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Abstract

The analysis of the temporal structure of canonical general relativity and
the connected interpretational questions with regard to the role of time within
the theory both rest upon the need to respect the fundamentally dual role of the
Hamiltonian constraints found within the formalism. Any consistent philosoph-
ical approach towards the theory must pay dues to the role of these constrains
in both generating dynamics, in the context of phase space, and generating un-
physical symmetry transformations, in the context of a hypersurface embedded
within a solution. A first denial of time in the context of a position of reductive
temporal relationalism can be shown to be troubled by failure on the first count,
and second denial in the context Machian temporal relationalism can be found
to be hampered by failure on the second. A third denial of time, consistent with
both the of the Hamiltonian constraints roles, is constituted by the implemen-
tation of a scheme for constructing observables in terms of correlations. The
motivation for and implications of each of these three denials are investigated.

Keywords: Problem of Time, Canonical Gravity, Constraints, Symmetry,
Observables, Relationalism

1. Introduction

That the boundary between physics and philosophy is often found to be a
vague one should perhaps not surprise us given the overlapping concerns of the
two disciplines. Yet that these concerns may be not just overlapping but entan-
gled, and that the boundary may be not just vague but illusory would, if it were
to prove to be the case, be highly non-trivial. It is within this controversial and
treacherous border-lands, where physics meets philosophy, that the deniers of
time may conspire with the interpreters of general relativity. In this paper I will
investigate the extent to which the particular physico-mathematical formalism
that is constituted by the canonical formulation of general relativity forces upon
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us a fundamental denial of temporality. In particular, I will examine three ap-
proaches towards canonical gravity that underpin three distinct senses in which
the theory may be interpreted as timeless. In each case a stance as to how to
understand certain aspects of the formalism shall be shown to be intwined with
a philosophical position as to the nature of time; and in each case we shall find
that in addition to the physical formalism motivating a philosophical position,
the relevant interpretative considerations may be seen to motivate a position
with regard to the formalism. Our concern here will not be with broader ques-
tions as to how physical theory and its interpretation should be understand to
relate to ontological assertions in either in general, nor with regard to the specific
case of time. Rather, we shall restrict ourselves to how the interpretation and
formalism in question is related to temporality and its denial, specifically and
solely with regard to general relativity. As general relativity is at the moment
the only physical theory which can acutely describe the behaviour of clocks there
is of course reasonable grounds to assert that whatever this theory says about
time, is precisely what time is, simpliciter. However, we will not here venture in
to discussing the philosophical subtitles of such strong ontological claims relat-
ing to either time or its denial. When we talk of denying time, we will only do
so in the sense of asserting that a particular weakened notion of temporality is
associated with the particular interpretation of the physical theory in question.

Our first denial of time will be predicated upon passage to formalism within
which only static universes may be represented. Thus, it involves an inter-
pretation of general relativity in which there is no change because there is no
dynamical structure at all. This denial is in part motivated by application of the
standard machinery for dealing with the Hamiltonian formulation of a theory
displaying gauge symmetry, and in part by a desire to implement a reductive
notion of spacetime relationalism specifically within the Hamiltonian formula-
tion of general relativity which is constituted by the canonical version of the
theory. Ultimately it shall be found to rest on a misunderstanding of the extent
to which canonical general relativity can be treated as a standard gauge theory.
Although this approach will lead to a formalism amenable to the philosophi-
cal goals which at least partially motivate it, we shall find that a deficiency in
dynamical structure indicates this formalism is fundamentally inadequate for
representing the world. Thus, both the basis for and implications of the first of
our denials will themselves be denied.

As well as differing from the first in terms of the formal moves involved,
the second of our denials differs as to the philosophical stance with regard to
time that it motivates, and that it is motivated by. In this context the denial
of time amounts to a far weaker assertion that temporal structure has a sec-
ondary, derived nature – being constituted parasitically upon relations. The
fundamental structure of our ontology is taken to be spatial in nature and in
accordance with a Machian notion of dynamics, time is seen to emerge equi-
tably and uniquely within the formalism. The viability of this approach will be
found to rest upon what methodology can be found to respond to a problem
of indeterminism which is generic within gauge theory and is, in fact, one of
aspect of the motivation for our erroneous first denial. Two responses shall be
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considered, but only the second, which involves a radical adjustment to the role
of absolute scale within general relativity, will be found to be consistent with
the philosophical framework for denying time with which we are concerned.

Our third and final denial of time will be found to be both much more
tenable than the first and much stronger than the second. The capacity to
represent dynamical universes will be retained and yet the notions of both time
and change will be dispensed with. Under this interpretation the ontology of the
theory consists of correlations which are effectively smeared non-locally across
entire histories. However, since these perennials come in families they may
collectively be used to represent worlds which have dynamical structure beyond
the trivial. Interestingly, although this denial does correspond to a fundamental
denial of change in a Paramenadian sense, it allows us to maintain exactly
the fundamental four-dimensionality of ontology that is dispensed with in our
second, arguably weaker, denial. Before we embark on the main body of our
discussion we must first consider carefully canonical general relativity by itself,
both with regard to its formal structure and its relationship with the original
covariant formulation of the theory.

2. General Relativity and The Problem of Time

2.1. The Canonical Theory

Consider the covariant formulation of Einstein’s general theory of relativity
(in vacuo) according to the Einstein-Hilbert action:

S =
1

κ

∫
M
d4x

√
|det(g)|R =

∫
M
d4xLEH (1)

where M is a four dimensional manifold which we assume to be spatially com-
pact without boundary and have arbitrary topology, gµν is a metric tensor
field of Lorentzian signature and R is the Ricci scalar. Variation of this ac-
tion according to a least action principle leads to the Einstein field equations
the solution of which leads to an expression for the metric tensor. This ten-
sor equips the manifold M with a geometry and thus we arrive at the set of
four geometries, (M, gµν), which we understand as representing the spacetimes
which are nomologically admissible under the theory. As well as providing us
with the solutions the action also gives us a precise methodology for defining
the fundamental symmetries of the theory in terms of the Lagrangian LEH and
the Noether symmetry condition:

δLEH = ∂µ(εµLEH) (2)

which is satisfied for any active variation of the gravitational field variable (i.e.
the metric tensor) induced by the infinitesimal coordinate transformations xµ →
xµ − εµ(x). The set of all such infinitesimal coordinate transformations forms
the group of diffeomorphism of the manifold M that we will take to constitute
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the fundamental local symmetry group of the covariant formalism.2 Each of
these two basic elements to the theory (i.e. solutions and symmetry group)
are four dimensional and are understood as corresponding to four dimensional
concepts; spacetimes and symmetries of spacetime. As such, the analysis of
either is unlikely to elucidate much with regard to the specific role of time
within the theory. Rather, we are better placed to understand the temporal
structure of general relativity by passing from the covariant formulation to one
which is predicate upon space and time rather than spacetime. We shall achieve
this by focusing on the canonical formulation of general relativity.

The canonical formulation of general relativity has its origin in the work of
Bergmann (1961) and Dirac (1958, 1964) towards the construction of a quantum
theory of gravity and will be concisely presented according to the formulation
of Arnowitt, Deser, and Misner (1962). We first make the assumption that
the manifold M has a topology which is such that M ∼= R × σ where σ is a
three dimensional manifold with arbitrary topology that we will again assume
to be spatially compact and without boundary.3 What philosophical signifi-
cance, if any, we should attach to this non-trivial topological requirement will
be discussed in the following subsection. Next we define the foliation of M
into hypersurfaces Σt := Xt(σ) where t ∈ R and Xt : σ →M is an embedding
defined by Xt(x) := X(t, x) for the coordinates xa on σ. What we are inter-
ested in specifically is the foliation of a spacetime, M, into spacelike hypersur-
faces, Σt - so we must restrict ourselves to arbitrary spacelike embeddings. The
lengthly process of decomposing the Einstein-Hilbert action in terms of tensor
fields defined upon the hypersurfaces and the coefficients used to parameterise
the embedding (the lapse and shift below) then leads to a Lagrangian formula-
tion of general relativity in terms of space and time rather than spacetime (see
Thiemann (2007) for a full treatment). Finally, recasting this ‘3+1’ Lagrangian
formalism into canonical terms gives us:

S =
1

κ

∫
R
dt

∫
σ

d3x{q̇abP ab − [NaHa + |N |H]} (3)

Here qab is a metric tensor field on σ and P ab its canonical momenta defined by
the usual Legendre transformation. N and Na are arbitrary multipliers called
the lapse and shift. Ha and H are constraint functions of the form:

Ha := −2qacDbP
bc (4)

H :=
sκ√
det(q)

[qacqbd −
1

2
qabqcd]P

abP cd −
√
det(q)

R

κ
(5)

2As pointed out by Pons, Salisbury, and Sundermeyer (2010) general relativity actually
admits the larger symmetry group of field-dependent infinitesimal co-ordinate transformations
and so Diff(M) is properly a sub-group of the fundamental symmetry group. This difference
will not be important for our purposes.

3See Lusanna (2011) and future work for discussion of the importance of this choice of
boundary conditions.
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These are called the momentum and Hamiltonian constraints respectively and
(like typical constraints) can be understood as defining a physical phase space
Π in terms of a sub-manifold (the constraint surface) within the extended phase
space Γ(q, P ):

Π = {(qab, P ab) = x ∈ Γ|Ha(x) = 0;H(x) = 0} (6)

Beyond their uncontroversial role in defining this sub-manifold, interpreting of
the meaning of these constraint functions is a subtle business. In a typical
constrained Hamiltonian theory (e.g. see Dirac (1964)) it is assumed that if, as
in this case, the constraints are first class (i.e. have a vanishing Poisson bracket
on the constraint surface with all the other constraints) then they should be
taken to generate unphysical transformations of the canonical variables and to
have their origin directly in the local symmetries of the covariant formalism.
The extent to which canonical general relativity is not a typical constrained
Hamiltonian theory in these senses and the consequent interpretation of the
constraint functions is the decisive issue that will inform much of our discussion.

2.2. Canonical vs. Covariant Formalisms

To what extent does the the canonical formalism capture the same content
as the covariant formulation? We can evaluated the answer to this question in
two parts: i) is an equivalent set of solutions represented in the space and time
formalism as was fixed by the spacetime formalism?; and ii) are an equivalent
set of local symmetry transformations implemented upon the canonical phase
space as where found to hold within the covariant configuration space (i.e. the
space of four-metrics)?

Focusing on the first question first. Following Isham (1992) we have that
given a Lorentzian spacetime as represented by the geometry (M, g) if this
constraint equations (4) and (5) are satisfied on every spacelike hypersurface
then g will also satisfy the Einstein field equations. Conversely, we can also show
that given a (M, g) that satisfied the Einstein field equations then the constraint
equations will be satisfied on all spacelike hypersurfaces of M. This means
that the solutions presented to us by the two formalism are equivalent provided
the covariant spacetime can be expressed in terms of a sequence of space-like
hypersurfaces. This requirement is equivalent to insisting that spacetimes in
question are restricted to be globally hyperbolic (see Geroch (1970)) and is of
course directly connected to the topological restriction M ∼= R × σ which was
made in setting up the canonical formalism.

At first sight this might seem to render the canonical formalism fundamen-
tally inadequate for describing the spacetime ontology as the covariant formal-
ism. However, this objection that the requirement of globally hyperbolicity
renders the canonical formulation of general relativity representatively deficient
in comparison to the covariant formalism should not be overstated. By insisting
that our spacetime is globally hyperbolic we are only requiring the existence of a
Cauchy surface inM, meaning that the only solutions that have been excluded
are those inconsistent with the kind of basic notion of causality and determinism
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that we would prima facie have expected to hold within a classical theory any-
way. The physical content of non-globally hyperbolic solutions seems hard to
countenance since they included strange objects such as closed time-like curves
and in terms of the empirical content of the theory nothing has been lost since
all observational data refers to globally hyperbolic solutions.4 Within quan-
tum gravity there is of course the possibility that may need access to different
kinds of topologies - or, in fact, perhaps even topology changes! However, the
reasoning behind lifting the topological requirement at a quantum level do not
impinge on its classical status. To the extent to which the solutions of covari-
ant general relativity can be understood as representing physically reasonable
spacetimes the solutions of covariant general relativity can equally be thought
of representing these spacetimes (albeit in terms of space and time).

Still, it is true that since canonical general relativity is well defined on a set
of solutions which is a subset of those of covariant general relativity in moving
from one formalism from the other we are removing from our theoretical toolkit
the ability to represent a class of nomologically possible worlds. Furthermore,
although these worlds might seem unreasonable because of their strange causal
structure, to exclude them in principle from a philosophical analysis of the
nature of time in general relativity would be seriously begging the question.
Asserting a causal censorship condition excluding the non-globally hyperbolic
solutions as an additional law of nature is a highly non-trivial move which
we will not here propose to make. Rather, one straight forward option is to
invert the supposed deficiency into a strength and make global hyperbolicity a
prediction rather than a restriction. Such a move depends on our ability to see
the canonical formalism on an equal footing to its covariant counterpart, and
not as purely parasitic upon it. This we can do by pointing to the fact that –
as shown by Hojman, Kuchař, and Teitelboim (1976) – it is possible to derive
canonical general relativity without passing through the covariant formalism.
Such a manoeuvre will be crucial to the assessment of our second denial of
time and we will be further discussed in §4.3. Alternatively, we can simply fall
back on a weakened stance: this analysis and its conclusions with regard to
the nature of time carry with them a global parenthesis of given the restriction
to the globally hyperbolic sub-set of solutions. Since our principal object is to
examine issues relating to diffeomorphism symmetry and the ontological status
of a linear one dimensional notion of temporality our discussion can bear this
qualification without any undue burden or inconsistency.

More significant to our purpose is the relationship between the respective
local symmetry transformations of the two formalisms. Whereas, as discussed
above, the covariant action is invariant under the full set of spacetime diffeomor-
phisms Diff(M), in the canonical formulation it is only the sub-set of these
which is realised. This sub-set can be shown (e.g. Pons et al. (2010)) to be

4For an analysis of the connection between non-globally hyperbolic spacetimes, closed
time-like curves and the possibility of time machines see Smeenk and Wuthrich (2009)

6



infinitesimal coordinate transformations xµ → xµ − εµ(x) such that:

εµ(x) = nµ(x)ξ0 + δµa ξ
a (7)

where nµ = (N−1,−N−1Na) and here the ξµ are taken to be arbitrary func-
tions of the coordinates. From the persecutive of the derivation of canonical
from covariant general relativity the basis of this discrepancy between the sym-
metry transformations realised in the two formalism is well understood – it
can be explained in terms of the spacelike nature of the otherwise arbitrary
embedding (see Isham and Kuchař (1985)) or (relatedly) in the context of non-
complete projectability between the symmetry transformations defined in the
relevant tangent bundle and cotangent bundle structures (see Pons, Salisbury,
and Shepley (1997)).

Alternatively, we can consider the elegant and important derivation of these
canonical symmetry transformations purely in terms of a deformation alge-
bra pertaining to spacelike hypersurfaces embedded in a Riemannian spacetime
(Teitelboim (1973)). This treatment gives us a basis for the canonical symmetry
transformations independent of the covariant theory and implies that we can
understand them as encoding physical content not purely parasitic upon four
dimensional diffeomorphism symmetry. Crucially, this treatment also makes
clear the deep connection between the form of the constraints and the nature of
the symmetries. In fact, what is shown is that this canonical symmetry group
(known as the Bergman-Komar group BK) is and must be generated by con-
straints of the specific form (4-5) which will inevitably satisfy the constraint
algebra:

{ ~H( ~N), ~H( ~N ′)} = −κ ~H(LNa
N ′a) (8)

{ ~H( ~N), H(N)} = −κH(LNa
N) (9)

{H(N), H(N ′)} = sκ ~H(F (N,N ′, q)) (10)

where H(N) and ~H( ~N) are smeared versions of the constraints (e.g. ~H( ~N) :=∫
σ
d3xNaHa) and F (N,N ′, q) = qab(NN ′,b − N ′N,b). The presence of struc-

ture functions on the right hand side of (10) means that strictly BK is not a
group (and the constraint algebra is not technically an algebra) and of course
emphasises that Diff(M) 6= BK.

Despite these important differences the symmetries of the covariant and
canonical formalism can in fact be shown to be physically equivalent since given
a solution to the equations of motion within the canonical formalism the action
of BK will coincide with that of Diff(M) (for diffeomorphisms connected with
the identity). Thus, at a classical level at least there is no detectable difference.
We can in fact explicitly construct a canonical symmetry generator acting upon
the space of solutions that maps between the same diffeomorphically related
spacetimes that we take to be symmetry related in the covariant formalism (see
Pons et al. (2010) and references therein for more details). Thus, so long as
we are concerned with globally hyperbolic solutions, the two formalisms admit
identical symmetry relations.
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2.3. Time and the Riddle of the Hamiltonian Constraints

In the discussion above the constraints of the canonical formalism were found
to be involved in fixing both the dynamics and symmetries to be in accordance
with the physics of covariant general relativity. This dual symmetry/dynamics
aspect leads to much confusion and complexity with regard to the constraints
– in particular the Hamiltonian constraint – and is at the root of the prob-
lem of time in canonical gravity. Whereas the momentum constraints can be
understood unambiguously as implementing infinitesimal diffeomorphisms on
phase space, the role of the Hamiltonian constraints in this context is far more
opaque. We can see this explicitly by considering the form of the Poisson brack-
ets between each constraint and the canonical variables. For the momentum
constraints it takes the form:

{ ~H( ~N), qab} = κ(L ~Nqab) (11)

{ ~H( ~N), P ab} = κ(L ~NP
ab) (12)

The appearance of the Lie derivative on the right hand side of each equation
indicates that these constraints can be understood as purely generating infinites-
imal diffeomorphisms of the phase space variables. In fact it means that these
constraints can on their own be understood as implementing the Lie group of
diffeomorphisms of the space-like hypersurface σ (Isham and Kuchař (1985)).

The Hamiltonian constraints in, stark contrast, have a phase space action
which seems, prima facie, manifestly dynamical. For any specification of the
lapse they affect an infinitesimal phase space transformation from the canonical
variables characterising a given three geometry to those describing a second
three geometry which is dynamically subsequent. More careful analysis however
reveals a dual role within which the seeds of our conceptual enigma are sown. We
can consider its explicit action upon an embedded canonical momenta variable.
Such a variable is so called because it is the canonical conjugate of an metric
variable qµν which is a tensor field (the first fundamental form) defined on the
embedded hypersurface Σt. This new metric variable can be expressed purely in
terms of spatial vector fields on Σt and the usual metric variable on σ, qab (see
Thiemann (2007, Eq. 1.1.16)). The new momenta variable can be written in
terms of qµν together with it and another spatial tensor field on Σt (the second
fundamental form). An elegant calculation by Thiemann (2007, pp.54-6) yields
the explicit expression:

{H(N), Pµν} =
qµνNH

2
−N

√
‖q‖[qµρqνσ − qµνqρσ]RD+1

ρσ + LNnp
µν(13)

with R4
µν the Ricci 4-tensor. The first term on the right is zero on the phys-

ical phase space (defined by satisfaction of the constraints) and is therefore
unimportant. The second is zero for solutions to the equations of motion and
thus we have that on shell the Hamiltonian performs the role of generating in-
finitesimal diffeomorphisms. Whereas the diffeomorphisms associated with the
momentum constraints can be understood as purely kinematical symmetries of
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the three geometries σ (irrespective of whether the equations of motion hold)
those associated with the Hamiltonian constraint are symmetries of not just
entire spacetimes but of spacetimes which are solutions. For a given solution
and an embedded hypersurface the constraint generates a local deformation of
the hypersurface. Collectively such an action is equivalent to the refoliation of
a spacetime and therefore to the generation of a different unphysical splitting
of spacetime into space and time. However, the solutions themselves are con-
sequences of the dynamical role that the Hamiltonian constraint plays in the
context of three geometries considered on their own rather than as embedded
in a spacetime. Thus, to maintain both the fundamental symmetry of the the-
ory and the dynamics we must appreciate the dual, context dependent role of
the Hamiltonian constraints.5 In the remaining discussion we will explore the
narrow path that traverses failure to appreciate either side of this duality and,
after observing the perils of falling into the abyss below, will come upon a fork
that forces us to choose between retaining a weaker Machian notion of time at
the cost of global scale and dispensing with time altogether.

3. Denial I: Reductive Temporal Relationalism

3.1. Gauge Theory and Symplectic Reduction

Motivation for a particularly influential (but ultimately unpersuasive) argu-
ment towards the denial of time in canonical general relativity derives from the
consideration of the otiose representative structure constituted by the Hamil-
tonian formulation of a generic gauge theory. In order to frame this argument
adequately we will briefly consider the structure of these theories in general
without any particular reference to the Hamiltonian constraints of canonical
general relativity and the important subtleties that go along with them.

Consider a constrained Hamiltonian theory constituted by a phase space
Γ parameterised by n canonical coordinates (p, q), a Hamiltonian functional
H(p, q) and a set of m constraint functions ϕi(p, q) = 0. It is well know that such
a theory may be taken to corresponds to a physical system with gauge freedom
- i.e. those which have a Lagrangian formulation in which the action is invariant
under some local symmetry group, form example Electromagnetism or a Yang-
Mills theory.6 Geometrically we can characterise such a generic constrained

5It is important to note that this key aspect to our analysis represents a departure from
both the received and dissenting view on this matter (although it is close to the spirit of Pons
et al. (2010)). Whereas, the received view is that the Hamiltonian constraints purely gen-
erate unphysical transformations (e.g. Rovelli (2004)), the dissenting view (notably defined
in Barbour and Foster (2008) but also associated with Kuchař (1991, 1992)) is that the con-
straints’ action is purely physical in character. The latter view is supported by the argument
(which I do not personally find entirely convincing) that Hamiltonian constraints should not
be understood as being involved in re-foliating a spacetime since neither the spacetime nor
the foliation are there before they act (Julian Barbour, private correspondence, August 2011).

6See Dirac (1964) or Henneaux and Teitelboim (1992). We presume here that the constraint
featured are primary, first class constraints whose action can be unambiguously connected to
the cotangent bundle projection of a Lagrangian gauge group defined as acting on the relevant
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Hamiltonian theory in precise terms. Firstly, we have by definition that the
phase space Γ is equipped with a Poincaré one form θ and that the exterior
derivative of this one form gives us a symplectic (i.e. closed and non-degenerate)
two form ω.7 This allows us to defined the symplectic geometry (Γ, ω). We can
then define, by satisfaction of the constraint conditions, the n−m dimensional
sub-manifold Π = {(p, q) ∈ Γ|∀i : ϕi(p, q) = 0}. The sub-manifold, which we
designate the physical phase space since its complement contains unphysical
states which are in violation of the symmetries of the theory, has a geometry
endowed by the exterior derivative of the restriction of θ to Π. In the cases in
which we are interested it is found that that gives rise to a presymplectic (closed
and degenerate) form Ω and therefore a presymplectic geometry (Π,Ω). Such
geometries are distinguished by their degenerate structure – with the integral
curves of the vector fields that make up the null vector space (or Kernel) of
Ω partitioning Π into a set of transverse sub-manifolds called gauge orbits. In
physical terms each of these orbits have the significant feature that the all
of the constituent points are physically indistinguishable – they correspond to
an identical value of the Hamiltonian functional. Furthermore, paths in the
physical phase space which differ only as to a transformation along a gauge
orbit will necessarily correspond to identical values of the canonical action and
will therefore also be indistinguishable.

Given that we make the usual interpretation of points in the (physical) phase
space as representing distinct instantaneous physical states the above feature is
a form of indeterminism (or underdetermination) since given an initial specifi-
cation of physical states the formalism does not fix a unique continuation. This
would seem unsatisfactory for the case of classical theories, such as electromag-
netism, where the relevant measurable quantities are manifestly deterministic.
The natural response to such circumstances is to point to inadequacy within
our representative formalism rather than the characterisation of the connection
between what is real and what is measurable within our theories. We assert
that there is ‘surplus structure’ within our formalism as embodied precisely
by the directions defined by the gauge orbits. The most obvious methodology
for controlling this excess is to classify these directions as unphysical and use
points in the space of gauge orbits to give us a unique representation of phys-
ical states.8 Formally we may construct this space of gauge orbits or reduced
phase space in terms of the quotient manifold that results from the application
of a symplectic reduction procedure to the physical phase space Π. For simple
constrained Hamiltonian theories this reduction enacted simple by taking the

tangent bundle. As discussed above this is of course explicitly not the case for canonical general
relativity

7For a powerful yet concise introduction to these ideas Arnold, Kozlov, and Neishtadt
(1988) is highly recommended

8Less obviously we might instead weaken the representative relationship between points
and states via the introduction of some notion of anti-haecceitism. This strategy will be
examined carefully within the particular context of time in canonical general relativity as
discussed in §4.2
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quotient Π by the kernel of Ω – see Gotay, Nester, and Hinds (1978) for the
more complex case. Either way, it can be proved (Souriau (1997)) that the
space of gauge orbits that results by the application of symplectic reduction
to the physical phase space has a symplectic geometry (ΓR, ωR) and inherits a
Hamiltonian functional from the physical phase space. It is therefore equipped
to describe dynamics and since we have removed the null directions and since
the space has a non-degenerate structure it is of course not afflicted with the
kind of indeterminism mentioned above. If we assign to points in the reduced
phase space the role of representing unique physical states then the formalism is
now such that any initial specification will also imply the provision of a unique
continuation.

By passing to the reduced phase space of a constrained Hamiltonian theory
we reap the reward of a formalism trimmed of any superfluous representative
structure. This has led some authors to argue that we should endow the re-
duced space with a privileged status. In particular Gordon Belot and John
Earman (Belot (1999, 2000, 2003, 2007); Earman (2002, 2003); and Belot and
Earman (1999, 2001)) have argued that we should consider the reduced phase
space as the fundamental dynamical arena of a gauge theory. As applied to a
generic gauge theory this form of reductionism, although open to a number of
philosophical objections (e.g. see Rickles (2007)), is a viable option and is to a
large degree supported by the various techniques of canonical quantisation for
gauge theories – all of which can be seen to be predicated upon the reduced
phase space.9 However, for the specific case of the Hamiltonian constraints
which feature in canonical general relativity (as well as simple theories which
are reparameterisation invariant Thébault (2011b)) such reductionism rests on
an inappropriate interpretation of the Hamiltonian constraint as a pure gauge
generator. We will examine this crucial issue more carefully after first giving a
second motivation for symplectic reduction that is specific to canonical general
relativity and is based on a form relationalism as to the spacetime concepts
found within the theory.

3.2. Reductive Spacetime Relationalism

The philosophical doctrine of relationalism with regard to space and time
has it roots in the early modern natural philosophy of Descartes, Leibniz and
Huygens but (arguably) takes its most precise form in the work of Mach and
Poincaé (Barbour (2009)). In essence, it is a position as to the relative onto-
logical status of relations between material bodies and the entities or objects
constituted by space and time themselves. A relationalist is taken to hold that
the relations are primary and that space and time are merely derived or ab-
stracted based upon them. In the context of a theory containing a concept of
dynamical spacetime such as general relativity it is not entirely clear what rela-
tionalism as it was originally conceived should be taken to mean and the modern

9See Belot (2007, §4.3) and Thébault (2011a) for discussion of the relationship between
quantisation and reduction
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philosophical discussion is replete with positions which are taken to be either
pro- or anti- some version of relationalism. Our purpose here will not be to sur-
vey this literature nor explicitly analyse its connection with the indeterminism
issue of the previous section in terms of the famous hole argument.10 Rather,
we will concern ourselves the notion of reductive spacetime relationalism that
is presented by the relevant authors in their argument towards our first denial
of time. A second, importantly different notion of temporal relationalism will
be discussed in §4.2.

Among others, Belot and Earman (1999, 2001) hold that the essance of
spacetime relationalism within general relativity should be taken to be the de-
nial of a fundamental ontological role for spacetime points. Such points are
of course represented within a covariant formalism by the coordinatisation of
the manifold M and will therefore be given distinct representations within dif-
ferent coordinatisations. If we assume that cross identification between points
within qualitatively identical spacetime models – i.e. with the same geometry
– can be taken to ground a real difference between these models (i.e. they may
differ solely haecceitistically), then relationalism can be understood in terms
of the denial of exactly such difference on the grounds that spacetime points
do not a fundamental ontological status.11 A spacetime relationalist is thus
someone who will ‘deny that there could be two possible worlds with the same
geometry which differ only in virtue of the way that is geometry is shared out
over existent spacetime points’ Belot and Earman (2001, p.18). In the con-
text of the covariant formalism this means that two geometries (M, gµν) and
(M ′, g′µν) which solve the Einstein field equations and are related by an element
of Diff(M) are considered the same physically possible situation. This is be-
cause the difference between them is exactly in terms of the coordinatisations
rather than the geometrical structure; and therefore the ontologies which they
are taken to represent can differ (if they differ at all) only with respect to the
role played by the spacetime points. By endorsing such a Leibniz equivalence
type principle, Belot and Earman disavow this difference12. Furthermore, by
cutting down the class of distinct possibilities to include only geometries which
are members of different diffeomorphically related equivalence classes we have
implicitly performed a reduction with respect to our fundamental representative
space. Rather than considering the space of Riemannian four-geometries corre-
sponding to four-metrics which solve the Einstein field equations as our basic
arena for representing the world we instead should consider the quotient of that
space by the group of four dimensional diffeomorphisms. Thus, we can see Belot
and Earman’s arguments as leading us from relationalism to reduction: they are
reductive relationalists.

What does this reductive form of spacetime relationalism mean in the con-

10See Rickles (2007) on both counts
11We will, for the time being, defer the discussion of anti-haecceitist variants of relationalism.

See §4.2
12There are, of course, other ways of formulating such a principle that do not have the same

implications for possibility reduction. For instance that suggested by Saunders (2003)
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text of the canonical formalism? If we focus our attention on the role of spatial
points then we have a clear answer. In analogy to the spactime case spatial
points are represented in terms of the coordinatisation of a manifold, in this
case the three dimensional manifold σ. Furthermore, the action of the theory is
invariant under the group of three dimensional diffeomorphisms of this manifold,
Diff(σ), and so a reconstruction of the argument above can be made for this
case. Explicitly, since we have that two canonical solutions which differ solely on
the basis of the application of an element of Diff(σ) to one of their constituent
three geometries are physically identical then asserting the existence of spatial
points will violate a Leibnizian type principle of equivalence of exactly the same
type as that in introduced via the quote from Belot and Earman (2001)above.
Thus, a reductive relationalist with regard to space will endorse a reduced space
of three geometries as representatively fundamental within the canonical formal-
ism. Since we have from above that Diff(σ) is implemented on phase space
by the action of the momentum constraints we know that precisely the reduced
space we are looking for can be achieved by quotienting out the gauge orbits as-
sociated with those constraints according to the symplectic reduction procedure
above. This, in fact, leads us directly to Wheeler’s superspace (see Wheeler
(1968), Giulini (2009)) upon which a formulation of canonical general relativity
would be constituted according to this brand of spatial reductive relationalism.

With regard to time things are, as ever, far more complicated. One might
hope to translate a position of spacetime relationalism as expressed in terms of
the covariant formalism into a position of spatial relationalism plus temporal
relationalism as expressed in terms of the canonical formalism. Building on the
ideas of the previous paragraph we would hope to disavow the fundamental sta-
tus of temporal points by enforcing ontological equivalence between solutions
which differ only as to the way in which the four dimensional geometrical struc-
ture is ‘shared out’ over these points. Thus in effect performing a reduction of
paths in superspace such that those which differ only as to how time is labelled
are classified as the same path and a new double reduced representative space
is arrived at. Unfortunately such a naive implementation of reductive temporal
relationalism is neither possible nor adequate to our purpose.

Although we have assumed that the spacetime manifold M has a topology
which is such that M ∼= R × σ and therefore that the temporal dimension is
represented in terms of the real line, the complication of foliation invariance
means that the arbitrariness with regard to time is not fully captured merely
by global temporal relabelling – i.e. by the one dimensional diffeomorphisms
group Diff(R). Furthermore, unlike spatial diffeomorphisms these ‘temporal
diffeomorphisms’ have no representation at the level of a constraint function
acting of phase space points or for that matter even phase space paths and
so (in the conventional formalism) is impossible to frame this naive temporal
relationalism simply in terms of a reduction procedure.

Foliation invariance means that the theory is invariant under the set of local
temporal relabelling of each point on each space-like hypersurface of which the
global temporal relabellings discussed above form a sub-set. To be consistent
with the notion of reductive spacetime relationalism defined above it is the tem-
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poral points that constitute this local labelling that must be excluded from our
ontology via a Leibniz equivalence inspired quotienting operation. In the case of
local temporal relabelling (unlike the global case) we do have a canonical con-
straint function that can be associated with the relevant symmetry, the Hamil-
tonian constraint. However, as discussed above the connection between these
constraints and refoliation symmetries can only be made precise at the level of
paths in the physical phase space which are also solutions to the equations of
motion. In the context of its action on phase space the Hamiltonian constraint
generates evolution. Thus, although it might seem at first sight that reducing
out the action of the Hamiltonian constraint (on superspace) will achieve the
object of reductive spacetime relationalism within the canonical formalism, our
understanding of the constraints dual role leads to immediate scepticism on
this count. The object of reductive relationalism with regard to time in par-
ticular, is to construct a representative arena in which the distinct possibilities
entailed by the existence of temporal points have been removed. Within the
context of canonical general relativity such a reduction makes sense (at least
in principle) at the level of entire histories related by a refoliation symmetry.
However, it is difficult to seem how it can possibly be achieved by a reduction
of phase space since such symmetries can not be represented in terms of the
relationship between points on this space. It is exactly this kind of phase space
reduction with regard to the Hamiltonian constraint which Belot and Earman
argue implements their reductive spacetime relationalism within the canonical
formalism, and to which we now turn.

3.3. Dynamical Trivialisation and the Isomorphism Argument

We thus have two distinct but connected motivations for enacting a symplec-
tic reduction of the phase space of canonical general relativity with regard to
the Hamiltonian constraints. Firstly, we have the argument from indeterminism
and surplus structure – it is assumed that as for the case of other theories with
first class constraint, the sub-manifolds defined by the integral curves of the null
vector fields associated with the Hamiltonian constraints will form gauge equiv-
alence classes. Thus, as for the generic case, the unreduced formalism will poses
an excess representation of physical states such that an initial specification of
phase space points will admit multiple physically identical but mathematically
distinct continuations. By reducing out the action of these constraints we will
remove both this indeterminism and the redundant representative structure that
enables it. Secondly, we have the motivation from reductive spacetime relation-
alism – we wish to reduce our possibility space such that differences entailed by
distinct coordinatisations of the same fundamental geometrical structure are no
longer encoded. Specially, in addition to removing the representation of spatial
points, via reduction with respect to the momentum constraints, we also want to
remove the local temporal labellings that play the role of representing temporal
points within the theory. To an extent the reduction that Belot and Earman
have in mind does achieve both these purposes, however, it comes at a dire cost
to the representative adequacy of our formalism such that we are only equipped
to represent dynamically trivial universes.
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As detailed in §2.3 and mentioned above the role of the Hamiltonian con-
straints within canonical general relativity is essentially a dual one. When con-
sidered as acting on purely on a three geometry (as represented by a phase space
point) they generate dynamical evolution and when considered as acting on
space-like hypersurface embedded within a solution they generates infinitesimal
diffeomorphisms. The latter role means that the constraint can be considered
responsible for generating refoliation symmetries and allows us to understand
how the four dimensional diffeomorphism symmetry is (to a certain extent) im-
plemented canonically. However, the former role cannot be discounted since
without it the solutions within which the hypersurfaces are embedded cannot
be defined. Moreover, the gauge orbits associated with the constraints action
on phase space are in fact closer in character to solutions themselves and are
explicitly not equivalence classes of solutions since a point with the orbit is as-
sociated with a three not four dimensional object. Still by classifying all phase
space points within these sub-manifolds as representing the same state we will
ensure that any pair of three geometries which are contained within solutions
related by a refoliation symmetry will be classified as equivalent. Thus symplec-
tic reduction will remove the indeterminism related to that symmetry. It will,
of course, also therefore mean that the reductive temporal relationalist desire
to pass to a representative space that excludes distinct local temporal labellings
will also have been achieved.

In addition to these two primary goals, however, this reduction has the unin-
tended consequence that all dynamically related three geometries are classified
as representing the same state. This is because the orbit that is quotiented is,
as it must be by the nature of the Hamiltonian constraints phase space action,
composed of every state that can be accessed via the ‘many fingered’ time evo-
lution the the theory allows for in terms of the action of the Hamiltonian and
the arbitrariness of the lapse function. By reducing the representative capacity
of the orbit down to a single state we pass from many fingers to no fingers – and
not one finger! Furthermore, since we have not respected the dynamical role
of the Hamiltonian in a phase space context by passing to the reduced space
we will have classified states which are physically distinct members of a given
solution as identical. This is exactly to treat the current state of the universe
and its state just after the big bang as identical (contra the claims of Belot
(2007)).

We can illustrate the dynamical triviality of the reduced space explicitly by
considering the presymplectic structure of the physical phase space of canonical
general relativity.13 The phase space Γ is a Poisson manifold and it is therefore
equipped with a canonical (four) form θ̃. Together all the constraints of the
theory (i.e. the Hamiltonian and momentum constrains together) define the
physical phase space, Π, and the restriction of our original form to this surface
will induce a second form θ = θ̃|Π. The exterior derivative of this gives us a (five)

13We here follow (Rovelli, 2004, §4.3). See his treatment for more details and the appro-
priate references
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form ω = dθ and since ω has null directions it is presymplectic and therefore
defines a presymplectic geometry (Π, ω). If we define the orbits of ω to be
four dimensional surfaces γ̄ in Π such that the quadritangent X to the orbit is
in the kernel of ω (i.e. ω(X) = 0) then we can identify the γ̄ with solutions
of the Einstein field equations. Thus since it is exactly these null directions
that are removed in any quotienting operation a total reduction of the theory
will involve the reducing out of the solutions. Since we know from above that
the role of the momentum constraints can be understood in conventional gauge
theoretic terms, it is clear that it is the Hamiltonian constraints that so entangle
the dynamics with the gauge orbits. Reducing out their action will lead to a
dynamical trivialisation of the theory.

A single line of argument is available in defence of total constraint reduction
in canonical general relativity against the charge of dynamical trivialisation.
Belot (2007) argues that rather than seeing the reduced phase space as dynam-
ical trivial in sense outlined above we should instead reinterpret it as a space
of diffeomorphically invariant histories. Thus, we would enable both reduc-
tive temporal relationalism and the avoidance of indeterminism but without the
cost of trivialising our dynamics. Belot’s argument relies on the existence of a
canonical isomorphism between the fully reduced phase space and a space of
diffeomorphically invariant spacetimes defined via the covariant formalism and
we shall therefore dub it the isomorphism argument.

Essentially it runs as follows. Consider a system which does not display any
gauge freedom. Its dynamics can be described in terms of a space of solutions
to the Euler-Lagrange equations S or in terms of set of curves in a phase space
I with the usual symplectic structure. Although there exists an isomorphism
between points in these two spaces they have distinct representational roles - a
point in S represents an entire history of our system and a point in I represents
an instantaneous state of the system. According to Belot this distinction is
grounded in terms of the existence of a distinct isomorphism between any instant
in a slicing of a solution γ ∈ S into a sequence of Cauchy surfaces Σt and the
point in the space of phase space which contains the instantaneous data relevant
to that value of the temporal parameter. Clearly, under this interpretation if the
system is taken to be the whole universe then points in I should be considered
as representing distinct instantaneous states of the world and those in S should
be considered as representing worlds composed out of such states. Now, for a
standard gauge theory of the type discussed in §3.1 such an interpretation can
no longer be justified in these terms. Rather than having a one-to-one map
which confers representative equivalence between each time slice of solution and
a point in phase space, for each slice of a given solution we have a one-to-many
map with its target an entire gauge equivalence class of points in phase space.
However, if we pass to a reduced phase space IR via symplectic reduction as well
as constructing a reduced solution space SR via an analogous reduction process
(i.e. quotienting out the action of the Lagrangian gauge group) then we recover
our distinct isomorphism per time slice and therefore also our argument towards
the different representational roles of the two spaces - the former for instants
the latter for entire worlds. The case of general relativity – as an atypical gauge
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theory – is crucially different. Because of the nature of the diffeomorphism group
points in the reduced space of solutions cannot be individually decomposed into
slices and this means that only a single isomorphism exists between each of these
diffeomorphically invariant solutions and points in the reduced phase space.
This, Belot argues, means that we should interpret them as representationally
equivalent spaces. Thus, the reduced space is dynamically non-trivial since it
can be taken to represent universes which contain evolution.

Although, innovative and to some extent insightful the isomorphism argu-
ment of Belot is problematic in a number of respects. Firstly, it seems to rest
on the non-sequitur that since the existence of a distinct isomorphism per time
slice gives us grounds to fix distinct representational roles for IR and SR, the
non-existence of such a family of isomorphisms implies that the two space are
should be taken to be representatively equivalent. Completely besides the na-
ture of the mappings that exist between them we have very good reasons for
asserting that solutions represent worlds and phase space points represent in-
stants – the variational basis upon which the two structures are defined and the
different form of the relevant boundary conditions to name just two. Just be-
cause in the case of general relativity we no longer have access to one argument
towards their representational inequivalence does not indicate that we no longer
have any arguments available at all! Furthermore, the existence of an single iso-
morphism between points in two representative spaces is far from a sufficiency
condition for them playing equivalent roles (although it could in some cases be
taken to be necessary) since we can trivially find such relationships between
manifestly inequivalent structures – two books with the same number of words
for example. It makes far more sense for the representational role of a space
within a theory to be fixed primarily by its relationship to the representative
structures from which it is derived rather than a space utilised in the context
of a different formalism. For the case of general relativity, therefore, it is far
more appropriate to consider the relationship between the reduced phase space
and the unreduced phase space as fixing the formers representational role. If we
accept Belot’s interpretation of the reduced space as a space of histories then
we seem to be forced into asserting that points in the unreduced space are also
representative of four dimensional histories and this is manifestly inconsistent
with the ADM procedure that lead to the construction of this space. Rather,
since we know by definition that a point in the unreduced phase space corre-
sponds to a three geometry we should take points in the unreduced space to
represent instantaneous states and curves in this space to represent entire four
dimensional histories. By passing to a quotient of this space we are classifying
sets of points as equivalent and so representatively speaking we are classifying
groups of instantaneous states as equivalent. To be consistent with both the
representative role of the space from which it is constructed and the manner
of its construction the reduced phase space must be interpreted as representing
instantaneous states and our charge of dynamical triviality against reductive
temporal relationalism cannot be avoided.

We therefore see that reductive temporal relationalism and the form of denial
of time which it implies is an at best problematic and at worst fatally flawed
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position. It leads to an interpretation of the formalism of canonical general
relativity which is not adequate as a representative framework for describing
the world since it admits only static universes. The crucial question is now
which aspects of the interpretation are responsible for driving us into such a
conceptual cul-de-sac? Was it the temporal relationalism or the reductionism
which was the cause of the problem? In the next section we will investigate
a different conception of temporal relationalism, in part, with the object of
settling this matter.

4. Denial II: Machian temporal relationalism

4.1. Machian dynamics and the Hamiltonian constraints

A second and quite different perspective on time within general relativity is
enabled by the Machian temporal relationalism of Barbour (1995, 1994, 2009).
The principal element of this form of relationalism with regard to time is not an
objection to temporal points forming part of our basic ontology, nor even the
assertion of a Leibnizian equivalence principle such that any universes related
by temporal symmetries must be judged to constitute distinct possibilities –
although consistency with these other relationalist dictates is implicit. Rather
for Barbour the fundamental edict of temporal relationalism is that time should
be ‘an abstraction, at which we arrive by means of the changes of things; made
because we are not restricted to any one definite measure, all being intercon-
nected’ (Mach (1960)). This Machian viewpoint on time can be seen as an
imperative to try to construct (or at least restructure) our theories in such a
way that time does not appear within the basic structure of the theory but is
a well defined notion at a derived or emergent concept level. Thus, as well as a
position as to what time is not, the Machian variant of relationalism is a position
as to what time is. Particularly, important to both Barbour’s interpretation of
Mach (which he shares with Mittelstaedt (1976) and his own philosophy, is that
the relational definition of time is a holistic and democratic one based upon
contributions from all the motions within the universe. We will take this to
mean that a theory or interpretation of a theory that is temporally relational
in a Machian sense should provide us with a distinct definition of time for any
dynamical history of the universe.

Although it clearly starts from a different perspective, there is a degree
of coherence between this form of temporal relationalism and that predicated
upon the denial of temporal points discussed above. There is no room within
the ontology of a Machian theory for any basic temporal structure since this
structure must itself be abstracted out of the ontology and not form part of
it. Furthermore, it also seems safe to presume that the democratic nature of
the process by which time is abstracted will be such that universes related by
temporal symmetries must bear the same emergent notion of temporality. We
can therefore expect that even at the level of an abstracted concept of time a
Leibnizian equivalence principle should be satisfied.

So much for what it means to be a Machian temporal relationalist in princi-
ple. In practice, we have already seen a formal basis sufficient to establish such
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a position can easily be achieved within non-relativistic mechanics by switching
to the formalism of Jacobi as formulated above. Again, restating the key ideas
for the convenience of the reader. The Jacobi Hamiltonian takes the form

HJ =
∑
i

pi.q
′
i − LJ = NJhJ (14)

where we define the Jacobi Hamiltonian constraint as

hJ =
1

2

∑
i

pi.pi + V − E = 0 (15)

and the lapse is an arbitrary function of of the time label τ . The form of these
equations is very suggestive of the canonical formulation of general relativity
introduced above. We have a Hamiltonian constraint that is connected with
arbitrariness in temporal labelling, and we a Hamiltonian that is made up only
of a constraint and an arbitrary multiplier. What is particularly important for
our purposes is how we should interpret the action of the Jacobi Hamiltonian
constraint upon phase space. Explicitly we have that (provided the constraint
is satisfied)

NJ{qi, hJ} =
δqi
δτ

(16)

which indicates that for any specification of the Jacobi lapse the Jacobi Hamilto-
nian will effect an infinitesimal phase space transformation from the canonical
variables characterising a given instant in time to those describing a second
instant that is dynamically subsequent.

This is in close analogy to the dynamical role of the Hamiltonian constraints
of canonical general relativity. However, as in the relativistic case, this Poisson
bracket also encodes a symmetry generating role in that, strictly speaking, the
transformation that hJ generates is unphysical because of the dependence on the
arbitrary parameterisation encoded in the lapse. Thus again we have evolution
enacted by a constraint and thus our dynamics and our temporal symmetry are
entangled. In the case of Jacobi’s principle, there is a straightforward method-
ology for disentangling them in the context of Machian temporal relationalism.
As mentioned above, as well as the preclusion of external temporal parameters
within our mechanical theory, the Machian temporal relationalist position in-
volves a positive idea of time as an equitable measure that can be abstracted
from dynamics. Jacobi’s principle admits exactly this notion of temporality
because we may naturally specify an emergent temporal increment:

Nδτ =

√
T

(E − V )
dτ =

√
δqi.δqi

2(E − V )
(17)

In Lagrangian terms this notion of ephemeris time is introduced by choosing τ
such that T = E − V . This then leads to the emergent temporal increment δτ

and allows us to identify the Hamiltonian lapse with
√

T
(E−V ) .14 The ephemeris

14Thanks to Julian Barbour for clarifying this point to me
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time is such that it uniquely and monotonically parameterises dynamical his-
tories. It is holistic and democratic in exactly the sense that Barbour desires
because it involves all the dynamical variables of a given system – crucially it is
a measure of duration that ‘emerges from the dynamics’ and ‘does not pre-exist
in the kinematics’ (Barbour (1994, p.2856)).

We can take the Hamiltonian formulation of Jacobi’s principle as a model for
the Hamiltonian formulation of any Machian temporally relational theory. In
particular, it suggests a set of four criteria for the formal structure of such a the-
ory: 1) the parameterisation of phase space curves is arbitrary; 2) the canonical
variables do not contain external time variables or their momenta; 3) there is a
Hamiltonian constraint that has a dynamical phase space action when combined
with an arbitrary multiplier; 4) there exists a methodology for constructing an
emergent temporal increment that parameterises dynamical histories in an equi-
table and unique manner. If 1-4 are satisfied, then it seems reasonable to accept
that the theory admits an interpretation consistent with Machian temporal re-
lationalism. As discussed above, such an interpretation has two key features:
i) the absence of time in the basic ontological structure and ii) our ability to
abstract an equitable measure of duration from the change (or relative change)
of the objects that are part of the ontology. Specifically, it seems reasonable
to assume that 1-2 lead to i) since they ensure that sequences of points within
the phase space can be understood as representing the fundamental ontology
without reference to time. We then have that 3-4 lead to ii) since, as illustrated
by the case of Jacobi’s principle, they give us the machinery to associate with
pairs of points in the phase space (elements of the ontology) the appropriate
temporal increment. The utility of our criteria (which are of a heuristic rather
than logical character) is illustrated by their preclusion of a Machian temporal
relationalist interpretation of parameterised particle mechanics (there 2 does
not hold) and admission of such an interpretation for Barbour–Betotti theory
(Barbour and Bertotti (1982)) (where 1-4 all hold).

Given these criteria, we can now address the task of evaluating the interpre-
tation of canonical general relativity in terms of Machian temporal relationalism
(MTR).15 Considering the action (10.3) leads us to conclude that the first and
second conditions are satisfied and therefore to expect that aspect i) of MTR
holds in canonical general relativity.

To an extent, we also have that the third condition holds because the Hamil-
tonian is of course a constraint and in one context its role is (when combined
with the lapse) to generate a transition between dynamically related three ge-
ometries. However, as has been asserted throughout our discussion it is essential
to remember that that Hamiltonian constraints of canonical gravity have a dual

15It must be noted here that much of Barbour’s work on the Machian temporal structure of
general relativity focuses on general relativity formulated in Lagrangian terms. Our focus on
the canonical formalism will not obscure the essential aspects since they are inherent within the
dynamical structure of general relativity and therefore beyond the Lagrangian/Hamiltonian
distinction. See Pooley (2001) and Butterfield (2002) for detailed philosophical analysis using,
for the most part, Barbour’s version of the Lagrangian formalism.

20



nature with two distinct, context-dependent roles. In the context of a hypersur-
face embedded within a solution, the role of the Hamiltonian constraints is not
of the dynamical type found in Jacobi’s theory. Rather, they generate infinites-
imal symmetry transformations that form part of the hypersurface deformation
group which manifests the fundamental symmetry of the theory. Still, this does
not necessarily break the analogy between the relativistic and non-relativistic
Hamiltonian constraints since in Jacobi’s principle too the Hamiltonian con-
straint is also connected with unphysical temporal relabellings. However, the
fact that the temporal relabellings associated with the infinite set of Hamil-
tonian constraints of canonical relativity are local and those associated with
the single Hamiltonian constraint of Jacobi’s principle are global is of crucial
importance. Ultimately, the disanalogy that this subtle yet significant differ-
ence implies creates an acute problem for an interpretation of canonical general
relativity in Machian temporally relational terms.

The fourth criterion that we introduced for the formal structure of MTR
Hamiltonian theory was that we are able to construct an emergent temporal
increment that parameterises dynamical histories in an equitable and unique
manner. Given this together with the third criterion, it seems reasonable to
presume that we can interpret the phase space of our theory to represent a
Machian ontology in the sense of being amenable to the condition ii) above.
More explicitly: if our theory is such that two distinct points in phase space that
are dynamically related can be connected by the application of the Hamiltonian
constraints times suitable multipliers and, furthermore, the difference between
them is parameterised uniquely by an emergent time parameter, then we may
interpret each point in the phase space as representing the state of the objects
in the world and the change between these two distinct ontological states as
encoding uniquely a measure of duration in terms of ontological change. In
the case of canonical Jacobi’s principle, we were able to satisfy this criterion
through the employment of ephemeris time, and it is therefore natural to look
to construct a similar emergent temporal increment to enable a Machian reading
of canonical general relativity.

As has already been mentioned, the crucial difference between the two the-
ories is that the single, global Hamiltonian constraint of Jacobi’s principle be-
comes an infinite set of local Hamiltonian constraints in general relativity. Thus,
rather than looking for a single global ephemeris time it is natural to look for
many local ephemeris times. A point in the phase space of canonical general rel-
ativity corresponds to canonical data on a spacelike hypersurface σ. The locality
of the ephemeris times is necessitated by the fact that we need one such time
for every x ∈ σ. The lapse is of course itself a local function (the dependence
on x is suppressed in the notation above). Thus, by looking for formulation of
the theory with a lapse such that, in analogy with (12.4), it defines the desired
emergent temporal increment when multiplied by an infinitesimal change in the
time parameter we can define our local ephemeris times. If we denote the lapse
of such a formulation Nemph(x), then the local ephemeris can be written simply
as Nemph(x)δt, where t is of course now playing the part of the arbitrary time
parameter.
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The crucial problem is then finding a formulation of the theory containing
a local ephemeris with the desired properties. In particular, as well as being
insensitive to rescalings of the time parameter, we need our local ephemeris time
to be such that it will replicate time as measured by local clocks and thus be
consistent with proper time. Furthermore, it is also fundamental to the notion
of Machian temporality that any given local ephemeris time be an equitable
measure of duration, and therefore that it takes account of the contribution of
all the other degrees of freedom – even those that are non-locally separated from
the spatial point at which it is defined.

Interestingly, according to Barbour (2000) the ‘deep structure’ of general
relativity already contains exactly the type of local ephemeris time that we are
looking for.16 Starting with the BSW (Baierlein, Sharp, and Wheeler (1962))
reformulation of covariant general relativity one can derive (Barbour, Foster,
and Murchadha, 2002, pp.10-12) an expression for the lapse that, within a La-
grangian picture, takes the form NBSW =

√
T/4R where T is a ‘kinetic energy’

term (Barbour et al., 2002, (4.2)). If the time label t within T is chosen such
that NBSW = 1 then t will directly measure proper time. Furthermore, for
arbitrary time label NBSW (x)δt will always be equal to the local proper time.
Just as in the case of Jacobi’s theory we can translate this Lagrangian emergent
time framework into the a Hamiltonian analogue. There NBSW (x)δt gives us
an emergent notion of duration that is equal to the local proper time calculated
along the direction perpendicular to Λt and is non-locally dependant upon the
entire three-metric and its canonical momentum. Thus, local ephemeris time is
a consistent notion within canonical general relativity (given the BSW formu-
lation).

Furthermore, after the introduction of local ephemeris time we are able
to classify pairs of points within dynamically successive (infinitesimally close)
three-geometries as carrying a trans-temporal notion of identity. Such points
are said to be equilocal, and the ephemeris time marks them out in terms of
the unique temporal metric it provides. For our purposes, the crucial point is
that the temporal metric that ephemeris time gives us is defined to be indepen-
dent of arbitrary reparameterisations of the temporal parameter (t in the case
of canonical general relativity) and thus allows us to parameterise dynamical
trajectories in phase space in exactly the manner required for criterion 4.

We thus have that 1-4 hold and would then expect canonical general rela-
tivity to admit a consistent interpretation in terms of Machian temporal rela-
tionalism. However, there is an acute problem with the Machian interpretation
resulting, as foreshadowed above, from the locality of the Hamiltonian con-
straints. The necessary arbitrariness within the definition of NBSW (x)17 entails
that given initial canonical data on a three geometry the dynamical evolution
generated by H(NBSW ) does not provide us with a unique continuation. This is

16Note: he does not use the phrase ‘deep structure’ in this quite this context!
17As noted in Barbour et al. (2002), although NBSW (x) is fixed on the initial slice by the

initial data, its evolution is free
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the result of the Hamiltonian’s second role of generating infinitesimal diffeomor-
phisms when considered in the context of hypersurfaces embedded in dynamical
spacetimes. Two such spacetimes are of course represented by a pair of curves
within the constraint surface in phase space. Let us assume that these curves
are identical up to a given phase space point corresponding to canonical data
on σ0 and thereafter differ only in virtue of a different choice of the lapse – i.e.,
evolution generated by H(N ′BSW ) rather than H(N ′′BSW ). We should then con-
sider them as only differing by a local temporal re-labelling, which (in spacetime
terms) can be interpreted as an infinitesimal diffeomorphism of an embedded
hypersurface. Given any point x ∈ σ0, there will be an equilocal point within
the subsequent three-geometries, σ′ and σ′′, associated with each of the distinct
phase space curves. Thus, we run into exactly the problematic indeterminism
discussed in §4.2. This problem does not occur in Jacobi’s principle because the
arbitrariness that remains within the lapse in that case only gains effect through
a single global Hamiltonian constraint and thus cannot lead to distinct phase
space curves. Thus, it seems that although an interpretation of canonical gen-
eral relativity in terms of Machian temporal relationalism can be consistently
achieved, this can be done only at the price of admitting ontological indeter-
minism into a theory that is manifestly deterministic in an empirical and, so
far as the conventional interpretation of the covariant formulation goes, formal
sense.

4.2. Unsophisticated temporal relationalism and indeterminism

Our discussion of §4.1 highlighted the concern that by treating points in the
phase space of a gauge theory as representative of individual states we leave
ourselves susceptible to a pernicious form of formal indeterminism within a
physically deterministic theory. It should be no surprise therefore that, as we
have defined it by the criteria 1-4, the Machian temporal relationalist approach
to towards the Hamiltonian constraints and phase space of canonical general
relativity leads to a specific case of exactly this kind of problem. In our earlier
discussion we focused upon symplectic reduction as the supposed remedy for
this indeterminism but found that in the case of canonical general relativity
such a procedure has a trivialising effect. We are thus in need of an alternative,
non-reductive methodology for dealing with indeterminism.

The indeterminism issue can be understood in terms of haecceitism. Again
repeating the relevant material from Chapter 2 for the readers convienece. We
define a haecceitist as someone who admits ‘nonqualitative determinants of
cross-identification’ between entities or objects in distinct worlds or structures
(Lewis (1983, p.19)). To adopt such a position is to allow for real differences
that are only with respect to which objects play which role within the struc-
ture; since one is allowed to cross-identify each of a pair of qualitatively identical
objects whose roles are permuted between two structures, we may ground a non-
qualitative differentiation of the structures in terms of the cross-identification
of the objects. The assumption that each point within the phase space of a
gauge theory represents a distinct instantaneous state can be understood as an
implicit endorsement of haecceitism. We can seen this since: i) We are licensed
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to consider as distinct two histories represented by sequences of points that dif-
fer solely with respect gauge transformations; ii) Such a difference is only with
regard to which instantaneous states (represented by points) play which roles;
iii) This means that if we take a history to be the relevant structure and in-
stantaneous states (labelled by the points to which they correspond) to be the
relevant objects, then the ontological difference between gauge related histories
can be cashed out in haecceitist terms. By moving to a reduced phase space,
we allow for the maintenance of haecceitism without indeterminism. However,
conversely by disavowing haecceitism we can maintain ontological determinism
without reduction. This is evident since an anti-haecceitist position would in-
volve discounting the possibility of differences between two structures or worlds
that do not have any qualitative differences – we do not allow differences only
as to which objects play which role within a given structure. Thus, by anti-
haecceitist lines two gauge related curves within a phase space must be taken
to represent the same ontological object.

In the context of spacetime points, anti-haecceitism has been employed to-
wards the endorsement of both relationalism and the opposing position of sub-
stantivalism. According to the anti-haecceitist substantivalist (the ‘sophisti-
cated substantivalist’), spacetime points are real entities cannot be non-qualitatively
cross-identified across models. Thus, even if we accept that diffeomorphically
related spacetimes in covariant general relativity do not constitute distinct phys-
ical possibilities, this does not mean that we must accept spacetime points as
non-fundamental. Rather, the sophisticated substantivalist can take an individ-
ual spacetime to be multiply realised within the equivalence class (as constituted
by the relevant orbit of the four-dimensional diffeomorphism group) and thus
maintain the fundamental status of the constituent spacetime points in terms of
this multiple realisation. This anti-haecceitist strategy is of course also available
to someone who wishes to exclude spacetime points from their basic ontology
since it allows one to avoid exactly the Leibniz equivalence violating modal ex-
cess that individuated spacetime points leads to. The key to relationalism of
this sort is that the fundamental ontology does not include spacetime points,
and there is clearly no conflict between this position and anti-haecceitism. Thus
we may avoid indeterminism, reduction and spacetime points by endorsing an
anti-haecceitist relationalist position, which we shall follow Rickles (2007) and
categorise it under the mildly pejorative moniker of unsophisticated relational-
ism.

As before, our object is not to review the substantial literature on spacetime
relationalism/substantivalism but rather to utilise the ideas of this literature in
the specific case of time within canonical general relativity with which we are
occupied. In particular, it is extremely interesting to determine if we can make
use of anti-haccestism to relieve the Machian temporal relationalism from the
spectre of indeterminism. Essentially, an unsophisticated temporal relationalist
(UTR) is going to disavow the reality of local temporal labellings and endorse
the notion that spacetimes related by local relabellings (i.e., re-foliations) are
single individuals multiply realised in terms of equivalencies classes. In the
canonical context, this equates to treating phase space curves that are equiva-
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lent to re-foliations of the same spacetime as representing the same fundamental
ontology. This is not equivalent to treating the phase space action of the Hamil-
tonian constraints as generating gauge equivalence classes – such a position is,
as we have seen, problematic and manifestly distinct from both the relational-
ist/substantivalist and haecceitist/anti-haccestist disjuncts. Rather our unso-
phisticated temporal relationalist, unlike the reductive temporal relationalist,
can account for the dual role of the Hamiltonian constraints by, on the one
hand, treating the curves it generates in phase space as dynamics and, on the
other, by classifying the two such curves that are related purely by the defor-
mation of a constituent three-geometry as representing the same basic object
(multiply realised). It is very important to note that the equivalence classes in
question do not have a direct representation on the phase space. Essentially,
they are four- and not three-dimensional objects because re-foliations are sym-
metries at the four- and not three-dimensional level. Given a spacetime (and
the associated phase space path), we can consider the equivalence class of other
spacetimes (and associated phase space paths) related by re-foliations. Thus,
although we are still to some extent operating on the level of phase space, in
order to construct the well defined notion of equivalence class that we need to
ground our position, we must always consider three-geometries in the context
of embedding within a spacetime. We do not have a mechanism for classifying
individual three-geometries as realised multiply in terms of a gauge equivalence
class. Rather it is the individual four-geometry that is multiply embodied by
gauge related collections of three-dimensional objects.

This last and crucial point makes it clear that the kind of unsophisticated
temporal relationalist position which we have outlined is going to make an un-
comfortable bedfellow for the Machian notion of relationalism. UTR as we have
defined it essentially makes use of an ontology predicated upon four-dimensional
spacetimes and not merely sequences of three-geometries. The relevant equiva-
lence class defining the symmetry relation can only be properly defined in the
spacetime context. Thus, we violate the key MTR notion that time (or space-
time) should not form part of the basic ontological structure. UTR does allow
for a viable notion of relationalism (to the extent of allowing us to exclude
temporal points) and would seem to be compatible with the emergent notion
of time that forms the other key aspect of the Machian position. However, it
is essentially a spacetime theory of temporal relationalism and thus cannot be
construed as Machian in the most fundamental sense.

4.3. Scale invariance and Machian temporal relationalism

We thus return to the dilemma of extricating the Machian temporal rela-
tionalist philosophy from the ontological indeterminism issue. As was mentioned
above, the root of the problem lies within the local nature of ephemeris time and
this in turn is due to foliation invariance. It is therefore fairly obvious that a
solution could lie within the fixing of a foliation and with, therefore, a Machian
temporally relationalist interpretation of canonical general relativity in a pre-
ferred foliation. Three issues with such a strategy are immediately apparent.
First, there must be a basis for this preferred foliation that is, at the very least
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non-ad hoc, and preferably driven by Machian underpinnings. Second, if we are
to exclude large sectors of the traditional (canonical) solution space by fixing
a foliation, then those solutions excluded must be at the very least not empiri-
cally grounded, and preferably not empirically viable. Third, the foliation-fixed
version of canonical GR must still be consistent with the Machian criteria 1-4
introduced above. Recent years have in fact seen dramatic improvements for the
provision of good answers to all three of these points through the development of
a scale invariant approach to Machian general relativity know as shape dynam-
ics. We do not have space here to give a detailed introduction to or description
of this programme and its recent developments. We can at least, however, give
a basic outline of its key elements such that we can consider shape dynamics in
the context of the three points regarding foliation fixed canonical GR and MTR
just raised.

As philosophical and methodological attitude taken towards physical the-
ory, the Machian approach is one that in general advocates the elimination of
absolute or background structure. Modern Machians, Julian Barbour of course
being most notable amongst them, argue that whether in Newtonian mechanics
or general relativity such structure should be cleaved from our representation
of the world via the adoption of alternative, appropriately minimal, theories
of mechanics. In this sense, Machianism can be seen as a general scheme for
eliminating absolute structure, minimising initial data, and a description of the
world based in some sense on relations. This general programme should not
be conflated with the specific projects of Machian temporal and spatial rela-
tionalism. One would hope, however, that the two cohere – and with regard to
absolute structure relating to scale and time so it appears to be the case.

There is within all the major theories of mechanics, including general rela-
tivity, an absolute notion of scale – conformal transformations (i.e., those which
preserve angles but not lengths) are not symmetries at either the local or global
level. Within covariant general relativity, this means that solutions of the the-
ory are not invariant under conformal transformations of spacetime. Attempts
to construct a gravitational theory that is 4D conformally invariant have a long
history stretching back to Weyl (1922). More pertinent to our project is the pro-
gramme of constructing a 3D scale invariant theory – i.e., one that is invariant
under conformal transformations of space. The investigation of implementing
such a symmetry within general relativity in fact parallels the development of
the canonical approach in that it can also be traced back to the late fifties
and Dirac (1959). In both this work and its extension by York (1973), we
already have 3D conformal invariance explicitly connected to a gauge-fixed for-
mulation of general relativity with a preferred foliation. More, recently Gomes,
Gryb, and Koslowski (2011) have build on the work of Barbour and Murchadha
(2010) and Anderson, Barbour, Foster, Kelleher, and Murchadha (2005) to pro-
pose the existence of a intrinsic duality between a theory invariant under volume
preserving local 3D conformal transformations and general relativity. Specifi-
cally, the particular gauge fixing of general relativity that corresponds to the
foliation of spatially compact spacetimes into space-like hypersurfaces of con-
stant mean curvature (the CMC gauge) is taken to be equivalent to a particular
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gauge fixing of a ‘dual theory’ that describes sequences of spatial three mani-
folds invariant under both three-dimensional diffeomorphisms and 3D (volume
preserving) conformal transformations. Crudely and yet fairly accurately put,
the essence of this shape dynamics programme is then to exchange the foliation
symmetry which is present in GR for the local conformal symmetry which is
absent. Thus, we can provide a reasoned and, what is more, Machian basis for
fixing a foliation.

Our second concern above was that since fixing a foliation amounts to a
restriction to a particular sector of the solution space of general relativity there
is a danger that it might have undesirable consequences with regard to the
empirical adequacy and/or predictive power of the theory. This concern is di-
rectly analogous to that discussed in §4.2 regarding the restriction to globally
hyperbolic solutions that is entailed by moving to the canonical formalism. In
essence, so far as it relates to canonical general relativity, the shape dynamics
approach amounts to the introduction of the restriction that as well as being
globally hyperbolic solutions must be CMC foliable. According to Gomes et al.
(2011) this is a weak restriction since it ‘includes the vast majority of physi-
cally interesting solutions to Einstein’s equations while excluding many physi-
cally uninteresting solutions’. Thus, one may be able to argue that empirically
nothing has been lost – certainly we are able to retain the solutions most rele-
vant to currently observed empirical phenomena since the Schwarzschild, FRW,
Reissner–Nordström and Kerr–Newman solutions are all CMC foliable (at least
so long as we exclude the areas within the event horizon of black hole solutions).
Furthermore, as was argued above for the canonical general relativity and the
hyperbolic solution case, we are not invoking an ad-hoc philosophical principle
in order to exclude these solutions but rather a theory derived from definite
physical principles (in this case 3D scale invariance). A more forceful response
to this worry is to convert this supposed empirical deficiency into a prediction.
Since the restriction to CMC foliable spacetimes can be seen as a consequence
of shape dynamics, we may argue that it is providing us with a falsifiable state-
ment about the world that goes beyond those provided by conventional general
relativity. Additionally, it also in a sense offers us an explanation why our uni-
verse does not manifest phenomena relevant to non-CMC foliable solutions –
if they are nomologically possible, why do we not find them or approximations
to them in nature? Admittedly, as independent arguments for preferring shape
dynamics over traditional general relativity these are not altogether convinc-
ing lines of reasoning, but their adoption certainly seems enough to blunt any
criticism of the approach along the same lines.

Our third, and most important, worry concerning foliation fixing and MTR
is whether general relativity, so formulated, still has the necessary characteris-
tics 1-4 that were deemed necessary for a theory to be susceptible to the relevant
Machian relational interpretation of temporality. To investigate this point in the
context of shape dynamics, we must consider the latter in a little more techni-
cal detail. The methodology for constructing the scale invariant ‘dual theory’
that Gomes et al. (2011) employ can be broken down into five distinct stages.
We will briefly outline these in order to argue that the resulting theory can be
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understood in terms of the notion of Machian temporal relationalism that we
have introduced. The first step is to explicitly identify the requisite symmetry
that will be exchanged for foliation invariance. This is the quotient group de-
noted by C/V. Here C is the (Abelian) group of conformal transformations on
the (assumed to be compact) spatial three manifold, which in our notation is σ.
The elements of this group are scalars φ : σ → R which are such that:

qab(x)→ e4φxqab(x) (18)

Pab(x)→ e−4φxPab(x) (19)

V is then a one parameter sub-group representing homogenous conformal trans-
formations. The explicit construction of C/V in terms of equivalence classes of
conformal transformations [φ] then enforces that there exists a unique repre-
sentative which leaves the three volume Vq =

∫
σ
d3x

√
|q|(x) invariant (see Eq.

61 and the surrounding discussion of Gomes et al. (2011) for details). This
then allows us to parameterise the group C/V by scalars associated with volume
preserving conformal transformations and thus indicates that we have identi-
fied the appropriate symmetry group. The next step is to formally adjoin this
symmetry to the theory. Glossing over the technicalities of exactly how this is
done (see Gomes et al. (2011, §4.1.2)), we can understand this stage in terms
of an extension of the phase space of canonical general relativity through the
introduction of additional canonical variables (the Stückelberg field and its con-
jugate momenta), which in turn, due to dynamical consistency requirements,
results in the presence of an additional set of first class constraints C(x) = 0.
Like the Hamiltonian constraints, there is one of these constraints per spatial
point. However, unlike the Hamiltonian constraints the C(x) can be straight-
forwardly understood as generating unphysical gauge transformations (akin to
the transformations generated by the momentum constraints) – these are the
volume preserving conformal transformations. Importantly, because of the fact
that they are volume preserving one of the new constraints reduces to an iden-
tity, so in fact there is one conformal constraint less then there are Hamiltonian
constraints. The third step is to impose a gauge fixing via a best matching pro-
cedure (see Gomes et al. (2011, §4.1.3) and references therein) such that all but
one of the original Hamiltonian constraints becomes second class (in the sense of
the standard Dirac (1964) terminology). The usual dynamical consistency con-
ditions of the Dirac prescription for dealing with second class constraints leads
to a particular fixing of the lapse up to a one parameter freedom. This lapse
fixing is precisely that which gives the equivalence class of CMC foliations. Still
following the Dirac procedure, it is possible to eliminate the second class con-
straints (Gomes et al. (2011, §4.1.4)) and arrive at a theory with a Hamiltonian
that is constituted by the sum of three distinct types of first class constraint
combined with the appropriate multipliers. This new theory is shape dynamics,
and its relationship with canonical general relativity is such that for a specific
gauge fixing it is equivalent to canonical general relativity in the CMC gauge.
Like canonical general relativity, both the symmetry and dynamical properties
of the theory are encoded within the structure of the different types of con-
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straints. The first of these constraints are the conformal constraints, which
are responsible for the theory’s invariance under volume preserving conformal
transformations. Next are momentum constraints, which although they have
been transformed in the passage to the new phase space can still be understood
as implementing three-dimensional diffeomorphism invariance as in the original
theory. Finally, and most important for our purposes, there is a single Hamilto-
nian constraint. This constraint is exactly analogous to the single Hamiltonian
constraint of Jacobi’s principle: it generates dynamics when considered as act-
ing on phase space and global reparameterisations when considered as acting
on an entire solution.

Let us now consider our four criteria for a theory to be susceptible to an
interpretation in terms of Machian temporal relationalism. Within the dual
theory, the parameterisation of phase space curves is arbitrary (i.e. 1), and
furthermore the canonical variables do not contain external time variables or
their momenta (i.e. 2). We can also now see that, since there is a Hamiltonian
constraint that has a dynamical phase space action when combined with an
arbitrary multiplier, we also have 3. Thus the condition for an interpretation in
terms of MTR is that there exists a methodology for constructing an emergent
temporal increment that parameterises dynamical histories in a equitable and
unique manner (i.e. 4). Since we have a single Hamiltonian constraint which is
combined with a special lapse with a one parameter freedom, intuitively it seems
that the construction of the requisite notion of global ephemeris time should be
possible within the dual theory itself. However, sidestepping the interesting
technical challenge of explicitly constructing such an object, we can, because
of the duality between the theories, consider instead the parallel issue within
CMC foliated canonical general relativity. Here it transpires our problem is in
fact effectively already solved since it has long been know that all spacetimes
admitting a CMC foliation can be parameterised by a unique geometric time
(See Belot (2007, §7.3) for discussion of the details). Since it is determined
by the difference in intrinsic curvature between slices in a dynamical solution
this geometric time is both unique and suitably equitable. Thus, almost by
definition, canonical general relativity in the CMC gauge satisfies our condition
4. We can therefore assert that both this form of general relativity and the dual
theory are amenable to an interpretation in terms of MTR.

5. Denial III: Complete Observables and The Parmenidean State

We now turn to our third denial of time which is based upon Rovelli’s com-
plete and partial observable scheme (Rovelli (1990, 1991, 2002, 2004)) as applied
to canonical general relativity within the work of Dittrich (2006, 2007) and Thie-
mann (2007). The notion of temporality that is implied by this scheme could be
conflated with our first denial in term reductive temporal relationalism. How-
ever, as we shall see, despite some superficial similarity with regard to how the
Hamiltonian constraints are treated there are in fact deep conceptual differences.
In particular, whereas reductive relationalism is predicated upon the reduced
phase space, the Rovelli-Dittrich-Thiemann (RDT) approach is unequivocally
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non-reductive. Furthermore, whereas reductive temporal relationalism, and for
that matter relationalism in general, is fundamentally a thesis with regard to
the priority of relational over purely temporal structure, the RDT approach
can only naturally be interpreted in terms of a philosophical framework which
precludes temporal structure altogether. We will begin our discussion of this
third denial by first introducing the RDT scheme in the context of the simple
nonrelativistic case of Jacobi’s theory.

5.1. The Complete and Partial Observables Ansatz

Consider the physical phase space of Jacob’s theory, ΓJ = {(p, q) ∈ ΠJ |H(p, q)J =
0}, which is a sub-manifold within the extended phase space defined by the sat-
isfaction of the constraint. According to standard Dirac machinery for dealing
with constrained Hamiltonian theories we define as the observables the class
of functions on this physical phase space which have vanishing Poisson bracket
with the constraints. With the weak inequality implying restriction to the con-
straint surface, we can write this as a condition of a general extended phase
space function f : ΓJ → R as {f,HJ} ≈ 0. Like with reduction with respect
to Hamiltonian constraints in general relativity the application of this standard
definition has immediate, and problematic, consequences for our description of
change. If the observable functions must commute with the Hamiltonian then
they must also be non-changing along dynamical trajectories. It seems that
either: i) this definition of observable; or ii) our expectations for the notion of
change that our theory provides us, must be adapted to deal with theories in
which the Hamiltonian is a constraint. The essence of the RDT both as it ap-
plies to Jacobi’s theory and general relativity is to assert that the problem lies
within i). With some ingenuity we can construct observable functions with non-
trivial representational capacity so along as we abandon the notion that these
obervables change in any conventional sense. The proposal for constructing such
obervables is what we shall call the complete and partial obervables Anstaz and
we shall introduce it here first in terms of the Dittrich (2007) nonrelativistic
treatment.

First let us label the configuration variables within phase space partial ob-
servables and the designate the specification of relations between these variables
complete observables. The latter are constituted with Jacobi’s theory by the
reparameterisation invariant specification of the value of one configuration vari-
able with respect to another – as correlations between partial observables. The
complete observables are the families of correlation functions which individu-
ally give the value of one of the partial observables when the other (the clock
variable) is equal to some real number.

Consider a system described by two configuration variables (partial ob-
servables) q1 and q2 which together with their conjugate momenta obey a
Hamiltonian constraint of the form H[q1, q2, p1, p2] = 0. The phase space,
(q1, q2, p1, p2) ∈ Γ, will as usual have a symplectic structure. We can use the
relevant symplectic form to define the action of the Hamiltonian vector field on
an arbitrary function, XH(f) = ω(Xf , XH) = {f,H}. The flow, ατH , generated
by this vector field can then be defined for every x ∈ Γ and we can see this flow
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as acting on a phase space function, ατH(f)(x), such that it takes the function
along the solution.18 For our system therefore we calculate ατH(q1)(q1, q2, p1, p2)
and ατH(q2)(q1, q2, p1, p2) We then designate one of our variables as a clock vari-
able and seek to invert an expression of the form Tx(τ) = ατH(q1)(x) such that
solving Tx(τ) = s for s ∈ R will give us an expression for τ in terms of s and q1.
In general this inversion will only be possible for a specific interval – thus the
clock variables are typically going to be at best locally well defined and so are
unlikely to be continuous on phase space and this means that the scheme will
be difficult to implement in practice. We can then insert the inverted expression
into the second flow equation ατH(q2)(x) by substituting for τ , and produce an
expression which (within the interval specified) gives us the value of q2 when
q1 takes the value s. This complete observable represents a family of functions
(one for each s) each of which expresses the correlation between our two partial
observables without reference to parameterisation.

Importantly, the conceptual leeway to consider a family of these complete
observables rather than a single correlation is dependent on the use of the unre-
duced formalism. Thus, even though we are in a sense utilising the standard
Dirac condition for observable function we are not thereby committing to the
passage to the reduced phase space that is generally assume to go along with it
– we are only being consistent with Dirac observables scheme so far as it relates
to the unreduced phase space. This makes explicit the difference between this
approach and reductive relationalism. It also implies that unlike functions of
the reduced phase space complete observables have non-trivial representational
capacity since within a given family of observables we may represent the physical
structure of a dynamical universe.

5.2. Application to General Relativity

Application of the complete and partial obervables Anstaz to canonical gen-
eral relativity poses a challenge of far greater difficulty for several reasons. We
of course have many and not one constraint and in order to be a true complete
observables the object we construct must therefore be constant along the flow
associated with all constraints. If all the constraints were mutually Poisson
commuting and finite in number this could be addressed by the technically dif-
ficult, but conceptually fairly straight forward, process of: i) introducing one
clock variable per constraint; and ii) considering as our complete observable a
product between each of the flows generated by each of the constraints when
applied to a given partial observables, as evaluated for a specific value of each
of the relevant flow parameters. We would then have a family of complete
observables which were closely analogous to those consider above for Jacobi’s
theory, only they are now constant along all the various gauge orbits. How-
ever, canonical general relativity of course has an infinite number of constraints
and, what is more, these constraints do not Poisson commute. As pointed out
by Thiemann (2007), even if we restrict our selves to the space of spatially

18See Dittrich (2007, Eq. 2.5-7) for explicit formulas.
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diffeomorphism-invariant functions (i.e., those satisfying { ~H( ~N), f} = 0) a flow
which is associated with a given Hamiltonian constraints and acts on such a
function will not itself be spatially diffeomorphism-invariant since the bracket
{ ~H( ~N), H(N)} = −κH(LNa

N) is not invariant. Moreover, even if we remove
the momentum constraints altogether and presume ourselves to be working in
superspace we still have to deal with the even more highly non-trivial Poisson
bracket between the Hamiltonian constraints which features structure functions.
Thus, the application of the basic RDT scheme outlined above to canonical gen-
eral relativity poses a significant challenge.

Encouragingly, a number of proposals for meeting this challenge have been
put forward. One is that of Dittrich (2006), ? which gives an explicit demon-
stration of how complete observables for general relativity may be constructed
in stages by first computing partially compete observables which are complete
observables with respect to a sub-algebra of the constraints and then using these
objects to to calculate complete observables with respect to all the constraints.
The partial observables in this construction are constituted by spacetime scalars
which in turn are constructed out of canonical fields, and this process serves to
reduce the number of constraints that must be dealt with. For reasons of space
we will not here attempt a explanation of the details of the Dittrich approach
but rather turn our attention to an alternative methodology know as the master
constraint programme. The choice between these two approaches is far from a
trivial one and particularly with regard to quantisation it may have significant
technical implications. However, for our purposes it must be noted that in re-
spect of the interpretational implications with regard to time the fundamental
features are common to both methodologies and we are choosing to focus on
the second only because it may be introduced more concisely.

In general the idea of the master constraint programme (Thiemann (2006,
2007)) is to re-write constraint functions, ϕj(p, q) = 0, in terms of a single
equation which will be satisfied under the same conditions. This new single
constraint is then the master constraint. A simple example is given by taking a
positive quadratic two form Kij and constructing the equation:

M := Kijϕiϕj = 0 (20)

This equation is satisfied if and only if all the individual constraint functions are
vanishing and thus defines the same physical phase space Σ that we had before.
An observable condition for the extended phase space is then given considering
the class of functions such that:

{{M,O},O}|M=0 = 0 (21)

i.e. those functions which have a vanishing double Poisson bracket with the
master constraint on the constraint surface. Strictly, this is a restriction that
implies that the observable functions generate finite symplectomorphisms which
preserve Σ, rather than the usual Dirac condition that the observables are con-
stant along the null directions generated by the individual constraints. However,
it can be demonstrated that the two conditions are equivalent Thiemann (2006).
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For canonical general relativity the explicit form of the master constraint is given
as:

M =
1

2

∫
σ

d3x
H(x)2√
det(q)(x)

(22)

This constraint has a number of formal virtues, in particular it is such that its
satisfaction implies that H(N) = 0 for all N meaning that encodes the same
constraint surface as the Hamiltonian constraints. Furthermore, it is also such
that { ~H( ~N),M} = 0 meaning that it is invariant under spatial diffeomorphisms
and will lead us to a constraint algebra with a much simpler form; the master
constraint algebra, M:

{Ha(Na), Ha(N ′a)} = −κHa(LNa
N ′a) (23)

{Ha(Na),M} = 0 (24)

{M,M} = 0 (25)

We no longer have to deal with the presence of structure functions in our con-
straint algebra since the highly complex expression (Eq. 10) in the Dirac algebra
is replaced by the trivial self-commutation expression above. In substituting a
single master constraint for the infinite set of Hamiltonian constraints we avoid
having to explicitly confront the difficulties of the Poisson bracket algebra with
which the latter are associated. Assuming the momentum constraints have been
dealt with, either through reduction or via the Dittrich methodology mentioned
above, we could now proceed to construct complete observable with respect to
single master constraint by considering the flow ατM. A family of complete ob-
servables is then constituted the one parameter set of functions defined by the
value of one partial observable when the other takes the value s. Assuming
these functions are continuous a given complete observables can then be taken
to be invariant under the simultaneous phase space transformations generated
by all the Hamiltonian constraints taken together. Thus, as in the case of Ja-
cobi’s theory we arrive at an objects which is defined such that it is constant
along the dynamical trajectory associated with the relevant ‘gauge orbit’ – but
which has non-trivial representational capacity because it is part of a family of
such functions defined within the unreduced formalism. This strange temporal
structure is the hallmark of compete observables when applied to the case of
Hamiltonian constraints and we now turn to the consideration of the associated
interpretation implications for the nature of time.

5.3. Physical States as Timeless Histories

In our discussion of the Hamiltonian constraints of canonical gravity in §2.3
we emphasised the necessity of treating the constraints such that both the fun-
damental symmetry of the theory and dynamics are respected. The problem
of triviality that beset the reductive temporal relational stance can be under-
stood as a failure on the second count and the problem of indeterminism that
troubled the Machian temporal relationalist stance (sans a fixed foliation) can
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be understood as a failure on the first. The kernel of brilliance that allows
the RDT scheme to avoid both of these problems is to construct the families
of complete observables such that the specification of each family member is
deterministic, since they are individually constant along the orbit associated
with the Hamiltonian constraints, and yet collectively they are still adequate to
represent dynamical universes because of the use of the unreduced phase space.
Thus, by endorsing the complete observables as our fundamental object we are
provided with an ontology which solves at least one aspect of the problem of
time in canonical gravity. However, unlike in a shape dynamics implementation
of Machian temporal relationalism, we are not provided with a notion of how to
represent change. In the case of our second denial, although time is absent in
the sense that it has been relegated to an emergent level, it is still a substantive
notion as derived concepts. Moreover, change is still a well defined notion, as we
are free to specify the evolution of observable quantities between hypersurfaces
with respect to an ephemeris time. What notion of change can we attach to the
RDT scheme?

In order to answer this question it is instructive to consider certain key re-
marks of the three physicists themselves. In discussion of the nonrelativistic
application of the complete and partial observables scheme Rovelli (2002) dis-
tinguishes the ‘physical phase space’ as the ‘space of orbits generated by the
constraints on the constraint surface’ (p.3). In a similar vain Dittrich (2007)
defines the physical state as an ‘equivalence class of phase space points’ which
‘can be identified with an n-dimensional gauge orbit’ (p1894). So far as they
apply to the Hamiltonian constraints as considered acting on the phase space of
canonical general relativity such a notion of ‘physical space space’ and ‘physical
state’ imply an equation between the concept of a history and the concept of
a physical state which is radically discontinuous with conventional mechanical
theory. Typically states are taken to be instantaneous configurations and histo-
ries sequences of such states. In standard gauge theories, where the constraints
can be understood unproblematically as generating unphysical transformations,
phase space points connected by a gauge orbit are classified as the same state
because the difference between them is taken to be unphysical. Dynamical his-
tories are then constituted by either curves within the unreduced phase space
which are no where parallel to these orbits or, more simply by curves, within
the reduced phase space. Following the remarks of Rovelli and Dittrich above,
the interpretation of change within the complete observables scheme still leads
us to classify two points on a ‘gauge orbit’ as the same state; however this is
because the word ‘state’ is redefined such that in includes all points on the orbit.
For the case of the Hamiltonian constraints of general relativity this is simply to
adopt a notion of state that involves no temporal specification at all, but rather
implies that the observables of a theory are smeared everywhere along entire
histories. Put more precisely, the complete observables can be understood as
‘completely non-local in the unphysical time’ (Thiemann (2007, p.81)).

The only viable interpretation of the RDT scheme as applied to genera rel-
ativity is then one in which time and change have no part – not even at an
emergent level. This is to adopt a starkly Parmenidean view – time is purely an
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illusion – and thus constitutes a denial of time in a much thicker sense than that
involved in Machian temporal relationalism. It is, however, unlike that involved
in reductive temporal relationalism, a coherent denial. We may still describe
dynamically nontrivial universes within the formalism but almost paradoxically
we are able to do this whilst disavowing change. The key to untying this seem-
ingly Gordian conceptual knot is that although individual complete observables
are eternally frozen, within the families of such observables – which can only
exist because we have avoided reduction – we have access to additional concep-
tual equipment which allows for the representation of universes corresponding
to dynamical spacetimes. This brings us to an important qualificatory remark
regarding our third denial of time. The Parmenidean position with regard to
change that is forced upon us by RDT scheme does not equate to a denial of
time either in the sense of asserting that there exists only one time. Nor is it a
position which implies that the temporal dimension is less fundamental than the
spatial dimensions – in of itself it is entirely consistent with a four dimensional
spacetime picture of the world. We can therefore see that rather than being al-
lied to the Machian notion of timelessness of our second denial, this third denial
is in fact in some ways antithetical to it. In particular, if we were to couple the
application of the complete observables scheme to the Hamiltonian constraints
with an application of the scheme to the momentum constraints as well, then
the resulting doubly complete observables will be objects smeared non-locally
in the unphysical spacetime coordinates and this is an ontology which clearly
is not amenable to the Machian temporally relationalist interpretation since it
is predicated upon a fundamentally four rather than three dimensional picture
of reality. Thus, the choice between our two denials is effectively that between:
i) loosing four dimensionality and absolute scale but retaining change; and ii)
retaining absolute scale and four dimensionality but loosing change.

6. Conclusion

Our analysis of the temporal structure of canonical general relativity and its
various interpretations has rested upon the need to respect the fundamentally
dual role of the Hamiltonian constraints that occur within the theory. Any
approach towards the formal structure of the theory must take into account the
role of these constrains in generating dynamics, in the context of phase space,
and of generating unphysical symmetry transformations, in the context of a
hypersurface embedded within a solution. It is in this respect that the first of
our three denials of time was found to be acutely deficient, and it is because
of this deficiency that the position of reductive temporal relationalism can only
be found to be dynamically trivialising. It is also due to a failure to respect
the the duality of roles played by the Hamiltonian constraints that our second
denial was hampered by the problem of indeterminism, and, according to our
analysis, it is only by removing the symmetry generating side of the Hamiltonian
constraints and fixing a foliation that the second denial can remain consistent.
The third and final denial of time is the starkest, and most subtle. Through
implementation of the complete observables scheme within canonical general
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relativity we are led inevitably towards disavowing change and therefore time,
and yet it seems that we may also maintain the conception of the world is terms
of some aspect of the four dimensionality of a spacetime approach.

Between the two interpretations of canonical general relativity that are allied
to the application of Rovelli-Dittirch-Thiemann scheme and the scale invariant
implementation of Machian temporal relationalism there are clearly key formal
and philosophical differences. However, the choice between these approaches,
and therefore their resulting interpretations, is as yet in want of a strong tech-
nical or empirical basis. What would seem the best candidate for a criterion to
break this interpretational underdetermination must be the prospect that each
provides for a canonical quantisation of general relativity. Thus, the last word in
the interpretation of the temporal structure of canonical general relativity will
probably in the end come from within a solution to the infamous challenge of
constructing a quantum theory of gravity. Given our current state of ignorance,
it perhaps best behoves us to accept; upon that which we cannot as yet sensibly
speak of, we should remain silent.
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Hojman, S. A., Kuchař, K., Teitelboim, C., Jan. 1976. Geometrodynamics re-
gained. Annals of Physics 96, 88–135.

Isham, C., 1992. Canonical quantum gravity and the problem of time. Arxiv
preprint gr-qc.
URL http://arxiv.org/abs/grqc/9210011

Isham, C., Kuchař, K., 1985. Representations of spacetime diffeomorphisms. II.
Canonical geometrodynamics. Annals of Physics 164 (2), 316 – 333.
URL http://www.sciencedirect.com/science/article/pii/0003491685900193
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