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Lucas-Penrose type arguments have been the focus of many papers in the literature. In the present 
paper we attempt to evaluate the consequences of Gödel’s incompleteness theorems for the 
philosophy of the mind. We argue that the best answer to this question was given by Gödel already 
in 1951 when he realized that either our intellectual capability is not representable by a Turing 
Machine, or we can never know with mathematical certainty what such a machine is. But his 
considerations became known only in recent times when many scholars were already aware of 
Benacerraf’s and Chihara’s analyses on the consequences of Gödel’s incompleteness theorems for 
the philosophy of the mind. Benacerraf and Chihara, in fact, discussing Lucas’ paper, arrived at the 
same conclusions as Gödel in the sixties, but in a more formal way. After Penrose’s provocative 
arguments, Shapiro again shed light on the question. In our paper, after a broad and simple 
presentation of the contributions to the debate made by different authors, we show how to present 
Gödel’s argument in a rigorous way, highlighting the necessary philosophical premises  of Gödel’s 
argument and more in general of Gödelian arguments.  
 
 

1. Introduction 

 
Many scholars have tried to prove the thesis of the irreducibility of human intelligence to a 
calculator machine using Gödel's famous Incompleteness Theorems. They did so by creating the so 
called Gödelian arguments. The debate over the centrality of such arguments in the crisis of the so 
called Strong Artificial Intelligence is well known. But its complexity has often tended to make the 
debate very difficult to understand, generating widespread misunderstanding. As the logician and 
philosopher of mathematics Steward Shapiro (1998, p. 277) has pointed out: “[…] many 
philosophers dismiss the whole Lucas-Penrose controversy, often by rolling their eyes”: this attitude 
seems to be a consequence of the complexity that was mentioned above, and of the 
misunderstandings that some authors have created through their ways of interpreting the issue in 
question. These misunderstandings have often spread into the popular literature, creating erroneous 
paradigms.  
This article will give a clear and homogeneous reconstruction2 of both Gödelian arguments and the 
major literature of reference. It will do so by highlighting the strong and weak points of the 
reasoning, which will enable us to understand, easily and in analytical depth, the relation between 
Gödel’s results and general considerations about human intelligence. As will be seen, and contrary 
to a widespread idea, Gödel’s theorems do not say anything about our superiority over computers. 
On the contrary, they tell us something important about our intelligence, and about what we can 
understand of ourselves, in principle, by means of computational models. Gödel himself, as we shall 
see, already had a very clear understanding of the real implication of his theorems for the 
philosophy of the mind, that is: either human intelligence has a non-computational nature, or, even 
though human intellectual activity can be reproduced by a Turing machine, it cannot fully 
understand its own working. To put it in an evocative way, we could say, following Paul Benacerraf 
(1967, p. 30): ‘if I am a Turing machine, then I am barred by my very nature from obeying Socrates' 
profound philosophic injunction: KNOW THYSELF’. As will be shown, Gödel expounded his 
                                                
1 “Our brain is sufficiently complex to understand that it is too complex to be understood by itself” [Murphy’s Law]. 
2 An interesting reformulation is offered by Antonelli 1997. A more concise presentation is that of Odifreddi 1992. 



position in a dilemmatic informal way, but it is possible to build a more precise argumentation in 
favor of that position. In this paper we shall describe a possible argument which can lead to Gödel’s 
conclusion. Not only shall we do so by making use of Gödel’s own indications, but also by using 
the works of other thinkers such as P. Benacerraf and C. Chihara who, independently of Gödel, and 
in a more formal way, took similar directions, at least partly, to those of Gödel. These analyses will 
also reveal the necessary philosophical premises of the Gödelian arguments and, in particular, of 
Gödel’s argument. 

2. Sketching Gödel’s theorems
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Let’s start with an intuitive description of the proofs of Gödel’s theorems4. This will enable us to 
bring all fundamental concepts (and related symbols) to mind and to use them as necessary tools for 
analyzing the Gödelian arguments.  
 As it is known, it is possible to formulate the Intuitive Arithmetic (N) as a formalized 
system, which we call Formal Arithmetic (FA). In FA the natural numbers are formulated by means 
of closed terms. For example: 0, 1, 2, 3, etc. are in FA 0, s(0), s(s(0)), s(s(s(0))) etc. These are called 
numerals and we will indicate them with bold letters: given the natural numbers n, we use n to 
indicate the corresponding numeral. 
We can represent in FA the elements of Intuitive Arithmetic, for example the relation ≤. We can 
show that there exists a formula α(x, y), where x and y are free variables, that represents in FA the 
relation ≤. Such formula is ∃z(x + z = y). 
If n and m are two natural number whatever, then: 
 

If n ≤ m holds in N, then ⊢FA ∃z (n + z = m) 

If n ≤ m does not holds in N, then ⊢FA ¬∃z (n + z = m) 

 
and if it is defined in FA the symbol ≤ by means of the following formula: 

∀x ∀y (x ≤ y ↔ ∃z(x + z = y)) 

then we can prove in FA the well note properties of ≤. 
Define the following three argument predicate T(m,k,y), where m, k, y are three natural 

number, and say that it is true, if and only if the Turing Machine of index m (MTm), applied to an 
input k, stops after y calculation steps. We can prove that T is recursive. Given that it is possible to 
formulate the Intuitive Arithmetic (N) as a formalized system and that in FA are representable all 
and only the recursive functions and predicate, and that T is recursive, then it is possible to 
represent T in FA; that is, we can show that there exists a formula t(x,y,z) in FA, with exactly three 
free variables, which represents T. Therefore: 

 

If T(m,k,h) holds in N, then ⊢FA t(m, k, h). 

If T(m,k,h) does not hold in N, then ⊢FA ¬t(m, k, h). 

 
Let us now define the sentence ∃yT(m,k,y): this sentence is true if and only if there exists a 

finite number of steps y in which a TMm machine stops, given as input the number k; otherwise it 
does not hold.  

                                                
3 The present exposition only takes into account a criterion which will be instrumental for the analyses which will 
appear  in later chapters. 
4 There are many wonderful treatments of Gödel’s theorems in the literature, at various levels of sophistications, for 
examples: Franzen 2005; Smullyan 1992. We are using here the highly intuitive exposition given by Frixione and 
Palladino 2004, and by Kleene 1967. 



We define, furthermore, the particular case of ∃yT(m,k,y), i.e. ∃yT(x,x,y): it holds if and only 
if there exists a finite number of steps y in which a TMx machine stops, given as input the number x; 
otherwise it does not hold. It is possible to prove that T is a general recursive predicate; and that  
∃yT(m,k,y) and ∃yT(x,x,y) are recursively enumerable, but not general recursive.5  

But, if ∃yT(m,k,y) is not general recursive, then this is equivalent, for Church’s Thesis, to the 
undecidability of the halting problem for Turing machines. Therefore relation ∃yT(m,k,y) and 
property ∃yT(x,x,y) are semi-decidable but not decidable. 
 Now, in FA, T(m,m,y) corresponds to the closed formula ∃y t(m,m,y) which we shall shorten 
to tm. If ∃yT(m,m,y) is true in N, then, for some h, it is true in N T(m,m,h), and therefore  

⊢FAt(m, m, h). But then, introducing the existential quantifier we have ⊢FA ∃y t(m, m, y), i.e. ⊢FAtm. 

So: 
 

(a)  If  ∃yT(m,m,y) holds in N, then ⊢FA tm. 

 
In addition, the converse holds true, because we know that within the standard model of FA 
<N,+,×> all FA theorems hold true. Hence: 
 

(b)  If  ⊢FA tm then ∃y T(m,m,y) holds in N. 

 
It is easy to see that if FA was decidable, that is, if, for any given numeral m, it was always possible 
to determine whether, in FA, tm or ¬tm are derivable or not; then ∃y T(m,m,y) would be decidable, 
in contrast to Turing’s Halting Theorem6. Therefore starting from the demonstration of Turing’s 
Halting Theorem, we can prove that FA is undecidable. 

Given all this we can now describe Gödel’s First Theorem proof in a simple way. 

Gödel’s First Theorem: 

There exists a closed formula G of FA so that, in FA the G formula is not provable, and neither it is 

¬G. Yet G is true in N. 

 
Let us consider the formula of FA ¬ tm.  
By definition:  

If ⊢FA ¬tm then in N it holds that ‘there does not exist a y such that T(m,m,y)’. 

 
It also possible to prove that the converse:  
 

If ‘does not exist a y such that T(m,m,y)’ is true in N, then ⊢FA ¬tm  

 
does not hold. 
Therefore, there exists a natural number p such that ‘there does not exist a y such that T(p,p,y)’ 

holds true within N and not ⊢FA ¬tp. Let’s call G the formula ¬tp, then G is not provable in FA.7 

Furthermore, ⊢FA ¬G does not hold, because, to the contrary, if ¬G was provable in FA, then ¬¬tp, 

                                                
5 First Church’s Theorem indeed says that the binary relation ∃yT(m,k,y) is not a general recursive relation. 
6 See Turing 1936. 
7 Later, and only when misunderstandings may arise, we will specify the formulae belonging to the system by adding 

symbols such as, for instance, GFA. 



that is tp, would also be provable. Hence, by (b) there would exist a y such that T(p,p,y) would be 
true in N, in opposition to the definition of G. In the end G holds in N because we know that, in the 
standard interpretation,  ¬tp is associated to proposition ‘there does not exist a y such that T(p,p,y)’ 
which is true in N.  

We have to note that if FA was inconsistent, it would be impossible to prove Gödel’s First 
Theorem and that the incompleteness we refer to Gödel’s First Theorem here is a syntactic one, and 
not semantic: it concerns the provability of the formulae in FA, and not their truth.8  
Therefore, the Gödel’s First Theorem can be also set out as follows:  

If FA is consistent, then FA is syntactically incomplete 

Intuitively: 
Let us take a formal system (which will be named U). Let it be able to express the Robinson’s 
portion of Arithmetic9, soundness property included. Furthermore, let us consider a logical language 
L. Let us assume by hypothesis that statement G, which says about itself that it is unprovable in U, 
can be expressed in L: 

(G) G is not provable in U. 

Let us now ask ourselves whether G is provable or not in U. Let us suppose that G is provable; then, 
for what it says, it would be a false statement. This would mean that the formal system U would be 
not sound inasmuch it allows a false statement to be proved. Hence, if U is sound, G is unprovable 
in it. On the other hand, if G is unprovable in U, then it is a true statement. Hence U  is semantically 
incomplete: there exists a true statement, G, which U cannot prove. Furthermore, since G is true, the 
formal negation of G will be false, because the negation of a statement is false if and only if this 
statement is true, and vice versa. Therefore, neither G nor its negation ¬G are provable in U, hence 
the formal system U is also syntactically incomplete, and G is formally undecidable in U.10 

More precisely Gödel’s first theorem therefore states that: 

If U is a sound formal system which is able to express Robinson’s arithmetic, then there exists a 

statement G, formulated in language L of the system, such that G is undecidable in U, that is it is 

neither provable nor refutable.11 

Gödel’s Second Theorem: 

We can formulate FA consistency by means of a FA closed formula. Let us consider the algorithm 
that, after taking as input any natural number m, scans all the theorems in FA looking for a 
contradiction. If the algorithm finds a contradiction, it returns 0, else it keeps running forever. Let 

                                                
8 Let us briefly recall that: a formal system U is consistent when, for each formula α in the formal language L, U does 
not allow both the formula itself and its negation to be proved. A formal system U is syntactically complete when, for 
each formula α, either U proves this formula or U proves its negation. When a formula is provable or refutable in U we 
say that it is formally decidable in U. A formal system U is sound if it is never the case that if α is a false formula, U 
proves α, that is U is a system which only proves things that are true. A formal system U is semantically complete when 
it proves all its true sentences; that is when it is not the case that a formula is true and it is not a theorem of the system.  
9 Robinson R. M. showed that, in order to derive Gödel's incompleteness theorems, one only has to assume a fragment 
of arithmetic that today is currently called Q, or Robinson’s Arithmetic. See Robinson 1950.  
10 In the first paragraph of his famous article, see Gödel 1931, Gödel expounded his theorems using this informal 
explanation, that is an argumentation of a semantic kind, which, unfortunately, has usually misguided studies on 
incompleteness theorems. 
11 As it is known if we add G to FA as a further axiom, Gödel’s Theorem is still provable in the new formal system 
(FA+G), and the same holds for any addition of a decidable set of axioms. 



MTc be the Turing Machine which executes such algorithm. The consistency of FA is then 
equivalent, for each m, to “there does not exist y such that T(c,m,y)” and in particular to “there does 
not exist y such that T(c,c,y)” which is expressed in FA by the closed formula ¬tc. So ¬tc expresses 
in FA the consistency of FA which we denote with Con(FA).  The condition of soundness can be 
weakened down to consistency12, and we can prove that  

if FA is consistent, then G is unprovable in FA 

or  
if FA is consistent, then “there does not exist a y so that T(p,p,y)” holds true in N. 

 
Then this implication can be formulated in FA as follows: 

Con(FA) → ¬tp 

and it can be proved in FA: 

⊢FA Con(FA) → ¬tp 

From here Gödel’s Second Theorem can be easily proved: 
 

If FA is consistent, it is impossible to prove that within FA 

 
or, equivalently  

If FA is consistent, then not ⊢FA Con(FA) 

 

If it was ⊢FA Con(FA), then, by ⊢FA Con(FA) → ¬tp and  by modus ponens, follow ⊢FA ¬tp,  hence 

⊢FA G. But this is excluded by Gödel’s First Theorem.13 

3. Gödelian Arguments 

3.1 Lucas’ Argument 

Gödel’s results mentioned above have had wide application, even beyond the field of logic and 
mathematics; and this has contributed to their popularity. As we have mentioned, this article aims to 
investigate their applications which may be considered as the most controversial: that is the 
implications of the mentioned theorems in the philosophy of mind. Today it is common to think that 
it would be possible to represent the whole human subjectivity through algorithms (for example: D. 
Dennett, J. Fodor, P. Churchland). We will not concern ourselves with this point of view, as it 
encounters great difficulties in relation to the renowned mental experiment proposed by T. Nagel, J. 
Searle and F. Jackson.14 On the contrary, we will concern ourselves with a more limited project, 
which was meant to reproduce, or mechanically simulate, the intelligent behaviour of human 
beings. This project was launched by Turing in 1950,15 and was improperly called mechanism. 
We’ll adopt this term too, since it has come into use. This project has been fully discussed and if, on 
the one hand, it has provided its advocates with theoretical tools, on the other hand, it has led anti-
mechanists to build its refutations. Aside from a complete understanding of Turing’s thought,16 
what we are concerned with here, is how Gödel’s theorems were almost immediately seen as tools 
for refuting the mechanistic thesis; whether we consider it in an extensional way (mind’s procedures 
and results are mechanisable), or in an intensional one (human intelligence is a particular machine). 
                                                
12 If a system is sound, it is also consistent. 
13 This, obviously, does not mean that no demonstrations exist which prove the consistency of FA, but that these must 
necessarily use more complex systems, in which, however, Gödel’s Second Theorem is provable. Hence, if 
mathematics is globally consistent, no demonstration of its consistency exists. 
14 For information on these issues, see the work: Hofstadter and Dennett  1981. 
15 See Turing 1950. 
16 A careful analysis of Turing’s remarks on mechanism and Gödel’s theorems has been given by Bruni 2004. 



Turing himself understood such implications of the theorem;17 beside him, P. Rosenbloom (1950), 
G. Kemeny (1959), and E. Nagel and J.R. Newman (1958), in the 1950’s, developed 
argumentations hinged upon the idea that Godel’s Theorems could provide a logical tool to refute 
the philosophical thesis of mechanism.18 Despite this tradition, Gödelian anti-mechanists argument 
is linked to the name of the English philosopher John Randolf Lucas. In 1961, he developed an 
argumentation aimed at demonstrating, on the basis of Godel’s theorems, that it is not possible to 
represent human intelligence with a Turing machine. Lucas’ argument can be presented 
schematically as follows. 
 
L1. Suppose that there exists a Turing Machine, TM, which has exactly the same intellectual ability 
as human beings.  
L2. TM should be able to produce all theorems of some formal system U, which contains arithmetic 
(FA).  
L3. However, TM is not able to produce, as true, (Gödel’s) G formula of U.  
L4. On the contrary, the human being has the intellectual ability to see that G is true.  
L5. Hence TM does not reproduce all intellectual abilities of human beings, against L1. 
 
As we have seen, G undecidable statement of FA is decided through a semantical argumentation: G 

says of itself, by gödelisation, that it is not provable; if it was provable, it would be false, but since 
FA does not prove falsity, then G should not be provable in it; hence, G is true. This argument 
cannot be formalized in FA, because it would require the notion of truth which, by a famous 
theorem proved by Alfred Tarski, cannot be formalized in FA.  
Lucas’ argument, although apparently highly persuasive, contains some problems, which provoked 
intense debate in the literature. Despite these problems, the appeal for this argumentation, as we 
shall see, pushed several scholars into trying to make improvements and revisions of Lucas’ 
reasoning. An argument similar to that of Lucas had been already put forward, as we said, by J. R. 
Newman and E. Nagel (1958). Nonetheless, it had been criticized by H. Putnam (1961) who 
remarked that step L3 is problematic. This is because Gödel’s theorem for U formal system states 
that, only if U is consistent, G is not decidable. Suppose we have a Turing machine which should 
reproduce all human intellectual activity, that is the set of sentences of U. It is now possible to find 
an undecidable sentence G such that we can prove in U that, if U is consistent, then G is true, but 
not decidable by TM. But, in order to show that the mechanistic thesis leads to a contradiction, we 
need to prove the consistency of U. Yet, it is not easy to know whether or not TM, the machine 
supposed to simulate all human intellectual abilities, will produce a consistent set of theorems. If, 
however, by the first theorem, Godel’s statement is undecidable and true, only if the system is 
consistent; and if, by the second theorem, it is not possible to give an absolute demonstration of 
consistency of the system in it; it only remains for us to give a demonstration of relative 
consistency, that is a demonstration that the machine which represents us is consistent provided that 
we are. Lucas, aware of the problem raised by Putnam, therefore develops a series of arguments in 
favour of the consistency of human intelligence. But giving such a relative demonstration of 
consistency would mean that a human being would be able to do what a machine or formal system 
would not: that is to assert their own consistency in an absolute way. For this reason, Lucas’ 
development of argumentations in favour of the consistency of the human mind does no more than 
put forward a Quine-Davidson-style generic principle of indulgence or charity towards human 
beings; and in this sense his Gödelian argumentation preserves the highlighted weakness.  
Apart from the problem raised by Putnam, Charles Chihara (1971) emphasized how L4 of Lucas’ 
argument was not clear, because one cannot understand what it means to say that a human being is 
able to see the “truth” of G. What the first part of the Incompleteness Theorem proof states is, as we 
know, that if Formal Arithmetic is consistent, then G is unprovable in it. If G is unprovable, then G 
                                                
17 See Turing 1992. For an interesting analysis of this work, see: Bruni 2004 (chapter 3). 
18 See Smart 1961.  



is what it says it is, and in this sense it is a true statement. But in order to “see” that the Gödelian 
statement for FA is true, we have to “see” before that FA is consistent (or sound). Hence, Lucas’ 
Gödelian argument against strong artificial intelligence requires, for any machine (or U formal 
system) that satisfies the well-known hypothesis of Gödel’s first theorem, that human beings are 
always able to “see” the truth of its Gödelian statement. But exactly this “always able to see” could 
not be taken for granted. The weakness of this thesis appears in all its strength in the development 
of Lucas’ argument. The argument imagines in fact that, the different Gödelian statements being of 
the same form, it would be possible to augment the considered formal system (or machine) with an 
axiom scheme which would generate the infinite set of Gödelian axioms. As already noticed, we 
can add G to FA thus getting FA1 in which G, being an axiom, is provable by definition. But FA1 is 
in turn an incomplete system because it contains an undecidable statement, G’. It is possible to keep 
adding ad infinitum the Gödelian statement to the initial system. Lucas thinks that this process of 
adding Gödelian statements could be incorporated in the system precisely by using an axiomatic 
scheme for Gödelian statements. Lucas’ thesis is, at this point, that if we added to a formal system 
the infinite set of axioms included in the following Gödelian formulae, the resulting system would 
still be incomplete and it would contain an unproved formula within the system; a formula, 
nonetheless, that a human being could keep seeing as true. But such human ability is exactly what 
appears to be doubtful, as has been masterfully stressed by Douglas Hofstadter (1979) and by 
Stewart Shapiro (1998, p. 285 ff.). Imagine we add the Gödelian statements G1, G2, G3, . . .,Gn . At 
some point, as these statements have the same form, we would find ourselves adding the axiomatic 
scheme Gω where  ω is the first transfinite ordinal set19. Obviously we could keep adding to our 
system FAω  the statement Gω+1, Gω +2 , Gω  +3 , . . ., G ω +n , and this, mutatis mutandis would lead 
us to add to the original system a new schema which can be denoted by the limit ordinal 2ω. 
Obviously we could consider the successors of 2ω thus coming to limit ordinals 3ω, 4ω, …, ωxω 
=ω2, and then ω3,  ω4, ..., ωω etcetera up to ε0 which is the first ordinal that cannot be obtained by ω 
with a finite number of additions, multiplications, and exponentiations. Hence, as Douglas 
Hofstadter (1979, p. 475) points out: by a theorem due to A. Church and S Kleene, there does not 
exist a recursive system of notations, which is capable of assigning a name to all recursive ordinals, 
and for this reason it seems highly arguable and certainly strange that human mind itself could go 
beyond recursive ordinals. Paraphrasing Hofstadter: at a certain point the human being will reach 
the limits of his ability to gödelize, and henceforth the formal systems (machines) of that 
complexity will have the same power as this human being.20 In this sense, the fact that, as Lucas 
writes, human beings can always “see” the truth of Gödelian statement, could not be taken for 
granted.21  
 
3.2 Benacerraf’s Argument 
 
As we observed, Lucas’ argument, although not new, provoked a large debate on the issue of 
whether or not it would be possible to find a refutation of the mechanistic thesis based on Gödel’s 
theorems. Such a debate involved not only philosophers, but also logicians, mathematicians, 
computer scientists, etc. who dealt with Lucas’ argumentation and emphasized its weakness and 
strengths.22 Among such contributions are some that command our attention for their analytical 
depth, thus becoming a benchmark for understanding and development of pro and cons arguments 
concerning mechanism. One of these is certainly the article ‘God, the Devil, and Gödel’ by the 
philosopher of mathematics Paul Benacerraf. Driven by the conviction that Lucas’ argument was 
not capable of proving what it claimed (that is, that mechanism is an indefensible position), he 

                                                
19 ω = {0,1,2, 3...} where 0,1,2,3 … are ordinals. 
20 A similar thing can be said about Gödel’s second theorem. 
21 On transfinite recursive progressions see, aside from the quoted texts by Hofstadter and Shapiro, especially: 
Feferman 1962; a highly intuitive exposition is given by: Berto 2008 (p. 214 f.). 
22 A bibliography is available in Lucas’ home page: http://users.ox.ac.uk/~jrlucas/ . 



presents an argument which, starting from the assumption that the human mind is at most a Turing 
Machine, and that we know this machine leads to a contradiction using Gödel’s theorems. 
Benacerraf arrives at a different conclusion from that of Lucas, which is however very interesting. 
He tries to solve the various open problems within Lucas’ argument, which we outlined in the 
previous chapter, by building a new argumentation. In primis he stresses that it is necessary to limit 
the notion of “man’s intellectual abilities” by introducing a set, S, defined as “every statement that I 
can derive and that I know to be true”. In this way Benacerraf gets around the problem, also raised 
by Chihara, of using the unclear and ambiguous concept of “seeing the truth of G”. In fact, while 
Lucas’ argument was limited to claiming that TM, which was supposed to represent human 
intellectual abilities, only operated syntactically; and could therefore generate an inconsistent set of 
statements, that is, a set containing contradictions, S, on the contrary, is necessarily consistent, as its 
statements are not only derivable, but also true. As is well-known, in fact, it is possible to prove that 
if the statements of some formal system are true within a certain model, then that formal system is 
consistent. In this way Benacerraf also overcomes Putnam’s objection. In addition, Benacerraf 
identifies a further weakness of Lucas’ argument (which will be outlined again independently, and 
in a slightly different but more effective way, by Daniel Dennett (1972)23: he asks what it is that, 
according to Lucas, a TM cannot do and I can do. I can find a semantic proof of G, that is, I can get 
out of the system U and identify a model of U, which makes G true. But are we sure that TM could 
not do the same thing? As Dennett will rightly point out in his paper of 1972, TM is a physical 
system, which, therefore, in order to represent a TM, should be adequately interpreted; that is, we 
need to establish what the input and output are, how to code data, etc.. Moreover, the physical 
process which realizes TM is certainly very complex, thus if we interpret it differently, it might 
generate another TM capable of deriving G. Hence step L3 step of Lucas’ argument is problematic, 
even from this point of view. In the end, Benacerraf, unlike Lucas, clearly distinguishes the purely 
mathematical side of the limitative theorems, which as such does not have any philosophical 
meaning, from the real philosophical argument, which also needs, apart from Gödel’s theorem, 
what he calls a philosophical premise; which nevertheless also has, as we’ll point out, an empirical 
extent. On the basis of Lucas’ argument, Benacerraf builds a new and more precise argument. Let’s 
first try and clarify its points in an informal way, and subsequently in a more formal one.  
 
B1. Remember that S is the set “every statement that I can derive and that I know to be true”. S* is 
the logical closure of S within a formal system24 which is sufficiently large and sound; that is, S* 

contains every statement which is derivable from S within a reasonable formal system. Notice the 
modal character of the expression “can” . It is clear that, if we were only referring to the statements 
that I effectively derive, which, however large a set it may be, is of finite cardinality; there is no 
doubt that it would be representable by a TM. That is the reason why we need to introduce the 
expression ”can”, which nevertheless prevents a very precise characterization of the set S. 
 
B2. Assume that there exists an effectively enumerable set Wj such that: 
 
(a) The statement that Wj includes all theorems of arithmetic (FA) belongs to S*. In symbols 

*'' SWAF j ∈⊆  

Notice that Wj is effectively enumerable if and only if there exists a calculable and total function fj, 
which associates to each natural number an element of Wj with possible repetitions. Moreover fj is 
calculable if and only if there exists an algorithm which, given as input a possible argument of fj, 
gives as output the respective value of the function. Yet, if we accept the Church-Turing thesis, then 
the set Wj is effectively enumerable if and only if there exists a TM of number j which calculates the 

                                                
23 Similar objections can be found in Boyer 1983. 
24 Benacerraf refers to the first-order predicate calculus, but afterwards, as Chihara points out, he introduces other 
resources in S, so that the first-order predicate calculus is not sufficient. 



function fj. Intuitively (a) claims that I can build a TM capable of enumerating every theorem of 
arithmetic. 
 

(b) The statement according to which Wj is included in S* is part of S*. In symbols: 
**'' SSW j ∈⊆  

Intuitively (b) claims that I am able to derive that Wj is a subset of S*. 
 
(c) S* is a subset of Wj. In symbols: 

jWS ⊆*  

Intuitively (c) claims that there exists a TM capable of generating every true statement that I can 
derive.  
It is clear that if I can derive that Wj is a subset of S* and I know that all statements that belong to S* 

are true, and moreover S*is a subset of Wj, then Wj and S* coincide.  
 
B3. From (a)-(c), through gödelisation procedure, it is possible to derive a contradiction in S*, 
which indeed we know to be consistent. Hence, at least one of the hypotheses (a)-(c) must be false. 
Consider that the hypotheses (a)-(c) have an empirical-philosophical nature (because although they 
refer to the contents of S, that is to what I can prove, and is true, S is nevertheless defined in modal 
terms). It is difficult to maintain that (a) is false, that is that I am not able to develop an algorithm 
which generates all the theorems of arithmetic. So there are two possibilities: either my deductive 

abilities are not representable by a TM – that is (c) is not true – or I am not able to derive the TM 

that represents me – that is (b) is not true.  
In conclusion, either my deductive abilities are not representable by a Turing Machine, or I do not 
know which Turing machine represents myself.25 
Let’s follow in formal details the various steps of Benacerraf argument.26 
 
Bf1. Let S = {x | I can prove x and x is true}  
S represents my deductive output of true statements.  
Bf2. Let S* = {x | S ⊢x }  
S* is the formal closure of S.  
Bf3. S* is consistent.  
Since each member of S is true – Benacerraf says “I can’t prove what is false” – and the system in 
which S is defined preserve the truth, then S* is consistent.  
Bf4. 'Con(S*)' ∈ S  
Let us use Con to indicate the consistency predicate. The previous steps 1-3 constitute a 
demonstration of the consistency of S*. But since I have proved it, this counts as one of my output.  
Bf5. 'Con(S )' ∈ S 

This derives from S ⊆  S* and Bf4. This corresponds to Lucas’ assertion that he knows he is 
consistent, and so Putnam’s objection disappears.  
Bf6. (x) (Wx ⊆ S* ⊃ Con (Wx))  
by W we denote any effectively enumerable set. Since S* is consistent, then all enumerable subsets 
that it contains are also consistent.  
Bf7. '(x) (Wx ⊆ S* ⊃ Con (Wx))'∈S  
This results from the fact that Bf1-Bf6 is a proof produced by me. Indeed all the proofs that I’m 
producing enrich S.  
Bf8. '(x) (Wx ⊆ S* ⊃ Con (Wx))'∈S*  

from S ⊆ S* and Bf7.  

                                                
25 Notice that Lucas answers Benacerraf in Lucas 1968. 
26 This exposition follows closely the already clear one given by Benacerraf himself, but simplifies it in some parts. 



Bf9. Let us assume that there exists a recursively enumerable set Wj such that  
(a) 'Q ⊆ Wj'∈S* 
by the symbol Q we denote the formal closure of the axioms of FA which are necessary to prove 
Gödel’s theorems. (a) denotes that this formal closure is representable by an enumerable set (Turing 
Machine) Wj.  
(b) 'Wj ⊆ S* '∈S*  
I can prove that Wj is a subset of my output.  
(c) S*⊆ Wj  
What I can prove is a subset of Wj. As we have seen in the informal argumentation, the fact that Wj 

is enumerable is the condition for it to be an output of a theorem proving Turing Machine. By 
gödelisation we can interpret Wi (for any integer i) as the Gödel number of a set of recursive 
enumerable theorems, that is the theorems that the i-th machine can generate.  
Bf10. Q ⊆ Wj 
This results from Bf9a and that everything I can prove has to be true. 
Bf11. There is a formula H (having the property defined by Gödel,27 that no number is the Gödelian 
of a demonstration of the formula whose Gödelian is H’s Gödelian) such that precisely if H∈Wj, 
then ¬H∈Wj, and Wj is inconsistent. This is the version of the Gödel first theorem applied to Wj. Wj 
is in fact adequate for arithmetic by Bf10, and representable as a formal system by Bf9. 
Bf12. 'Con(Wj)  ⊃ H '∈Wj  
This is the step immediately preceding Godel’s second theorem,28 applied to Wj (also by Bf9 and 
Bf10). 
Bf13. 'Wj ⊆  S* ⊃ Con (Wj)'∈S* 
This results from Bf8 and that S* is formally closed. 
Bf14. 'Con(Wj)'∈S* 
This results from Bf9b, from Bf13, and from the fact that S* is closed under modus ponens.

29 
Bf15. 'Con(Wj)'∈Wj 
In this step Bf9c plays a fundamental role. It claims that S* is part of the output of a Turing 
Machine, but if this is the case, then the Turing Machine can prove its own consistency and is 
thereby consistent. So we have: 
Bf16. H and ¬H are in Wj, and Wj is inconsistent. 
It follows from Bf9b that Wj⊂ S*, hence:  
Bf17. H and ¬H belong to S*, and S* is inconsistent, thus contradicting Bf3. 
S is inconsistent too. 
 
As we said before, the contradiction derives from the step Bf9 and from the definitions given in Bf1 
and Bf2. If we accept the definitions, then it is necessary to reject Bf9. What Benacerraf argues, 
unlike Lucas, is that from Gödel’s theorems a confutation of Bf9c does not derive, but at the most a 
negation of the conjunction of Bf9 (a)-(b)-(c). Using Benacerraf’s words (1967, p. 29): 
 
“They [Gödel’s Theorems] imply that given any Turing Machine Wj, either I cannot prove that Wj is 
adequate for arithmetic, or if I am a subset of Wj, then I cannot prove that I can prove everything Wj 

can. It seems to be consistent with all this that I am indeed a Turing machine, but one with such a 
complex machine table (program) that I cannot ascertain what it is. In a relevant sense, if I am a 
Turing machine, then perhaps I cannot ascertain which one. In the absence of such knowledge, I can 

                                                
27 See §2. 
28 See note 10. 
29 Benacerraf points out in his demonstration that it would have been possible to use Bf14 as an assumption instead of 
obtaining it from Bf9b, but this was not done in order to remain loyal to Lucas’s argument steps. The use of Bf9b 
illustrates the fact that it is necessary for me to know how to prove that I can prove everything the Wj machine can, 
including how to obtain Wj consistency. 



cheerfully go around ‘proving’ my own consistency, but not in an arithmetic way – not using my 
own proof predicate. Ignorance is bliss. Of course, I might be an inconsistent Turing Machine. 
Lucas’s protestations to the contrary are not very convincing”. 
 
3.3 Chihara’s Criticism 
 
Benacerraf’s argument, therefore, solves the problem of the consistency of the system of statements 
produced by TM, that is S*. He attains this result by limiting the discussion to those theorems which 
are not only derivable, but also true, that is which are provable by me in an absolute sense. 
However, Benacerraf himself showed that this notion leads to a contradiction without requiring the 
introduction of (a)-(c): if the fact that any statement in S is true holds, then we arrive, still through 
gödelisation, at statements such as H and ¬H. This point, often moved into the background, is 
instead very important for the argument we want to build, and this was rightly emphasized by 
Charles Chihara. 
Let us see, then, in a more detailed way, how this argument works in the reconstruction by Chihara 
(1972): 
 
BC1. First of all, let us add to language FA the symbol “S”, and the binary predicate “∈” (which in 
the privileged interpretation of set theory is read “belongs”) and all statements of the form: 
 
‘If the numeral of Gödel’s number of a formula f belongs to S, then f”.30 
 
The intuitive sense of the latter statement is “what I can prove is true”, which as we know falls 
within Benacerraf’s definition of S. Let us call the new system FA’. 
 
BC2. Having outlined the new system FA’, we can define its derivation predicate B(n,m), which 
means ‘n is the Gödel’s number of a derivation of the sentence whose Gödel’s number is m’. 
 
BC3. Let us then add to FA’ the following rule, obtaining FA’’: 
 
‘if B(n,m) is provable in FA’ then it is provable that m belongs to S’31. 
 
That is, as Chihara writes: “what is derivable in FA’ I can prove”.32 It is perfectly reasonable to 
suppose that I am able to prove everything that is derivable in FA’. 
 
BC4. In FA’’ it is possible to build Gödel’s formula. That is m is the Gödel’s number of the 
formula GFA’’, which states ‘m does not belong to S’. 
 
BC5. From BC1 and BC4 we have that: it is derivable in FA’ that ‘if m belongs to S then GFA’’‘ 
 
BC6. By applying BC3 we have that: it is derivable in FA’ that ‘if m belongs to S, then not-m 

belongs to S’.33 
Hence, in FA’, ‘not-m belongs to S’ is derivable. 
 

                                                
30 In symbols: ⊢ f  ∈S ⊃ f . 
31 Hanson 1971 criticizes this formulation since it presupposes that I have an indefinite available quantity of time to 
perform my demonstrations in FA’. However Chihara 1971 rightly answers that in order to perform this kind of 
argumentations one has to presuppose a minimal idealization, that is the fact that I have all necessary available time. 
32 See Chihara 1971 (p. 515). 
33 In symbols: ⊢FA’ m∈S ⊃¬(m∈S). 



BC7. Hence for some numeral n, it is derivable in FA’ B(n,m). Therefore, using BC3 in FA’’ ‘m 

belongs to S’ is derivable. But FA’’ is an extension of FA’, in which, as we saw in BC6, ‘not-m 

belongs to S’ is derivable. We thus have a contradiction in FA’’. 
 
We can see, therefore, that without using the hypothesis that S is effectively enumerable we arrive 
at a contradiction, simply by formulating the principle that S uniquely contains true statements. As 
we shall see, the same thing will be discovered again by D. T. Chalmers (1995) using Gödel’s 
second incompleteness theorem instead of the first. That is, if a formal system is sound, then it is 
consistent. We know that S is sound, so it must be consistent. If we can also derive this, then by 
Gödel’s second theorem, S is inconsistent. 
Such reasons lead Chihara to propose the following reformulation of Benacerraf’s argument: 
 
C1. Let S’ be the set of Gödel’s numbers of the statements of FA that I can prove in an absolute 

sense, that is that I can prove and are true. The difference from Benacerraf is that we limit S to FA 
statements, thus obtaining S’. This way, the previous demonstration BC cannot be performed. In 
fact, since FA’ also contains “∈”, the formula of FA’, whose Gödel’s number is m need not belong 
to S’, since by hypothesis S’ only contains Gödel’s numbers of formulae belonging to FA. 
 

C2. Let us make the hypothesis that S’ is effectively enumerable by TMS’. 
 
C3. Let us also hypothesize that I know what TMS’ is like. Then I will be able to build a formula 
s(n), which is true within Formal Arithmetic if and only if n belongs to S’. Remember that by n, we 
refer to the numeral of n in FA. 
 
C4. Let us extend FA by adding all formulae of the kind: 
 
‘If nf is Gödel’s number of a statement f such that s(nf) then f’ 
 
That is, what I can prove is true. Let us call this new formal system FR. In FR we can define the 
two-place derivation predicate B(n,m), which means ’the sentence which has Gödel’s number m is 
derivable in FR by means of the proof which has Gödel’s number n’. 
 
C5. Let us then add to FR the rule of inference: 
 
If for some n we can derive in FR the statement B(n,m), then in RF we can also derive s(m). 
 
That is, what is derivable in FR can be proved. Let us call the new formal system we obtained, FR’. 
 
C6. Within it, it is possible to build Gödel’s formula. That is, m is the Gödel’s number of the 
formula GFR’, which asserts ‘m does not belong to S’FR’’. 
 
C7. By applying C4, we have that: 
 
in FR we can derive, ‘if m belongs to S’FR’ then GFR’’. 
 
C8. By applying C6 we have that: in FR we can derive, ‘if m belongs to S’FR’, then not-m belongs 
to S’FR’’. So, in FR we can derive, ‘not-m belongs to S’FR’’. 
 
C9. Hence, for some numeral n, we can derive in FR B(n,m). So, using C5 in FR’ we can derive ’m 

belongs to S’FR’’. But FR’ is an extension of FR, in which, as we have seen in C7, we can derive 
‘not-m belongs to S’FR’’. We thus have a contradiction in FR’. 



 
C10. If nf is the Gödel number of a statement f such that s(nf), then f” means that ‘if f is provable 
according to me, then f is true’. The fact that the Gödel number for statements of such a form 
belongs to S’ follows from the fact that every statement in S’ is true. 
 
C11. ‘if for some n the statement B(n,m) is derivable in FR’, then s(m) is also derivable in FR’’ 
means ‘what is derivable in FR’ is also derivable by me’. This rule does not generate statements 
whose Gödel number does not belong to S’. This is because if there exists a derivation, I can find it. 
 
C12. S’ is, against the hypothesis, a contradictory set of Gödel numbers.  
 
Chihara, as we can notice, avoids the contradiction in S by limiting the discussion to arithmetic 
sentences alone. In this way, to obtain the contradiction again, we must introduce hypothesis C2 
that I am a Turing machine and I know which one. Chihara asserts that his argument, while having a 
different demonstrative procedure with respect to that of Benacerraf, it is nevertheless similar to the 
latter. This is because it starts from the same premises and leads to the same conclusions. In fact, 
the only ways to remove the contradiction are: (1) to eliminate the premise C2, i.e. that S’ is 
representable through a TM; (2) to eliminate C3, i.e. that I know TMS’. 
On the other hand, as Chihara notes, there is a problem in his reformulation of Benacerraf’s 
argument: step C1, which in any case was in the original argument, is not rigorous. This is because 
it contains the not further explicable expression “sentences of FA that I can prove in an absolute 
sense”. This expression implies an involvement of my knowledge, as the notion of “absolute proof” 
does not simply refer to the realization of an automatic algorithm, but also to the fact that I know 
that the axioms of FA are true and that its inferential rules are valid, that is that they maintain the 
axioms’ truth. If this is the case, what I can prove at the time t1, when I start an argument, can be 
different from what I can prove at the time t2, when I am at a subsequent step. This means that the 
step C5 is dubious, in that it claims that I can prove in an absolute sense everything that is derivable 
from FR. But what I can prove depends upon what I know and so, even if C1 holds, C5 does not 
need to hold as well.  
We can then ask what would happen if we replaced C1 and C3 (as we shall see Penrose will) with:  
 
C1’. Let S’ be the set of Gödel numbers for the statements of FA which a human being can in 

general prove in an absolute sense; that is which are derivable by a human being and are true. 
 

C3’. Let us assume by hypothesis that in general a human being knows what a TMS’ is like. Then we 

could build a formula s(n) which is true within the Elementary Arithmetic if and only if n belongs 
to S’. By n we refer to the numeral of n in FA.  
 
Thus, any doubts over the validity of C5 are removed, even if the set S’ defined in the step C1’ is 
substantially that of FA theorems. As we shall see in the last section, Shapiro will make important 
objections against this reformulation too.  
The conclusion of Chihara’s reformulation of Lucas’ argument, which had already been elaborated 
by Benacerraf, is not as dramatic as it was claimed by Benacerraf’s friend, who argued that in that 
case psychology would be impossible. A position that which was put forward again by Chihara 
himself. This conclusion, as Benacerraf rightly observed, is indeed a “poor result”. For the fact that 
a human being, if his intellectual abilities are representable by means of a Turing machine, will 
never be able to discover it, does not entail that we will not be able to represent increasingly 
important parts of our intelligence in computational terms. 



Scientific psychology is possible; a complete scientific psychology of human intellect is impossible; 
but there was no doubt about this, even before the discovery of Gödel’s Theorem!34. 
 
 
3.4 Penrose’s Arguments 
 
Despite many errors and obscurities, Lucas’ argument had a profound impact on advocates of both 
mechanistic and anti-mechanistic positions, often contributing to the construction of reasoning, 
which has created more problems than they have solved. An emblematic case is the reflection of the 
English mathematical physicist Roger Penrose (1989). As is well-known, he is convinced that 
human intelligence, which characterizes the activity of the human mind, is not representable in 
terms of a Turing machine, even if it is not an activity which transcends physics, but to explain it 
we need a new and non-computational theory of matter. To prove this, Penrose makes use of Lucas-
like, but in some respects more complex and sophisticated, arguments. In particular, as is by now 
accepted in the literature,35 Penrose provides two arguments: one in The emperor’s new mind 

(1989) and in the second chapter of Shadows of the Mind (1994), and the other in the third chapter 
of Shadows of the mind. Surprisingly such arguments, although taking into account Lucas’ lesson, 
do not make any reference to Benacerraf and Chihara’s sophisticated works. 
Let us start from Penrose’s first argument.36 
 
PI1. Let us suppose that there exists a TMA capable of simulating all procedures, call them A, which 
are followed by the mathematical community to prove theorems. In addition, and this is similar to 
what is assumed by Benacerraf, A must be sound, that is it must only produce true results.37 
 
PI2. In particular TMA will be able to prove that a certain Turing machine n with a certain input m 

does not halt, that is that for certain pairs of natural numbers n and m: for all y not T(n,m,y). For 
instance, we can assume that TMA has the following characteristic: if TMA with input Cn (the 
encoding of TMn) and m halts, then TMn with input m does not halt. 
 
PI3. Let us apply Cantor’s diagonal method. Give to TMn its own number as input; then, since A is 
sound: if TMA with input Cn and n halts, then TMn with input n does not halt. 
 
PI4. Let us enumerate all computations, which do not halt for at least one possible input:  
C1, C2, C3, ,…. Cn, 
which is an effectively enumerable set. 
TMn with input n will be one of them, say Ck. It follows that: 
(TMA with input Cn and with n) = Cn(n) 
 
PI5. Let n=k. We have that: 
(TMA with input Ck and with k) = Ck(k) 
and by PI3: 
if TMA with input Ck and k stops, then TMk with input k does not halt, that is Ck(k) does not halt. 
Hence: 
If Ck(k) halts, then Ck(k) does not halt. 

                                                
34 Gaifman 2000 reaches similar conclusions independently and remarks on the affinity between this result and the 
thesis of substantial inaccuracy of psychology advocated by Davidson. Chihara 1971 (p. 518), on the other hand, 
reports that Benacerraf became sceptical about the soundness of his argument. 
35 Chalmers 1995 and McCullough 1995 first argued the presence in Penrose of two arguments. 
36 See Penrose 1994 (p.73 ff.). 
37 If Penrose had taken into account Benacerraf and Chihara’s works, which we discussed before, he would have 
understood that PI1 leads to a contradiction without the hypothesis that A is computable. 



This means that: 
Ck(k) does not halt. 
 

PI6. But Ck(k) is equal to TMA with input Ck and k, which does not halt, that is TMA is not able to 
“realize” that Ck(k) does not halt, against the hypothesis. We know, however, that Ck(k) does not 
halt, because A is sound; hence we know something that TMA is not able to calculate. Penrose 
(1994, p. 76) concludes that: ‘human mathematicians are not using knowably sound algorithms in 
order to ascertain mathematical truths’. 
 
This first argument, as well as Lucas’ paper, revitalized the debate on mechanism and Gödel’s 
theorems, and so provoked several reactions, many of which concerning the procedure of Penrose’s 
argument: in particular the works by George Boolos (1990), Martin Davis (1990; 1993), Hilary 
Putnam (1994) and Solomon Feferman (1996)38 helped in clarifying many incorrect, or at least 
doubtable, aspects of the above argument.39 Beyond criticisms answered by Penrose with his work 
Beyond the doubting of a shadow in 1996, it is to be noted that the above argument improves the 
previous ones of Lucas,  Benacerraf and Chihara in at least one aspect. This is because when it 
defines A, which replaces Benacerraf’ S, it does not refer to just one person, but to all human 
mathematicians, thus bypassing Chihara’s criticisms, which incidentally were probably unknown to 
him. In his argument Penrose arrives at a fork similar to that of Benacerraf.  
 
A sceptical hypothesis: mathematical methods of proof are not all contained in one algorithm;  
An agnostic hypothesis:40 mathematical methods of proof are all contained in a sound algorithm, 
which however human beings will never know with absolute certainty. In either alternatives it must 
be stressed that the problem is not hardware, but software. In practice, the fork opened by the 
previous variants is equivalent to the premise (b) of Benacerraf’s B2 point and to the first part of 
Chihara’s C3 premise. 
The presence of such alternatives explains those parts of Shadows of the mind aimed at unravelling 
the fork in favour of the sceptical position, and sets out the reasons for developing a second 
Penrosian argument. 
 
In Shadows of the mind, in fact, as we have already emphasized, Penrose returns to his Gödelian 
argument refining its previous version. Penrose’s new argument presents the same problems as the 
first one, but it seems to advance some interesting ideas. We will critically discuss it using the 
penetrating analysis of the philosopher of the mind David Chalmers (1995), who however, not 
knowing Benacerraf’s and Chihara’s papers, cannot see the possibility, highlighted by the latter, of 
removing the contradiction. 
Chalmers reconstructs Penrose’s first argument as follow: 
 
PI1’. We know that we are a sound formal system, i.e. that our reasoning abilities can be simulated 
by a TM which only produces true statements. 
 

                                                
38 In various papers Feferman intervenes on the issue. In particular in Feferman 2007 he describes in detail Godel’s 
reflection on the significance of incompleteness theorems for the philosophy of mind. He also talks about the difficult 
relationship between Nagel and Gödel concerning the intention of publishing a popular booklet written by the former in 
the late 1950’s. Finally he authoritatively takes part in the controversy over Penrose’s argument. In his first argument, 
Feferman notices a series of logical inaccuracies and so argues that he is not convinced of Penrose’s conclusion, for 
such arguments raise more problems than they solve. However he is persuaded that it is not possible to find a possible 
algorithm that reproduces mathematicians’ methods of proof; even if it is still possible to re-represent the proof in 
mechanical terms. In the end it is the same conviction as Benacerraf’s, which however Feferman does not justify on the 
basis of the incompleteness theorems.  
39 For a general examination on criticisms on Penrose’s arguments see Antonelli 1997. 
40 For a wider reflection on concepts such as “sceptical hypothesis” and “agnostic hypothesis” see Bruni 2004. 



PI2’. We also know a priori that F represents our reasoning abilities, that is we know a priori which 
system represents us. 
 
PI3’. Thus, we know that F is sound. Hence we know that it is part of F that F is consistent. 
 
PI4’. F cannot derive its Gödel statement GF. F, however, can derive the conditional ‘if F is 
consistent, then GF is true’. 
 
PI5’. Thus, through modus ponens F knows that its Gödel’s statement is true, hence F is not 
representable by means of a TM, or rather, is not a formal system. 
 
As we know, the whole weight of the argument lies on assumption PI2’, which claims that we know 
a priori F represents our reasoning abilities. Let us remember that this is exactly what Benacerraf 
denied. It is thus not possible to prove that we are not a TM, unless we show that PI2’ holds. Nor 
can Penrose claim that we can empirically ascertain that we are F, in that, despite this being entirely 
legitimate (as Gödel already observed), it would not lead to the desired conclusion.  
To arrive at the conclusion that we are not a Turing Machine, Penrose cannot assume the very weak 
premise PI2’. Nevertheless he could reason in the following way: 
 
PI1’’. If we are a sound formal system F, then we are able to establish the soundness of F. 
 
PI2’’. We are a sound formal system F. This is the crucial premise, whose negation Penrose would 
show. 
 
PI3’’. We are able to establish the soundness of F. Through modus ponens from PI1’’ and PI2’’. 
 
PI4’’. We are able to establish the consistency of F. It follows from PI3’’. 
 
PI5’’. PI4’’ contradicts PI2’’, since, according to second Gödel’s theorem, a sound formal system is 
not able to prove its consistency.  
 
Therefore we can infer PI5’’ only if F autonomously establishes that it is sound and therefore 
consistent. Hence, to render PI5’’ plausible, Penrose must prove that F is sound without us knowing 
that we are F. The attempt to do so explains the section § 3.3 section of Shadows of the mind, where 
Penrose argues that any formal system is representable as a set of axioms and inferential rules. And 
so if we examine F, even if we do not know that F represents our argumentative abilities, we see 
that the axioms are true and that the inferential rules are valid, that is they lead to true theorems. 
Chalmers sharply criticizes this argument on grounds that the formal system which represents our 
abilities is so complicated that, in all likelihood, we do not have the chance to examine every single 
part of it. Hence also this version of Penrose’s first argument fails.  
Penrose’s new argument, as we said, tries to improve on the previous one, and does so by replacing 
PI2’ with the following assertion: 
 
PII2. We know a posteriori that F represents our reasoning abilities.  
 
But, by 
 
PII1. We know that we are a sound formal system. 
 
PII3. Hence we know a posteriori that F is sound. Let us, then, build the system F’ which also 
includes that ‘I am F’. 



 
PII4. F’ is certainly sound, hence by Gödel’s first theorem, F’ cannot derive its Gödel statement 
GF’; but I know that GF’ is true, hence I am not F’. If I am not F’, all the more so, I am not F, 
against the hypothesis. 
 

Notice that PII2 is not sufficient to create the contradiction, since we arrive at the conclusion that F 
represents our intellectual abilities only a posteriori. But by adding the sentence ‘I am F’ to the 
system F nonetheless we create the contradiction. 
But, as Chalmers observes, PII1 is a contradictory premise.41 We would say: “They realized at 
last!”, since it had already been noticed by Benacerraf in the appendix to his 1967 article, that is 
thirty years before. 
Chalmers then concludes that this first premise is to be removed, that is we cannot know that we are 
a sound formal system. However, we have already seen the elegant way in which Chihara bypassed 
the problem in 1972, reducing the whole discussion to arithmetic statements alone. 
 
 
4. Gödel’s view 
 
In 1951 Gödel held one of the prestigious Gibbs Lectures for the American Mathematical Society. 
The title of his lecture was Some basic theorems on the foundations of mathematics and their 

implications. The theorems in question were precisely those of incompleteness, and the 
philosophical implications concerned the nature of mathematics and the abilities of the human 
mind.42 
This was one of the few official occasions in which Gödel expounded his opinion on the 
philosophical implications of his theorems. Without going into detail about Gödel’s paper, what is 
interesting here is the first part, which is devoted to the derivation of the thesis of essential 
incompleteness of mathematics from his famous theorems.  
Such a thesis was, for Gödel particularly, sanctioned by the second theorem, in fact:  
 
It [the second theorem] makes it impossible that someone should set up a certain well defined system of axioms and 
rules and consistently make the following assertion about it: All of these axioms and rules I perceive (with 
mathematical certitude) to be correct, and moreover I believe that they contain all of mathematics. If someone makes 
such a statement he contradicts himself. For if he perceives the axioms under consideration to be correct, he also 
perceives (with the same certainty) that they are consistent. Hence he has a mathematical insight not derivable from his 

axioms. (Gödel 1995, p. 309) 

 
Let us try to better understand Gödel’s argument. 
Gödel’s idea is that if someone perceives with absolute certainty that a certain formal system43 is 
correct (sound), he will also know the consistency of the system, that is he will know the truth of 
the system statement which establishes the consistency of the system itself. But, by Gödel’s second 
theorem, the formal system considered cannot prove its own assertion of consistency, therefore the 
system does not capture all arithmetical truths, and for this reason “if someone makes such a 
statement he contradicts himself”. But what does all of this mean? Does it mean perhaps that a well 
defined system of correct (sound) axioms cannot contain all that is strictly mathematical?  
Gödel believes that such a question has two possible answers: 

                                                
41

Penrose 1996 argues against Chalmers that he does not add to F the sentence ‘I know that I am F’, but simply ‘I am 
F’, without noticing that it is exactly the fact that the sentence ‘I am F’ is added to F which makes certain that I know I 
am F. 
42 See Gödel 1995. A very accurate analysis of this writing is proposed by: Feferman 2006; Tieszen 2006; van Atten 

2006. 
43 It is understood that, in this paper, the expression “formal system” indicates a formal system which is adequate to 
derive incompleteness theorems. 



 
It does, if by mathematics proper is understood the system of all true mathematical propositions; it does not, however if 
one understands by it the system of all demonstrable mathematical propositions. […] Evidently no well-defined system 
of correct axioms can comprise all [of] objective mathematics, since the proposition which states the consistency of the 
system is true, but not demonstrable in the system. However, as to subjective mathematics it is not precluded that there 
should exist a finite rule producing all its evident axioms. However, if such a rule exists, we with our human 
understanding could certainly never know it to be such, that is, we could never know with mathematical certainty that 
all the propositions it produces are correct; or in other terms, we could perceive to be true only one proposition after the 
other, for any finite number of them. The assertion, however, that they are all true could at most be known with 
empirical certainty, on the basis of a sufficient number of instances or by other inductive inferences. If it were so, this 
would mean that the human mind (in the realm of pure mathematics) is equivalent to a finite machine that, however, is 
unable to understand completely its own functioning. This inability [of man] to understand himself would then wrongly 

appear to him as its [(the mind’s)] boundlessness or inexhaustibility. (Gödel 1995, pp. 309-310) 

 
Not only, then, does the previous question pose the problem of the inexhaustibility or 
incompleteness of mathematics considered as the totality of all true mathematical propositions; but 
it also raises the question as to whether mathematics is in principle inexhaustible for the human 
mind, that is to say, whether the human mind’s demonstrative abilities are extensionally equivalent 
to a certain formal system, or to the TM connected to it (the TM which enumerates the set of 
theorems of the corresponding formal system). 
The question, then, requires due consideration of precisely the relation between what Gödel calls 
objective and subjective mathematics. First let T be the set of mathematical truths expressible within 
the first-order arithmetic, and call this “objective arithmetic”, or following Gödel, spell it “objective 
mathematics”, that is “the body of those mathematical propositions which hold in an absolute sense, 
without any further hypothesis”. By Tarski’s theorem T is not definable within the language of 
arithmetic, hence T is not recursively enumerable. Let us then define K as the set of arithmetical 
statements which a human being can know and prove absolutely and with mathematical certainty, 
that is what he can derive44 and know to be true. Let us call it “subjective arithmetic” or following 
Gödel “subjective mathematics”, which “consists of all those theorems whose truth is demonstrable 
in some well-defined system of axioms all of whose axioms are recognized to be objective truths 
and whose rules preserve objective truth”.45 
What is then the relation between K and T? 
Quoting Feferman we could synthesize Gödel’s answer by saying: if K was equal to T “then 
demonstrations in subjective mathematics [were] not confined to any one system of axioms and 
rules, though each piece of mathematics is justified by some such system. If they do not, then there 
are objective truths that can never be humanly proved, and those constitute absolutely unsolvable 
problems”.46 That is, if the equivalence K=T held, the human mind would not be equivalent to any 
formal system or TM connected to it. In fact, having established T characteristics, for each formal 
system there would be a provable statement about the human mind, but not within the formal 
system. Hence, the mechanism would certainly be false: T non-recursive enumerability entails, in 
fact, the non-existence of any effective deductive system whose theorems are only and all truths of 
arithmetic. 
If, on the contrary, K did not coincide with T, and thus the human mind was equivalent to a given 
formal system or to the TM related to it, the existence of arithmetic statements humanly undecidable 

                                                
44 As Feferman 2006 (p. 140) emphasizes, Gödel believes that “the human mind, in demonstrating mathematical truths, 
only makes use of evidently true axioms and evidently truth preserving rules of inference at each stage”. 
45 Feferman 2006 (pp. 135-136). 
46 Feferman 2006 (pp. 136-137). The expression “absolutely unsolvable problems”, or Gödel’s expression “Diophantine 
problems which are undecidable” refers to the following fact: Gödel’s unprovable proposition which expresses the 
consistency of a formal system within the same system (with the formal system satisfying the first incompleteness 
theorem hypothesis) has the form ∀(x)R(x), where R is a primitive recursive predicate and each statement of such a 
form is equivalent (Gödel proved it) to a statement of the form ∀x1, … , ∀xn ∃y1, … , ∃ym [p(x1, … , xn , y1, … , ym) = 0] 
where the variables vary on natural numbers, and “p” is a polynomial with integer coefficients, that is it has the form of 
those problems faced by the Greek mathematician Diophantus of Alexandria in his book Arithmetica. 



in an absolute sense would follow. In fact, as Gödel underlined, the second incompleteness theorem 
does allow this conclusion: the proposition expressing the consistency of K, say ConK, is true but is 
not provable within the system itself; the negation of ConK is false and is not provable in K. Having 
established the equivalence between human mind and formal system, ConK is not even provable by 
the human mind. Finally, since ConK can be put in the form of a Diophantine problem47 it is an 
absolutely undecidable problem. Such a proposition is, thus, an unknowable truth. Such questions 
and arguments lead Gödel to the idea that from the incompleteness results can at the most be 
derived the following disjunction: ”Either [subjective] mathematics is incompletable in this sense, 
that its evident axioms can never be comprised in a finite rule, that is to say, the human mind (even 
within the realm of pure mathematics) infinitely surpasses the powers of any finite machine, or else 
there exist absolutely unsolvable diophantine problems of the type specified (where the case that 
both terms of the disjunction are true is not excluded, so that there are, strictly speaking, three 
alternatives)” (Gödel 1995, p. 310).  

So, considering the translatability between the concept of a well defined formal system and 
that of a Turing Machine, we can say that Gödel’s theorems leave open the three following 
possibilities:48 
 
(I) human intelligence infinitely surpasses the powers of the finite machine (TM), and there are no 
absolutely irresolvable Diophantine problems.49 
(II) human intelligence infinitely surpasses the powers of the finite machine (TM) and there are 
absolutely unsolvable Diophantine problems. That is, although human intelligence is not a finite 
machine, nevertheless there are absolutely irresolvable Diophantine problems for it.  
(III) human intelligence is representable through a finite machine (TM) and there are absolutely 
irresolvable Diophantine problems for it.  
 
Gödel was convinced that (I) held, but he was also aware that his incompleteness theorems did not 
make the existence of a mechanic procedure equivalent to human mind impossible.  
Gödel, however, as we expounded, believed that from his theorems it followed that if a similar 
procedure existed we “with our human understanding could certainly never know it to be such, that 
is, we could never know with mathematical certainty that all the propositions it produces are 
correct”. But this, established Godel’s idea that “the human mind, in demonstrating mathematical 
truths, only makes use of evidently true axioms and evidently truth preserving rules of inference at 
each stage”, this exactly means that “the human mind (in the realm of pure mathematics) is 
equivalent to a finite machine that, however, is unable to understand completely its own 
functioning”. 
This argument, as it can be noticed, reminds those already presented by Benacerraf and Chihara. Let 
us try to analyse it further by means of a formulation partly provided by Shapiro. 
First let K be the set of all those arithmetic sentences (theorems) whose truth is provable within 
some well defined axiomatic systems whose totality is recognized as objective truth and whose 
rules preserve objective truth. Moreover, Let T be the set of mathematical truths expressible within 
first-order arithmetic:  
 
G1. Let us hypothesize that K is effectively enumerable and that e is the TM number enumerating it.  
 
G2. K is equal to the sentences generated by TMe, call this set We, hence K= We. Let us hypothesize 
that ‘K= We ‘ is provable in K, that is it belongs to We. 
 

                                                
47 See note 46. 
48 See Tieszen 2006. 
49 See note 46. 



G3. Let us hypothesize, moreover, that everything within We is effectively provable, that is all 
elements of We satisfy Hilbert and Bernays’ famous derivability conditions, reformulated by M. H. 
Löb:50 
 
(i) For each statement f in the arithmetical language, if f belongs to We, then the arithmetical 
statement ‘f belongs to We’ belongs to We too. (That is to say We knows that it contains f, i.e. each 
theorem has to be provable). 
 
(ii) For each statement f and g in the language of arithmetic, arithmetical statements like ‘if f entails 
g it belongs to We, then, if f belongs to We, g belongs to We’ belong to We. (What We knows is closed 
under the modus ponens, that is such a rule holds for the provability predicate). 
 
(iii) For each statement f of arithmetical language, arithmetical sentences like ‘if f belongs to We, 

then it belongs to We that f belongs to We’, belongs to We. (That is We knows that it knows that it 
contains f, that is that provability is provable). 
 
G4. It is possible to prove51 that for We corresponding formal system the next condition holds 
(Diagonalization Lemma): 
 
(iv) For each formula F(x) of the formal system language, where x is a free variable, there is a 

statement f of the formal system language such that ⊢ f ↔ F(f ) . 

 
G5. It is possible to prove that if for We corresponding formal system the condition (iv) holds; the 
usual classic inferential forms (that is a α ⊃ β, β ∴ α ; α ⊃ β, β  ⊃ γ  ∴ α⊃ γ ;  α ⊃ (β ⊃ γ ), α ⊃ β 
 ∴ α ⊃ γ) hold, and Löb’s conditions (i)-(ii)-(iii) hold, then the following Löb’s Theorem holds as 
well:52  
 
Let f be any sentence in the language of first-order arithmetic and B53 the usual provability predicate 
for the formal system corresponding to We,  
 

‘B(f) entails f’ belongs to We  if and only if ‘f  belongs to We’.
54 

 
G6. Let Cone be the statement generated by TMe ‘there does not exist a y such that B(y,n)’ where n 

is Gödel’s number for the statement ‘1=0’. Practically, Cone expresses the consistency of the set of 
sentences generated by TMe, which we have called We. By the assumption G2, Cone is true, K being 
the system of all arithmetical sentences whose truth is derivable by the human being in some well 
defined system of axioms and rules. Cone however cannot be in K because of Gödel’s second 
theorem. But neither can the negation of Cone. Hence Cone is true, but unknowable, that is 
absolutely undecidable. If hypotheses G1 and G2 hold and so do G3, G4 and G5, nobody can know 
about e that We is consistent. It follows that no human being could know that each sentence in We is 
true (that is that We ⊆ T), since it should know that We is consistent. If, in fact, we suppose that Cone 

                                                
50 See, for instance, Verbrugge. See especially Löb 1955; Boolos 1993. A very interesting article on these issues is: 
Detlefsen 2002. 
51 For demonstrations and further clarifications see Smullyan 1992 (VIII and IX). 
52 See note 52. 
53 In particular we can define a derivation predicate B(n,m), which means ‘n is the Gödel’s number of a derivation of 
the sentence whose Gödel’s number is m’. 
54 Quoting Shapiro 1998 p. 281: “That is, there is no unknowable sentence Φ [f] such that we can know that if Φ [f] is in 
We then Φ [f] is true.  In other words, there is no trivial hypothetical knowledge about the contents of We. By hypothesis, 
a sentence Φ [f] is knowable if and only if  it is in We. For a particular sencence Φ [f], we can know that ‘Φ is knowable 
if and only if it is in We’ only if Φ [f] is knowable”. See also Detlefsen 2002.  



belongs to We, then by Löb’s first condition ’Cone belongs to We’ belongs to We, but because of the 
usual definition of negation ‘non-Cone belongs to We entails ‘0=1’’ belongs to We. It follows that, 
by Löb’s theorem, we have ‘0=1’ belongs to We. But this is not possible because K is consistent 
(Gödel’s second theorem). 
 
G7. So, either we rule out G1, i.e. that human arithmetical abilities are reproducible by a TM, and 
therefore we accept that ‘the human mind [...] infinitely surpasses the powers of any finite 
Machine’; or, if we accept G1, we have to rule out G2, i.e. that we can know which this TM is. 
Paraphrasing Shapiro: even if the mechanist was right and there was a system capable of K, nobody 
could claim to know with mathematical certainty that the system axioms and rules are correct 
(sound). In other words: there would not be any TM such that we could know that TM enumerates 
all and only the knowable statements. 
 
This is a very similar position to that of Benacerraf and Chihara: if there exists the TM which 
represents true and human derivable arithmetic truths, it cannot be known. As one can notice, not 
only was Gödel very careful to maintain that we cannot know with mathematical certainty that a 
certain TM represents K; but he was also just as accurate in seeing that, despite of this, we could use 
other methods, for example of an empirical nature, to pursue such a knowledge: “We could perceive 
to be true only one proposition after the other, for any finite number of them. The assertion, 
however, that they are all true could at most be known with empirical certainty, on the basis of a 
sufficient number of instances or by other inductive inferences”. 
 
5. Some Final Considerations 
 
As has rightly been pointed out by Shapiro (1998),55 a fundamental issue of the debate considered 
here is that it is not quite clear what the exact content of the mechanistic view should be. Indeed all 
authors analyzed here have dealt with the issue of defining this content, either refuting or valorizing 
it. Despite this, from these different views it clearly emerges that whatever the content, both the 
mechanist and anti-mechanist need to set idealizations without which it would not be possible to 
make any analysis and comparison concerning it. Quoting Shapiro (1998, p. 275): “The mechanist 
claims that there can be a machine whose outputs are the same as those of a human or a group of 
humans. What sort of machine? What outputs? What aspect of what humans? […] Things get 
interesting only when we idealize, but things also get murky”. The same, mutatis mutandis, could 
be said for the anti-mechanist. Without going into details, for which one can refer to Shapiro’s 
work, here we wish to linger over a part of the issue of idealization, noting that on the one hand 
both Benacerraf’s S set and Penrose’s A cannot have a finite cardinality, while on the other hand, 
human life being finite, the set of procedures and theorems of a group of mathematicians cannot but 
be finite as well.  
Benacerraf’s and Penrose’s sets, clearly presuppose an idealization, namely the one of the set of 
theorems which mathematicians can prove. If now we consider a finite set of theorems proved by 
mathematicians, it must be stressed that, however large it might be, it will never determine a 
univocal set of rules, that is an algorithm, which should produce them. Using now Saul Kripke’s 
wittgensteinian considerations,56 this is equivalent to saying that no finite set of theorems 
determines a single algorithm which produces them. But if this is true, what is the point of speaking 
about the algorithm which produces all arithmetical theorems, which a mathematician community 
could produce if it had an indefinite amount of available time? One can argue that an assumption of 
any discussion concerning mechanism is the one that might be called “minimal Platonism”. As is 
well-known, a somewhat caricatured picture of Platonism circulating in the field of mathematics 
would be like this: long before the first arithmetician realized that ‘2+2=4’, beyond space and time, 
                                                
55 Similar views are shared by Tamburrini 2002 (pp. 130-133). 
56 See Kripke 1982; Wittgenstein 2001. 



there existed entities like “2” and “4”, which were already in that relation. This is obviously an 
unjustified and groundless metaphysical hypothesis.57 However, as Quine and Putnam have pointed 
out, introducing abstract entities explains the objectivity of mathematized science. Therefore we 
need to attribute some reality to such entities, at least within the context of their application, by 
abduction, that is by a sort of inference to best explanation.58 Yet, without however introducing a 
sort of Platonism on entities, in order to answer the previous question, one could argue that 
mathematics bears a certain normativity, which can be expressed by statements like: any thinking 
being which would be able to perform the abstractions and idealizations necessary to grasp the 
concepts of “2”, “4” and “addition” would realize that ‘2+2=4’. Thus, here the point is not so much 
to support a Platonism of entities, as to support a Platonism of procedures.  
On this basis, beside a merely descriptive level, it makes sense with regard to arithmetic to speak of 
a normative level: the set of mathematicians who work for an indefinite time will produce theorems 
in accordance with a normativity, which, if the mechanism is right, is reproducible by means of an 
algorithm. By introducing this normativity we can further develop the premise C1’ of Chihara’s 
argument without referring to the real performances of mathematicians, but rather to their ideal 

arithmetical competence, obtaining an improvement in Chihara’s argument. Remember that Chihara 
criticized the premises C1 and C3 of his reconstruction of Benacerraf’s argument; for this reason, 
we replaced them with C1’ and C3’ following Penrose’s suggestion. We have already seen that 
Shapiro criticizes these too from a sheer empiricist point of view. This is why in our reformulation 
we will introduce a minimal Platonism needed to reach the conclusion. 
 
CFG1. Let S’ be the set of Gödel numbers of sentences of FA that a set of mathematicians can 

prove in an absolute sense and in compliance with a normativity.  
 

CFG2. Let us hypothesize that S’ is effectively enumerable. 
 
CFG3. Let us also hypothesize that the human being knows what a TM S’ looks like. Then one could 
build s(n) which is true in N if and only if n belongs to S’. By n we indicate the n numeral in FA. 
 
CFG4. Let us extend FA by adding all formulae such as: 
 
If nf is the Gödel number of a sentence f such that s(nf) then f 
 
Let us call this new formal system FR. It is clear that in FR we can define the two-place derivation 
predicate B(n,m), which means ‘the statement which has Gödel number m is derivable in RF by 
means of a proof which has Gödel number n’. 
 
CFG5. Let us then add to FR the inference rule: 
 
if for any n one can derive in FR the sentence B(n,m), then in FR one can also derive s(m). 
 
Let us call the newly obtained formal system FR’. 
 
CFG6. In it, it is possible to build the Gödel formula. That is, m is the Gödel number of the formula 
GFR’, which states that ‘m does not belong to S’FR’‘. 
 
CFG7. By applying CFG4 we obtain that: 
 
in FR it is derivable that, ‘if m belongs to S’FR’ then GFR ’’. 
                                                
57 See, for instance, the classic Benacerraf 1996. 
58 This is the famous “indispensability argument”, see Colyvan http://plato.stanford.edu/entries/mathphil-indis/. 



 
CFG8. By applying CFG6 we have that: 
in FR it is derivable that ‘if m belongs to S’FR’, then not-m belongs to S’FR’’. Hence in FR it is 
derivable that ‘not-m belongs to S’FR’. 
 
CFG9. Hence, for some numeral n, in FR ‘B(n,m)’ is derivable. So, by using CFG5 in FR’ we can 
derive ‘m belongs to S’FR’‘. But FR’ is an extension of FR, in which, as we have seen in CFG7, we 
can derive ‘not-m belongs to S’FR’’. We thus have a contradiction in FR’. 
 
CFG10. ‘If nf is the Gödel number of a sentence f such that s(nf ), then f” means that ’if f is provable 
by the group of mathematicians, then f is true’. That the Gödel number of sentences of this form 
belongs to S follows from the fact that all sentences comprised in S’ are true. 
 
CFG11. ‘If for some n the sentence B(n,m) is derivable in FR, then s(m) is also derivable in FR’ 
means ‘what is derivable in FR is also derivable by the group of mathematicians’. This rule does not 
produce statements whose Gödel number does not belong to S’, because if there exists a derivation, 
mathematicians can find it. 
 
CFG12. Hence, if FR’ is contradictory, and S’FR’ is a subset of S’, then S’ represents a contradictory 
set of statement, against S’ definition. So, the only ways to avoid the contradiction  are: (1) by 
removing premise CFG2, i.e. the sentence that S’ is representable by a TM; (2) by removing CFG3, 
i.e. the statement according to which the human being knows TMS’. 
 
For reasons of principle, therefore, we cannot know with absolute certainty whether or not a formal 
system representable by TM captures our reasoning abilities. This conclusion, already highlighted 
by Gödel, and proposed again by both Benacerraf and Chihara, does not have any great relevance to 
the philosophy of psychology. Nothing prevents one from building computational models, which 
would simulate ever-increasing parts of our intelligent behaviour. One day, we could even build a 
Turing machine, which will simulate in every way human intelligent behaviour, but we will not 
know this with absolute certainty! We believe, then, that the significance of this conclusion is more 
anthropological, than scientific: it simply reasserts the fundamental incompleteness of human self-
knowledge. 
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