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tIn the paper we ask how the following two fa
ts are related: (i) a set of 
orrelations hasa lo
al, non-
onspiratorial separate 
ommon 
ausal explanation; (ii) the set satis�es the Bellinequalities. Our answer will be partial: we show that no set of 
orrelations violating theClauser�Horne inequalities 
an be given a lo
al, non-
onspiratorial separate 
ommon 
ausalmodel if the model is deterministi
.1 Introdu
tionA

ording to the standard interpretation a 
ommon 
ausal explanation of a set of EPR 
orrelations
onsists in providing a so-
alled 
ommon 
ommon 
ause system that is a 
ommon s
reener-o� for all
orrelations of the set su
h that this 
ommon s
reener-o� is lo
al and non-
onspiratorial. (For thepre
ise de�nitions see below.) However, it is well known that the assumption that a set of 
orrelationshas a lo
al, non-
onspiratorial 
ommon 
ommon 
ause system results in various Bell inequalities.Sin
e these Bell inequalities are violated for appropriate measurement settings a 
ommon 
ausalexplanation of the EPR 
orrelations is ex
luded�at least a

ording to this interpretation of the
ommon 
ausal explanation.However, in 1996 Belnap and Szabó 
ame up with a weaker interpretation of the 
ommon 
ausalexplanation (Belnap, Szabó, 1996). The idea was that a set of 
orrelations may not have a 
ommon
ommon 
ause system but only a set of separate 
ommon 
ause systems explaining the 
orrelationsseparately. In 2000 Szabó raised the question whether this idea provides a satisfa
tory 
ommon
ausal explanation for the EPR s
enario (Szabó, 2000). To test his idea Szabó took a set of EPR
orrelations violating the appropriate Bell inequalities and then developed a 
omputer program togenerate lo
al, non-
onspiratorial separate 
ommon 
ause systems for the given set. The result ofthe 
omputer simulations was that the 
hosen set of EPR 
orrelations 
ould be given a lo
al separate
ommon 
ausal explanation, however the 
ommon 
ause systems were 
onspiratorial in a very tri
kyway. (See below.) Being unable to remove the unwanted 
onspira
ies Szabó 
on
luded the paper withthe 
onje
ture that EPR 
orrelation 
an not be given a lo
al, non-
onspiratorial separate 
ommon
ausal explanation.Szabó's idea inspired a whole series of papers devoted to the 
lari�
ation of the possibility of a sep-arate 
ommon 
ausal explanation of EPR 
orrelations. In 2005 Grassho�, Portmann and Wüthri
hderived the Wigner-type Bell inequalities from Szabó's premises plus the assumption that the set of
orrelations 
onsisted of only perfe
t anti
orrelations. (Grassho� et al, 2005). The assumption ofperfe
t anti
orrelations, however, had two unpleasant 
onsequen
es. First, the fate of the separate
ommon 
ausal explanation of the EPR s
enario hinged on a pre
ise experimental test of perfe
tanti
orrelations. Se
ond, the assumption of perfe
t anti
orrelations redu
ed the separate 
ommon1




ausal derivation of the Bell inequalities to a standard 
ommon 
ommon 
ausal derivation. Thisredu
tion has been shown by Hofer-Szabó in (Hofer-Szabó, 2008). In the same paper Hofer-Szabóhas presented a derivation of Bell inequalities from lo
al, non-
onspiratorial separate 
ommon 
auseswithout assuming perfe
t anti
orrelations. Sin
e a 
ommon 
ause is a spe
ial 
ommon 
ause sys-tem (a 
ommon 
ause system of size 2) the result was not general enough. In 2007 Portmann andWüthri
h have eliminated the restri
tion to 
ommon 
auses from the derivation and derived theClauser-Horne inequality from lo
al, non-
onspiratorial separate 
ommon 
ause systems in the 
on-text of almost perfe
t anti
orrelations (Portmann and Wüthri
h, 2007). Hofer-Szabó generalizedthis derivation for any Bell(δ) inequality that is an inequality di�ering from some Bell inequality ina term of order of δ (Hofer-Szabó, 2011). In the light of this derivation a δ > 0 threshold 
ould begiven for any set of 
orrelations violating the standard Bell inequalities su
h that if an approriatesubset of the original set of 
orrelations di�er from perfe
t anti
orrelations less then δ then the set
an not be given a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation. These results havesettled the problem 
on
erning the relation between the separate 
ommon 
ausal explanations andthe EPR s
enario. However, they have not settled the relation between the separate 
ommon 
ausalexplanations and the Bell inequalities.On 
loser examination the strategies used in the papers of the above authors (in
luding theauthor of the present paper) had a very ba�ing stru
ture. The rea
tion of the authors to Szabó'sinability to provide a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation for a set ofEPR 
orrelations was the following. The 
hosen set of 
orrelations 
annot have a separate 
ommon
ausal explanation sin
e it violates a Bell inequality whi
h 
an be derived from the assumptionthat the given set has a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation. Of 
ourse,the failure of a separate 
ommon 
ausal explanation may result from other reasons as well sin
eseparate 
ommon 
ause explanations may bring in other 
onstraints between the probability of the
orrelating events di�erent from the Bell inequalities; still the idea motivating the explanation of thisfa
t was to derive some Bell inequalities from Szabó's premisses. However, it was not that happened.Instead of deriving the appropriate Bell inequality from the assumption that the original set of the
orrelations 
hosen by Szabó has a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation,all the mentioned authors have 
hosen another set 
ontaining only perfe
t anti
orrelations. Thenfrom the assumption that this set of perfe
t anti
orrelations has a lo
al, non-
onspiratorial separate
ommon 
ausal explanation they have derived a Bell inequality for the 
orrelations of the originalset. So the Bell inequality they rea
hed did not pertain to the original set but to the newly 
hosenset of perfe
t anti
orrelations.The e�ort of all the subsequent papers (Portmann and Wüthri
h, 2007), (Hofer-Szabó, 2008) and(Hofer-Szabó, 2011) was to release the strong requirement of perfe
t anti
orrelations in the derivationand to substitute perfe
t anti
orrelations by almost perfe
t anti
orrelations.Of 
ourse, this strategy is impe

able as long as the aim of the proof is to ex
lude a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation of the EPR s
enario in general. However, itdoes not explain why Szabó 
ould not provide a lo
al, non-
onspiratorial separate 
ommon 
ausalexplanation for his own set of 
orrelations. Sin
e Szabó's 
on
ern was not to give a separate 
ommon
ausal explanation for the perfe
t anti
orrelation set, the violation of Bell inequalities derived fromthe assumption that the perfe
t anti
orrelation set has a separate 
ommon 
ausal explanation didnot explain Szabó's failure of providing a separate 
ommon 
ausal explanation for his own set. Inorder to explain this fa
t one should derive some Bell inequalities from the assumption that Szabó'soriginal set has a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation.Here we will provide a partial answer to this problem. We will show that no set of 
orrelationsviolating the Clauser�Horne inequalities 
an be given a deterministi
, lo
al, non-
onspiratorial sepa-rate 
ommon 
ausal explanation. Sin
e the elimination of the requirement of determinism from theproof is not straightforward, the general question whether 
orrelations violating the Clauser�Horneinequalities 
an be given a (not ne
essary deterministi
) lo
al, non-
onspiratorial separate 
ommon2




ausal explanation remains open.In Se
tion 2 we summarize the assumptions of a lo
al, non-
onspiratorial 
ommon 
ommon 
ausaland separate 
ommon 
ausal explanation of a set of EPR 
orrelations respe
tively. In Se
tion 3 weshow in sket
h the steps how these assumptions result in the Clauser�Horne inequalities if the setfor whi
h we are looking for a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation is a setof perfe
t or almost perfe
t anti
orrelations. Finally, in Se
tion 4 we drop these extra 
orrelationsand derive the Clauser�Horne inequalities from Szabó's original set of 
orrelations for deterministi
,lo
al, non-
onspiratorial separate 
ommon 
ause systems.2 Common 
ausal explanations of EPR 
orrelationsConsider the Bohm version of the EPR experiment with a pair of spin- 12 parti
les prepared in thesinglet state |Ψs〉. Let ai denote the event that the measurement apparatus is set to measure thespin in dire
tion ~ai in the left wing where i is an element of an index set I of spatial dire
tions; andlet p(ai) stand for the probability of ai. Let bj and p(bj) respe
tively denote the same for dire
tion ~bjin the right wing where j is again in the index set I. (Note that i = j does not mean that ~ai and ~bjare parallel dire
tions.) Furthermore, let p(Ai) stand for the probability that the spin measurementin dire
tion ~ai in the left wing yields the result �up� and let p(Bj) be de�ned in a similar way inthe right wing for dire
tion ~bj . A

ording to quantum me
hani
s the quantum probability of getting�up� in dire
tion ~ai in the left wing; getting �up� in dire
tion ~bj in the right wing; and getting �up�in both dire
tions ~ai and ~bj are given by the following relations
Tr(W|Ψs〉 (PAi

⊗ I)) =
1

2
(1)

Tr(W|Ψs〉 (I ⊗ PBj
)) =

1

2
(2)

Tr(W|Ψs〉 (PAi
⊗ PBj

)) =
1

2
sin2

(

θaibj

2

) (3)where Tr is the tra
e fun
tion; W|Ψs〉 is the density operator pertaining to the pure state |Ψs〉; PAiand PBj
denote proje
tions on the eigensubspa
es with eigenvalue +1 of the spin operators asso
iatedwith dire
tions ~ai and ~bj respe
tively; and θaibj

denotes the angle between dire
tions ~ai and ~bj .The standard way to interpret quantum probabilities is to identify them with 
onditional proba-bilities as follows:
p(Ai|aibj) = Tr(W|Ψs〉 (PAi

⊗ I)) (4)
p(Bj |aibj) = Tr(W|Ψs〉 (I ⊗ PBj

)) (5)
p(AiBj |aibj) = Tr(W|Ψs〉 (PAi

⊗ PBj
)) (6)where the events Ai, Bj , ai and bj (i, j ∈ I) respe
tively are elements of a 
lassi
al probabilitymeasure spa
e (X, S, p) and the 
onditional probabilities are de�ned in the usual way. With thisidenti�
ation quantum me
hani
s predi
ts 
orrelation between 
lassi
al 
onditional 
orrelations fornon-perpendi
ular dire
tions ~ai and ~bj:

p(AiBj |aibj) 6= p(Ai|aibj)p(Bj |aibj) (7)Spe
ially, if the measurement dire
tions ~ai and ~bj are parallel then there is a perfe
t anti
orrelationbetween the out
omes Ai and Bi:
p(AiBj |aibj) = 0 (8)3



A further 
onsequen
e of (4)-(5) is the so-
alled surfa
e lo
ality that is for any i, i′, j, j′ ∈ I thefollowing relations hold
p(Ai|aibj) = p(Ai|aibj′) (9)
p(Bj |aibj) = p(Bj |ai′bj) (10)Now, let (Ai, Bj) (i, j ∈ I) denote a pair 
orrelating 
onditionally a

ording to (7) and let {(Ai, Bj)}i,j∈Istand for a set of 
orrelating pairs pertaining to the index set I. What does a 
ommon 
ausal expla-nation of the set {(Ai, Bj)}i,j∈I of 
orrelations 
onsist in? In the following we expose the 
omponentsof su
h an explanation.Let us begin with the de�nition of the 
ommon 
ause. Let (X, S, p) be a 
lassi
al probabilitymeasure spa
e and let A and B be two (positively) 
orrelating events. Then the 
ommon 
ause ofthe 
orrelation is the following:De�nition 1. An event C in S is said to be the 
ommon 
ause of the 
orrelation between events Aand B only if the events A, B and C satisfy the following relations:

p(AB|C) = p(A|C)p(B|C) (11)
p(AB|C⊥) = p(A|C⊥)p(B|C⊥) (12)

p(A|C) > p(A|C⊥) (13)
p(B|C) > p(B|C⊥) (14)where C⊥ denotes the ortho
omplement of C. Equations (11)-(12) are 
alled s
reening-o� propertiessin
e 
onditioning on C and C⊥ respe
tively s
reens o� the 
orrelation between A and B. Inequalities(13)-(14) express positive statisti
al relevan
e of the 
ause C on the two e�e
ts A and B respe
tively.The above de�nition of the 
ommon 
ause goes ba
k to Rei
henba
h (Rei
henba
h, 1956); (althoughRei
henba
h himself did not regard (11)-(14) as a su�
ient 
ondition for an event to be a 
ommon
ause). From the time of Rei
henba
h's �rst 
hara
terization on the 
ommon 
ause 
on
ept has beengeneralized in two important ways. First, it has been generalized for situations where there are morethan one 
auses present that is for a system of 
ooperating 
ommon 
auses (Hofer-Szabó, Rédei,2004, 2006). Se
ond, the inequalities expressing positive statisti
al relevan
e have gradually beenredarded as being too restri
tive and hen
e have been dropped. As a result the 
ommon 
ause hasbeen 
hara
terized simply as a s
reener-o� partition of the algebra de�ned as follows:De�nition 2. Let again (X, S, p) be a 
lassi
al probability measure spa
e and let A and B be two
orrelating events in S. Then a partition {Ck}k∈K in S is said to be the 
ommon 
ause system ofthe 
orrelation between events A and B if and only if the following fa
torization holds for all k ∈ K:

p(AB|Ck) = p(A|Ck)p(B|Ck) (15)where |K|, the 
ardinality of K is said to be the size of the 
ommon 
ause system. A 
ommon 
ausesystem of size 2 is 
alled a 
ommon 
ause.De�nition 2 of the 
ommon 
ause system referred to a single 
orrelation. However, generally weare looking for the 
ausal explanation for a set of 
orrelations. This explanation 
an be understood intwo di�erent ways. Either we provide a separate 
ommon 
ause system for ea
h separate 
orrelationof the given set; or we are looking for a so-
alled 
ommon 
ommon 
ause system that is a partitions
reening o� all 
orrelations of the set. This latter option puts extra requirements on the explanationsin
e it demands that the 
ommon 
ause system pertaining to the di�erent 
orrelations be the same.4



Now, let us apply the 
on
ept of 
ommon 
ause systems to EPR 
orrelations. First note thatEPR 
orrelations are 
onditional 
orrelations in the sense of (7) where the 
onditions represent the
hoi
e of the measurement dire
tions. Looking at the spatiotemporal arrengement of the eventsrepresenting the measurement 
hoi
es and the measurement out
omes respe
tively in the oppositewings and the set of events representing the 
ommon 
ause system at the sour
e we 
an read o� thefollowing two spatial separations. The out
ome events Ai in the left wing are spatially separatedfrom the measurement 
hoi
e events bj in the right wing; and similarly events Bj are spatiallyseparated from events ai. The measurement 
hoi
e events ai and bj are spatially separeted fromthe events of the 
ommon 
ause system {Ck}. Turning these two spatiotemporal 
onsiderations instatisti
al relationships we get the so-
alled lo
ality and no-
onspira
y requirements. Applying theabove de�nition of the 
ommon 
ause systems that is the s
reening-o� requirement for 
onditionalprobabilities we obtain altogether three demands that a 
ommon 
ausal explanation should satisfy.If we demand on the top that the 
ommon 
ause sytem be the same for all 
orrelations of the givenset then we arrive at a lo
al, non-
onspiratorial 
ommon 
ommon 
ausal explanation.De�nition 3. Let {(Ai, Bj)}i,j∈I be a set of 
orrelating pairs pertaining to the index set I su
hthat Ai, Bj , ai and bj are elements of a 
lassi
al probability measure spa
e (X, S, p). Then alo
al, non-
onspiratorial 
ommon 
ommon 
ausal explanation of the set {(Ai, Bj)}i,j∈I 
onsists inproviding a partition {Ck}k∈K of S su
h that {Ck}k∈K is lo
al, non-
onspiratorial and s
reens o�all the 
orrelations of {(Ai, Bj)}i,j∈I in the sense that for every i, i′, j, j′ ∈ I and k ∈ K the followingrelations hold:
p(Ai|aibjCk) = p(Ai|aibj′Ck) (lo
ality) (16)
p(Bj |aibjCk) = p(Bj |aj′bjCk) (lo
ality) (17)

p(aibjCk) = p(aibj)p(Ck) (no-
onspira
y) (18)
p(AiBj |aibjCk) = p(Ai|aibjCk)p(Bj |aibjCk) (s
reening-o�) (19)On the other hand, if we let the 
ommon 
ause sytem be di�erent for the di�erent 
orrelationsof the set then our explanation will be 
alled a lo
al, non-
onspiratorial separate 
ommon 
ausalexplanation.De�nition 4. Let {(Ai, Bj)}i,j∈I be a set of 
orrelating pairs pertaining to the index set I su
hthat Ai, Bj , ai and bj are elements of a 
lassi
al probability measure spa
e (X, S, p). Then alo
al, non-
onspiratorial separate 
ommon 
ausal explanation of the set {(Ai, Bj)}i,j∈I 
onsistsin �nding a separate partition {Cij

k }k(ij)∈K(i,j) of S for ea
h 
orrelation in {(Ai, Bj)}i,j∈I su
hthat ea
h {Cij
k }k(ij)∈K(i,j) is lo
al, non-
onspiratorial and s
reens o� the appropriate 
orrelation in

{(Ai, Bj)}i,j∈I in the sense that for every i, i′, j, j′ ∈ I and k(ij) ∈ K(i, j) the following relationshold:
p(Ai|aibjC

ij
k ) = p(Ai|aibj′C

ij
k ) (lo
ality) (20)

p(Bj |aibjC
ij
k ) = p(Bj |aj′bjC

ij
k ) (lo
ality) (21)

p(aibjF ) = p(aibj)p(F ) (no-
onspira
y) (22)
p(AiBj |aibjC

ij
k ) = p(Ai|aibjC

ij
k )p(Bj |aibjC

ij
k ) (s
reening-o�) (23)where F in equation (22) is an element of the algebra S′ ⊂ S generated by all the elements of everyseparate 
ommon 
ause system.To motivate why it is important to demand no-
onspira
y (22) in this strong sense namely forany element of the generated algebra and not just for the C

ij
k elements, re
all the tri
ky 
onspira
iesin Szabó's separate 
ommon 
ausal model. As mentioned in the Introdu
tion Szabó was able to5




onstru
t a lo
al separate 
ommon 
ausal model for a spe
ial set of EPR 
orrelations that wasnon-
onspiratorial in the sense the every ai and bj were independent of every C
ij
k . However, thismodel was 
onspiratorial at a deep level�the measurement 
hoi
es ai and bj 
orrelated with somedisjun
tions of elements of separate 
ommon 
ause systems su
h as C

ij
k ∪C

i′j′

k′ . To ex
lude all thesetype of 
onspira
ies we demand no-
onspira
y in the strong form (22).Now, we turn to the relation between the lo
al, non-
onspiratorial 
ommon or separate 
ommon
ausal explanations of the EPR 
orrelations on the one hand and the Bell inequalities on the other.3 Bell inequalitiesNow, let us be more spe
i�
 
on
erning our set {(Ai, Bj)}i,j∈I . Let the 
orrelation set 
onsist of four
orrelating pairs (A1, B3), (A1, B4), (A2, B3) and (A2, B4). The standard question is usually whetherthis set 
an be given a lo
al, non-
onspiratorial 
ommon 
ommon 
ausal explanation in the sense ofDe�nition 3. The answer is well known. {(Ai, Bj)}i=1,2;j=3,4 
an be given a lo
al, non-
onspiratorial
ommon 
ommon 
ausal explanation only if the 
orrelations of the set for any i, i′ = 1, 2; j, j′ = 3, 4and i 6= i′, j 6= j′ satisfy the Clauser�Horne inequalities
−1 6 p(AiBj |aibj) + p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj) − p(Ai′Bj′ |ai′bj′) − p(Ai|aibj) − p(Bj |aibj) 6 0 (24)The proof is simple. It is a trivial fa
t of arithmeti
 that for any α, α′, β, β′ ∈ [0, 1] the expression

αβ + αβ′ + α′β − α′β′ − α − β (25)lies in the bound [−1, 0]. Now let α, α′, β, β′ be the following 
onditional probabilities:
α ≡ p(Ai|aibjCk) (26)
α′ ≡ p(Ai′ |ai′bj′Ck) (27)
β ≡ p(Bj |aibjCk) (28)
β′ ≡ p(Bj′ |ai′bj′Ck) (29)Plugging (26)-(29) into (25) and using lo
ality (16)-(17) one gets that

−1 6 p(Ai|aibjCk)p(Bj |aibjCk) + p(Ai|ai′bjCk)p(Bj′ |ai′bjCk) + p(Ai′ |ai′bjCk)p(Bj |ai′bjCk)

−p(Ai′ |ai′bj′Ck)p(Bj′ |ai′bj′Ck) − p(Ai|aibjCk) − p(Bj |aibjCk) 6 0Using s
reening-o� (19) one gets that
−1 6 p(AiBj |aibjCk) + p(AiBj′ |ai′bjCk) + p(Ai′Bj |ai′bjCk)

−p(Ai′Bj′ |ai′bj′Ck) − p(Ai|aibjCk) − p(Bj |aibjCk) 6 0Finally, multiplying by p(Ck), summing up for the indi
es k and using no-
onspira
y (18) one obtains(24).An example for a 
orrelation set whi
h violates (24) and hen
e 
an not be given a lo
al, non-
onspiratorial 
ommon 
ommon 
ausal explanation is the one Szabó used in his paper (2000). Herethe angles θaibj
between the dire
tions ~ai and ~bj are set as follows:

θa1b3 = θa1b4 = θa2b3 =
2π

3
and θa2b4 = 0 (30)6



For this 
hoi
e of the measurement dire
tions there is a 
onditional 
orrelation for every (Ai, Bj)pair (i = 1, 2; j = 3, 4):
3

8
= p(A1B3|a1b3) 6= p(A1|a1b3) p(B3|a1b3) =

1

2
· 1

2
(31)

3

8
= p(A1B4|a1b4) 6= p(A1|a1b4) p(B4|a1b4) =

1

2
· 1

2
(32)

3

8
= p(A2B3|a2b3) 6= p(A2|a2b3) p(B3|a2b3) =

1

2
· 1

2
(33)

0 = p(A2B4|a2b4) 6= p(A2|a2b4) p(B4|a2b4) =
1

2
· 1

2
(34)Denote this set of 
orrelations by {(Ai, Bj)}CH . This set violates the Clauser�Horne inequality

−1 6 p(A1B3|a1b3) + p(A1B4|a1b4) + p(A2B4|a2b4) − p(A2B4|a2b4) − p(A1|a1b3) − p(B3|a1b3) 6 0 (35)at the upper bound as follows:
3

8
+

3

8
+

3

8
− 0 − 1

2
− 1

2

 0 (36)Consequently, {(Ai, Bj)}CH 
an not be given a lo
al, non-
onspiratorial 
ommon 
ommon 
ausalexplanation.Now, let us go over to the question whether {(Ai, Bj)}CH (or any other 
orrelation set violatingthe Clauser�Horne inequalities) 
an have a lo
al, non-
onspiratorial separate 
ommon 
ausal expla-nation. As mentioned in the Introdu
tion Szabó was unable to present a lo
al, non-
onspiratorialseparate 
ommon 
ause model for {(Ai, Bj)}CH be
ause of the unwanted 
onspira
ies. The naturalintuition towards this fa
t was that a lo
al, non-
onspiratorial separate 
ommon 
ausal explanationof the set {(Ai, Bj)}CH results in some Bell inequalities�for example in the above Clauser�Horneinequalities�and the violation of these inequalities for the above setting is responsible for the la
k ofa separate 
ommon 
ausal explanation. Thus, the program has been to show up a derivation of someBell inequalities from the assumption that {(Ai, Bj)}CH has four lo
al, non-
onspiratorial separate
ommon 
ause systems satisfying (20)-(23).Curiously enough, none of the authors has taken this route. Instead of taking the above setand then sear
hing for a derivation of some Bell inequality from the assumption that this set hasa lo
al, non-
onspiratorial separate 
ommon 
ausal explanation they have 
hosen another set. Thisset again 
onsisted of the four 
orrelations of {(Ai, Bi)} (i = 1, 2, 3, 4) for any of whi
h the angle

θaibi
was set to 0. In other words, this set was 
omposed of perfe
t anti
orrelations. Denote thisset by {(Ai, Bi)}PA. For the relation between the sets {(Ai, Bj)}CH and {(Ai, Bj)}PA see Figure 1where the 
ontinuous lines represent the Clauser�Horne 
orrelations and the dotted lines representthe perfe
t anti
orrelations.Now, the reasoning has run as follows (for the details see (Grassho� et al. 2005) and (Hofer-Szabó, 2008)). Suppose that {(Ai, Bi)}PA has a lo
al, non-
onspiratorial separate 
ommon 
ausalexplanation that is four lo
al, non-
onspiratorial separate 
ommon 
ause systems {Cii

k }k∈K(i) (i =
1, 2, 3, 4) satisfying (20)-(23). Sin
e {(Ai, Bi)}PA 
onsists of only perfe
t anti
orrelations it is easyto show that from assumptions (20)-(23) it follows that for any i = 1, 2, 3, 4 there exist a ve
tor
εii ∈ {0, 1}K(i) su
h that de�ning Cii and Cii⊥ as

Cii ≡
⋃

k∈K(i)

εii
k Cii

k ; Cii⊥ ≡
⋃

k∈K(i)

(1 − εii
k )Cii

k (37)the partitions {Cii, Cii⊥} (i = 1, 2, 3, 4)will be lo
al, non-
onspiratorial separate 
ommon 
auses thatis a separate 
ommon 
ause systems of size 2 for the set {(Ai, Bi)}PA. Moreover, every {Cii, Cii⊥}7
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orrelation set and the perfe
t anti
orrelation setwill satisfy (20)-(23) deterministi
ally that is ea
h term in (20)-(23) will be either 0 or 1. Finally, theprobability of the separate 
ommon 
auses will equal to the probability of the 
onditional probabilities
p(Ai|aibi) and p(Bi|aibi):

p(Cii) = p(Ai|aibi) (38)
p(Cii⊥) = p(Bi|aibi) (39)Noti
e that in this reasoning there has been no mention of the original set {(Ai, Bj)}CH . How dothe 
orrelations of {(Ai, Bj)}CH 
ome into the pi
ture?The joint and marginal 
onditional probabilities of the Clauser�Horne 
orrelations appear simplyusing lo
ality (20)-(21) and no-
onspira
y (22) for the perfe
t anti
orrelation set. That is for any

i, j = 1, 2, 3, 4; i 6= j

p(Cii) = p(Ai|aibj) (40)
p(Cjj⊥) = p(Bj |aibj) (41)

p(CiiCjj⊥) = p(AiBj |aibj) (42)Now, 
onsider the four events C11, C22, C33⊥ and C44⊥ in S. For these events the followingsimple probabilisti
 
onstraint applies:
−1 6 p(C11C33⊥) + p(C11C44⊥) + p(C22C33⊥) − p(C22C44⊥) − p(C11) − p(C33⊥) 6 0 (43)Subtituting the probabilities of (43) by the 
onditional probabilities of (40)-(42) we get the Clauser�Horne inequality (35) for the 
orrelation set {(Ai, Bj)}CH . Sin
e for the measuring setup (30)this inequality is violated there 
an be given no lo
al, non-
onspiratorial separate 
ommon 
ausalexplanation of the perfe
t anti
orrelation set {(Ai, Bj)}PA!To put is brie�y, the ne
essary 
ondition for {(Ai, Bj)}PA to have a lo
al, non-
onspiratorialseparate 
ommon 
ausal explanation is that {(Ai, Bj)}CH satis�es the Clauser�Horne inequality(35).The papers (Portmann and Wüthri
h, 2007) and (Hofer-Szabó, 2008, 2011) have repeated the sameargumentation for almost perfe
t anti
orrelations. Here we sket
h the argument of (Hofer-Szabó,2011). Consider again a set 
onsisting of four 
orrelating pairs {(Ai, Bi)}i=1,2,3,4 and suppose thatfor any i = 1, 2, 3, 4 the angle θaibi

between the measurement 
hoi
es is su
h that
|π − θaibi

| < 2 arcsin
√

1 − 2δ (44)or more simply, let the 
orrelations be su
h that for any i = 1, 2, 3, 4

p(AiBi|aibi) 6 δ (45)8



Denote su
h a set of 
orrelations by {(Ai, Bi)}PA(δ). Again suppose that {(Ai, Bi)}PA(δ) has a lo
al,non-
onspiratorial separate 
ommon 
ausal explanation. As above, from this assumption it followsthat there exist a ve
tor εii ∈ {0, 1}Ki for any i = 1, 2, 3, 4 su
h that de�ning Cii and Cii⊥ as in (37)one get four partitions {Cii, Cii⊥}i=1,2,3,4 for whi
h�instead of (38)-(39)�the following inequalitieswill hold:
|p(Cii) − p(Ai|aibi)| 6 4δ (46)

|p(Cii⊥) − p(Bi|aibi)| 6 4δ (47)Call these partitions quasi 
ommon 
auses sin
e although they are 
onstru
ted out of the elements ofthe 
ommon 
ause systems {Cii
k } they do not satisfy s
reening-o� (23) (however they satisfy lo
ality(20)-(21) and no-
onspira
y (22)).Now as above, using lo
ality (20)-(21) and no-
onspira
y (22) for the set {(Ai, Bi)}PA(δ) we getthat for any i, j = 1, 2, 3, 4

|p(Cii) − p(Ai|aibj)| 6 4δ (48)
|p(Cjj⊥) − p(Bj |aibj)| 6 4δ (49)

|p(CiiCjj⊥) − p(AiBj |aibj)| 6 8δ (50)Consider again inequality (43) 
omposed of the quasi 
ommon 
auses C11, C22, C33⊥ and C44⊥ andsubstitute the probabilities of (43) by the 
onditional probabilities of (48)-(50). Ea
h substitutionwill 
ause an error of order of either 4δ or 8δ. Adding up the errors we obtain the following inequality.
−1 6 p(A1B3|a1b3) + p(A1B4|a1b4) + p(A2B3|a2b4) − p(A2B4|a2b3) − p(A1|a1b3) − p(B3|a1b3) − 40δ 6 0 (51)We refer to this inequlity as a Clauser�Horne(δ) inequality sin
e (51) di�ers from the original Clauser�Horne inequality (43) in a term of order of δ. Again for the measuring setup (30) the Clauser�Horne(δ) inequality (51) is violated as long as δ < 1

320 . This ex
ludes a lo
al, non-
onspiratorialseparate 
ommon 
ausal explanation of the almost perfe
t anti
orrelation set {(Ai, Bj)}PA(δ).This strategy 
an be generalized for arbitrary Bell(δ) inequality. In (Hofer-Szabó, 2011) a re
ipehas been given for deriving any Bell(δ) inequality 
omposed of marginal probabilities p(Ai|aibj),
p(Bj |aibj) and joint probabilities p(AiBj |aibj). The re
ipe is roughly this. Consider a Bell inequalityresulting from the lo
al, non-
onsipratorial 
ommon 
ommon 
ausal explanation of a set {(Ai, Bj)}of 
orrelations. Consider the set {(Ai, Bi)}PA(δ) of almost perfe
t anti
orrelations pertaining tothe events Ai or Bj whi
h appear in either a marginal or a joint probability in the Bell inequality.Suppose that {(Ai, Bj)}PA(δ) has a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation.This assumption results in a Bell(δ) inequality di�ering from the original Bell inequality in a term oforder of δ where the exa
t magnitude of this term is the fun
tion of the approximation. Choose thesetting whi
h violates the Bell inequality maximally. If the δ term is smaller than the violation of theoriginal Bell inequality than the new Bell(δ) inequality will also be violated�ex
luding a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation almost perfe
t anti
orrelation set {(Ai, Bj)}PA(δ).4 No deterministi
, lo
al, non-
onspiratorial separate 
ommon
ausal explanation of the Clauser�Horne setIn the last Se
tion we have posed a question and answered another one. The question was whetherthe set {(Ai, Bj)}CH has a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation. However,the answer was this. The ne
essary 
ondition for {(Ai, Bj)}PA (or {(Ai, Bj)}PA(δ)) to have a lo
al,non-
onspiratorial separate 
ommon 
ausal explanation is that {(Ai, Bj)}CH satis�es the Clauser�Horne inequality (24). This answer is perfe
tly adequate if our intention is to ex
lude the lo
al,9



non-
onspiratorial separate 
ommon 
ausal explanation of the EPR s
enario as su
h�as it was theaim of the paper (Grassho� et al. 2005). But it does not at all explain the fa
t why Szabó wasnot able to give a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation of his original set
{(Ai, Bj)}CH . This latter question 
an be answered only if we derive some Bell inequalities fromthe assumption that the original set {(Ai, Bj)}CH has a lo
al, non-
onspiratorial separate 
ommon
ausal explanation; or we show up other reasons for the failure.In this Se
tion we give an answer to the original question�a partial answer 
on�ned to thedeterministi
 
ase. The answer is this. {(Ai, Bj)}CH 
an not have a deterministi
, lo
al, non-
onspiratorial separate 
ommon 
ausal explanation sin
e this separate 
ommon 
ausal explanationimplies the same Clauser�Horne inequalities as the lo
al, non-
onspiratorial 
ommon 
ommon 
ausalexplanation.Proposition 1. Let {(Ai, Bj)}i=1,2;j=3,4 be a set of 
orrelating pairs su
h that Ai, Bj , ai and bj areelements of a 
lassi
al probability measure spa
e (X, S, p). Suppose furthermore that {(Ai, Bj)}i=1,2;j=3,4has a deterministi
, lo
al, non-
onspiratorial separate 
ommon 
ausal explanation in the sense thatthere exist a separate partition {Cij

k }k(ij)∈K(i,j) of S for ea
h 
orrelation of {(Ai, Bj)}i=1,2;j=3,4su
h that {Cij
k }k(ij)∈K(i,j) satisties (20)-(23) and p(Ai|aibjC

ij
k ), p(Bj |aibjC

ij
k ) ∈ {0, 1} for any i =

1, 2; j = 3, 4 and k(ij) ∈ K(i, j). Then for any i, i′ = 1, 2; j, j′ = 3, 4; i 6= i′, j 6= j′ the Clauser�Horneinequality (24) follows.Proof. Consider the separate 
ommon 
ause system {Cij′

k } (i = 1, 2; j′ = 3, 4) pertaining to the
orrelation (Ai, Bj′ ) and let K ′ denote the set of those indi
es k ∈ K for whi
h
p(AiBj′ |aibj′C

ij′

k ) = 1 (52)Similarly 
onsider the separate 
ommon 
ause system {Ci′j
l } (i′ = 1, 2; j = 3, 4; i 6= i′, j 6= j′)pertaining to the 
orrelation (Ai′ , Bj) and let L′ denote the set of those indi
es l ∈ L for whi
h

p(Ai′Bj |ai′bjC
i′j
l ) = 1 (53)With the index sets K ′ and L′ in hand de�ne the following two elements of the algebra generatedby the separate 
ommon 
ause systems {Cij′

k } and {Ci′j
l }

Cij′ ≡
⋃

k∈K′

C
ij′

k (54)
Ci′j ≡

⋃

l∈L′

C
i′j
l (55)Now, sin
e due to lo
ality (20)-(21) for any k ∈ K ′ and l ∈ L′

p(Ai|aibjC
ij′

k ) = 1

p(Bj |aibjC
i′j
l ) = 1and hen
e for Cij′ and Ci′j

p(Ai|aibjC
ij′ ) = 1

p(Bj |aibjC
i′j) = 1it follows that

aibjC
ij′ ⊆ Ai (56)

aibjC
i′j ⊆ Bj (57)10



ex
ept for a set of zero measure. From (56)-(57) we obtain that
aibj (Cij′ ∪ Ci′j) ⊆ Ai ∪ Bjagain ex
ept for a set of zero measure and hen
e

p(aibj(C
ij′ ∪ Ci′j)) 6 p(Ai ∪ Bj)whi
h using no-
onspira
y (22) results in

p(Cij′ ∪ Ci′j) 6 p(Ai ∪ Bj |aibj) = p(Ai|aibj) + p(Bj |aibj) − p(AiBj |aibj) (58)Again, due to lo
ality (20)-(21) from (52)-(53) for any k ∈ K ′ and l ∈ L′ one gets
p(Bj′ |ai′bj′C

ij′

k ) = 1

p(Ai′ |ai′bj′C
i′j
l ) = 1and hen
e

p(Bj′ |ai′bj′C
ij′ ) = 1 (59)

p(Ai′ |ai′bj′C
i′j) = 1 (60)From (59)-(60) we obtain that

ai′bj′C
ij′ ⊆ Bj′

ai′bj′C
i′j ⊆ Ai′ex
ept for a set of zero measure and hen
e

ai′bj′ (Cij′Ci′j) ⊆ Ai′Bj′ (61)again ex
ept for a set of zero measure. From (61) it follows that
p(ai′bj′(C

ij′Ci′j)) 6 p(Ai′Bj′)or using no-
onspira
y (22)
p(Cij′Ci′j) 6 p(Ai′Bj′ |ai′bj′) (62)Now, from (52)-(53) using the theorem of total probability and no-
onsprira
y (22) one obtainsthat

p(Cij′ ) = p(AiBj′ |aibj′)

p(Ci′j) = p(Ai′Bj|ai′bj)whi
h using the fa
t that
p(Cij′ ∪ Ci′j) = p(Cij′ ) + p(Ci′j) − p(Cij′Ci′j)transforms (62) into

p(Cij′ ∪ Ci′j) > p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj) − p(Ai′Bj′ |ai′bj′) (63)Constrasting (58) to (63) we get the Clauser�Horne inequality (24) at the upper bound. To get theinequality at the lower bound just repla
e Ai by A⊥
i and follow the steps of the above reasoning. �11



5 Con
lusionsIn the paper we addressed the problem as to why Szabó (2000) was unable to yield a lo
al, non-
onspiratorial separate 
ommon 
ausal model for the EPR s
enario. We have shown that the usualanswer 
laiming that the 
orrelation set used by Szabó violates the Clauser�Horne inequalities ifwe assume that there is a lo
al, non-
onspiratorial separate 
ommon 
ausal model of another set,is not satisfa
tory. To explain Szabó's situation one should derive some Bell inequalities from theassumption that there is a lo
al, non-
onspiratorial separate 
ommon 
ausal model of the originalset.Here we provided a partial answer to this problem. We have shown that no set of 
orrelations vio-lating the Clauser�Horne inequalities 
an be given a deterministi
, lo
al, non-
onspiratorial separate
ommon 
ausal explanation. This result was partial sin
e we 
ould not eliminate the requirement ofdeterminism from the proof. So we 
on
lude the paper with the followingOpen question: Is it true that no set of 
orrelations violating the Clauser�Horne inequalities
an be given a (not ne
essarily deterministi
) lo
al, non-
onspiratorial separate 
ommon 
ausalexplanation? Or in other words, does Proposition 1 hold generally that is without the assumptionthat p(Ai|aibjC
ij
k ), p(Bj |aibjC

ij
k ) ∈ {0, 1} for any i = 1, 2; j = 3, 4 and k(ij) ∈ K(i, j)?A
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