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Abstract

I’ll survey some of the aspects relevant to a philosophical

discussion of information taking into account the developments of

algorithmic information theory. I will propose that meaning is deep in

Bennett’s logical depth sense, and that algorithmic probability may

provide the stability for a robust algorithmic definition of meaning,

taking into consideration the interpretation and the receiver’s own

knowledge encoded in the story of a message.
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1 Introduction

Information can be a cornerstone for interpreting all kind of world phenom-
ena as it can constitute the basis for the description of objects. While it is
legitimate to study ideas and concepts related to information in their broad-
est sense, that the use of information outside formal contexts amounts to
misuse cannot and should not be overlooked. It is not unusual to come
across surveys and volumes devoted to information (in the larger sense) in
which the mathematical discussion does not venture beyond the state of the
field as Shannon [30] left it some 60 years ago. Recent breakthroughs in the
development of information theory in its algorithmic form—both theoretical
and empirical developments possessing applications in diverse domains (e.g.
[22, 23, 24, 37])—are often overlooked in the semantical study of informa-
tion, and it is philosophy and logic (e.g. epistemic temporal logic) what has
been, one would say, forced to account for what is said to be the semantic
formalism of information. As examples one may cite the work of [14, 15, 32].
In the best of cases, algorithmic information theory is not given due weight.
Cursorily treated, its basic definitions are sometimes inaccurately rendered1.

In [15], for example, the only reference to algorithmic information theory
as a formal context for the discussion of information content and meaning is
a negative one—appearing in van Benthem’s contribution (p. 171 [15]). It
reads:

To me, the idea that one can measure information flow one-
dimensionally in terms of a number of bits, or some other mea-
sure, seems patently absurd...

I think this position is misguided. When Descartes transformed the no-
tion of space into an infinite set of ordered numbers (coordinates), he did not
deprive the discussion and study of space of any interest, but on the contrary
advanced and expanded the philosophical discussion to encompass concepts
such as dimension and curvature, which wouldn’t be seriously possible oth-
erwise in the light of the development of Descartes. Perhaps this answers

1One example is the definition of Bennett’s [3] logical depth in [29] (p. 25)—the defi-
nition provided being incomplete and therefore incorrect
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the next question that Benthem poses himself immediately after his previous
remark (p. 171 [15]):

But in reality, this quantitative approach is spectacularly more
successful, often much more so than anything produced in my
world of logic and semantics. Why?

On the other hand, accepting a formal framework such as algorithmic
complexity for information content does not mean that the philosophical
discussion of information will be reduced to the discussion of the numbers
involved, just as it did not in the case of the philosophy of geometry after
Descartes.

The foundational thesis upon which the state of information theory rests
today (from Shannon’s work) is that information can be reduced to a se-
quence of symbols. Despite the possibility of legitimate discussions of in-
formation on the basis of different foundational hypotheses, in its syntactic
variant, information theory can be considered in large part achieved by Shan-
non’s theory of communication.

Epistemological discussions are, however, impossible to conceive of in the
absence of a notion of semantics. There is prolific work from the side of logic
to capture the concept of meaning in a broader and formal sense. Too few or
nothing has, however, been done to explain meaning with pure computational
models as a natural extension of Shannon’s work on information and the
later developments by Turing merging information and computation and, in
its current state, epitomized by the theory of algorithmic information theory.

Semantics is concerned with content. Both the syntactic and semantic
components of information theory are concerned with order, the former par-
ticularly with the number of symbols and their combinations, while the latter
is intimately related to structure. The context provided by the theory of al-
gorithmic information to discuss the concept of information is the theory of
computation, in which the description of a message is interpreted in terms of
a program. The following sections are an overview of the different formal di-
rections in which information has developed in the last decades. They leave
plenty of room for fruitful philosophical discussion, discussion focusing on
information per se as well as on its connections to aspects of physical reality.
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2 Communication, information and compu-

tation

Among the several contributions made by Alan Turing on the basis of his
concept of computational universality is the unification of the concepts of
data and program. Turing machines are extremely basic abstract symbol-
manipulating devices, which despite their simplicity, can be adapted to sim-
ulate the logic of any computer that could possibly be constructed. While
one can think of a Turing machine input as data, and a Turing machine rule
table as its program, each of them being separate entities, they are in fact
interchangeable as a consequence of universal computation, as shown by Tur-
ing himself, since for any input x for a Turing machine M , one can construct
M ′ with empty input such that M and M ′ accept the same language, with
M ′ a (universal) Turing machine accepting an encoding of M as input and
emulating it for an input x for M in M ′. In other words, one can always em-
bed data as part of the rule table of another machine. The identification of
something as data or a program is, therefore, merely a customary convention
and not a fundamental distinction.

On the other hand, Shannon’s conception of information inherits the pit-
falls of probability. Which is to say that one cannot talk about the informa-
tion content of individual strings. However, misinterpretations have dogged
Shannon’s information measure from the inception, especially around the
use of the term entropy, as Shannon himself acknowledged. The problem has
been that Shannon’s entropy is taken to be a measure of order (or disorder),
as if it were a complexity measure (and in analogy to physical entropy in clas-
sical thermodynamics). Shannon acknowledges that his theory is a theory of
communication and transmission and not one of information.

That Shannon’s measure is computable and easily calculable in practice
may account for its frequent and unreasonable application as a complexity
measure. The fact that algorithmic complexity is not computable, however,
doesn’t mean that one cannot approximate it—and get a sensical result when
it comes to the measurement of an object’s complexity.
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3 Information content and algorithmic mean-

ing

But Shannon’s notion of information makes it clear that information content
is subjective (Shannon himself):

Frequently the messages have meaning: that is they are referred
to or correlated according to some system with certain physical
or conceptual entities. These semantic aspects of communication
are irrelevant to the engineering problem. The significant aspect
is that the actual message is one selected from a set of possible
messages. [30].

Subjective doesn’t mean, however, that one cannot define information
content formally, only that one should include the plausible interpretation in
the definition, a point we will explore in the next section.

Shannon’s contribution is seminal in that he defined the bit as the basic
unit of information, as do our best current theories of information complexity.
Any sequence of symbols can be translated into a binary sequence, thereby
preserving the original content as it can be translated back and forth from
the original to the binary and vice versa. Shannon’s information theory
approaches information syntactically: whether and how much information
(rather than what information) is conveyed. And as a physical phenomenon:
the basic idea is to make the communication channel more efficient.

Shannon’s approach doesn’t help to define information content or mean-
ing. For example, think of a number like π which is believed to be normal
(that is, that its digits are equally distributed), and therefore has little or no
redundancy. The number π has no repeating pattern (because is an irrational
number) and if sent through a communication channel there is no way to op-
timize a channel to send π through by taking advantage of any pattern. π,
however, can be greatly compressed using any of the known briefly describ-
able formulas generating its digits so one can send the formula rather than
the digits. But this kind of optimization is not in the scope of Shannon’s
communication theory. Unlike Shannon’s treatment of π, one can think of π
as a meaningful number because of what it represents: the relationship be-
tween any circumference and its diameter. I will argue that meaning can be
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treated formally using concepts of algorithmic information theory to account
for these matters.

3.1 Intrinsic meaning and interpretation

As an attempt to define lack of meaning think of a single bit, a single bit
does not carry any information, and so it cannot but be meaningless if there
is no recipient to interpret it as something richer. The Shannon entropy
of a single bit is 0 because one cannot establish a communication channel
of bandwidth , 1 and 0 having the same meaning both for Shannon, and
for algorithmic complexity if isolated, cannot contain any information by its
own. It is intrinsically meaningless because there is no context. The same
for a string of n identical bits (either 1s or 0s), to give it a meaning one
would likely be forced to make an external interpretation, because even if it
carries a message it cannot be intrinsically very rich simply because it cannot
carry much information, in both cases Shannon’s entropy and the algorithmic
complexity of such a string is very low.

At the other extreme, a random string cannot be usually considered mean-
ingful. What one can say with certainty is that something meaningful should
therefore lie between these two extremes: no information (trivial) or complete
nonsense (random).

Algorithmic complexity associates randomness with the highest level of
complexity, but Bennett’s logical depth [3] (also based on algorithmic com-
plexity) is able to distinguish between something that looks organized and
something that looks random or trivial by introducing time (a parameter
that seems unavoidable in reality, which makes it reasonable to associate
this measure with physical complexity as Bennett himself suggests [4]).

It is generally accepted that meaning is imparted by the observer, the
interpretation of the recipient. In order for the information conveyed to
have any semantical value, it must in some manner add to the knowledge
of the receiver. I claim that logical depth is a measure to be resorted to
when it comes to mapping meaning onto information content. Logical depth
is defined as the execution time required to generate a string by a near-
incompressible program, i.e. one not produced by a significantly shorter
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program. Logically deep objects contain internal evidence of having been the
result of a long computation and satisfy a slow-growth law (by definition).

3.2 Meaning is logically deep

The main point made by Shannon when formulating his measure in the con-
text of communication is that in practice a message with no redundancy is
more likely to carry information if one assumes one is transmitting more
than just random bits. If something is random-looking, then it will usually
be considered meaningless. To say that something is meaningful usually im-
plies that one can somehow arrive at a conclusion based on it. Information
has meaning only if it has a context, a story behind it. Meaning, in a causal
world, is the story of a message.

As is known, the problem with meaning is that it is highly dependent on
the recipient and its interpretation. Connecting meaning to the concept of
logical depth has the advantage of taking into account the story and con-
text of a message, and therefore of potentially accounting for the plausible
recipient’s interpretation. A meaningful message (short or long) contains a
long computational history when taken together with the associated compu-
tation, otherwise it has little or no meaning. Hence the pertinence of the
introduction of logical depth.

One might think that the approach may not be robust enough if a Turing
machine performs a lot of work (and hence considered meaningful) when
provided with a random input, in which case something that would be taken
as meaningful may actually be just a random computation triggered by a
meaningless message. There are, however, two acceptable answers to this
objection: On the one hand, the probability of a machine to undertake a
long computation by chance is very low. Calude and Stay [7] prove that
among the machines that halt, most machines will halt after a few steps.
This happens for most strings, meaning that most messages are meaningless
if both the message and the computation do not somehow resonate to each
other, something close to what one intuitively may think for a meaningful
message, for example, among human beings. On the other hand, algorithmic
probability guarantees the almost non-existence of Rube Goldberg machines
(a toy machine that does a lot of stuff for achieving a trivial task).
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3.3 Towards a robust definition

Algorithmic probability, as defined by Solomonoff [31] and Levin [21] induces
a distribution over programs producing an output, assigning to the shortest
program the highest probability and smaller probabilities to longer programs.
Thus, algorithmic probability indicates that every outcome is likely to be
produced by its shortest program(s) producing that outcome. In other words,
meaningful messages would have little chances to be interpreted as so by
chance, or generated by any program by chance.

It is algorithmic probability that provides the robustness of this algorith-
mic approach to meaning. The meaning of a message makes only sense in the
context of some recipients (and not any), and a message that has meaning for
someone may have not for someone else, just the kind of property one would
desire for a concept entailing the meaning of meaning. This is what happens
when some machines react to a meaningful input rather than to a random
one. Algorithmic probability guarantees that most machines will halt almost
immediately with no computational history. In other terms, there is a corre-
spondence between a meaningful input, computation time and a structured
output.

A more down-to-earth example is a winning number in a lottery. The
number by itself may be meaningless for a recipient, but if two parties had
shared information on how to interpret it, the information shared beforehand
becomes part of the computational history and as such not unrelated to
the subsequent message. The only way to interpret a number as being the
winning number of a lottery is to have a story, not just a story that relates the
number to a process, but one that narrates the process itself. Since winning a
prize is no longer a matter of apparent chance but has to do with the release
of information (both the number and the interpretation of the number) it is
therefore not the number alone that represents the content and meaning of
the message (the number), but the story behind it.

There are also messages that contain the story in themselves. If instead
of a given number one substitutes the interpretation of such a number, the
message can be considered meaningful in isolation. But both cases have the
same logical depth, as they have the same output and computing time and
are the result of the same history (even if in the first case such a history may
be rendered in two separate steps) and origin, hence the definition seems
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robust enough.

Of course this algorithmic approach may or may not solve all problems
related to meaning, but it seems fruitful as a formal computational approxi-
mation.

3.4 Finite randomness (just as meaning) is in the be-

holder eye

In a move that parallels the mistaken use and overuse of Shannon’s measure
as a measure of complexity, the notion of complexity is frequently associated,
in the field of complex systems, with the number of interacting elements or
the number of layers of a system. Researchers who make such an association
should continue using Shannon’s entropy since it quantifies the distribution
of elements, but they should also be aware that they are not measuring the
complexity of a system or object, but rather its diversity, which may be a
different thing altogether (despite being grossly related).

As has been shown by Stephen Wolfram, it is not always the case that the
greater the number of elements the greater the complexity, nor is it the case
that a greater number of layers or interactions make for greater complexity,
for the simplest computing systems are capable of the greatest apparent
complexity [35].

The theory of algorithmic randomness does not guarantee that a string of
finite length cannot be algorithmically compressed. Nonetheless, any string
is guaranteed to occur as a substring (with equal probability) in any algo-
rithmically random infinite sequence. But this has to do with the semantic
value of algorithmic information theory, given that a finite string has mean-
ing only in a particular context, as a substring of a larger, potentially longer
and essentially different string. Therefore, one can declare a string to be
random-looking only as long as it does not appear as a substring embedded
in another finite or infinite string.

One can, however, declare a string non-random if the length of a shorter
program (measured in bits) is significantly shorter than the string itself.
Wolfram deterministic randomness is of epistemological nature, compatible
with the fact that algorithmic randomness can only be guaranteed for infinite
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sequences given than any finite sequence can only be declared random-looking
(as far as no short program producing it is known).

At the other extreme, , in this algorithmic context, there is Chaitin’s Ω
number [8] that may be regarded as entailing the greatest possible meaning
because it encodes all possible messages in the form of answers to all possible
questions encoded by Turing machines. That Chaitin’s Ω is in practice inac-
cessible seems a desired characteristic to avoid a contradiction to the concept
of meaning and the fact that one cannot expect to encode all meanings in a
single message. In other words, the meaning of all, or all possible meanings, is
unattainable in this algorithmic approach, as it is ultimately uncomputable.
Just as one would intuitively expect as a main feature of meaning in the
broadest sense.

4 Towards a philosophical agenda

The previous discussion sketches a possible agenda for a philosophy of in-
formation in the context of the current state of the theory of algorithmic
information. Focusing more on the core of the theory itself, there are sev-
eral directions that a deeper exploration of the foundations of algorithmic
information might take.

There is, for example, Levin’s contribution [21] to algorithmic complex-
ity in the form of the eponymous semi-measure, motivated by a desire to
fundamentally amend Kolmogorov’s plain definition of complexity in light of
the realization that information should follow a law of non-growth conserva-
tion. This is an apparently different motivation from the one behind Gregory
Chaitin’s definition of algorithmic complexity in its prefix-free version.

There are also laws of symmetry and mutual information discovered by
Gács [17], and Li and Vitányi [22], for example, which remain to be explored,
fully understoood and philosophically dissected.

Furthermore there are the subtle but important differences involved in
capturing organization in information through the use of algorithmic ran-
domness versus doing so using Bennett’s logical depth [3], a matter brought
to our attention in, for example [11]. The motivation behind Bennett’s formu-
lation of his concept of logical depth was to capture the notion of complexity
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taking into account the history of an object. It had, in our algorithmic ap-
proach to information, the important consequence of classifying intuitively
shallow physical objects as objects deprived of meaning.

There is also the question of the dependence of the definitions on the con-
text in which meaning is evaluated (the choice of universal Turing machine),
up to an additive constant, which has recently been addressed in [9, 12],
proposing that reasonable choices of computational formalisms actually lead
to reasonable evaluations of complexity [10]. In other words, the problem
of finding a stable framework for a robust enough evaluation of information
content.

In [15], van Benthem, highlights an issue of great philosophical interest
when he expresses a desire to understand the unreasonable effectiveness (a
phrase he claims is borrowed) of quantitative information theories.

Paradoxically, my concern would be with the unreasonable ineffectiveness
of qualitative information theories, notably algorithmic complexity, given
that it is the unreasonable effectiveness of quantitative information theories,
notably Shannon’s notion of information entropy, that has mistakenly led
researchers to use it in frameworks in which a true (and universal) measure
of complexity is needed. The connections between Shannon’s entropy and
Kolmogorov complexity are investigated in detail in [18].

It is the ineffectiveness of algorithmic complexity that imbues information
content with its deepest character, given that its full characterization can-
not effectively be achieved even if it can be precisely defined. Van Benthem
opens up, hence, a rich vein, this discussion being potentially fruitful and
of great interest, even if it has been largely ignored. I think the provisional
formulations of the laws of information, together with their underlying moti-
vations should be a central part of a discussion, if not the main focus of the
semantical approach to information as closer based on current mathematical
developments.

It may be objected that the study of information aligned with the so-called
semantic wing should not be reduced to the algorithmic, sometimes consid-
ered syntactic digital view of information. That, however, would be rather
an odd objection, given that most texts on the information start with Shan-
non’s information theory, without however taking the next natural step and
undertaking a discussion of the current state of information as exemplified
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by algorithmic information theory. So either the philosophy of information
ought to take a completely different path from Shannon’s, which inevitably
leads to the current state of algorithmic information and prompts deeper
exploration of it, or else it should steer clear of the algorithmic side as being
separate and strange to it2. In other words, I don’t find it consistent to cover
Shannon’s work while leaving out all further developments of the field by,
among others, Kolmogorov, Chaitin, Solomonoff, Levin, Bennett, Gács and
Landauer. As I have pointed out in the previous section, there is a legitimate
agenda concerning what some may call the syntactic mechanistic branch of
the study of Information, which paradoxically, I think is the most interesting
and fruitful part of the semantic investigation, that mainstream Philosophy
of Information has traditionally steered clear of for the most part except for
a few cases [26, 25].

No complete account of what information might be can be considered
complete without taking into account the interpretations of quantum infor-
mation. One issue is the one partially raised by Wheeler [34], although
perhaps at a different scale, that is whether an observer is necessary for in-
formation to exist and the meaning of an observation. There does not exist
a universally accepted interpretation of quantum mechanics, although the
so-called Copenhagen Interpretation is considered the mainstream. Discus-
sions about the meaning of quantum mechanics and its implications do not,
however, lead to a consensus. It is beyond the scope of this paper to further
discuss the quantum approach other than for pointing out its pertinence in
an encompassing discussion, see for instance [6].

4.1 The basics to agree upon

One can agree upon fundamental developments from the theory of informa-
tion and the theory of algorithmic information that can serve as the basis of
a mathematical framework for a philosophical discussion. Although this is
not the place to discuss the several contributions to the current state of infor-
mation in the theory of algorithmic complexity, this is a non-exhaustive list

2Pieter Adriaans has presented similar arguments [1] in relation to the often mistaken
trend in the semantic approaches to information largely ignoring the theory of algorithmic
information.
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of some points to be agreed upon for a discussion of algorithmic information
in philosophical contexts:

• The basic unit is the bit, information is subjective (Shannon [30]).

• Shannon’s information measure cannot capture content, organization
or meaning as it is neither a measure of information content nor of
complexity.

• Shallowness is meaningless (Kolmogorov [19]).

• Randomness implies the impossibility of information extraction
(Chaitin [8]).

• Randomness is meaningless (Bennett [3]).

• Information can be transformed into energy and energy into informa-
tion (Landauer [20], Bennett [3]).

• Algorithmic complexity is an objective and universal framework for
information content.

• There are strong connections between logical and thermodynamic
(ir)reversibility to explore (Bennett [5], Fredkin [16], Toffoli [16]).

• Information follows fundamental laws: symmetry, non-growth, mutual
information and (ir)reversibility (Gács [17], Zvonkin [38], Levin [21],
Bennett [5], Landauer [20]).

• Physics and information are related (Wheeler [34], Feynman [13], Ben-
nett [5], Landauer [20], Fredkin [16]).

• Information is playing a major role in quantum mechanics [28, 6] and is
assuming foundational status in modern physics [33] as it did in classical
physics, notably in thermodynamics and more recently in cosmology [2].

5 Concluding remarks

A common language and formal framework to agree upon seems to be nec-
essary. I’ve claimed that algorithmic information is suitable for defining in-
dividual information content and for providing a characterization of the con-
cept of meaning in terms of logical depth and algorithmic probability. This
rather formal computational characterization does not mean that a discus-
sion of algorithmic information would be deprived of legitimate philosophical
interest.
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I have briefly drawn attention to and discussed some of the questions
germane to a philosophy of algorithmic information. If our mapping of infor-
mation and information content is well understood, it will be clear why we
can claim that meaning is context (recipient) dependent in a rather objective,
eventually formalizable way. Levin’s universal distribution, taken together
with Bennett’s concept of logical depth, can constitute an appropriate infor-
mational framework within which to discuss these concepts. That meaning
can be fully formalized doesn’t mean either that it will loose its most dearest
properties, such as subjectivity with respect to a recipient. Such a subjec-
tive and rich dimension can be computationally grasped as proposed herein,
and can constitute another point of departure for an organized philosophical
discussion accounting and covering a field that cannot be longer ignored in
the philosophical discussions of information.
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