
Separate ommon ausal explanationand the Bell inequalitiesGábor Hofer-SzabóDepartment of LogiEötvös University BudapestEmail: gsz�szig.huAbstratIn the paper we ask how the following two fats are related: (i) a set of orrelations hasa loal, non-onspiratorial separate ommon ausal explanation; (ii) the set satis�es the Bellinequalities. Our answer will be partial: we show that no set of orrelations violating theClauser�Horne inequalities an be given a loal, non-onspiratorial separate ommon ausalmodel if the model is deterministi.1 IntrodutionAording to the standard interpretation a ommon ausal explanation of a set of EPR orrelationsonsists in providing a so-alled ommon ommon ause system that is a ommon sreener-o� for allorrelations of the set suh that this ommon sreener-o� is loal and non-onspiratorial. (For thepreise de�nitions see below.) However, it is well known that the assumption that a set of orrelationshas a loal, non-onspiratorial ommon ommon ause system results in various Bell inequalities.Sine these Bell inequalities are violated for appropriate measurement settings a ommon ausalexplanation of the EPR orrelations is exluded�at least aording to this interpretation of theommon ausal explanation.However, in 1996 Belnap and Szabó ame up with a weaker interpretation of the ommon ausalexplanation (Belnap, Szabó, 1996). The idea was that a set of orrelations may not have a ommonommon ause system but only a set of separate ommon ause systems explaining the orrelationsseparately. In 2000 Szabó raised the question whether this idea provides a satisfatory ommonausal explanation for the EPR senario (Szabó, 2000). To test his idea Szabó took a set of EPRorrelations violating the appropriate Bell inequalities and then developed a omputer program togenerate loal, non-onspiratorial separate ommon ause systems for the given set. The result ofthe omputer simulations was that the hosen set of EPR orrelations ould be given a loal separateommon ausal explanation, however the ommon ause systems were onspiratorial in a very trikyway. (See below.) Being unable to remove the unwanted onspiraies Szabó onluded the paper withthe onjeture that EPR orrelation an not be given a loal, non-onspiratorial separate ommonausal explanation.Szabó's idea inspired a whole series of papers devoted to the lari�ation of the possibility of a sep-arate ommon ausal explanation of EPR orrelations. In 2005 Grassho�, Portmann and Wüthrihderived the Wigner-type Bell inequalities from Szabó's premises plus the assumption that the set oforrelations onsisted of only perfet antiorrelations. (Grassho� et al, 2005). The assumption ofperfet antiorrelations, however, had two unpleasant onsequenes. First, the fate of the separateommon ausal explanation of the EPR senario hinged on a preise experimental test of perfetantiorrelations. Seond, the assumption of perfet antiorrelations redued the separate ommon1



ausal derivation of the Bell inequalities to a standard ommon ommon ausal derivation. Thisredution has been shown by Hofer-Szabó in (Hofer-Szabó, 2008). In the same paper Hofer-Szabóhas presented a derivation of Bell inequalities from loal, non-onspiratorial separate ommon auseswithout assuming perfet antiorrelations. Sine a ommon ause is a speial ommon ause sys-tem (a ommon ause system of size 2) the result was not general enough. In 2007 Portmann andWüthrih have eliminated the restrition to ommon auses from the derivation and derived theClauser-Horne inequality from loal, non-onspiratorial separate ommon ause systems in the on-text of almost perfet antiorrelations (Portmann and Wüthrih, 2007). Hofer-Szabó generalizedthis derivation for any Bell(δ) inequality that is an inequality di�ering from some Bell inequality ina term of order of δ (Hofer-Szabó, 2011). In the light of this derivation a δ > 0 threshold ould begiven for any set of orrelations violating the standard Bell inequalities suh that if an approriatesubset of the original set of orrelations di�er from perfet antiorrelations less then δ then the setan not be given a loal, non-onspiratorial separate ommon ausal explanation. These results havesettled the problem onerning the relation between the separate ommon ausal explanations andthe EPR senario. However, they have not settled the relation between the separate ommon ausalexplanations and the Bell inequalities.On loser examination the strategies used in the papers of the above authors (inluding theauthor of the present paper) had a very ba�ing struture. The reation of the authors to Szabó'sinability to provide a loal, non-onspiratorial separate ommon ausal explanation for a set ofEPR orrelations was the following. The hosen set of orrelations annot have a separate ommonausal explanation sine it violates a Bell inequality whih an be derived from the assumptionthat the given set has a loal, non-onspiratorial separate ommon ausal explanation. Of ourse,the failure of a separate ommon ausal explanation may result from other reasons as well sineseparate ommon ause explanations may bring in other onstraints between the probability of theorrelating events di�erent from the Bell inequalities; still the idea motivating the explanation of thisfat was to derive some Bell inequalities from Szabó's premisses. However, it was not that happened.Instead of deriving the appropriate Bell inequality from the assumption that the original set of theorrelations hosen by Szabó has a loal, non-onspiratorial separate ommon ausal explanation,all the mentioned authors have hosen another set ontaining only perfet antiorrelations. Thenfrom the assumption that this set of perfet antiorrelations has a loal, non-onspiratorial separateommon ausal explanation they have derived a Bell inequality for the orrelations of the originalset. So the Bell inequality they reahed did not pertain to the original set but to the newly hosenset of perfet antiorrelations.The e�ort of all the subsequent papers (Portmann and Wüthrih, 2007), (Hofer-Szabó, 2008) and(Hofer-Szabó, 2011) was to release the strong requirement of perfet antiorrelations in the derivationand to substitute perfet antiorrelations by almost perfet antiorrelations.Of ourse, this strategy is impeable as long as the aim of the proof is to exlude a loal, non-onspiratorial separate ommon ausal explanation of the EPR senario in general. However, itdoes not explain why Szabó ould not provide a loal, non-onspiratorial separate ommon ausalexplanation for his own set of orrelations. Sine Szabó's onern was not to give a separate ommonausal explanation for the perfet antiorrelation set, the violation of Bell inequalities derived fromthe assumption that the perfet antiorrelation set has a separate ommon ausal explanation didnot explain Szabó's failure of providing a separate ommon ausal explanation for his own set. Inorder to explain this fat one should derive some Bell inequalities from the assumption that Szabó'soriginal set has a loal, non-onspiratorial separate ommon ausal explanation.Here we will provide a partial answer to this problem. We will show that no set of orrelationsviolating the Clauser�Horne inequalities an be given a deterministi, loal, non-onspiratorial sepa-rate ommon ausal explanation. Sine the elimination of the requirement of determinism from theproof is not straightforward, the general question whether orrelations violating the Clauser�Horneinequalities an be given a (not neessary deterministi) loal, non-onspiratorial separate ommon2



ausal explanation remains open.In Setion 2 we summarize the assumptions of a loal, non-onspiratorial ommon ommon ausaland separate ommon ausal explanation of a set of EPR orrelations respetively. In Setion 3 weshow in sketh the steps how these assumptions result in the Clauser�Horne inequalities if the setfor whih we are looking for a loal, non-onspiratorial separate ommon ausal explanation is a setof perfet or almost perfet antiorrelations. Finally, in Setion 4 we drop these extra orrelationsand derive the Clauser�Horne inequalities from Szabó's original set of orrelations for deterministi,loal, non-onspiratorial separate ommon ause systems.2 Common ausal explanations of EPR orrelationsConsider the Bohm version of the EPR experiment with a pair of spin- 12 partiles prepared in thesinglet state |Ψs〉. Let ai denote the event that the measurement apparatus is set to measure thespin in diretion ~ai in the left wing where i is an element of an index set I of spatial diretions; andlet p(ai) stand for the probability of ai. Let bj and p(bj) respetively denote the same for diretion ~bjin the right wing where j is again in the index set I. (Note that i = j does not mean that ~ai and ~bjare parallel diretions.) Furthermore, let p(Ai) stand for the probability that the spin measurementin diretion ~ai in the left wing yields the result �up� and let p(Bj) be de�ned in a similar way inthe right wing for diretion ~bj . Aording to quantum mehanis the quantum probability of getting�up� in diretion ~ai in the left wing; getting �up� in diretion ~bj in the right wing; and getting �up�in both diretions ~ai and ~bj are given by the following relations
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) (3)where Tr is the trae funtion; W|Ψs〉 is the density operator pertaining to the pure state |Ψs〉; PAiand PBj
denote projetions on the eigensubspaes with eigenvalue +1 of the spin operators assoiatedwith diretions ~ai and ~bj respetively; and θaibj

denotes the angle between diretions ~ai and ~bj .The standard way to interpret quantum probabilities is to identify them with onditional proba-bilities as follows:
p(Ai|aibj) = Tr(W|Ψs〉 (PAi

⊗ I)) (4)
p(Bj |aibj) = Tr(W|Ψs〉 (I ⊗ PBj

)) (5)
p(AiBj |aibj) = Tr(W|Ψs〉 (PAi

⊗ PBj
)) (6)where the events Ai, Bj , ai and bj (i, j ∈ I) respetively are elements of a lassial probabilitymeasure spae (X, S, p) and the onditional probabilities are de�ned in the usual way. With thisidenti�ation quantum mehanis predits orrelation between lassial onditional orrelations fornon-perpendiular diretions ~ai and ~bj:

p(AiBj |aibj) 6= p(Ai|aibj)p(Bj |aibj) (7)Speially, if the measurement diretions ~ai and ~bj are parallel then there is a perfet antiorrelationbetween the outomes Ai and Bi:
p(AiBj |aibj) = 0 (8)3



A further onsequene of (4)-(5) is the so-alled surfae loality that is for any i, i′, j, j′ ∈ I thefollowing relations hold
p(Ai|aibj) = p(Ai|aibj′) (9)
p(Bj |aibj) = p(Bj |ai′bj) (10)Now, let (Ai, Bj) (i, j ∈ I) denote a pair orrelating onditionally aording to (7) and let {(Ai, Bj)}i,j∈Istand for a set of orrelating pairs pertaining to the index set I. What does a ommon ausal expla-nation of the set {(Ai, Bj)}i,j∈I of orrelations onsist in? In the following we expose the omponentsof suh an explanation.Let us begin with the de�nition of the ommon ause. Let (X, S, p) be a lassial probabilitymeasure spae and let A and B be two (positively) orrelating events. Then the ommon ause ofthe orrelation is the following:De�nition 1. An event C in S is said to be the ommon ause of the orrelation between events Aand B only if the events A, B and C satisfy the following relations:

p(AB|C) = p(A|C)p(B|C) (11)
p(AB|C⊥) = p(A|C⊥)p(B|C⊥) (12)

p(A|C) > p(A|C⊥) (13)
p(B|C) > p(B|C⊥) (14)where C⊥ denotes the orthoomplement of C. Equations (11)-(12) are alled sreening-o� propertiessine onditioning on C and C⊥ respetively sreens o� the orrelation between A and B. Inequalities(13)-(14) express positive statistial relevane of the ause C on the two e�ets A and B respetively.The above de�nition of the ommon ause goes bak to Reihenbah (Reihenbah, 1956); (althoughReihenbah himself did not regard (11)-(14) as a su�ient ondition for an event to be a ommonause). From the time of Reihenbah's �rst haraterization on the ommon ause onept has beengeneralized in two important ways. First, it has been generalized for situations where there are morethan one auses present that is for a system of ooperating ommon auses (Hofer-Szabó, Rédei,2004, 2006). Seond, the inequalities expressing positive statistial relevane have gradually beenredarded as being too restritive and hene have been dropped. As a result the ommon ause hasbeen haraterized simply as a sreener-o� partition of the algebra de�ned as follows:De�nition 2. Let again (X, S, p) be a lassial probability measure spae and let A and B be twoorrelating events in S. Then a partition {Ck}k∈K in S is said to be the ommon ause system ofthe orrelation between events A and B if and only if the following fatorization holds for all k ∈ K:

p(AB|Ck) = p(A|Ck)p(B|Ck) (15)where |K|, the ardinality of K is said to be the size of the ommon ause system. A ommon ausesystem of size 2 is alled a ommon ause.De�nition 2 of the ommon ause system referred to a single orrelation. However, generally weare looking for the ausal explanation for a set of orrelations. This explanation an be understood intwo di�erent ways. Either we provide a separate ommon ause system for eah separate orrelationof the given set; or we are looking for a so-alled ommon ommon ause system that is a partitionsreening o� all orrelations of the set. This latter option puts extra requirements on the explanationsine it demands that the ommon ause system pertaining to the di�erent orrelations be the same.4



Now, let us apply the onept of ommon ause systems to EPR orrelations. First note thatEPR orrelations are onditional orrelations in the sense of (7) where the onditions represent thehoie of the measurement diretions. Looking at the spatiotemporal arrengement of the eventsrepresenting the measurement hoies and the measurement outomes respetively in the oppositewings and the set of events representing the ommon ause system at the soure we an read o� thefollowing two spatial separations. The outome events Ai in the left wing are spatially separatedfrom the measurement hoie events bj in the right wing; and similarly events Bj are spatiallyseparated from events ai. The measurement hoie events ai and bj are spatially separeted fromthe events of the ommon ause system {Ck}. Turning these two spatiotemporal onsiderations instatistial relationships we get the so-alled loality and no-onspiray requirements. Applying theabove de�nition of the ommon ause systems that is the sreening-o� requirement for onditionalprobabilities we obtain altogether three demands that a ommon ausal explanation should satisfy.If we demand on the top that the ommon ause sytem be the same for all orrelations of the givenset then we arrive at a loal, non-onspiratorial ommon ommon ausal explanation.De�nition 3. Let {(Ai, Bj)}i,j∈I be a set of orrelating pairs pertaining to the index set I suhthat Ai, Bj , ai and bj are elements of a lassial probability measure spae (X, S, p). Then aloal, non-onspiratorial ommon ommon ausal explanation of the set {(Ai, Bj)}i,j∈I onsists inproviding a partition {Ck}k∈K of S suh that {Ck}k∈K is loal, non-onspiratorial and sreens o�all the orrelations of {(Ai, Bj)}i,j∈I in the sense that for every i, i′, j, j′ ∈ I and k ∈ K the followingrelations hold:
p(Ai|aibjCk) = p(Ai|aibj′Ck) (loality) (16)
p(Bj |aibjCk) = p(Bj |aj′bjCk) (loality) (17)

p(aibjCk) = p(aibj)p(Ck) (no-onspiray) (18)
p(AiBj |aibjCk) = p(Ai|aibjCk)p(Bj |aibjCk) (sreening-o�) (19)On the other hand, if we let the ommon ause sytem be di�erent for the di�erent orrelationsof the set then our explanation will be alled a loal, non-onspiratorial separate ommon ausalexplanation.De�nition 4. Let {(Ai, Bj)}i,j∈I be a set of orrelating pairs pertaining to the index set I suhthat Ai, Bj , ai and bj are elements of a lassial probability measure spae (X, S, p). Then aloal, non-onspiratorial separate ommon ausal explanation of the set {(Ai, Bj)}i,j∈I onsistsin �nding a separate partition {Cij

k }k(ij)∈K(i,j) of S for eah orrelation in {(Ai, Bj)}i,j∈I suhthat eah {Cij
k }k(ij)∈K(i,j) is loal, non-onspiratorial and sreens o� the appropriate orrelation in
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k ) (sreening-o�) (23)where F in equation (22) is an element of the algebra S′ ⊂ S generated by all the elements of everyseparate ommon ause system.To motivate why it is important to demand no-onspiray (22) in this strong sense namely forany element of the generated algebra and not just for the C

ij
k elements, reall the triky onspiraiesin Szabó's separate ommon ausal model. As mentioned in the Introdution Szabó was able to5



onstrut a loal separate ommon ausal model for a speial set of EPR orrelations that wasnon-onspiratorial in the sense the every ai and bj were independent of every C
ij
k . However, thismodel was onspiratorial at a deep level�the measurement hoies ai and bj orrelated with somedisjuntions of elements of separate ommon ause systems suh as C

ij
k ∪C

i′j′

k′ . To exlude all thesetype of onspiraies we demand no-onspiray in the strong form (22).Now, we turn to the relation between the loal, non-onspiratorial ommon or separate ommonausal explanations of the EPR orrelations on the one hand and the Bell inequalities on the other.3 Bell inequalitiesNow, let us be more spei� onerning our set {(Ai, Bj)}i,j∈I . Let the orrelation set onsist of fourorrelating pairs (A1, B3), (A1, B4), (A2, B3) and (A2, B4). The standard question is usually whetherthis set an be given a loal, non-onspiratorial ommon ommon ausal explanation in the sense ofDe�nition 3. The answer is well known. {(Ai, Bj)}i=1,2;j=3,4 an be given a loal, non-onspiratorialommon ommon ausal explanation only if the orrelations of the set for any i, i′ = 1, 2; j, j′ = 3, 4and i 6= i′, j 6= j′ satisfy the Clauser�Horne inequalities
−1 6 p(AiBj |aibj) + p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj) − p(Ai′Bj′ |ai′bj′) − p(Ai|aibj) − p(Bj |aibj) 6 0 (24)The proof is simple. It is a trivial fat of arithmeti that for any α, α′, β, β′ ∈ [0, 1] the expression

αβ + αβ′ + α′β − α′β′ − α − β (25)lies in the bound [−1, 0]. Now let α, α′, β, β′ be the following onditional probabilities:
α ≡ p(Ai|aibjCk) (26)
α′ ≡ p(Ai′ |ai′bj′Ck) (27)
β ≡ p(Bj |aibjCk) (28)
β′ ≡ p(Bj′ |ai′bj′Ck) (29)Plugging (26)-(29) into (25) and using loality (16)-(17) one gets that

−1 6 p(Ai|aibjCk)p(Bj |aibjCk) + p(Ai|ai′bjCk)p(Bj′ |ai′bjCk) + p(Ai′ |ai′bjCk)p(Bj |ai′bjCk)

−p(Ai′ |ai′bj′Ck)p(Bj′ |ai′bj′Ck) − p(Ai|aibjCk) − p(Bj |aibjCk) 6 0Using sreening-o� (19) one gets that
−1 6 p(AiBj |aibjCk) + p(AiBj′ |ai′bjCk) + p(Ai′Bj |ai′bjCk)

−p(Ai′Bj′ |ai′bj′Ck) − p(Ai|aibjCk) − p(Bj |aibjCk) 6 0Finally, multiplying by p(Ck), summing up for the indies k and using no-onspiray (18) one obtains(24).An example for a orrelation set whih violates (24) and hene an not be given a loal, non-onspiratorial ommon ommon ausal explanation is the one Szabó used in his paper (2000). Herethe angles θaibj
between the diretions ~ai and ~bj are set as follows:

θa1b3 = θa1b4 = θa2b3 =
2π

3
and θa2b4 = 0 (30)6



For this hoie of the measurement diretions there is a onditional orrelation for every (Ai, Bj)pair (i = 1, 2; j = 3, 4):
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(34)Denote this set of orrelations by {(Ai, Bj)}CH . This set violates the Clauser�Horne inequality

−1 6 p(A1B3|a1b3) + p(A1B4|a1b4) + p(A2B4|a2b4) − p(A2B4|a2b4) − p(A1|a1b3) − p(B3|a1b3) 6 0 (35)at the upper bound as follows:
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2

 0 (36)Consequently, {(Ai, Bj)}CH an not be given a loal, non-onspiratorial ommon ommon ausalexplanation.Now, let us go over to the question whether {(Ai, Bj)}CH (or any other orrelation set violatingthe Clauser�Horne inequalities) an have a loal, non-onspiratorial separate ommon ausal expla-nation. As mentioned in the Introdution Szabó was unable to present a loal, non-onspiratorialseparate ommon ause model for {(Ai, Bj)}CH beause of the unwanted onspiraies. The naturalintuition towards this fat was that a loal, non-onspiratorial separate ommon ausal explanationof the set {(Ai, Bj)}CH results in some Bell inequalities�for example in the above Clauser�Horneinequalities�and the violation of these inequalities for the above setting is responsible for the lak ofa separate ommon ausal explanation. Thus, the program has been to show up a derivation of someBell inequalities from the assumption that {(Ai, Bj)}CH has four loal, non-onspiratorial separateommon ause systems satisfying (20)-(23).Curiously enough, none of the authors has taken this route. Instead of taking the above setand then searhing for a derivation of some Bell inequality from the assumption that this set hasa loal, non-onspiratorial separate ommon ausal explanation they have hosen another set. Thisset again onsisted of the four orrelations of {(Ai, Bi)} (i = 1, 2, 3, 4) for any of whih the angle

θaibi
was set to 0. In other words, this set was omposed of perfet antiorrelations. Denote thisset by {(Ai, Bi)}PA. For the relation between the sets {(Ai, Bj)}CH and {(Ai, Bj)}PA see Figure 1where the ontinuous lines represent the Clauser�Horne orrelations and the dotted lines representthe perfet antiorrelations.Now, the reasoning has run as follows (for the details see (Grassho� et al. 2005) and (Hofer-Szabó, 2008)). Suppose that {(Ai, Bi)}PA has a loal, non-onspiratorial separate ommon ausalexplanation that is four loal, non-onspiratorial separate ommon ause systems {Cii

k }k∈K(i) (i =
1, 2, 3, 4) satisfying (20)-(23). Sine {(Ai, Bi)}PA onsists of only perfet antiorrelations it is easyto show that from assumptions (20)-(23) it follows that for any i = 1, 2, 3, 4 there exist a vetor
εii ∈ {0, 1}K(i) suh that de�ning Cii and Cii⊥ as
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k Cii
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k (37)the partitions {Cii, Cii⊥} (i = 1, 2, 3, 4)will be loal, non-onspiratorial separate ommon auses thatis a separate ommon ause systems of size 2 for the set {(Ai, Bi)}PA. Moreover, every {Cii, Cii⊥}7
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3 3Figure 1: The Clauser�Horne orrelation set and the perfet antiorrelation setwill satisfy (20)-(23) deterministially that is eah term in (20)-(23) will be either 0 or 1. Finally, theprobability of the separate ommon auses will equal to the probability of the onditional probabilities
p(Ai|aibi) and p(Bi|aibi):

p(Cii) = p(Ai|aibi) (38)
p(Cii⊥) = p(Bi|aibi) (39)Notie that in this reasoning there has been no mention of the original set {(Ai, Bj)}CH . How dothe orrelations of {(Ai, Bj)}CH ome into the piture?The joint and marginal onditional probabilities of the Clauser�Horne orrelations appear simplyusing loality (20)-(21) and no-onspiray (22) for the perfet antiorrelation set. That is for any

i, j = 1, 2, 3, 4; i 6= j

p(Cii) = p(Ai|aibj) (40)
p(Cjj⊥) = p(Bj |aibj) (41)

p(CiiCjj⊥) = p(AiBj |aibj) (42)Now, onsider the four events C11, C22, C33⊥ and C44⊥ in S. For these events the followingsimple probabilisti onstraint applies:
−1 6 p(C11C33⊥) + p(C11C44⊥) + p(C22C33⊥) − p(C22C44⊥) − p(C11) − p(C33⊥) 6 0 (43)Subtituting the probabilities of (43) by the onditional probabilities of (40)-(42) we get the Clauser�Horne inequality (35) for the orrelation set {(Ai, Bj)}CH . Sine for the measuring setup (30)this inequality is violated there an be given no loal, non-onspiratorial separate ommon ausalexplanation of the perfet antiorrelation set {(Ai, Bj)}PA!To put is brie�y, the neessary ondition for {(Ai, Bj)}PA to have a loal, non-onspiratorialseparate ommon ausal explanation is that {(Ai, Bj)}CH satis�es the Clauser�Horne inequality(35).The papers (Portmann and Wüthrih, 2007) and (Hofer-Szabó, 2008, 2011) have repeated the sameargumentation for almost perfet antiorrelations. Here we sketh the argument of (Hofer-Szabó,2011). Consider again a set onsisting of four orrelating pairs {(Ai, Bi)}i=1,2,3,4 and suppose thatfor any i = 1, 2, 3, 4 the angle θaibi

between the measurement hoies is suh that
|π − θaibi

| < 2 arcsin
√

1 − 2δ (44)or more simply, let the orrelations be suh that for any i = 1, 2, 3, 4

p(AiBi|aibi) 6 δ (45)8



Denote suh a set of orrelations by {(Ai, Bi)}PA(δ). Again suppose that {(Ai, Bi)}PA(δ) has a loal,non-onspiratorial separate ommon ausal explanation. As above, from this assumption it followsthat there exist a vetor εii ∈ {0, 1}Ki for any i = 1, 2, 3, 4 suh that de�ning Cii and Cii⊥ as in (37)one get four partitions {Cii, Cii⊥}i=1,2,3,4 for whih�instead of (38)-(39)�the following inequalitieswill hold:
|p(Cii) − p(Ai|aibi)| 6 4δ (46)

|p(Cii⊥) − p(Bi|aibi)| 6 4δ (47)Call these partitions quasi ommon auses sine although they are onstruted out of the elements ofthe ommon ause systems {Cii
k } they do not satisfy sreening-o� (23) (however they satisfy loality(20)-(21) and no-onspiray (22)).Now as above, using loality (20)-(21) and no-onspiray (22) for the set {(Ai, Bi)}PA(δ) we getthat for any i, j = 1, 2, 3, 4

|p(Cii) − p(Ai|aibj)| 6 4δ (48)
|p(Cjj⊥) − p(Bj |aibj)| 6 4δ (49)

|p(CiiCjj⊥) − p(AiBj |aibj)| 6 8δ (50)Consider again inequality (43) omposed of the quasi ommon auses C11, C22, C33⊥ and C44⊥ andsubstitute the probabilities of (43) by the onditional probabilities of (48)-(50). Eah substitutionwill ause an error of order of either 4δ or 8δ. Adding up the errors we obtain the following inequality.
−1 6 p(A1B3|a1b3) + p(A1B4|a1b4) + p(A2B3|a2b4) − p(A2B4|a2b3) − p(A1|a1b3) − p(B3|a1b3) − 40δ 6 0 (51)We refer to this inequlity as a Clauser�Horne(δ) inequality sine (51) di�ers from the original Clauser�Horne inequality (43) in a term of order of δ. Again for the measuring setup (30) the Clauser�Horne(δ) inequality (51) is violated as long as δ < 1

320 . This exludes a loal, non-onspiratorialseparate ommon ausal explanation of the almost perfet antiorrelation set {(Ai, Bj)}PA(δ).This strategy an be generalized for arbitrary Bell(δ) inequality. In (Hofer-Szabó, 2011) a reipehas been given for deriving any Bell(δ) inequality omposed of marginal probabilities p(Ai|aibj),
p(Bj |aibj) and joint probabilities p(AiBj |aibj). The reipe is roughly this. Consider a Bell inequalityresulting from the loal, non-onsipratorial ommon ommon ausal explanation of a set {(Ai, Bj)}of orrelations. Consider the set {(Ai, Bi)}PA(δ) of almost perfet antiorrelations pertaining tothe events Ai or Bj whih appear in either a marginal or a joint probability in the Bell inequality.Suppose that {(Ai, Bj)}PA(δ) has a loal, non-onspiratorial separate ommon ausal explanation.This assumption results in a Bell(δ) inequality di�ering from the original Bell inequality in a term oforder of δ where the exat magnitude of this term is the funtion of the approximation. Choose thesetting whih violates the Bell inequality maximally. If the δ term is smaller than the violation of theoriginal Bell inequality than the new Bell(δ) inequality will also be violated�exluding a loal, non-onspiratorial separate ommon ausal explanation almost perfet antiorrelation set {(Ai, Bj)}PA(δ).4 No deterministi, loal, non-onspiratorial separate ommonausal explanation of the Clauser�Horne setIn the last Setion we have posed a question and answered another one. The question was whetherthe set {(Ai, Bj)}CH has a loal, non-onspiratorial separate ommon ausal explanation. However,the answer was this. The neessary ondition for {(Ai, Bj)}PA (or {(Ai, Bj)}PA(δ)) to have a loal,non-onspiratorial separate ommon ausal explanation is that {(Ai, Bj)}CH satis�es the Clauser�Horne inequality (24). This answer is perfetly adequate if our intention is to exlude the loal,9



non-onspiratorial separate ommon ausal explanation of the EPR senario as suh�as it was theaim of the paper (Grassho� et al. 2005). But it does not at all explain the fat why Szabó wasnot able to give a loal, non-onspiratorial separate ommon ausal explanation of his original set
{(Ai, Bj)}CH . This latter question an be answered only if we derive some Bell inequalities fromthe assumption that the original set {(Ai, Bj)}CH has a loal, non-onspiratorial separate ommonausal explanation; or we show up other reasons for the failure.In this Setion we give an answer to the original question�a partial answer on�ned to thedeterministi ase. The answer is this. {(Ai, Bj)}CH an not have a deterministi, loal, non-onspiratorial separate ommon ausal explanation sine this separate ommon ausal explanationimplies the same Clauser�Horne inequalities as the loal, non-onspiratorial ommon ommon ausalexplanation.Proposition 1. Let {(Ai, Bj)}i=1,2;j=3,4 be a set of orrelating pairs suh that Ai, Bj , ai and bj areelements of a lassial probability measure spae (X, S, p). Suppose furthermore that {(Ai, Bj)}i=1,2;j=3,4has a deterministi, loal, non-onspiratorial separate ommon ausal explanation in the sense thatthere exist a separate partition {Cij

k }k(ij)∈K(i,j) of S for eah orrelation of {(Ai, Bj)}i=1,2;j=3,4suh that {Cij
k }k(ij)∈K(i,j) satisties (20)-(23) and p(Ai|aibjC

ij
k ), p(Bj |aibjC

ij
k ) ∈ {0, 1} for any i =

1, 2; j = 3, 4 and k(ij) ∈ K(i, j). Then for any i, i′ = 1, 2; j, j′ = 3, 4; i 6= i′, j 6= j′ the Clauser�Horneinequality (24) follows.Proof. Consider the separate ommon ause system {Cij′

k } (i = 1, 2; j′ = 3, 4) pertaining to theorrelation (Ai, Bj′ ) and let K ′ denote the set of those indies k ∈ K for whih
p(AiBj′ |aibj′C

ij′

k ) = 1 (52)Similarly onsider the separate ommon ause system {Ci′j
l } (i′ = 1, 2; j = 3, 4; i 6= i′, j 6= j′)pertaining to the orrelation (Ai′ , Bj) and let L′ denote the set of those indies l ∈ L for whih

p(Ai′Bj |ai′bjC
i′j
l ) = 1 (53)With the index sets K ′ and L′ in hand de�ne the following two elements of the algebra generatedby the separate ommon ause systems {Cij′

k } and {Ci′j
l }

Cij′ ≡
⋃

k∈K′

C
ij′

k (54)
Ci′j ≡

⋃

l∈L′

C
i′j
l (55)Now, sine due to loality (20)-(21) for any k ∈ K ′ and l ∈ L′

p(Ai|aibjC
ij′

k ) = 1

p(Bj |aibjC
i′j
l ) = 1and hene for Cij′ and Ci′j

p(Ai|aibjC
ij′ ) = 1

p(Bj |aibjC
i′j) = 1it follows that

aibjC
ij′ ⊆ Ai (56)

aibjC
i′j ⊆ Bj (57)10



exept for a set of zero measure. From (56)-(57) we obtain that
aibj (Cij′ ∪ Ci′j) ⊆ Ai ∪ Bjagain exept for a set of zero measure and hene

p(aibj(C
ij′ ∪ Ci′j)) 6 p(Ai ∪ Bj)whih using no-onspiray (22) results in

p(Cij′ ∪ Ci′j) 6 p(Ai ∪ Bj |aibj) = p(Ai|aibj) + p(Bj |aibj) − p(AiBj |aibj) (58)Again, due to loality (20)-(21) from (52)-(53) for any k ∈ K ′ and l ∈ L′ one gets
p(Bj′ |ai′bj′C

ij′

k ) = 1

p(Ai′ |ai′bj′C
i′j
l ) = 1and hene

p(Bj′ |ai′bj′C
ij′ ) = 1 (59)

p(Ai′ |ai′bj′C
i′j) = 1 (60)From (59)-(60) we obtain that

ai′bj′C
ij′ ⊆ Bj′

ai′bj′C
i′j ⊆ Ai′exept for a set of zero measure and hene

ai′bj′ (Cij′Ci′j) ⊆ Ai′Bj′ (61)again exept for a set of zero measure. From (61) it follows that
p(ai′bj′(C

ij′Ci′j)) 6 p(Ai′Bj′)or using no-onspiray (22)
p(Cij′Ci′j) 6 p(Ai′Bj′ |ai′bj′) (62)Now, from (52)-(53) using the theorem of total probability and no-onspriray (22) one obtainsthat

p(Cij′ ) = p(AiBj′ |aibj′)

p(Ci′j) = p(Ai′Bj|ai′bj)whih using the fat that
p(Cij′ ∪ Ci′j) = p(Cij′ ) + p(Ci′j) − p(Cij′Ci′j)transforms (62) into

p(Cij′ ∪ Ci′j) > p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj) − p(Ai′Bj′ |ai′bj′) (63)Constrasting (58) to (63) we get the Clauser�Horne inequality (24) at the upper bound. To get theinequality at the lower bound just replae Ai by A⊥
i and follow the steps of the above reasoning. �11



5 ConlusionsIn the paper we addressed the problem as to why Szabó (2000) was unable to yield a loal, non-onspiratorial separate ommon ausal model for the EPR senario. We have shown that the usualanswer laiming that the orrelation set used by Szabó violates the Clauser�Horne inequalities ifwe assume that there is a loal, non-onspiratorial separate ommon ausal model of another set,is not satisfatory. To explain Szabó's situation one should derive some Bell inequalities from theassumption that there is a loal, non-onspiratorial separate ommon ausal model of the originalset.Here we provided a partial answer to this problem. We have shown that no set of orrelations vio-lating the Clauser�Horne inequalities an be given a deterministi, loal, non-onspiratorial separateommon ausal explanation. This result was partial sine we ould not eliminate the requirement ofdeterminism from the proof. So we onlude the paper with the followingOpen question: Is it true that no set of orrelations violating the Clauser�Horne inequalitiesan be given a (not neessarily deterministi) loal, non-onspiratorial separate ommon ausalexplanation? Or in other words, does Proposition 1 hold generally that is without the assumptionthat p(Ai|aibjC
ij
k ), p(Bj |aibjC

ij
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