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Abstract

The aim of the paper is to develop a proper mathematical formalism
which can help to clarify the necessary conceptual plugins to the special
principle of relativity and leads to a deeper understanding of the principle
in its widest generality.

1 Introduction

The aim of this paper is to spell out the (special) relativity principle (RP) in a
precise mathematical form. There are various verbal formulations of the princi-
ple. In its shortest form it says that “All the laws of physics take the same form
in any inertial frame of reference.” The laws of physics in a reference frame
K are meant to be the laws of physics as they are ascertained by an observer
being at rest relative to the reference frame K; less anthropomorphically, as
they appear in the results of the measurements, such that both the measuring
equipments and the objects to be measured are co-moving with K.

For example, consider the following simple application of the principle in
Einstein’s 1905 paper:

Let there be given a stationary rigid rod; and let its length be l as
measured by a measuring-rod which is also stationary. We now imagine
the axis of the rod lying along the axis of x of the stationary system
of co-ordinates, and that a uniform motion of parallel translation
with velocity v along the axis of x in the direction of increasing x
is then imparted to the rod. We now inquire as to the length of the
moving rod, and imagine its length to be ascertained by the follow-
ing two operations:

(a) The observer moves together with the given measuring-rod and the
rod to be measured, and measures the length of the rod directly
by superposing the measuring-rod, in just the same way as if all
three were at rest.
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(b) By means of stationary clocks set up in the stationary system
and synchronizing in accordance with [the light-signal syn-
chronization], the observer ascertains at what points of the
stationary system the two ends of the rod to be measured are
located at a definite time. The distance between these two
points, measured by the measuring-rod already employed,
which in this case is at rest, is also a length which may be
designated “the length of the rod.”

In accordance with the principle of relativity the length to be discovered
by the operation (a)—we will call it “the length of the rod in the mov-
ing system”—must be equal to the length l of the stationary rod.

The length to be discovered by the operation (b) we will call “the
length of the (moving) rod in the stationary system.” This we shall
determine on the basis of our two principles, and we shall find that it
differs from l. [all italics added]

Thus, with the following formulation (Szabó 2004) one can express in more
detail how the principle is actually understood:

(RP) The physical description of the behavior of a system co-moving as a
whole with an inertial frame K, expressed in terms of the results of
measurements obtainable by means of measuring equipments co-
moving with K, takes the same form as the description of the similar
behavior of the same system when it is co-moving with another
inertial frame K′, expressed in terms of the measurements with the
same equipments when they are co-moving with K′.

Our main concern in this paper is to unpack the verbal statement (RP) and to
provide its general mathematical formulation. We are hopeful that the formal-
ism we develop here helps to clarify the required conceptual plugins to the RP
and leads to a deeper understanding of the principle in its widest generality.

2 The statement of the RP

Consider an arbitrary collection of physical quantities ξ1, ξ2, . . . ξn in K, oper-
ationally defined by means of some operations with some equipments being
at rest in K. Let ξ ′1, ξ ′2, . . . ξ ′n denote another collection of physical quantities
that are defined by the same operations with the same equipments, but in different
state of motion, namely, in which they are all moving with constant velocity V
relative to K, co-moving with K′. Since, for all i = 1, 2, . . . n, both ξi and ξ ′i are
measured by the same equipment—although in different physical conditions—
with the same pointer scale, it is plausible to assume that the possible values
of ξi and ξ ′i range over the same σi ⊆ R. We introduce the following notation:
Σ = ×n

i=1σi ⊆ Rn.
It must be emphasized that quantities ξ1, ξ2, . . . ξn and ξ ′1, ξ ′2, . . . ξ ′n are,

a priori, different physical quantities, due to the fact that the operations by
which the quantities are defined are performed under different physical con-
ditions; with measuring equipments of different states of motion. Any objec-
tive (non-conventional) relationship between them must be a contingent law
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Figure 1: The relativity principle

of nature. Thus, the same numeric values, say, (5, 12, . . . 61) ∈ Rn corre-
spond to different states of affairs when ξ1 = 5, ξ2 = 12, . . . ξn = 61 versus
ξ ′1 = 5, ξ ′2 = 12, . . . ξ ′n = 61. Consequently, (ξ1, ξ2, . . . ξn) and

(
ξ ′1, ξ ′2, . . . ξ ′n

)
are not elements of the same “space of physical quantities”; although the nu-
meric values of the physical quantities, in both cases, can be represented in
Σ = ×n

i=1σi ⊆ Rn.
Mathematically, one can express this fact by means of two different n-

dimensional manifolds, Ω and Ω′, each covered by one global coordinate sys-
tem, φ and φ′ respectively, such that φ : Ω→ Σ assigns to every point of Ω one
of the possible n-tuples of numerical values of physical quantities ξ1, ξ2, . . . ξn
and φ′ : Ω′ → Σ assigns to every point of Ω′ one of the possible n-tuples of nu-
merical values of physical quantities ξ ′1, ξ ′2, . . . ξ ′n (Fig. 1). In this way, a point
ω ∈ Ω represents the class of physical constellations in which the quantities
ξ1, ξ2, . . . ξn take the values ξ1 = φ1(ω), ξ2 = φ2(ω), . . . ξn = φn(ω); simi-
larly, a point ω′ ∈ Ω′ represents the physical constellation characterized by
ξ ′1 = φ′1(ω

′), ξ ′2 = φ′2(ω
′), . . . ξ ′n = φ′n(ω

′).1 Again, these physical constella-
tions are generally different, even in case of φ(ω) = φ′(ω′) ∈ Rn.

In the above sense, the points of Ω and the points of Ω′ range over all pos-
sible value combinations of physical quantities ξ1, ξ2, . . . ξn and ξ ′1, ξ ′2, . . . ξ ′n.
It might be the case however that some combinations are impossible, in the
sense that they never come to existence in the physical world. Let us denote
by R ⊆ Ω and R′ ⊆ Ω′ the physically admissible parts of Ω and Ω′. Note that
φ(R) is not necessarily identical with φ′(R′).2

We shall use a bijection PV : Ω → Ω′ (“putting primes”; Bell 1987, p. 73)
defined by means of the two coordinate maps φ and φ′:

PV
de f
=
(
φ′
)−1 ◦ φ (1)

In contrast with PV, we now introduce the concept of what we call the

1φi = πi ◦ φ, where πi is the i-th coordinate projection in Rn.
2One can show however that φ(R) = φ′(R′) if the RP, that is (7), holds.
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“transformation” of physical quantities. It is conceived as a bijection

TV : Ω ⊇ R→ R′ ⊆ Ω′ (2)

determined by the contingent fact that whenever a physical constellation be-
longs to the class represented by some ω ∈ R then it also belongs to the class
represented by TV(ω) ∈ R′, and vice versa. Since ξ1, ξ2, . . . ξn can be various
physical quantities in the various contexts, nothing guarantees that such a bi-
jection exists. We assume however the existence of TV.

Remark 1. It is worthwhile to consider several examples.

(a) Let (ξ1, ξ2) be (p, T), the pressure and the temperature of a given
(equilibrium) gas; and let

(
ξ ′1, ξ ′2

)
be (p′, T′), the pressure and the

temperature of the same gas, measured by the moving observer in
K′. In this case, there exists a one-to-one TV:

p′ = p (3)

T′ = Tγ−1 (4)

where γ =
(

1− V2

c2

)− 1
2 (Tolman 1949, pp. 158–159).3 A point ω ∈

Ω of coordinates, say, p = 101325 and T = 300 (in units Pa and ◦K)
represents the class of physical constellations—the class of possi-
ble worlds—in which the gas in question has pressure of 101325 Pa
and temperature of 300 ◦K. Due to (4), this class of physical con-
stellations is different from the one represented by PV (ω) ∈ Ω′ of
coordinates p′ = 101325 and T′ = 300; but it is identical to the
class of constellations represented by TV (ω) ∈ Ω′ of coordinates
p′ = 101325 and T′ = 300γ−1.

(b) Let (ξ1, ξ2, . . . ξ10) be
(
t, x, y, z, Ex, Ey, Ez, rx, ry, rz

)
, the time, the

space coordinates where the electric field strength is taken, the three
components of the field strength, and the space coordinates of a
particle. And let

(
ξ ′1, ξ ′2, . . . ξ ′10

)
be
(

t′, x′, y′, z′, E′x, E′y, E′z, r′x, r′y, r′z
)

,
the similar quantities obtainable by means of measuring equip-
ments co-moving with K′. In this case, there is no suitable one-
to-one TV, as the electric field strength in K does not determine the
electric field strength in K′, and vice versa.

(c) Let (ξ1, ξ2, . . . ξ13) be
(
t, x, y, z, Ex, Ey, Ez, Bx, By, Bz, rx, ry, rz

)
and let(

ξ ′1, ξ ′2, . . . ξ ′13
)

be
(

t′, x′, y′, z′, E′x, E′y, E′z, B′x, B′y, B′z, r′x, r′y, r′z
)

, where

Bx, By, Bz and B′x, B′y, B′z are the magnetic field strengths in K and
K′. In this case, in contrast with (b), the well known Lorentz trans-
formations of the spatio-temporal coordinates and the electric and
magnetic field strengths constitute a proper one-to-one TV. y

Next we turn to the general formulation of the concept of the description of a
particular behavior of a physical system, say, in K. We are probably not far from

3There is a debate over the proper transformation rules (Georgieu 1969).
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the truth if we assume that such a description is, in its most abstract sense, a
relation between physical quantities ξ1, ξ2, . . . ξn; in other words, it can be given
as a subset F ⊂ R.

Remark 2. Consider the above example (a) in Remark 1. An isochoric process
of the gas can be described by the subset F that is, in coordinates, determined
by the following single equation:

F {p = κT (5)

with a certain constant κ.
To give another example, consider the case (b). The relation F given by

equations

F



Ex = E0

Ey = 0

Ez = 0
rx = x0 + v0t
ry = 0

rz = 0

(6)

with some specific values of E0, x0, v0 describes a neutral particle moving with
constant velocity in a static homogeneous electric field. y

Of course, one may not assume that an arbitrary relation F ⊂ R has physical
meaning. Let E ⊂ 2R be the set of those F ⊂ R which describe a particular be-
havior of the system. We shall call E the set of equations describing the physical
system in question. The term is entirely justified. In practical calculations, two
systems of equations are regarded to be equivalent if and only if they have the
same solutions. Therefore, a system of equations can be identified with the set
of its solutions. In general, the equations can be algebraic equations, ordinary
and partial integro-differential equations, linear and nonlinear, whatever. So,
in its most abstract sense, a system of equations is a set of subsets of R.

Now, consider the following subsets4 of Ω′, determined by an F ∈ E :

PV(F) ⊆ Ω′ which formally is the “primed F”, that is a relation of exactly the
same “form” as F, but in the primed variables ξ ′1, ξ ′2, . . . ξ ′n. Note
that relation PV(F) does not necessarily describe a true physical
situation, as it can be not realized in nature.

TV(F) ⊆ R′ which is the same description of the same physical situation as F,
but expressed in the primed variables.

We need one more concept. The RP is about the connection between two situa-
tions: one is in which the system, as a whole, is at rest relative to inertial frame
K, the other is in which the system shows the similar behavior, but being in a
collective motion relative to K, co-moving with K′. In other words, we assume
the existence of a map MV : E → E , assigning to each F ∈ E , stipulated to de-
scribe the situation in which the system is co-moving as a whole with inertial
frame K, another relation MV(F) ∈ E , describing the similar behavior of the

4We denote the map of type Ω → Ω′ and its direct image maps of type 2Ω → 2Ω′ and 22Ω →
22Ω′

or their restrictions by the same symbol.
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same system when it is, as a whole, co-moving with inertial frame K′, that is,
when it is in a collective motion with velocity V relative to K.

Now, applying all these concepts, what the RP states is the following:

TV (MV(F)) = PV(F) for all F ∈ E (7)

or equivalently,

PV(F) ⊂ R′ and MV(F) = T−1
V (PV(F)) for all F ∈ E (8)

Remark 3. Notice that, for a given fixed F, everything on the right hand side of
the equation in (8), PV and TV, are determined only by the physical behaviors of
the measuring equipments when they are in various states of motion. In contrast,
the meaning of the left hand side, MV(F), depends on the physical behavior of
the object physical system described by F and MV(F), when it is in various states
of motion. That is to say, the two sides of the equation reflect the behaviors of
different parts of the physical reality; and the RP expresses a law-like regularity
between the behaviors of these different parts. y

Remark 4. Let us illustrate these concepts with a well-known textbook exam-
ple of a static versus uniformly moving charged particle. The static field of a
charge q being at rest at point (x0, y0, z0) in K is the following:

F



Ex =
q (x− x0)(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)3/2

Ey =
q (y− y0)(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)3/2

Ez =
q (z− z0)(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)3/2

Bx = 0
By = 0

Bz = 0

(9)

The stationary field of a charge q moving at constant velocity V = (V, 0, 0)
relative to K can be obtained by solving the equations of electrodynamics (in
K) with the time-depending source (for example, Jackson 1999, pp. 661–665):
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MV(F)



Ex =
qX0(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ey =
γq (y− y0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ez =
γq (z− z0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Bx = 0

By = −c−2VEz

Bz = c−2VEy

(10)

where where (x0, y0, z0) is the initial position of the particle at t = 0, X0 =
γ (x− (x0 + Vt)).

Now, we form the same expressions as (9) but in the primed variables of the
co-moving reference frame K′:

PV (F)



E′x =
q′ (x′ − x′0)((

x′ − x′0
)2

+
(
y′ − y′0

)2
+
(
z′ − z′0

)2
)3/2

E′y =
q′ (y′ − y′0)((

x′ − x′0
)2

+
(
y′ − y′0

)2
+
(
z′ − z′0

)2
)3/2

E′z =
q′ (z′ − z′0)((

x′ − x′0
)2

+
(
y′ − y′0

)2
+
(
z′ − z′0

)2
)3/2

B′x = 0

B′y = 0

B′z = 0

(11)

By means of the Lorentz transformation rules of the space-time coordinates,
the field strengths and the electric charge (e.g. Tolman 1949), one can express
(11) in terms of the original variables of K:

T−1
V (PV(F))



Ex =
qX0(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ey =
γq (y− y0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ez =
γq (z− z0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Bx = 0

By = −c−2VEz

Bz = c−2VEy

(12)
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We find that the result is indeed the same as (10) describing the field of the
moving charge: MV(F) = T−1

V (PV(F)). That is to say, the RP seems to be true
in this particular case.

Reversely, assuming that the particle + electromagnetic field system satisfies
the RP, that is, (8) holds for the equations of electrodynamics, one can derive the
stationary field of a uniformly moving point charge (10) from the static field
(9). y

3 Covariance

Now we have a strict mathematical formulation of the RP for a physical system
described by a system of equations E . Remarkably, however, we still have not
encountered the concept of “covariance” of equations E . The reason is that the
RP and the covariance of equations E are not equivalent—in contrast to what
many believe. In fact, the logical relationship between the two conditions is
much more complex. To see this relationship in more detail, we previously
need to clarify a few things.

Consider the following two sets: PV(E) = {PV(F)|F ∈ E} and TV(E) =
{TV(F)|F ∈ E}. Since a system of equations can be identified with its set of
solutions, PV(E) ⊂ 2Ω′ and TV(E) ⊂ 2R′ can be regarded as two systems of
equations for functional relations between ξ ′1, ξ ′2, . . . ξ ′n. In the primed vari-
ables, PV(E) has “the same form” as E . Nevertheless, it can be the case that
PV(E) does not express a true physical law, in the sense that its solutions do
not necessarily describe true physical situations. In contrast, TV(E) is nothing
but E expressed in variables ξ ′1, ξ ′2, . . . ξ ′n.

Now, covariance intuitively means that equations E “preserve their forms
against the transformation TV”. That is, in terms of the formalism we devel-
oped:

TV(E) = PV(E) (13)

or, equivalently,
PV(E) ⊂ 2R′ and E = T−1

V (PV(E)) (14)

The first thing we have to make clear is that—even if we know or presume
that it holds—covariance (14) is obviously not sufficient for the RP (8). For, (14)
only guarantees the invariance of the set of solutions, E , against T−1

V ◦ PV , but
it says nothing about which solution of E corresponds to which solution. In
Bell’s words:

Lorentz invariance alone shows that for any state of a system at rest
there is a corresponding ‘primed’ state of that system in motion. But
it does not tell us that if the system is set anyhow in motion, it will
actually go into the ’primed’ of the original state, rather than into
the ‘prime’ of some other state of the original system. (Bell 1987,
p. 75)

While it is the very essence of the RP that the solution MV(F), describing the
system in motion relative to K, corresponds to solution T−1

V ◦ PV(F). For exam-
ple, what we use in the above mentioned textbook derivation of the stationary
electromagnetic field of a uniformly moving point charge (end of Remark 4)
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Figure 2: The RP only implies that TV(E) ⊇ TV ◦MV (E) = PV (E). Covariance
of E would require that TV(E) = PV(E), which is generally not the case

is not the covariance of the equations—that would be not enough—but state-
ment (8), that is, what the RP claims about the solutions of the equations in
detail.

In a precise sense, covariance is not only not sufficient for the RP, but it is
not even necessary (Fig. 2). The RP only implies that

TV(E) ⊇ TV (MV (E)) = PV (E) (15)

(7) implies (13) only if we have the following extra condition:

MV (E) = E (16)

4 Initial and boundary conditions

Let us finally consider the situation when the solutions of a system of equa-
tions E are specified by some extra conditions—initial and/or boundary value
conditions, for example. In our general formalism, an extra condition for E is
a system of equations ψ ⊂ 2Ω such that there exists exactly one solution [ψ]E
satisfying both E and ψ. That is, E ∩ ψ = {[ψ]E}, where {[ψ]E} is a singleton
set. Since E ⊂ 2R, without loss of generality we may assume that ψ ⊂ 2R.

Since PV and TV are injective, PV (ψ) and TV (ψ) are extra conditions for
equations PV (E) and TV (E) respectively, and we have

PV ([ψ]E ) = [PV (ψ)]PV(E) (17)

TV ([ψ]E ) = [TV (ψ)]TV(E) (18)

for all extra conditions ψ for E . Similarly, if PV(E), PV (ψ) ⊂ 2R′ then
T−1

V (PV (ψ)) is an extra condition for T−1
V (PV (E)), and[

T−1
V (PV (ψ))

]
T−1

V (PV(E))
= T−1

V

(
[PV(ψ)]PV(E)

)
(19)

Consider now a set of extra conditions C ⊂ 22R
. Assume that C is a

parametrizing set of extra conditions for E ; by which we mean that for all F ∈ E
there exists exactly one ψ ∈ C such that F = [ψ]E ; in other words,

C 3 ψ 7→ [ψ]E ∈ E (20)

9



is a bijection.
MV : E → E was introduced as a map between solutions of E . Now, as there

is a one-to-one correspondence between the elements of C and E , it generates
a map MV : C → C, such that

[MV(ψ)]E = MV ([ψ]E ) (21)

Thus, from (17) and (21), the RP, that is (7), has the following form:

TV ([MV(ψ)]E ) = [PV(ψ)]PV(E) for all ψ ∈ C (22)

or, equivalently, (8) reads

[PV(ψ)]PV(E) ⊂ R′ and [MV(ψ)]E = T−1
V

(
[PV(ψ)]PV(E)

)
(23)

One might make use of the following theorem:

Theorem 1. Assume that the system of equations E ⊂ 2R is covariant, that is, (13) is
satisfied. Then,

(i) for all ψ ∈ C, TV (MV (ψ)) is an extra condition for the system of equations
PV (E), and, (22) is equivalent to the following condition:

[TV (MV(ψ))]PV(E) = [PV(ψ)]PV(E) (24)

(ii) for all ψ ∈ C, PV (ψ) ⊂ 2R′ , T−1
V (PV (ψ)) is an extra condition for the system

of equations E and (23) is equivalent to the following condition:

[MV(ψ)]E =
[

T−1
V (PV (ψ))

]
E

(25)

Proof. (i) Obviously, TV (E) ∩ TV (MV (ψ)) exists and is a singleton; and, due
to (13), it is equal to PV (E) ∩ TV (MV (ψ)); therefore this latter is a singleton,
too. Applying (18) and (13), we have

TV ([MV(ψ)]E ) = [TV (MV (ψ))]TV(E) = [TV (MV (ψ))]PV(E) (26)

therefore, (24) implies (23).
(ii) Similarly, due to PV (ψ) ⊂ 2R′ and (14), E ∩ T−1

V (PV (ψ)) exists and is
a singleton. Applying (19) and (14), we have

T−1
V

(
[PV(ψ)]PV(E)

)
=
[

T−1
V (PV (ψ))

]
T−1

V (PV(E))
=
[

T−1
V (PV (ψ))

]
E

(27)

that is, (25) implies (23).

Remark 5. Let us note a few important facts which can easily be seen in the
formalism we developed:

(a) The covariance of a set of equations E does not imply the covariance
of a subset of equations separately. It is because a smaller set of
equations corresponds to an E∗ ⊂ 2R such that E ⊂ E∗; and it does
not follow from (13) that TV(E∗) = PV(E∗).
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(b) Similarly, the covariance of a set of equations E does not guarantee
the covariance of an arbitrary set of equations which is only satis-
factory to E ; for example, when the solutions of E are restricted by
some extra conditions. Because from (13) it does not follow that
TV(E∗) = PV(E∗) for an arbitrary E∗ ⊂ E .

(c) The same holds, of course, for the combination of cases (a) and (b);
for example, when we have a smaller set of equations E∗ ⊃ E to-
gether with some extra conditions ψ ⊂ 2R. For, (13) does not imply
that TV(E∗ ∩ ψ) = PV(E∗ ∩ ψ).

(d) However, covariance is guaranteed if a covariant set of equations is
restricted with a covariant set of extra conditions; because TV(E) =
PV(E) and TV(ψ) = PV(ψ) trivially imply that TV(E ∩ψ) = PV(E ∩
ψ). y

5 Concluding discussions and open problems

As we have seen, the notion of MV plays a crucial role. Formally, one could
say, the RP is relative to the definition of MV; the physical content of the RP
depends on how this concept is physically understood. But, what does it mean
to say that a physical system is the same and of the same behavior as the one
described by F, except that it is, as a whole, in a collective motion with velocity
V relative to K? Without answering this crucial question the RP is meaningless.

In fact, the same question can be asked with respect to the definitions of
quantities ξ ′1, ξ ′2, . . . ξ ′n—and, therefore, with respect to the meanings of TV and
PV. For, ξ ′1, ξ ′2, . . . ξ ′n are not simply arbitrary variables assigned to reference
frame K′, in one-to-one relations with ξ1, ξ2, . . . ξn, but the physical quantities
obtainable by means of the same operations with the same measuring equip-
ments as in the operational definitions of ξ1, ξ2, . . . ξn, except that everything
is in a collective motion with velocity V. Therefore, we should know what we
mean by “the same measuring equipment but in collective motion”. From this
point of view, it does not matter whether the system in question is the object to
be observed or a measuring equipment involved in the observation.

These questions can be answered only within the given physical context;
and, one must admit, in some situations the answers are non trivial and am-
biguous (cf. Szabó 2004). At this level of generality we only want to point out
two things.

First, whatever is the definition of MV : E → E in the given context, the
following is a minimal requirement for it to have the assumed physical mean-
ing:

(M) Relations F ∈ E must describe situations which can be meaning-
fully characterized as such in which the system as a whole is at rest
or in motion with some velocity relative to a frame of reference.

For example, in Remark 4, solutions (9) and (10) satisfy this condition, as in
both cases the system of the charged particle + electromagnetic field qualifies
as a system in collective rest or motion. The electromagnetic field is in collective
motion with the point charge of velocity V (Fig. 3) in the following sense:
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Figure 3: The stationary field of a uniformly moving point charge is in collec-
tive motion together with the point charge

E(r, t) = E(r−Vδt, t− δt) (28)
B(r, t) = B(r−Vδt, t− δt) (29)

Notice that requirement (M) says nothing about whether and how the fact
that the system as a whole is at rest or in motion with some velocity is reflected
in the solutions F ∈ E . It does not even require that this fact can be expressed
in terms of ξ1, ξ2, . . . ξn. It only requires that each F ∈ E belong to a physi-
cal situation in which it is meaningful to say—perhaps in terms of quantities
different from ξ1, ξ2, . . . ξn—that the system is at rest or in motion relative to
a reference frame. How a concrete physical situation can be characterized as
such in which the system is at rest or in motion is a separate problem, which
can be discussed in the particular contexts.

The second thing to be said about MV(F) is that it is a notion determined
by the concrete physical context; but it is not equal to the “Lorentz boosted
solution” T−1

V (PV(F)) by definition —as a little reflection shows:

(a) In this case, (8) would read

T−1
V (PV(F)) = T−1

V (PV(F)) (30)

That is, the RP would become a tautology; a statement which is
always true, independently of any contingent fact of nature; inde-
pendently of the actual behavior of moving physical objects; and
independently of the actual empirical meanings of physical quan-
tities ξ ′1, ξ ′2, . . . ξ ′n. But, the RP is supposed to be a fundamental law
of nature. Note that a tautology is entirely different from a funda-
mental principle, even if the principle is used as a fundamental hy-
pothesis or fundamental premise of a theory, from which one de-
rives further physical statements. For, a fundamental premise, as
expressing a contingent fact of nature, is potentially falsifiable by
testing its consequences; a tautology is not.
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(b) Even if accepted, MV(F)
de f
= T−1

V (PV(F)) can provide physical
meaning to MV(F) only if we know the meanings of TV and PV, that
is, if we know the empirical meanings of the quantities denoted by
ξ ′1, ξ ′2, . . . ξ ′n. But, the physical meaning of ξ ′1, ξ ′2, . . . ξ ′n are obtained
from the operational definitions: they are the quantities obtained by
“the same measurements with the same equipments when they are,
as a whole, co-moving with K′ with velocity V relative to K”. Sym-
bolically, we need, priory, the concepts of MV(ξi-equipment at rest).
And this is a conceptual circularity: in order to have the concept of
what it is to be an MV(brick at rest) the (size)’ of which we would
like to ascertain, we need to have the concept of what it is to be
an MV(measuring rod at rest)—which is exactly the same concep-
tual problem.

(c) One might claim that we do not need to specify the concepts of
MV(ξi-equipment at rest) in order to know the values of quantities
ξ ′1, ξ ′2, . . . ξ ′n we obtain by the measurements with the moving equip-
ments, given that we can know the transformation rule TV indepen-
dently of knowing the operational definitions of ξ ′1, ξ ′2, . . . ξ ′n. Typi-
cally, TV is thought to be derived from the assumption that the RP
(8) holds. If however MV is, by definition, equal to T−1

V ◦ PV, then
in place of (8) we have the tautology (30), which does not determine
TV.

(d) Therefore, unsurprisingly, it is not the RP from which the transfor-
mation rules are routinely deduced, but the covariance (14). As we
have seen, however, covariance is, in general, neither sufficient nor
necessary for the RP. Whether (8) implies (14) hinges on the physi-
cal fact whether (16) is satisfied. But, if MV is taken to be T−1

V ◦ PV
by definition, the RP becomes true—in the form of tautology (30)—
but does not imply covariance T−1

V ◦ PV(E) = E .

(e) Even if we assume that a “transformation rule” function φ′ ◦ TV ◦
φ−1 were derived from some independent premises—from the in-
dependent assumption of covariance, for example—how do we
know that the TV we obtained and the quantities of values φ′ ◦ TV ◦
φ−1 (ξ1, ξ2, . . . ξn) are correct plugins for the RP? How could we ver-
ify that φ′ ◦ TV ◦ φ−1 (ξ1, ξ2, . . . ξn) are indeed the values measured
by a moving observer applying the same operations with the same
measuring equipments, etc.?—without having an independent con-
cept of MV, at least for the measuring equipments?

(f) One could argue that we do not need such a verification; φ′ ◦ TV ◦
φ−1 (ξ1, ξ2, . . . ξn) can be regarded as the empirical definition of the
primed quantities:(

ξ ′1, ξ ′2, . . . ξ ′n
) de f
= φ′ ◦ TV ◦ φ−1 (ξ1, ξ2, . . . ξn) (31)

This is of course logically possible. The operational definition of the
primed quantities would say: ask the observer at rest in K to mea-
sure ξ1, ξ2, . . . ξn with the measuring equipments at rest in K, and

13



then perform the mathematical operation (31). In this way, how-
ever, even the transformation rules would become tautologies; they
would be true, no matter how the things are in the physical world.

(g) Someone might claim that the identity of MV with T−1
V ◦ PV is not a

simple stipulation but rather an analytic truth which follows from
the identity of the two concepts. Still, if that were the case, RP would
be a statement which is true in all possible worlds; independently of
any contingent fact of nature; independently of the actual behavior
of moving physical objects.

(h) On the contrary, as we have already pointed out in Remark 3,
MV(F) and T−1

V (PV(F)) are different concepts, referring to different
features of different parts of the physical reality. Any connection
between the two things must be a contingent fact of the world.

(i) T−1
V ◦ PV is a 2R → 2R map which is completely determined by

the physical behaviors of the measuring equipments. On the other
hand, whether the elements of E ⊂ 2R satisfy condition (M) and
whether T−1

V ◦ PV(E) ⊆ E depend on the actual physical properties
of the object physical system.

(j) Let us note that in the standard textbook applications of the RP MV
is used as an independent concept, without any prior reference to
the Lorentz boost T−1

V ◦ PV. For example, we do not need to refer to
the Lorentz transformations in order to understand the concept of
‘the stationary electromagnetic field of a uniformly moving point
charge’; as we are capable to solve the electrodynamical equations
for such a situation, within one single frame of reference, without
even knowing of the Lorentz transformation rules. y
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