (7) where the conditions represent the
choice of the measurement directions. Looking at the spatiotemporal arrengement of the events
representing the measurement choices and the measurement outcomes respectively in the opposite
wings and the set of events representing the common cause system at the source we can read off the
following two spatial separations. The outcome events A; in the left wing are spatially separated
from the measurement choice events b; in the right wing; and similarly events B; are spatially
separated from events a;. The measurement choice events a; and b; are spatially separeted from
the events of the common cause system {C%}. Turning these two spatiotemporal considerations in
statistical relationships we get the so-called locality and no-conspiracy requirements. Applying the
above definition of the common cause systems that is the screening-off requirement for conditional
probabilities we obtain altogether three demands that a common causal explanation should satisfy.
If we demand on the top that the common cause sytem be the same for all correlations of the given
set then we arrive at a local, non-conspiratorial common common causal explanation.

Definition 3. Let {(A;, B;j)}i jer be a set of correlating pairs pertaining to the index set I such
that A;, Bj, a; and b; are elements of a classical probability measure space (X,S,p). Then a
local, non-conspiratorial common common causal explanation of the set {(A;, Bj)}i jer consists in
providing a partition {Cj}rex of S such that {Cy}rex is local, non-conspiratorial and screens off
all the correlations of {(A;, B;)}: jer in the sense that for every 4,4/, 7,5/ € I and k € K the following
relations hold:

p(A;|a;b;Cr) = p(A;|a;bj Ck
p(Bjlaib;Cy) = p(Bjla;b;Cy

p(aibjCr) = p(aib;)p(Ck

p(A;Bjla;ibiCy) = p(Ailaib;Cr)p(Bj|a;b;Ck
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On the other hand, if we let the common cause sytem be different for the different correlations
of the set then our explanation will be called a local, non-conspiratorial separate common causal
explanation.

Definition 4. Let {(A;, Bj)}i jer be a set of correlating pairs pertaining to the index set I such
that A;, Bj, a; and b; are elements of a classical probability measure space (X,S,p). Then a
local, non-conspiratorial separate common causal explanation of the set {(Aj;, Bj)}ijer consists
in finding a separate partition {C’,ij}k(ij)eK(i,j) of S for each correlation in {(A;, B;)}i jer such
that each {C’,ij Yr(ij)er iy s local, non-conspiratorial and screens off the appropriate correlation in
{(Ai, Bj)}i jer in the sense that for every 4,4/, 7,5/ € I and k(ij) € K(i,j) the following relations
hold:

p(A;ilasb; C”) p(A;ilabj C”

p(BjlaibjC}?) = p(Bjla;b;Cy

p(aibj F') = p(ab;)p(F

p(AiBjla:b;Cy)) = p(Aslaib;CyY )p(Bjlaib;CyY
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where F' in equation (22) is an element of the algebra S’ C S generated by all the elements of every
separate common cause system.

To motivate why it is important to demand no-conspiracy (22) in this strong sense namely for
any element of the generated algebra and not just for the C}/ elements, recall the tricky conspiracies
in Szabd’s separate common causal model. As mentioned in the Introduction Szab6 was able to



construct a local separate common causal model for a special set of EPR correlations that was
non-conspiratorial in the sense the every a; and b; were independent of every C}’. However, this
model was conspiratorial at a deep level—the measurement choices a; and b; correlated with some
disjunctions of elements of separate common cause systems such as C’,ij U C’,il,j ". To exclude all these
type of conspiracies we demand no-conspiracy in the strong form (22).

Now, we turn to the relation between the local, non-conspiratorial common or separate common
causal explanations of the EPR correlations on the one hand and the Bell inequalities on the other.

3 Bell inequalities

Now, let us be more specific concerning our set {(A;, B;)}; jer. Let the correlation set consist of four
correlating pairs (A1, Bs), (41, By), (A2, Bs) and (As, By). The standard question is usually whether
this set can be given a local, non-conspiratorial common common causal explanation in the sense of
Definition 3. The answer is well known. {(A;, Bj)}i—1,2;j—3,4 can be given a local, non-conspiratorial
common common causal explanation only if the correlations of the set for any i,¢' = 1,2; 5,7 = 3,4
and i # 4, j # j' satisfy the Clauser—Horne inequalities

—1 < p(A;Bjlaibj) + p(Ai By |aibjr) + p(Ai Bjlaibj) — p(Ay Bjrlairbj) — p(Ailaib;) — p(Bjlaibs) < 0 (24)
The proof is simple. It is a trivial fact of arithmetic that for any a, o/, 3, 8" € [0, 1] the expression
af+af +oB-d'B —a—p (25)

lies in the bound [—1,0]. Now let «, &/, 8, 8 be the following conditional probabilities:

a = p(Ailab;jCy) (26)
o = p(AilaibjCy) (27)
B = p(Bjlaib;Cr) (28)
Ii4 ( (29)

= p Bj/|ai/bj/Ck)
Plugging (26)-(29) into (25) and using locality (16)-(17) one gets that

—1 < p(AilaibjCr)p(B;laib;Cr) + p(Ailaib;Cr)p(Bj|aib;Cr) + p(Ai|aib;Cy)p(Bjlayb;Cy)
—p(Air|ai by Cy)p(Bj|aibj Cr) — p(Aila;b;Cy) — p(BjlaibjCr) <0
Using screening-off (19) one gets that
—1 < p(AiBjlaibjCr) + p(AiBj|aibjCr) + p(As Bjlaib;Cr)
—p(Ai Bjlaibj Cy) — p(AilaibjCr) — p(Bjla;b;Cy) <0

Finally, multiplying by p(C}), summing up for the indices k& and using no-conspiracy (18) one obtains
(24).

An example for a correlation set which violates (24) and hence can not be given a local, non-
conspiratorial common common causal explanation is the one Szab6 used in his paper (2000). Here
the angles 04,5, between the directions d; and b; are set as follows:

2w
9,111,3 = 9,111,4 = 9a2b3 = ? and 9a2b4 = 0 (30)



For this choice of the measurement directions there is a conditional correlation for every (A;, B;)
pair (i =1,2; j = 3,4):

S = p(iBalaiby) # p(Ailasbs) p(Balasbs) = 5 - 3 (1)
g = p(A1Balarbs) # p(Ailaids) p(Balaibs) = % : % (32)
S = p(aBulashy) # plAslashs) p(Balazbs) = 5 - 3 (33)
0 = p(A2Balazbs) # p(Az|azbs) p(Bilazbs) = % : % (34)

Denote this set of correlations by {(A;, B;)}cw. This set violates the Clauser-Horne inequality
—1 < p(A1Bslaibs) + p(A1 Balaibs) + p(AaBylagbs) — p(A2 Bylagbs) — p(Ai|a1bs) — p(Bsla1bs) < 0 (35)

at the upper bound as follows:

3 3 3 1 1
§+§+§*0*5*§ y( 0 (36)
Consequently, {(A;, Bj)}cm can not be given a local, non-conspiratorial common common causal

explanation.

Now, let us go over to the question whether {(A;, Bj)}cn (or any other correlation set violating
the Clauser—Horne inequalities) can have a local, non-conspiratorial separate common causal expla-
nation. As mentioned in the Introduction Szab6 was unable to present a local, non-conspiratorial
separate common cause model for {(4;, Bj)}cu because of the unwanted conspiracies. The natural
intuition towards this fact was that a local, non-conspiratorial separate common causal explanation
of the set {(A;, Bj)}cn results in some Bell inequalities—for example in the above Clauser-Horne
inequalities—and the violation of these inequalities for the above setting is responsible for the lack of
a separate common causal explanation. Thus, the program has been to show up a derivation of some
Bell inequalities from the assumption that {(A;, Bj)}cm has four local, non-conspiratorial separate
common cause systems satisfying (20)-(23).

Curiously enough, none of the authors has taken this route. Instead of taking the above set
and then searching for a derivation of some Bell inequality from the assumption that this set has
a local, non-conspiratorial separate common causal explanation they have chosen another set. This
set again consisted of the four correlations of {(4;, B;)} (i = 1,2,3,4) for any of which the angle
Ou;b;, Was set to 0. In other words, this set was composed of perfect anticorrelations. Denote this
set by {(Ai, B;)}pa. For the relation between the sets {(A4;, Bj)}cr and {(A;, Bj)} pa see Figure 1
where the continuous lines represent the Clauser—Horne correlations and the dotted lines represent
the perfect anticorrelations.

Now, the reasoning has run as follows (for the details see (Grasshoff et al. 2005) and (Hofer-
Szabo, 2008)). Suppose that {(A;, B;)}pa has a local, non-conspiratorial separate common causal
explanation that is four local, non-conspiratorial separate common cause systems {C}'} e K@) (0=
1,2,3,4) satisfying (20)-(23). Since {(A;, B;)} pa consists of only perfect anticorrelations it is easy
to show that from assumptions (20)-(23) it follows that for any ¢ = 1,2,3,4 there exist a vector
£ € {0,1}5® such that defining C* and C** as

ci= U s ot= U a-ehor (37)

kEK (3) keK ()

the partitions {C%, C¥+} (i = 1,2, 3, 4) will be local, non-conspiratorial separate common causes that
is a separate common cause systems of size 2 for the set {(A;, B;)}pa. Moreover, every {C% 1}



Figure 1: The Clauser—Horne correlation set and the perfect anticorrelation set

will satisfy (20)-(23) deterministically that is each term in (20)-(23) will be either 0 or 1. Finally, the
probability of the separate common causes will equal to the probability of the conditional probabilities
p(AZ|a1b1) and p(Bl|aZb1)

p(C") = p(Asaib;) (38)
p(C") = p(Bilaib;) (39)

Notice that in this reasoning there has been no mention of the original set {(A;, Bj)}cu. How do
the correlations of {(A;, B;)}cu come into the picture?

The joint and marginal conditional probabilities of the Clauser—Horne correlations appear simply
using locality (20)-(21) and no-conspiracy (22) for the perfect anticorrelation set. That is for any
6,j=1234i#j

p(C") = p(Ailaib;) (40)
p(CPH) = p(Bjlaibs) (41)
p(C"CHL) = p(A;Bjlab;) (42)

Now, consider the four events C', €22, ¢33+ and C*** in S. For these events the following
simple probabilistic constraint applies:

-1< p(ClchBJ_) +p(cllc44J_) +p(022033j_) _p(c22044J_) _ p(Cll) _ p(CSBJ_) <0 (43)

Subtituting the probabilities of (43) by the conditional probabilities of (40)-(42) we get the Clauser—
Horne inequality (35) for the correlation set {(Ai, Bj)}cu. Since for the measuring setup (30)
this inequality is violated there can be given no local, non-conspiratorial separate common causal
explanation of the perfect anticorrelation set {(A;, Bj)}pa!

To put is briefly, the necessary condition for {(A;, Bj)}pa to have a local, non-conspiratorial
separate common causal explanation is that {(A;, Bj)}cn satisfies the Clauser-Horne inequality
(35).

The papers (Portmann and Wiithrich, 2007) and (Hofer-Szabo, 2008, 2011) have repeated the same
argumentation for almost perfect anticorrelations. Here we sketch the argument of (Hofer-Szabo,
2011). Consider again a set consisting of four correlating pairs {(A;, B;)}i=1,2,3,4 and suppose that
for any i = 1,2, 3,4 the angle 0,,,, between the measurement choices is such that

< 2arcsinv1 — 26 (44)

or more simply, let the correlations be such that for any i =1,2,3,4

|7T - oaibi

p(AiBilaibi)) < 0 (45)



Denote such a set of correlations by {(4;, Bi)} pa(s)- Again suppose that {(A;, B;)} pa(s) has a local,
non-conspiratorial separate common causal explanation. As above, from this assumption it follows
that there exist a vector £ € {0, 1} for any i = 1,2, 3,4 such that defining C* and C** as in (37)
one get four partitions {C%, C¥1},_; 5 5 4 for which—instead of (38)-(39)—the following inequalities
will hold:

Ip(C’”) — p(Ailaib;)|
[p(C*™) — p(Bilasbs)|

48 (46)

<
< 46 (47)

Call these partitions quasi common causes since although they are constructed out of the elements of
the common cause systems {C}'} they do not satisfy screening-off (23) (however they satisfy locality
(20)-(21) and no-conspiracy (22)).

Now as above, using locality (20)-(21) and no-conspiracy (22) for the set {(A;, Bi)}pa(s) we get
that for any i, =1,2,3,4

p(C™) — p(Ailasb;)| < 46 (48)
Ip(CP1) — p(Bjlasb;)| < 46 (49)
|p(C*CI+) — p(A;Bjlasb;)| < 86 (50)

Consider again inequality (43) composed of the quasi common causes C'*, C?2, C33L and C*** and
substitute the probabilities of (43) by the conditional probabilities of (48)-(50). Each substitution
will cause an error of order of either 40 or 8. Adding up the errors we obtain the following inequality.

—1< p(AlBg|a1b3) +p(AlB4|a1b4) +p(AgB3|a2b4) —p(AgB4|a2b3) — p(A1|a1b3) — p(Bg|a1b3) —406 <0 (51)

We refer to this inequlity as a Clauser—Horne(d) inequality since (51) differs from the original Clauser—
Horne inequality (43) in a term of order of §. Again for the measuring setup (30) the Clauser—
Horne(8) inequality (51) is violated as long as § < 5. This excludes a local, non-conspiratorial
separate common causal explanation of the almost perfect anticorrelation set {(A;, Bj)}pa(s)-

This strategy can be generalized for arbitrary Bell(d) inequality. In (Hofer-Szabo, 2011) a recipe
has been given for deriving any Bell(d) inequality composed of marginal probabilities p(A4;|a;b;),
p(Bjla;b;) and joint probabilities p(A;B;|a;b;). The recipe is roughly this. Consider a Bell inequality
resulting from the local, non-consipratorial common common causal explanation of a set {(A;, B;)}
of correlations. Consider the set {(A;, B;)}pa(s) of almost perfect anticorrelations pertaining to
the events A; or B; which appear in either a marginal or a joint probability in the Bell inequality.
Suppose that {(A;, Bj)} pa(s) has a local, non-conspiratorial separate common causal explanation.
This assumption results in a Bell(d) inequality differing from the original Bell inequality in a term of
order of § where the exact magnitude of this term is the function of the approximation. Choose the
setting which violates the Bell inequality maximally. If the § term is smaller than the violation of the
original Bell inequality than the new Bell(¢) inequality will also be violated—excluding a local, non-
conspiratorial separate common causal explanation almost perfect anticorrelation set {(A;, B;)} pa(s)-

4 No deterministic, local, non-conspiratorial separate common
causal explanation of the Clauser—Horne set

In the last Section we have posed a question and answered another one. The question was whether
the set {(4;, B;)}cn has a local, non-conspiratorial separate common causal explanation. However,
the answer was this. The necessary condition for {(A;, Bj)}pa (or {(Ai, Bj)}pas)) to have a local,
non-conspiratorial separate common causal explanation is that {(A;, Bj)}cm satisfies the Clauser—
Horne inequality (24). This answer is perfectly adequate if our intention is to exclude the local,



non-conspiratorial separate common causal explanation of the EPR scenario as such—as it was the
aim of the paper (Grasshoff et al. 2005). But it does not at all explain the fact why Szabo was
not able to give a local, non-conspiratorial separate common causal explanation of his original set
{(Ai,Bj)}cn. This latter question can be answered only if we derive some Bell inequalities from
the assumption that the original set {(A;, B;)}cr has a local, non-conspiratorial separate common
causal explanation; or we show up other reasons for the failure.

In this Section we give an answer to the original question—a partial answer confined to the
deterministic case. The answer is this. {(A4;, B;)}cr can not have a deterministic, local, non-
conspiratorial separate common causal explanation since this separate common causal explanation
implies the same Clauser—Horne inequalities as the local, non-conspiratorial common common causal
explanation.

Proposition 1. Let {(A;, B;)}i=1,2,=3,4 be a set of correlating pairs such that A;, B;, a; and b; are
elements of a classical probability measure space (X, S, p). Suppose furthermore that {(A;, Bj)}i=1,2;j=3,4
has a deterministic, local, non-conspiratorial separate common causal explanation in the sense that
there exist a separate partition {C}’}r(ij)ex(i,;) of S for each correlation of {(A;, Bj)}i=1,2;j=3,4
such that {C]ij}k(ij)el((i,j) satisties (20)-(23) and p(A;|a:b;C}7), p(Bjla:b;C}7) € {0,1} for any i =
1,2;5=3,4 and k(ij) € K(i,7). Then for any i,i' = 1,2; 4,5 = 3,4;i #i',j # j' the Clauser—Horne
inequality (24) follows.

Proof. Consider the separate common cause system {C’,ij/} (i = 1,2;5' = 3,4) pertaining to the
correlation (4;, B;/) and let K’ denote the set of those indices k € K for which

p(A;iBj|aib;, CF) = 1 (52)

Similarly consider the separate common cause system {Cli/j} (i =1,2;5 =3,4; 0 #£i',5 # 7))
pertaining to the correlation (A;, B;) and let L’ denote the set of those indices I € L for which

p(Ay Bjlasb;Ci7) = 1 (53)

With the index sets K’ and L’ in hand define the following two elements of the algebra generated
by the separate common cause systems {C}’ } and {C}”’}

ci' = |Jof (54)
keK’

¢ o= |Jof (55)
leL’

Now, since due to locality (20)-(21) for any k € K’ and | € L'

p(Aiaib;C) = 1
p(Bjlaib;Ci7) = 1
and hence for C%" and C?'
p(Ai|aibjCij/) = 1
p(Bjlaib;C*7) = 1
it follows that
aib;C7 C A, (56)
aib;C?7 C B (57)
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except for a set of zero measure. From (56)-(57) we obtain that
ab; (C7 UCTT) C A;UB
again except for a set of zero measure and hence
p(aib(C7 UC™)) < p(AiUBy)
which using no-conspiracy (22) results in
p(C7 UC™T) < p(A;iUBjlaib;) = p(Aslaib;) + p(Bjlaib;) — p(AiBjlasb)) (58)

Again, due to locality (20)-(21) from (52)-(53) for any k € K’ and [ € L’ one gets

p(Bylasb; Ci) = 1
p(Ailaiby 7)) = 1
and hence
p(BjilagbyCY) = 1 (59)
p(Ailagb; C79) = 1 (60)
From (59)-(60) we obtain that
ai/bjrCij/ C By

aj bj/Ci/j c Ay
except for a set of zero measure and hence
agby (C9'CT7) C  AuB; (61)
again except for a set of zero measure. From (61) it follows that
plaiby (CV'C™7)) < p(AvBy)
or using no-conspiracy (22)
p(CY'C*9) < p(AvBylasby) (62)

Now, from (52)-(53) using the theorem of total probability and no-conspriracy (22) one obtains
that

p(C)
p(CT7)

p(AlB_]’ |G/ibj/)
p(Ai Bjlaiby)

which using the fact that
pCTUCT) = p(C) +p(CT) = p(CT CT)
transforms (62) into
p(CTUCT) > p(AiBylasby) + p(AwBlasby) — p(Aw Bylanby) (63)
Constrasting (58) to (63) we get the Clauser—Horne inequality (24) at the upper bound. To get the

inequality at the lower bound just replace A; by A; and follow the steps of the above reasoning. (]
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5 Conclusions

In the paper we addressed the problem as to why Szabo6 (2000) was unable to yield a local, non-
conspiratorial separate common causal model for the EPR scenario. We have shown that the usual
answer claiming that the correlation set used by Szabo violates the Clauser—Horne inequalities if
we assume that there is a local, non-conspiratorial separate common causal model of another set,
is not satisfactory. To explain Szabd’s situation one should derive some Bell inequalities from the
assumption that there is a local, non-conspiratorial separate common causal model of the original
set.

Here we provided a partial answer to this problem. We have shown that no set of correlations vio-
lating the Clauser—Horne inequalities can be given a deterministic, local, non-conspiratorial separate
common causal explanation. This result was partial since we could not eliminate the requirement of
determinism from the proof. So we conclude the paper with the following

Open question: Is it true that no set of correlations violating the Clauser—Horne inequalities
can be given a (not necessarily deterministic) local, non-conspiratorial separate common causal
explanation? Or in other words, does Proposition 1 hold generally that is without the assumption
that p(A;|a;b;C}), p(Bjla;:b;C,’) € {0,1} for any ¢ = 1,2;j = 3,4 and k(ij) € K(4,7)?
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