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Abstract

Based on a formalization of constructive empiricism’s core concept of
empirical adequacy, I show that some previous discussions rest on mis-
understandings of empirical adequacy. Using one of the inspirations for
constructive empiricism, I generalize the concept of a theory to avoid im-
plausible presumptions about the relations of theoretical concepts and obser-
vations, and generalize empirical adequacy to allow for lack of knowledge,
approximations, and successive gain of knowledge and precision. As a test
case, I provide an application of the concepts to a simple interference phe-
nomenon.
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1 Introduction

At the core of constructive empiricism lies the concept of empirical adequacy. For
according to van Fraassen (1980, 12, emphasis removed), constructive empiricism
is the view that

[s]cience aims to give us theories which are empirically adequate; and
acceptance of a theory involves as belief only that it is empirically
adequate.

The model theoretic notion of empirical adequacy that van Fraassen uses is very
strict: It does not allow for approximation, nor does it allow for lack of knowledge
of the phenomena. What is more, the definition puts enormous restrictions on
the structures of scientific theories (§2.2).

In this article, I will suggest a generalization of empirical adequacy that alle-
viates the restrictions on scientific theories (§4.1) and suggest generalizations of
empirical adequacy that allow for lack of knowledge of the phenomena (§4.2) and
for approximation (4.3). To show the viability of the generalizations, I apply them
to a simple interference phenomenon. The basis for the generalizations is one of
the inspirations for van Fraassen’s definition of empirical adequacy, an unjustly
overlooked book by Polish model theoretician Marian Przełęcki (§3). In further
defense of the generalizations suggested here, I show in the companion piece to
this article (Lutz 2011) that prominent previous generalizations are inadequate.

2 Empirical adequacy: Definitions and problems

Although van Fraassen (1980) defines empirical adequacy in terms of model theory,
his formal exposition is rather light. I will thus rely on the standard notation
as used by Chang and Keisler (1990, §1.3) and, more loosely, by Hodges (1993,
§§1.2f). Hence a structure A is a pair 〈A,I 〉 consisting of a domain A and a
function I from a set of ni -place relation symbols Ri , n j -place function symbols
F j , and constant symbols ck to, respectively, ni -ary relations, n j -ary functions,
and constants on A. Unless stated otherwise, I will in the following always assume
this set of symbols with the same arities. In the following, I will sometimes refer
to symbols as ‘terms’ when this does not lead to ambiguity. Sometimes, I use
indexed structures Mi instead of A, B, etc. A will always be the domain |A|
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of A, B = |B| etc. If A = 〈A,I 〉, I write RA
i instead of I (R), and analogously

for functions and constants. RB
i is the relation in B that corresponds to relation

RA
i in A, and analogous for functions and constants. In displayed form, I write

a structure A as 〈A, RA
1 , . . . , RA

s , F A
1 , . . . , F A

t , cA1 , . . . , cAu 〉 or, for possibly infinite
index sets, 〈A, RA

i , F A
j , cAk 〉i∈I , j∈J ,k∈K .

In contradistinction to the above, Bell and Slomson (1974, 73) define a rela-
tional structure A as a pair 〈A,{Ri}i<α〉 of a domain and a set of relations, where α
is a cardinal. This difference is little more than notational, since in their definitions
of further model theoretic concepts, the corresponding relations are determined
by the index set {i : i < α}, which therefore plays the role of the set of relation
symbols {Ri : i ∈ I } used by Chang and Keisler (1990) and Hodges (1993). For
examples relevant in the following, see the definitions of reduct, isomorphism,
and substructure by Chang and Keisler (1990, 20–23) and by Bell and Slomson
(1974, 153, 73), respectively.1 The reader who prefers the notation by Bell and
Slomson (1974) will have no problems translating the following discussion.

2.1 Definitions

Within constructive empiricism, van Fraassen (1980, 64) states,

[t]o present a theory is to specify a family of structures, its models;
and secondly, to specify certain parts of those models (the empirical
substructures) as candidates for the direct representation of observable
phenomena.

Furthermore the models of the theory “are describable only up to structural
isomorphism” (van Fraassen 2008, 238; cf. 2002, 22). More formally, this can be
phrased as follows:

Definition 1. A theory is a family {Tn}n∈N of structures (the models of the theory)
such that each of its members Tn = 〈Tn , RTn

i , F Tn
j , cTn

k
〉i∈In , j∈Jn ,k∈Kn

has a set En

of empirical substructures, such that for each E ∈ En , E⊆Tn . With each model, a
theory also contains every isomorphic structure and its corresponding2 empirical
substructures.

Strictly distinguishing between the set O of observable objects and the unob-
servable objects, van Fraassen (1980, 64) suggests to describe observable phenom-
ena by structures as well: “The structures which can be described in experimental

1For reasons that are not entirely clear, this notational convention has become a philosophical
point of both contention and confusion. Van Fraassen (1989, 366, n. 4), for example, objects to
structures being “yolked to a particular syntax”, where ‘syntax’ seems to stand for ‘set of symbols’.
And French and Ladyman (1999, 115) see support for van Fraassen’s position in the definition of
‘structure’ given by Hodges (1993), which, however, relies on symbols.

2To be precise: If f : Tm −→ Tn is an isomorphism between Tm and Tn , then the corresponding
empirical substructures En are those structures for which f is an isomorphism to an element of Em .
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and measurement reports we can call appearances” (van Fraassen 2008, 286). This
suggests

Definition 2. Appearances are given by a set P of structures such that the domain
of each P ∈ P is a subset of O. A structure P ∈ P is an appearance.

Note that the set of appearances does not have to be closed under isomorphism.
Van Fraassen (1980, 64) then defines a theory to be “empirically adequate if it

has some model such that all appearances are isomorphic to empirical substruc-
tures of that model” (cf. van Fraassen 1991, 12):

Definition 3. A theory {Tn}n∈N is empirically adequate for appearances P if and
only if there is some n ∈ N such that for every P ∈ P, there is an E ∈ En with
E∼=P.

Definition 3 defines the empirical adequacy of a theory relative to a set of
appearances. In contradistinction, empirical adequacy simpliciter is defined as
empirical adequacy for the set of all appearances (cf. Monton and Mohler 2008,
§1.5). Therefore any set P of appearances that does not contain all of them may
allow the deductive inference that some theory is not empirically adequate; but
the inference that a theory is empirically adequate will have to be in some way
inductive. And it is for empirical adequacy simpliciter that van Fraassen (1980, 12,
emphasis removed) claims that “acceptance of a theory involves as belief only that
it is empirically adequate”.

A note on terminology: Van Fraassen (1980, 66) and others (e. g., Turney 1990,
431; Suárez 2005, §4.1; Monton and Mohler 2008, §§1.5f) occasionally speak of
the empirical adequacy of a theory as the embeddability of the appearances into a
model of the theory. But the two are not equivalent: P ∈ P can be embedded in
Tn if and only if P is isomorphic to any substructure of Tn (Hodges 1993, 6). The
substructure does not have to be an empirical substructure. In the following, I will
call an isomorphic mapping to an empirical substructure an empirical embedding.

In a more puzzling oversight, some exponents of empirical adequacy, (e. g.
Suárez 2005, 39), rely on

Definition 4. A theory {Tn}n∈N is idiosyncratically empirically adequate for ap-
pearances P if and only if for every P ∈ P, there are an n ∈N and an E ∈ En such
that E∼=P.

Definitions 3 and 4 are equivalent if there is only one appearance, P= {P},3
but not in general: Let the appearances be given by the set of the two structures
{〈{1,2},{1,2}〉, 〈{3,4},{3}〉}. Let the theory be given by the family with members
T1 = 〈{0,1,2,},{0,1,2}〉 and T2 = 〈{3,4,5},{3,4}〉 as well as the singleton sets
of empirical substructures E1 = {〈{1,2},{1,2}〉} and E2 = {〈{3,4},{3}〉}. Let all
other models of the theory be isomorphic to T1 or T2 and have the corresponding
empirical substructures. Then the theory is idiosyncratically empirically adequate

3This is decidedly not what van Fraassen in general assumes (personal communication).

4



Sebastian Lutz Generalizing Empirical Adequacy I—Draft: 2011–07–26

by virtue of the identity mapping on each of the appearances’ domains, but it is
not empirically adequate.

Since theories are closed under isomorphism, an appearance is empirically em-
beddable in a model of a theory if and only if it is an empirical substructure of that
model (Hodges 1993, ex. 1.2.4b). Therefore a theory is idiosyncratically empiri-
cally adequate if and only if all appearances are empirical substructures of models
of the theory (that is, in definition 4, E∼=P could be exchanged for E=P). This
is not the case for empirical adequacy: Let the appearances be given by the set of the
two structures {〈{a, b},{a, b}〉, 〈{c , d},{c}〉}, where a, b , c , and d are distinct ob-
jects. Let the theory be given by the family with the member T1 = 〈{1,2,3},{1,2}〉
and the set of empirical substructures E1 = {〈{1,2},{1,2}〉, 〈{2,3},{2}〉}. Let all
other models of the theory be isomorphic to T1 and have the corresponding
empirical substructures. Then the theory is empirically adequate, but every bi-
jection from {1,2,3}—and thus every isomorphism for T1—maps 2, the object
shared by the empirical substructures, to a single object. Since the domains of
the appearances do not share an element, the appearances therefore can never be
empirical substructures of the same model of the theory.4

2.2 Problems

Before listing problems of empirical adequacy, let me note one important virtue:
While constructive empiricism crucially relies on empirical adequacy, the reverse
is not true. Even a realist can rely on empirical adequacy as one property of
a theory, for example by inferring that some theory is false from its empirical
inadequacy. In this sense, empirical adequacy is metaphysically neutral, but can
be used to define an anti-realist position like constructive empiricism.

While metaphysically neutral, empirical adequacy puts severe restrictions on
the models {Tn}n∈N of a theory by relying on definition 1. It follows from the
definition of a substructure that every constant of a model Tn has to be in the
domain E of each of its substructures E ∈ En . Furthermore, every function of the
model E ∈ En must map all (tuples of) elements of E to elements of E (Hodges
1993, lemma 1.2.2).

If now a theory {Tn}n∈N is empirically adequate, every appearance is a sub-
structure of some Tn , so that Tn’s domain Tn contains observable objects, all
constants of Tn are observable objects, and all functions of Tn map observable
objects to other observable objects. If now the theory is about, say, elementary
particles, the observable objects are, for example, the results shown on the mea-
surement instruments. These then have to satisfy those formulas that the theory
ascribes to elementary particles, and all constants in the theory have to be results
shown on measurement instruments.5

4Note that the opposite would be true, that is, in definition 3, E∼=P could be exchanged for
E=P, if the appearances were closed under isomorphism.

5Assuming the right cardinality, this can formally always be arranged by defining the relations
between the observable objects accordingly, although this would trivialize empirical adequacy (cf.
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Besides these technical problems that stem from the reliance on substructures,
there are two ways in which empirical adequacy is too strict to be used in most
contexts of scientific research because it relies on an isomorphism between the
appearances and the empirical substructures. For one, most theories’ implications
for the appearances are not true up to arbitrary precision. But the theories are
still empirically adequate up to some precision, that is, approximately empirically
adequate. Approximately empirically adequate theories like the ray theory of
light, quantum field theory, and general relativity are clearly useful although not
empirically adequate according to definition 3. For this reason, van Fraassen (1989,
366, n. 5) himself suggests, but does not explicate, the notion of ‘approximate
embedding’.

Second, scientists are seldom if ever in the situation that they know what the
exact appearances are. Rather, their knowledge only restricts what appearances
are (epistemically) possible, for example because it stems from measurements
with a certain amount of error. Definition 3 does not allow for such lack of
knowledge, since it refers solely to the set of appearances. This makes sense,
since a theory that is empirically adequate as far as we know, or what I will call
‘epistemically empirically adequate’, is not always an empirically adequate theory.
Still, definition 3 may define a concept that can never be applied in scientific
research.

As an example, take the application of the ray theory of light to two light
beams travelling in opposite directions. For the purpose of this example, I will
assume that light behaves according to the wave theory of light. Then, while the
ray theory asserts that the intensities of the beams will simply add up to some
intensity I that is constant for all spatial positions x, the interference of the light
waves in fact results in the pattern

ψ(x) = 2I cos2
�2πx

λ

�

= I + I cos
�4πx

λ

�

(1)

for the time averaged intensity (cf. Batterman 2002, §6.2). Thus the ray theory
is not empirically adequate, since the interference pattern cannot be empirically
embedded in one of its models.6

However, it might be impossible for the scientist measuring the intensity to
realize that there is no empirical embedding. A measuring device with a finite
spatial resolution given by the normalized function b will blur the measurement
of ψ to the convolution ψb (x) =

∫∞
−∞ f (y)b (y − x)dy. Assuming, for ease of

calculation, that b is a rectangular function of width p centered around 0, the
convolution amounts to an averaging over the interval [x − p/2, x + p/2]. The

van Fraassen 2006); I am assuming here that the trivialization problem has been solved.
6Again assuming that the problem of the trivialization of empirical embedding has been solved.

This will always be silently assumed in the following.
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Figure 1: The real pattern of the intensity
(dashed) and the blurred pattern (solid) for
p/λ= 10.25.
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measurement of ψ then gives the result

ψp (x) =
1

p

∫ x+ p
2

x− p
2

2I cos2
�2πy

λ

�

dy = I + I D
� p

λ

�

cos
�4πx

λ

�

. (2)

The deviation factor

D(x) =
sin(2πx)

2πx
(3)

and the intensity I determine how far individual values of the measured intensity
ψb , can maximally deviate from I , the intensity’s spatial average. The maximal
deviation thus depends solely on I and the ratio of the precision of measurement
and the wavelength, p/λ. As can be seen from both the graph of D (figure 2) and
the formula (3) for D , the functions 1/(2πx) and −1/(2πx) enclose D .7

The ray theory of light predicts a constant intensity ψray = I , so that

ψray
p (x) =

1

p

∫ xi+
p
2

xi−
p
2

I = I (4)

For intensities I and wavelengths λ small enough, as well as spatial resolutions p
and intensity resolutions q low enough, ψp and ψray

p will be hard or impossible
to distinguish for the scientist. This also provides a very practical sense in which
the ray theory is approximately empirically adequate: Up to certain wavelengths
and intensities, the ray theory is empirically adequate up to certain resolutions.
However, the ray theory is not empirically adequate simpliciter, since appearances

7Note that |D(x)| ≤ 1 also for x ∈ [0,1/(2π)[, unlike 1/(2πx).
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given by the intensity pattern ψ are possible. As van Fraassen (1991, 12) puts it:
“Empirical adequacy, like truth, admits of no degrees”.

Suppes (1962) famously noted that measurement results differ from phenom-
ena like ψ beyond having a finite resolution: No measurement would result in the
continuous function ψp , simply because measurements are discontinuous sets of
values. Again simplifying the situation for easier tractability, the measurement of
the intensity pattern ψ can thus be taken to result in some finite set

{〈x1, y1〉, . . . , 〈xs , ys 〉} (5)

with

yi ∈
�

ψp (xi )+
q

2
,ψp (xi )+

q

2

�

for all 1≤ i ≤ s (6)

of pairs of spatial values xi and intensity values yi . The values restrict each other
because they are related by the blurred intensity pattern ψp and the intensity
resolution q . Accordingly, van Fraassen (2008, 166–172) makes a distinction
between surface structures, ψp , and data structures, the measurement results,8 and
demands that “the data or surface [structures] must ideally be isomorphically
embeddable in theoretical models” (van Fraassen 2008, 168). In their “cardinality
objection”, Bueno et al. (2002, 503) argue that this demand is problematic because
the domains of data structures “in general are finite”. The implicit assumption
of the cardinality objection is that empirical substructures always have infinite
domains, but this is not necessarily so. To follow van Fraassen and allow an
empirical embedding of both infinite and finite appearances, theories only need
both infinite and finite empirical substructures. This is easily achieved, since for
any model Tn of a theory, the set of empirical substructures En can be closed
under the substructure relation, that is, if E ∈ En and E′ ⊆E, then E′ ∈ En , so that
with every empirical substructure E, all of E’s finite substructures are empirical
substructures as well. This response to the cardinality objections is restricted only
by the problems stemming from the technical aspects of substructures discussed
above. Thus a solution to these problems will also provide a response to the
cardinality objection.

As to the problems, one may object for two reasons. For one, in early works
van Fraassen (1970, §3) relied on “elementary statements” and a “satisfaction
function” to give the relation between a theory and observations, so that one could
argue that the model theoretic formalization above does not capture van Fraassen’s
position. However, van Fraassen (1989, 365, n. 34) himself states that he soon
“found it much more advantageous to concentrate on the propositions expressible
by elementary statements, rather than on the statements themselves”. Thus van

8Van Fraassen (2008, 166) actually speaks of “surface models” and “data models”, but since it is
at least for surface models not clear what they are models of, I will speak of structures.
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Fraassen had abandoned the reliance on elementary statements and satisfaction
functions by the time he defined empirical adequacy. More importantly, empirical
adequacy is defined without reference to either of the two concepts, and thus an
analysis of empirical adequacy does not have to take them into account either.

One may also object that the terms ‘embedding’, ‘substructure’, and ‘iso-
morphism’ are not meant literally, but refer to relations between theories and
phenomena given by either satisfaction functions or something completely differ-
ent. Possible support comes from van Fraassen’s standard example of embedding,
the seven point geometry (1980, §3.1; 1989, §9.1), which is not an embedding in
the sense of model theory (Turney 1990, 441–443). But this looks more like an
oversight than a conscious decision. More generally, the terms are well-defined
within, but not outside of model theory, where they also in general do not occur
together. And the objection makes van Fraassen use these terms in a different,
undefined way without pointing this out. It also renders downright nonsensical
passages in which he uses technical results from model theory. For example, van
Fraassen (1980, 43) discusses cases in which “every model of T1 can be embedded in
(identified with a substructure of) a model of T2.” The parenthetical equivalence
claim relies on the model theoretic definition of ‘embedding’ and ‘substructure’,
on the closure of the set of models of a theory under isomorphism, and the equiv-
alence of embedding and the substructure relation for isomorphically closed sets
of structures (Hodges 1993, ex. 1.2.4b). If the terms were not meant in the model
theoretic sense, there would be no reason at all for this equivalence claim.

Thus, the purported problems are indeed problems. But they can be solved by
further developing empirical adequacy, which, it turns out, is easiest by looking at
its origins.

3 The prehistory of empirical adequacy

Van Fraassen (1980, 64; 1989, 227) traces the notion empirical substructure back
to a monograph by Przełęcki (1969) and other works on the application of model-
and set theory in the philosophy of science, only noting that “some of these formu-
lations were still more language-oriented than [he] liked” (1989, 227). However,
the connection between Przełęcki’s monograph and constructive empiricism is
not obvious, to put it mildly: Van Fraassen (1980, §3.6) famously declared that the
received view on scientific theories, as developed by Carnap, Hempel, and others
within logical positivism, is in principle unable to describe the correct relation be-
tween theory and phenomena. Przełęcki (1975, 284), on the other hand, thought
of himself as “positivistically-minded” and of the monograph as an introduction
to the received view (Przełęcki 1974, 402).9 Przełęcki’s discussion differs from

9It is hence fascinating to see Przełęcki’s work cited as a precursor or even an elaboration of the
semantic view (da Costa and French 1990, 249; Volpe 1995, 566), even though the semantic view, of
which constructive empiricism is one variety, is usually considered to be diametrically opposed to
the received, or “syntactic”, view.
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previous expositions (e. g. Carnap 1939, §24) mainly in that he explicitly develops
the model theoretic implications of the received view and discusses vague relations.
This discussion, and its elaboration that Przełęcki (1976) published after Fine
(1975, n. 13) had developed a similar idea, provide the relation to constructive
empiricism.

Przełęcki (1969, §4) argues in some detail that an empirical language cannot
be interpreted by structures that are determined only up to isomorphism. Thus
there has to be a set M of “intended” structures (1969, §§3f), which, because
empirical languages are not arbitrarily precise, is not a singleton set even when
there is exhaustive empirical information (Przełęcki 1969, §§5f). Following the
terminology of Fine (1975, §3), one can then give

Definition 5. A sentence α is supertrue in a set M of intended interpretations if
and only if α is true in every A ∈M, and superfalse if it is false in every A ∈M.

Przełęcki (1969, 20f) then suggests that supertruth should be a sufficient
condition for truth in M, and superfalsity a sufficient condition for falsity in M.10

Following the terminology of Hyde (1997), one can also give

Definition 6. A sentence α is subtrue if and only if α is true in at least one of the
structures M ∈M.

Trivially, α is subtrue if and only if α is not superfalse.
Przełęcki (1976) uses the idea of a set of intended structures to interpret

vague languages. The denotation of a relation symbol Ri that is vague over some
domain A tripartitions the product domain Ami into a set R+i of definite instances
(the positive extension of Ri ), a set R−i of definite non-instances (the negative
extension), and a set of borderline cases of Ri , which I will call R◦ (the neutral
extension). The denotation of a function symbol F j that is vague over A does
not assign a single element b ∈ A to an n j -tuple (a1, . . . ,an j

) ∈ An j , but rather a

set F +◦j (a1, . . . ,an j
) = B ⊆ A (Przełęcki 1976, 375).11 B can be seen as the set of

possible values of the function named by F j for the arguments a1, . . . ,an j
, and

I will refer to the set
�

(a1, . . . ,an j
, b ) :a1, . . . ,an j

∈ A, b ∈ F +◦j (a1, . . . ,an j
)
	

as the

non-negative extension F +◦ of F j .
12 If F +◦j (a1, . . . ,an j

) is a singleton set, I will say
that F j has a positive extension for (a1, . . . ,an j

). Considering constant symbols
0-place function symbols, this means that the denotation of a constant symbol ck
that is vague over A is a set c+◦

k
⊆A.

Przełęcki (1976, 376) notes that for a function symbol F j , F +◦j may contain
unintended functions. For example, unless F j has a positive extension over the

10Przełęcki (1969, 19–21) also gives an interesting discussion of possible necessary conditions for
truth and falsity that, however, will not be relevant in the following (cf. Przełęcki 1976, 377f).

11This is a slight generalization of Przełęcki’s account, who assumes that B is an interval of reals,
which would therefore have to be in A.

12F +◦j is the union of a vague relation symbol’s positive and neutral extension.

10
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whole domain, F +◦j contains discontinuous functions, which may go against
the intended denotation of F j . Przełęcki therefore allows the denotation of a
function symbol F j to be further determined by a set of “additional conditions”
W (F j ), which all members of M have to fulfill as well. Similarly to Przełęcki’s
additional conditions are what Fine (1975, 124) calls “penumbral connections”,
sentences that have to be true in any M ∈M. However, Fine assumes that these
connections are given in the object language, not in the meta-language determining
the denotations, and he does not restrict the penumbral connections to functions
only. I will follow Przełęcki in assuming that the penumbral connections are given
in the meta-language, but I will follow Fine in allowing penumbral connections
for all terms, W (Ri , F j , ck )i∈I , j∈J ,k∈K .

The denotations of vague terms over A and the penumbral connections imme-
diately lead to a set of of structures:

Definition 7. Let the terms {Ri , F j , ck}i∈I , j∈J ,k∈K be vague over domain A with
positive, negative, and non-negative extensions {R+i , R−i , F +◦j , c+◦

k
}i∈I , j∈J ,k∈K , and

penumbral connections W (Ri , F j , ck )i∈I , j∈J ,k∈K . Then the terms’ vagueness set M
for A contains all and only structures M that fulfill the penumbral connections
and for which

M =A, (7)

R+i ⊆ RM
i ⊆Ami −R−i for all i ∈ I , (8)

F M
j ⊆ F +◦j for all j ∈ J , and (9)

cMk ∈ c+◦
k

for all k ∈K . (10)

In the following, I will always assume that the vagueness set for the terms
and penumbral connections is never empty, that is, the penumbral connections
are not in conflict with the positive, negative, and non-negative extensions of the
terms. Furthermore, I will assume that the penumbral connections are only used
to exclude those structures from vagueness sets that cannot be excluded with the
help of positive, negative, and non-negative extensions. This entails that for any
vagueness set M over domain A for terms with {R+i , R−i , F +◦j , c+◦

k
}i∈I , j∈J ,k∈K and

W (Ri , F j , ck )i∈I , j∈J ,k∈K ,

R+i =
⋂¦

RM
i :M ∈M

©

, (11)

R−i =
⋂¦

Ami+1−RM
i :M ∈M

©

, (12)

F +◦j =
⋃
n

F M
j :M ∈M

o

, and (13)

c+◦
k
=
⋃¦

cMk :M ∈M
©

(14)

for all i ∈ I , j ∈ J , k ∈K .
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Przełęcki (1976, 378) further suggests to treat approximation in the same
formalism as vagueness, with a vagueness set M representing those structures that
approximate the right structure (or set of structures). Approximate truth is then
truth in a structure approximating the right structure (or set of structures).

Definition 8. Let M be a vagueness set. A sentence is approximately true in M if
and only if it is subtrue in M. A set of sentences is approximately true if and only if
in at least one M ∈M all its elements are true.

The definition of approximate truth for sets of sentences avoids inconsistent
approximately true sets. In this way, a finite set of sentences is approximately
true if and only if the conjunction of its elements is approximately true, that is,
subtrue.

An application of definition 8 to a scientific theory is only possible if the
theory is given as a set of sentences H ,13 which illustrates van Fraassen’s remark
that some of his inspirations were more language-oriented than he liked. But this
language-orientation can be avoided with a slight generalization. It follows from
definition 8 that H is approximately true if and only if a model of H is in M. So if
a theory is given as a family of models, one can give

Definition 9. Let M be a vagueness set. A family of structures {Tn}n∈N is
approximately true in M if and only if for some n ∈N , Tn ∈M.

Przełęcki (1969, ch. 4) argues that in science, at least some symbols O =
{Ri , F j , ck}i∈I , j∈J ,k∈K ,14 which he calls ‘observational terms’, have to be inter-
preted by ostension. Because of the psychological fact that ostensively classified
paradigmatic examples allow to classify newly encountered objects as well if they
are similar enough to the paradigmatic examples, such an ostensive interpretation
leads to a vagueness set MO over the domain of observable objects O. Przełęcki
(1969, 38–41) argues further that all unobservable objects are in the neutral or
non-negative extension of all observational terms, leading to the set M∗O , which
contains all extensions of each element of MO that fulfill the penumbral connec-
tions.15 M∗O is the set of intended interpretations of the observation terms.

Since not all elements of M∗O share the same domain, M∗O is not a vagueness
set. But it is something similar:

Definition 10. M is in the generalized vagueness set for positive, negative, and non-
negative extensions {R+i , R−i , F +◦j , c+◦

k
}i∈I , j∈J ,k∈K and W (Ri , F j , ck)i∈I , j∈J ,k∈K , if

13If a theory is primarily given as a set T (e. g., T = {T :T � H}) rather than a family, I will
implicitly rely on the family {TT}T∈T associated with the set.

14Using the same symbols as before will be convenient for back-reference in the following.
15An extension A of M is a structures that has M as a substructure, so that A’s restriction to the

domain of M is M, A|M =M.
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and only if there is some A such that

M =A, (15)

R+i ⊆ RM
i ⊆Ami −R−i and R−i ⊆Ami for all i ∈ I , (16)

F M
j a1 . . .an j

∈ F +◦j a1 . . .an j
for all (a1, . . . ,an j

, b ) ∈ F +◦, j ∈ J , and (17)

cMk ∈ c+◦
k

for all k ∈K . (18)

The relation between definitions 7 and 10 is given by

Claim 1. Let the penumbral connections be W (Ri , F j , ck)i∈I , j∈J ,k∈K , let MA
be the vagueness set for the terms {Ri , F j , ck}i∈I , j∈J ,k∈K over A with {R+i , R−i ,
F +◦j , c+◦

k
}i∈I , j∈J ,k∈K , and N be the generalized vagueness set for {R+i , R−i , F +◦j ,

c+◦
k
}i∈I , j∈J ,k∈K . Then N=

⋃

{MA : R+i , R−i ⊆Ami , F +◦ ⊆An j , c+◦
k
⊆A}.

Proof. Immediately from the definitions.

In analogy to definition 9, a generalized vagueness set immediately leads to
generalized approximate truth for families of structures:

Definition 11. Let M be a generalized vagueness set. A family of structures
{Tn}n∈N is generalized approximately true in M if and only if for some n ∈ N ,
Tn ∈M.

The notion of generalized approximate truth now provides the connection to
the notion of an empirical substructure:

Claim 2. Let theory {Tn}n∈N be such that Tn |O ∈ En whenever O ⊆ Tn and
let {Tn}n∈N ’s elements fulfill the penumbral connections.16 Then, if P =MO and
|MO | = 1, {Tn}n∈N is empirically adequate if and only if {Tn}n∈N is generalized
approximately true in M∗O .

Proof. Given the assumptions, {Tn}n∈N is empirically adequate if and only if P,
the sole element of P, is isomorphic to an empirical substructure of {Tn}n∈N .
Since {Tn}n∈N is closed under isomorphism, this holds if and only if P is an
empirical substructure of some Tn (Hodges 1993, ex. 1.2.4b). Since Tn |O ∈ En
whenever O ⊆ Tn , this is the case if and only if Tn is an extension of P. Since M∗O
is a generalized vagueness set for {R+i , R−i , F +◦j , c+◦

k
}i∈I , j∈J ,k∈K with R+i = RP

i ,

R−i = P ni − RP
i , F +◦j = F P

j , and c+◦
k
= cP

k
for all i ∈ I , j ∈ J , k ∈ K , and for

every n, Tn fulfills the penumbral connections, this hold if and only if {Tn}n∈N
is generalized approximately truth in M∗O .

16Tn |O, the restriction of Tn to O, is the substructure of Tn with domain O.
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Claim 2 rests on the condition that the unobservable objects are in the neutral
or non-negative extensions of all observation terms, which fits well with van
Fraassen’s position, and so is the condition that the observational terms are not
vague over O. That Tn |O is an empirical substructure of every Tn with O ⊆ T is
plausible, since the elements of the empirical substructures’ domains are meant to
represent observable objects. The problematic assumption is that all observations
have to form one big structure P, whose domain contains all observable objects.17

In this last respect, van Fraassen’s account goes beyond Przełęcki’s.
As is constitutive of the received view (cf. Carnap 1939, §24; Hempel 1952, §5),

Przełęcki (1969, chs. 5f) also assumes that there is a setT = {Ri , F j , ck}i∈I ′, j∈J ′,k∈K ′

of theoretical terms, where I ∩ I ′ = J ∩ J ′ = K ∩K ′ = ∅. Theoretical terms are
not ostensively interpreted. However, any structure M for all terms O ∪T has to
be such that its reduct to O , the structure M|O that differs from M only in that it
provides no interpretation for theoretical terms (Hodges 1993, 9), is in M∗O .18 In
its use of theoretical terms, Przełęcki’s account differs from van Fraassen’s, since
an empirical substructure E ∈ En of a structure Tn contains all and only the terms
of Tn (Hodges 1993, §1.2; cf. Suppes 2002, 62), as does a structure P isomorphic
to E (Hodges 1993, §1.2; cf. Suppes 2002, 56). In this respect, Przełęcki’s account
goes beyond van Fraassen’s.

4 Generalizations

While it is of interest that under specific conditions, Przełęcki’s account can
capture van Fraassen’s, I will use it in the following to generalize van Fraassen’s
account. As long as the assumption that P is a singleton set can be avoided, this
has the immediate advantage of relying only on conceptual assumptions that van
Fraassen could accept, and in fact was inspired by. To be adequate, however, the
generalizations of empirical adequacy will have to fulfill some further conditions.

One condition for a generalization is that it should, like definition 3 of empiri-
cal adequacy, be metaphysically neutral, while allowing a strict empiricism. This
is just a corollary of the demand that epistemic empirical adequacy has to be a
generalization of empirical adequacy. That is, whenever everything that is possible
to know about the appearances is known, epistemic empirical adequacy should
be equivalent to empirical adequacy. When not everything is known, epistemic
empirical adequacy should be properly weaker than empirical adequacy.

Further, the example of the interference pattern ψ suggests that it is very
fruitful to develop approximate empirical adequacy as a special case of epistemic
empirical adequacy. Specifically, an approximate value of a quantity should be
treated as a lack of knowledge about the precise value of the quantity. In this way,
a theory {Tn}n∈N that was epistemically empirically adequate given the resolution
of the best measurements can still be valued for its approximate empirical adequacy,

17As noted, this is not what van Fraassen assumes.
18A is an expansion of B if and only if B is a reduct of A.
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even if upon more precise measurements, {Tn}n∈N ceases to be epistemically
empirically adequate. Given the two concepts relation, any conditions of adequacy
for epistemic empirical adequacy also hold for approximate empirical adequacy.

For practical purposes, results about the generalizations of empirical adequacy
should transfer sensibly from finite to infinite domains. Specifically, the general-
izations of empirical adequacy for appearances with an infinite domain should be
limiting cases of the generalizations for appearances with a finite domain. Other-
wise it would, for example, be impossible to infer anything about the generalized
empirical adequacy for appearances of a continuum with the help of any finite
number of measurements.

Finally, both epistemic and approximate empirical adequacy should have a
comparative version, since a typical investigation into some phenomenon will
involve the accumulation of knowledge, and specifically more and more precise
measurements. Hence, it should be possible to speak of one theory being more
epistemically or approximately empirically adequate than another.

4.1 Empirical relativized reducts

In van Fraassen’s definition 1 of a theory, the components of a theory that are
connected to the appearances are given by empirical substructures. This leads to a
variety of problems, since all the terms that occur in the theory also have to occur
in the substructures. Przełęcki, on the other hand, allows theories to contain
non-observational terms, which themselves do not have to be directly connected
to the appearances. This suggests the following generalization of definition 1:

Definition 12. A theory is a family {Tn}n∈N of structures (the models of the theory)
such that each of its members Tn = 〈Tn , RTn

i , F Tn
j , cTn

k
〉i∈In , j∈Jn ,k∈Kn

has a set En of
empirical relativized reducts, such that for each E ∈ En , there is a setAE of terms
such that E⊆Tn |AE

. With each model, a theory also contains every isomorphic
model and its corresponding empirical substructures.

This means that every empirical relativized reduct E ∈ En is a relativized reduct
of Tn , E=Tn |EAE

, which is a standard notion in model theory (cf. Hodges 1993,
§5.1),19 and is already implicitly used by Suárez (2005, 38) instead of the notion of
a substructure in his discussion of empirical adequacy.

This definition solves the problems connected with the use of substructures:
There can be unobservable constants, and functions from observable objects to
unobservable ones, since the constants’ and functions’ symbols may not be in
the vocabulary AE. The definition may also alleviate the problem that, to be
empirically adequate, a theory has to describe observational relations between
observable objects: A theory may, for instance, already contain or be extended to
contain the term ‘being part of’ and terms for observable objects and relations.

19Hodges (1993, 202f) defines relativized reducts as those substructures of a reduct that have the
extension of some one place predicate as their domain. I use a slight generalization.
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This would allow, say, elementary particles to be treated as part of observable
objects, rather than as observable objects themselves (cf. Przełęcki 1969, 86f). Both
the elementary particles and the everyday objects would then be in the (extended)
theory’s domain, but the observational vocabulary of the theory might then refer
only to observable objects, not elementary particles.

Although Przełęcki uses reducts to capture the received view, the use of
relativized reducts is not a relapse into Carnap’s or Hempel’s conception of a
theory, since the notion of a substructure has not been abandoned. What is more,
definition 12 of a theory contains definition 1 as a special case, namely when
for each E ∈ En ,AE contains all symbols of Tn , so that Tn |AE

= Tn and thus
E⊆Tn . Then a theory can be formalized as before.

Furthermore, one could even avoid the use of relativized reducts in the for-
malization of a theory by first treating functions and constants as special kinds of
relations, thereby reformulating the theory to contain only relations. For each
model Tn of the theory, define then a new model T′n with at least one object t ∈
T ′n −

⋃

{E :E ∈ En} such that Tn |O =T′n |OO and for each mi -ary theoretical rela-

tion RTn
i , T′n contains an mi +1-ary relation {〈x1, . . . , xmi

, t 〉 :〈x1, . . . , xmi
〉 ∈ RTn

i }.
Then for every E ∈ En , T′n |E differs from E=Tn |E only by empty relations, so
that the empirical relativized reducts of the original theory can be considered the
empirical substructures of the reformulated theory.20 Given the possibility of this
reformulation, the use of relativized reducts cannot in principle be a problem.
Since reformulating theories exclusively in relation terms needlessly complicates
their application (Hodges 1993, 2), and redefining some of these relations to always
contain an unobservable object is not a paragon of simplicity either, the use of
relativized reducts is preferable in the following.

Finally, one might object to definition 12 because through its reference to a
set of symbols, it appears much more language dependent than van Fraassen’s
definition 1. This appearance is misleading, as discussed at the beginning of §2:
Depending on the notation, either definition 1 implicitly contains a reference to a
set of symbols, or definition 12 can be reformulated without reference to a set of
symbols, using an index set instead.

4.2 Epistemic empirical adequacy

Relying on Przełęcki’s use of reducts into the definition of a theory has solved the
problems connected with empirical adequacy’s exclusive reliance on substructures.
Przełęcki’s use of sets of intended structures will solve empirical adequacy’s prob-
lems with incomplete knowledge. Przełęcki uses the formalism developed for the
semantic notion of vagueness to formalize the epistemic notion of approximation.
Generalizing this idea, one can use the formalism developed for multiple intended
structures to formalize lack of knowledge. Thus, one can liberalize the assumption
that an appearance is given by a single structure to the assumption that it is given

20I thank Albert Visser for this point.
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by a set thereof. This set can be seen as the multiplicity of epistemically possible
appearances, with a singleton set representing epistemic certainty. Definition 2
thus becomes

Definition 13. Epistemic appearances are given by a set P of sets of structures
such that the domain of each P ∈

⋃

P is a subset of O . A set Q ∈ P is an epistemic
appearance.

In the case of approximation, truth in one structure becomes truth in one of a
multiplicity of structures; analogously, for empirical adequacy the isomorphy of
an empirical substructure to one structure becomes the isomorphy of an empirical
substructure to one of a multiplicity of structures. Thus Definition 3 becomes

Definition 14. Given the epistemic appearances P, a theory {Tn}n∈N is epistem-
ically empirically adequate for P if and only if there is some n ∈ N such that for
every Q ∈ P, there are a P ∈Q and an E ∈ En with E∼=P.

Going back to the example of the two light beams, it is now possible to
investigate under what circumstances the ray theory of light is epistemically
empirically adequate. Let, as in the example, the measurement apparatus have the
known spatial resolution p and intensity resolution q . If the intensity pattern is
measured, giving a finite set of pairs of values (5), the resolutions of the apparatus
restricts the possible actual values of the intensity ψ. The measurements thus
result in a set
(

¬

R×R≥0,ϕ
¶

:
1

p

∫ xi+
p
2

xi−
p
2

ϕ(x)dx ∈
�

yi −
q

2
, yi +

q

2

�

, 1≤ i ≤ s

)

(19)

of structures, one of which contains the actual graphψ of the intensity. Informally,
each structure contains the set of pairs of a location and an intensity as its domain,
and a function for the intensity whose values are restricted by the measurement
results and the resolution. Note that the epistemic appearances are already given as
a set of structures with infinite domains, thereby avoiding the cardinality objection
from the start.

Since ψray
p = I , for the ray theory to be epistemically empirically adequate

given measurements with resolutions p and q , the measured intensities yi must
not deviate more than q/2 from I . Since by assumption each measurement result
yi can lie anywhere in the interval

�

ψp(xi )− q/2,ψp(xi ) + q/2
�

, this is not
necessary, but becomes increasingly unlikely for higher wave-lengths and lower
intensity. For a crude estimate of the upper bound of the probability, assume
that the measurement results are randomly distributed over the range q . The
spatial average over the probability for a single measurement result to lie outside
of [I − q/2, I + q/2] is then

1

λ

∫ λ

0

�

�

�ψp (x)− I
�

�

�

q
dx =

8I

λq

�

�

�

�

D
� p

λ

�

�

�

�

�

∫ λ
8

0
cos
�4πx

λ

�

dx =
2I

qπ

�

�

�

�

D
� p

λ

�

�

�

�

�

(20)
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Since the extremal values for A lie on 1/(2πx), the maximal probability is thus
π−2 ·λ/p · I/q , which, as was to be expected, decreases with p and q and increases
with λ and I . A more realistic scenario could provide a proper statistical analysis of
the probability of discovering that the ray theory is not epistemically empirically
adequate.

The connection between epistemic empirical adequacy and empirical adequacy
can be formulated with the help of

Definition 15. Given epistemic appearances P, P′ are epistemically possible appear-
ances if and only if P′ = {e(Q) :Q ∈ P}, where e is any function from P to

⋃

P
with e(Q) ∈Q.

Claim 3. A theory {Tn}n∈N is epistemically empirically adequate for epistemic
appearances P if and only if there are epistemically possible appearances P′ such that
{Tn}n∈N is empirically adequate for P′.

Proof. ‘⇒’: {Tn}n∈N is epistemically empirically adequate for P if and only if
there is some n ∈N such that for every Q ∈ P, there are P ∈Q and E ∈ En with
E∼=P. For each Q, choose e(Q) =P. Then there is some n ∈ N such that for
every P ∈ P′, there is an E ∈ En with E ∼= P, so that {Tn}n∈N is empirically
adequate for P′.

‘⇐’: Similar.

Thus the epistemic appearances can indeed be considered the set of epistemi-
cally possible appearances. Specifically, whenever the appearances are completely
known (without any uncertainty as expressed by a multiplicity of structures),
epistemic empirical adequacy is equivalent to empirical adequacy:

Claim 4. Let P be appearances, and P′ = {{P} :P ∈ P} be epistemic appearances.
Then {Tn}n∈N is empirically adequate for P if and only if {Tn}n∈N is epistemically
empirically adequate for P′.

Proof. Given the epistemic appearances P′ = {{P} :P ∈ P}, the only epistemically
possible appearances are given by P. Claim 4 now follows from claim 3.

Thus, as required, definition 14 generalizes van Fraassen’s definition 3 of
empirical adequacy.

Definitions 13 and 14 rely only on concepts that are defined both for finite
and infinite domains, and that are known to behave well in the transition from
one to the other. Since furthermore the definitions themselves do not refer to
the cardinality of the domains, it can be expected that they behave well in the
transition from finite to infinite domains.

Finally, the definitions to not add any metaphysical assumptions. The only
additional assumption, that lack of knowledge can be represented as multiplicity,
is epistemic.
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4.3 Approximate empirical adequacy

As demanded by the conditions of adequacy, one can now define approximation
as a special case of lack of knowledge:

Definition 16. Approximate appearances are given by epistemic appearances P
where each Q ∈ P is a vagueness set.

Accordingly, approximate empirical adequacy is a special case of epistemic
empirical adequacy:

Definition 17. A theory {Tn}n∈N is approximately empirically adequate for ap-
proximate appearances P if and only if {Tn}n∈N is epistemically empirically ade-
quate for P.

Since singleton sets of structures are vagueness sets, it follows immediately
from claim 4 that definition 17 generalizes van Fraassen’s definition 3 of empirical
adequacy.

The example of the two light beams can be treated in terms of approximate
empirical adequacy as well. Since there are no restrictions on the functions in the
set (19) beyond that their integral over some spatial range has to fall in a specific
interval, no value ϕ(x) is impossible for any x. Thus, to arrive at a non-trivial
vagueness set given the finite set of measurement results (5), one can phrase the
approximate appearances in terms of blurred intensity functions rather than the
intensity functions themselves:
(

¬

R×R≥0,ϕ
¶

: ϕ(xi ) ∈
�

yi −
p

2
, yi +

p

2

�

, 1≤ i ≤ s ,

∃χ : χ (x)≥ 0,ϕ(x) =
1

p

∫ xi+
p
2

xi−
p
2

χ (x)dx for all x

) (21)

This is a vagueness set with the non-negative extension F +◦ = {〈xi , y〉 : y ∈ [yi −
q/2, yi + q/2], 1 ≤ i ≤ s} and a penumbral connection demanding that ϕ be
the integral of a non-negative function. For the ray theory to be approximately
empirically adequate, there must again be no measurement result yi that deviates
more than q/2 from I .

However, even if at some point the interference pattern ψ is measured with
greater and for all purposes arbitrary accuracy, the ray theory can still be approxi-
mately true in the sense that, for some spatial resolution p, ψray

p never deviates

more than some value d from the actual blurred intensity ψp . This leads to the
approximate appearances

(

¬

R×R≥0,ϕ
¶

:

�

�

�

�

�

1

p

∫ x+ p
2

x− p
2

ϕ(y)dy −ψp (x)
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≤ d for all x

)

, (22)
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where, to be precise, ϕ would again have to be the integral of a non-negative
function. Since the extremal values for

�

�ψp−I
�

� lie on Iλ/(2π p),ψray
p is a function

in the approximate appearances if Iλ/(2π p)≤ d . Thus even if better resolutions
than p and q become possible, the ray theory stays approximately empirically
adequate in this sense. Note that in contradistinction to recent discussions of the
relation between wave- and ray theory of light (e. g., Batterman 2002, §6.2), there
has been no need to take any singular limits into account.

The connection between approximate empirical adequacy and empirical ad-
equacy is given by definition 15 and claim 3. When the epistemic appearances
are approximate appearances, I will call the epistemically possible appearances
sometimes approximately possible appearances.

Using the notion of a generalized approximate vagueness set instead of the no-
tion of an approximate vagueness set in definitions 16 and 17 leads to the notions
of generalized approximate appearances and generalized approximate empirical ade-
quacy, which provide yet another response to the cardinality objection. The initial
measurement results (5) and the intensity resolution q lead to the non-negative
extension

§­

xi ,
�

yi −
p

2
, yi +

p

2

�·ª

1≤i≤s
(23)

for the blurred intensity function, which contains only a finite number of spatial
positions. The generalized approximate appearances, however, contain structures
with domains of any cardinality greater or equal n. Since the notion of generalized
approximate empirical adequacy is a special case of epistemic empirical adequacy
and is related to the notion of approximate empirical adequacy by claim 1, I will
not discuss it further.21

4.4 Hierarchies of empirical adequacy

With epistemic and approximate empirical adequacy defined relative to epistemic
and approximate appearances, it would be very helpful to formalize the devel-
opment of the appearances, specifically, the increase of knowledge about the
phenomena. As Bueno (1997, 603) puts it, it would be helpful to have a hierarchy
of appearances “built in such a way that, at each level, there is a gain of information
regarding the phenomena being modeled”. To this effect, I suggest

Definition 18. A hierarchy of epistemic appearances is a sequence 〈Pl 〉l∈L of epis-
temic appearances such that for any m ≥ l with l , m ∈ L, there is an injection
b : Pl −→ Pm such that for all Q ∈ Pl , b (Q)⊆Q.

A hierarchy of epistemic appearances allows the growth of knowledge in two
respects. First, since b only has to be an injection, Pm can contain more epistemic
appearances than Pl . Second, since b (Q) ⊆ Q, the knowledge about specific

21Note also that generalized approximate empirical adequacy does not contain empirical adequacy
as a special case, since generalized approximate appearances are never singleton sets.
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appearances can grow as well. In this way, definition 18 captures the gain of
knowledge from one step of the series to the next, or better, since the index set L
does not have to be countable,22 the gain of knowledge going from one point in
the hierarchy (as indicated by l ∈ L) to any higher point.

As a special case of definition 18, there is

Definition 19. A restricted hierarchy of epistemic appearances is a hierarchy of
epistemic appearance in which the injections between epistemic appearances are
bijections.

A restricted hierarchy captures the idea that the increase of knowledge may be
restricted to describing specific appearances more precisely, rather than consider-
ing new appearances.

A theory that is found out not to be epistemically empirically adequate at some
point should not become epistemically empirically adequate when the knowledge
about the phenomena increases, and vice versa, a theory epistemically empirically
adequate at one point should also be epistemically empirically adequate when less
is known about the appearances. This is brought out by

Claim 5. Let 〈Pl 〉l∈L be a hierarchy of epistemic appearances. If theory {Tn}n∈N
is epistemically empirically adequate for Pl , l ∈ L, then {Tn}n∈N is epistemically
empirically adequate for any Pk , k ∈ L, k ≤ l . If theory {Tn}n∈N is not epistemically
empirically adequate for Pl , l ∈ L, then {Tn}n∈N is not epistemically empirically
adequate for any Pm , m ∈ L, m ≥ l .

Proof. By definition 18, for any k ≤ l and any Q ∈ Pk , there is a b such that
b (Q) ∈ Pl and b (Q)⊆Q. Thus, if {Tn}n∈N is epistemically empirically adequate
for Pl , there is some n ∈N such that for every Q ∈ Pk , there are a P ∈ b (Q)⊆
Q and an E ∈ En with E ∼= P. The proof of the claim’s second conjunct is
similar.

Relative to such a hierarchy of epistemic appearances, it is now possible to
define what it means for one theory to be more epistemically empirically adequate
than another.

Definition 20. Given a (restricted) hierarchy of epistemic appearances 〈Pl 〉l∈L,
theory {Tn}n∈N is at least as (restrictedly) epistemically empirically adequate for
〈Pl 〉l∈L as theory {Ts}s∈S if and only if for any l ∈ L it holds that {Ts}s∈S is epis-
temically empirically adequate for Pl only if {Tn}n∈N is epistemically empirically
adequate for Pl .

Given claim 5, definition 20 entails that if theory {Tn}n∈N is at least as epis-
temically empirically adequate as theory S and {Tn}n∈N ceases to be empirically
adequate due to knowledge gain, so does S.

22I thank Leszek Wroński for the suggestion to allow any series, not only finite ones.
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In the example of the two light beams, the measurement results (5) lead to
the epistemic appearances (19), which are determined by the spatial resolution
p and the intensity resolution q . For intensity resolutions q ′ ≤ q , the epistemic
appearance is a subset of that for q , so that an increase in resolution (i. e., a decrease
of q) leads naturally to a hierarchy of epistemic appearances. A decrease of p
does not lead to such a hierarchy. Rather, changing p leads to different hierarchies
depending on q : For p = nλ/2 and for p→∞, the deviation factor D(p/λ) = 0,
so that ψp =ψ

ray
p = I . Other values 0≤ p < λ lead to sinusoidal patterns.

The definition of a hierarchy for approximations is straightforward:23

Definition 21. A (restricted) hierarchy of approximate appearances is a (restricted)
hierarchy of epistemic appearances in which all members are vagueness sets.

In a (restricted) hierarchy of approximate appearances, the denotations of the
terms at each point in the hierarchy is at least as vague as at any higher point in
the hierarchy:

Claim 6. 〈Pl 〉l∈L is a (restricted) hierarchy of approximate appearances if and only
if the following holds: For any l ≤ m with l , m ∈ L, there is an injection (bijection)
b : Pl −→ Pm such that for all Q ∈ Pl with {R+i , R−i , F +◦j , c+◦

k
}i∈I , j∈J ,k∈K and for

b (Q) ∈ Pm with {R̃+i , R̃−i , F̃ +◦j , c̃+◦
k
}i∈I , j∈J ,k∈K it holds that R+i ⊆ R̃+i , R−i ⊆ R̃−i ,

F̃ +◦j ⊆ F +◦j , and c̃+◦j ⊆ c+◦j for all i ∈ I , j ∈ J , k ∈K.

Proof. ‘⇒’: By definition 18, there is an injection (bijection) b : Pl −→ Pm such
that for all Q, b (Q)⊆Q. The claim follows from (11)–(14).

‘⇐’: Immediate.

In the example of the interference pattern, the approximate appearances for the
intensity resolution q ′ ≤ q are again a subset of the approximate appearances (22)
for q , so that an increase in resolution leads to a hierarchy of approximate appear-
ances. Accordingly, the non-negative extensions for q ′ ≤ q are subsets of those for
q .

The notion of an hierarchy of approximate appearances leads directly to a
comparative version of approximate empirical adequacy:

Definition 22. Given a (restricted) hierarchy of approximate appearances 〈Pl 〉l∈L,
theory {Tn}n∈N is at least as (restrictedly) approximately empirically adequate
for 〈Pl 〉l∈L as theory {Ts}s∈S if and only if {Tn}n∈N is at least as (restrictedly)
epistemically empirically adequate for 〈Pl 〉l∈L as {Ts}s∈S .

The hierarchies of epistemic and approximate appearances are meant to for-
malize specific routes of the increase of knowledge about the phenomena, that
is, different series of experiments will lead to different hierarchies. According to

23In definitions and claims here and in the following, texts in brackets has to be either systemati-
cally included or omitted, thus leading to two different definitions and claims.
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claims 3 and 5, a theory that at one point in the hierarchy is not epistemically
empirically adequate is not empirically adequate. But it is also of interest at which
point of a hierarchy one can be sure that a theory is empirically adequate.

Claim 7. {Tn}n∈N is epistemically/approximately empirically adequate at all points
of all restricted hierarchies of epistemic/approximate appearances with the initial
sequence 〈Pl 〉l≤m if and only if {Tn}n∈N is empirically adequate for all appearances
that are epistemically possible given Pl .

Proof. ‘⇒’: Assume {Tn}n∈N is restrictedly epistemically/approximately ade-
quate at all points of all hierarchies of epistemic appearances with the initial
sequence 〈Pl 〉l≤m . For all appearances P that are epistemically possible given Pl ,
the sequence 〈Pm ,P′〉l≤m with P′ = {{P} :P ∈ P} as its last element is a hierarchy
of epistemic/approximate appearances. Therefore {Tn}n∈N is epistemically empir-
ically adequate for P′, and thus, by claim 4, {Tn}n∈N is empirically adequate for
P.

‘⇐’: For any point Pn of any hierarchy with initial sequence 〈Pl 〉l≤m , there
is a bijection b : Pm −→ Pn with b (Q) ⊆Q. By assumption, there is therefore
a function e from Pn to

⋃

Pn with e(Q) ∈ Q ⊆ b−1(Q) such that {Tn}n∈N is
empirically adequate for {e(Q) :Q ∈ Pm}. Since {e(Q) :Q ∈ Pm} is epistemically
possible given Pm , by claim 3, {Tn}n∈N is epistemically/approximately empiri-
cally adequate for Pn .

One can also compare the epistemic and approximate empirical adequacy ade-
quacy of theories independently of specific hierarchies of epistemic of approximate
appearances:24

Claim 8. {Tn}n∈N is at least as (restrictedly) epistemically/approximately empirically
adequate as {Ts}s∈S for any (restricted) hierarchy of epistemic approximate appearances
if and only if {Tn}n∈N is empirically adequate for all appearances P for which {Ts}s∈S
is empirically adequate.

Proof. ‘⇒’: Choose the trivial (restricted) hierarchy of epistemic/approximate
appearances 〈P〉 with P containing all appearances. Then all appearances are
epistemically possible appearances given P, and by claim 3, the claim follows.

‘⇐’: Immediate from the definitions and claim 3.

Claim 8 connects the preceding discussion directly with a definition by van
Fraassen (1980, 67): “If for every model M of T there is a model M ′ of T ′ such
that all empirical substructures of M are isomorphic to empirical substructures of
M ′, then T is empirically at least as strong as T ′”. The relation is given by

Claim 9. {Ts}s∈S is empirically adequate for all appearances P for which {Tn}n∈N
is empirically adequate if and only if for every n ∈N, there is an s ∈ S such that all
empirical substructures of Tn are isomorphic to empirical substructures of Ts .

24Here and in the following definitions, claims, and proofs, either the left or the right side of a
slash is to be included, leading to two different definitions, claims, or proofs.
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Proof. ‘⇒’: For each En , choose P= En . Then {Tn}n∈N is empirically adequate
for P, and thus {Ts}s∈S is empirically adequate for P. Therefore for every E ∈
En = P there is an s ∈ S and an E′ ∈ Es such that E∼=E′.

‘⇐’: Assume that for some P, {Ts}s∈S but not {Tn}n∈N is empirically ade-
quate. Then there is an s ∈ S such that for all P ∈ P, there is an E′ ∈ Es with
P∼= E′. Since there is no such n ∈N and isomorphy is transitive, there is no n
such that for all E′ ∈ Es , there is an E ∈ En with E′ ∼=E.

Thus, by claims 7 and 9, if {Tn}n∈N is at least as (restrictedly) epistemically/
approximately adequate as {Ts}s∈S for any (restricted) hierarchy of epistemic/
approximate appearances, then {Ts}s∈S is empirically at least as strong as {Tn}n∈N .

5 Conclusion

Looking at the inspiration for empirical adequacy has provided a way to generalize
empirical adequacy to avoid implausible presumptions about the relations of
theoretical concepts and observations, and to include lack of knowledge and
approximations. As the discussion of the ray theory of light has shown, these
generalizations are applicable to real life examples. The generalizations also
connect fruitfully to each other and to the concepts developed by van Fraassen.

If the generalizations may seem more complicated than one would expect from
previous generalizations, this has two reasons. For one, previous generalizations
have misconstrued van Fraassen’s concept of empirical adequacy, which led to a
simplification. Furthermore, and this will be one result of the companion piece to
this article, the previous generalizations are inadequate even for this simplification.

On the other hand, one may object that the generalizations given are still too
simplistic, especially in that they do not take statistical methods into account. I
can only agree. The concepts suggested here are first steps towards even more
general accounts.
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