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Abstract

I explore the debate about causal versus evidential decision theory, and
its recent developments in the work of Andy Egan, through the method
of some simple games based on agents’ predictions of each other’s actions.
My main focus is on the requirement for rational agents to act in a way
which is consistent over time and its implications for such games and their
more realistic cousins.

Traditional “evidential” decision theory seemed to work fine, until New-
comb’s problem forced philosophers to consider situations where an agent’s
choices provide good evidence for some fact holding without being causally
relevant to that fact holding. In Newcomb’s problem, an agent makes a choice
between two options: he knows that he will do better in taking the first than
the second option no matter what the world is like, but also that taking the
second option provides strong evidence that the world is a pretty good place,
and that taking the first option provides strong evidence that it’s not so good.
The majority of philosophers, therefore, converted to “causal” decision theory,
which evaluates an act’s expected utility with respect to an agent’s uncondi-
tional credences in the state of the world, not their credences conditional on the
actions they in fact perform.

But it’s turned out that causal decision theory, too, has its problems. In
Newcomb’s problem, option one is better than option two whatever the world’s
like. But what if taking option one provides good evidence that option two
would have been the better choice, and vice versa? Andy Egan’s recent (2007)
discussion of such examples has stirred a controversy as to whether causal de-
cision theory can after all be defended or whether, as he advocates, we need to
look for yet another formal system for decision-making.

This paper can be taken as either a partial defence of causal decision the-
ory, or a partial development of an alternative: the decision theory I propose
essentially is causal decision theory but requires rational agents to conform to
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constraints on their credences as well as their preferences. I develop it, in large
part, in the context of fairly simple, stylised two-person games.

I should acknowledge up front that much here is not new. The strategy I
advocate is a variant on ratificationism (originally advocated by Jeffrey (1983)
in defence of evidential decision theory, and considered and rejected by Egan).
And both the details of my proposal and my diachronic rationale for it are in
many ways close to a recent proposal due to Arntzenius (2007). The points
of novelty, I think, are: the defence I offer of “diachronic consistency”, the
intepretation I wish to place on mixed acts, the generality of the analysis I
offer of a certain family of games, and the proposal that decision theory may
sometimes be silent as to which act an agent should perform not because none
of them are rationally acceptable but because several are each acceptable by
their own lights.

1 A simple game

Alice and Bob are playing a simple game, which goes like this. There are two
opaque boxes, A, and B, and Bob is to choose between them. Alice secretly
places either three dollars in box A or two dollars in box B — these aren’t her
dollars, the gamesmaster has supplied them. Bob then chooses to open either
A or B and gets to keep the contents of the box. If he chooses the empty box,
Alice gets one dollar. (I assume, harmlessly, that utility is linear in dollars for
both of them.)

What should each do? We’ll come at it in stages. Start by assuming that
the game is very heavily loaded in Alice’s favour:1 Bob is compelled to tell her
his strategy in advance — before she places the money — and then is bound
to keep to it (by the high disutility he places on dishonesty; by getting a third
party to execute the strategy; by armed guards with telepathic powers — take
your pick).

If Bob’s plan is to take box A then Alice will put the money in box B, and
vice versa; either way, he gets nothing. But students of game theory will have
spotted an alternative: he can decide to take box A with probability p and
box B with probability 1− p (assume, for the moment, that he carries a handy
random-number generator with him for such purposes).

What should Alice do? It’s pretty simple: if p < 0.5, then Bob is more likely
to pick box B than box A, so she should put the money in box A; if p > 0.5,
she should put the money in box B. And if p is 0.5 exactly, it doesn’t matter
what she does.2

So: what is the optimum choice of p for Bob (assuming that Alice is ratio-
nal)? He should choose p to be just slightly less than 0.5: this guarantees that
Alice puts three dollars in box A, and his expected winnings are just shy of 1.5

1As we’ll see, it doesn’t at all follow that it’s loaded in Bob’s disfavour. Alice and Bob are
not playing against one another.

2It’s easy to see that Alice doesn’t benefit from adopting a probabilistic strategy in this
situation.
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dollars. (Conversely, if he chose p to be just slightly more than 0.5, she’d put
two dollars in box B and his expected winnings would be just under one dollar:
the reason for choosing p < 0.5 is that Alice puts more money in box A than in
box B.3

Basically the same thing happens if we reverse the loading, so that Alice
rather than Bob has to disclose her strategy in advance: it’s easy to show that
her best strategy is to put money in box A with probability just under 0.6, and
that her expected winnings are then $0.6 or just under.

In the real game, though,Alice and Bob’s possible strategies are unchanged
from these simple cases: choose each box with some probability. But now
neither has prior knowledge of the other’s choice of probability, so each is in the
position of having to guess the other’s strategy (on whatever grounds come to
hand: assuming the other is somewhat rational; prior knowledge of the other;
access to a team of well-briefed psychologists, whatever). We will assume that
neither is hopeless at that task (more accurately, we will assume that neither
believes the other to be hopeless), but we will make no assumption that either
is perfect, or even preternaturally talented, at the task.

Consider Bob: he wants to choose box A if the money is in A and box B if
it’s in B, and we might hope to be able to represent his degree of confidence as
to which box it’s in by some credence: we’ll write q for Bob’s credence that the
money is actually in box B. So if Bob chooses to take box A with probability p
(for convenience, say just ”if Bob chooses the p-strategy”) the expected utility
of his choice is

UB(p, q) = 3p(1− q) + 2q(1− p) = 2q + p(3− 5q). (1)

But there is a complication. Bob knows that which box the money is in depends
on Alice’s predictions of his actions, and if she is any good at predicting his
actions, his value of q should increase as p increases: the more likely he is
to take box A, the more likely it is that Alice has put the money in box B.
Mathematically, this means we should replace q with an increasing function
g(p) of p.

Traditionally, decision theory has offered Bob a choice of two theories to
decide which p-strategy to select.

∙ According to evidential decision theory (EDT; see, e. g. , Jeffrey (1983)),
Bob should choose that value of p which maximises

VB(p) = UB(p, g(p)), (2)

the expected utility of Bob choosing the p-strategy evaluated with re-
spect to Bob’s credence in the money’s location given that he chooses the
p-strategy. For instance, suppose we make the (unrealistically crude) as-
sumption g(p) = p: that is, conditional on Bob choosing the p-strategy,

3Strictly, then, Bob has no absolutely maximal strategy: whatever his choice of p, there
is some slightly better choice available. I take this to be a harmless artifact of the model’s
simplicity.
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Alice has probability p of putting the money in box B. Then

VB(p) = 3p(1− p) + 2p(1− p) = 5p− 5p2, (3)

which is maximised at p = 0.5, for an expected return (as calculated by a
third-party observer) of 1.25.

∙ According to causal decision theory (CDT; see, e. g. , Lewis (1981)), Bob
should choose that value of p which maximises U(p, q) for whatever value of
q represents his actual credence in the money being in box B. If (3−5q) >
0 — that is, if q < 0.6 — then this means he should choose p = 1, and
take box A with certainty; if q > 0.6, he should take box B with certainty.

Both strategies have this odd property: in general they commit Bob to deciding
to do something which he will then regret deciding. Start with EDT: in the
example given, Bob will choose p = 0.5. Conditional on this choice, he now
believes there to be a 50% probability that the money is in box A. But on that
assumption, his choice no longer looks optimal: choosing box A with certainty
gives better rewards.

CDT fares no bettter. Suppose (say) that q = 0.5, then CDT suggests —
reasonably — that Bob should take box A: the money is equally likely to be
there as in box B, and if it is, there’s more of it. But in that case, Bob chooses
p = 1. Conditional on his following this strategy, the money has probability
g(1) of being in box B; if Alice is even moderately good at predicting Bob’s
actions, g(1) > 0.6, the threshold at which CDT dictates that choosing B is
preferable. So, having chosen his strategy, Bob will (if he regards Alice as
reasonably accurate) predict his expected return to be close to zero.

2 Diachronic consistency

Why care if Bob makes a decision he then regrets? Even if he makes a decision
that he predicts he’ll regret?

Short answer: because if he regrets that decision, nothing stops him from
changing it. (It’s not like the original case we considered, where the strategy
was announced to Alice and Bob had to follow through on it.) And if he changes
his decision, what makes it a decision at all?

The longer version rests on this principle: that if some time an agent prefers
a strategy of doing X at a later time to a strategy of doing Y at that later time,
then at that later time, the agent prefers doing X to Y . Call this diachronic
consistency : it is a close cousin of Arntzenius’s desire reflection principle.

Why accept it? Arntzenius offers two reasons: that diachronically incon-
sistent agents are susceptible to Dutch books, and that to violate diachronic
consistency is to refuse advice from your future self, who is an agent just like
you but with more information. That sounds persuasive to me, but I have a
different line of defence: if an agent actually chooses Y over X at the later time,
what makes it true that he has previously decided to choose X-later rather
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than Y -later? He may say “I am deciding to choose X ⋅ Z”, but if he sincerely
believes that he will actually choose Y over X at time t2, can it really count as
a decision?

On first sight, this may just be seen as undermining diachronic consistency:
is an agent really deciding anything at the earlier time, rather than making a
mere prediction about his behaviour when the real decision is made? But I
don’t think this is a sustainable position. Real-world decisions — applying for
a job, going out for a coffee, even crossing the room to turn the light on — take
place over a period of time and involve consequences that likewise unfold over
time; in general, a realistic action is a composite of smaller actions, and there
is no reason to expect a finest grain of individuation for actions (or at any rate
for actions qua actions; actions qua physical processes may be another matter,
but that seems to be a matter for particle physics, not decision theory.)

Someone might, I guess, nonetheless suppose that there really are “critical
moments” in decision-making when decisions are really taken: it is at those mo-
ments (one might suppose) that an agent’s preferences really have significance,
and at other moments an agent’s “preferences” are merely aspirations, hopes,
predictions, commentaries, or whatever. This might be an attractive position
if one regarded actions, and decision-theoretic preferences, as actually instan-
tiated in some concrete psychological processes. However, following (Davidson
1973), (Lewis 1974), and (Dennett 1987), I wish to adopt a more ‘interpretative’
approach to ascriptions of beliefs and preferences: what makes it true that an
agent has a certain credence function and a certain utility function is that those
functions best describe their dispositions to action on the assumption that their
behaviour is rational, and what makes it true that they are rational agents is
that some such functions describe their dispositions to action reasonably well.

From this perspective, it is difficult to see what pattern of behaviour could
justify treating a physical system as an agent who is systematically violating
diachronic consistency but is otherwise rational, rather than as a system which
cannot be treated as rational at all (a system to which the Intentional Stance
cannot usefully be adopted, in Dennett’s (1987) terminology). To be sure,
certain specific behaviours — deciding each morning to give up alcohol, only
to succumb that same evening, for instance — might naturally be thought of
as violations of diachronic consistency. But (leaving aside the fact that such
behaviour is typically considered a paradigm of irrationality) it seems to me
plausible that it can only be understood as behaviour at all when seen against
an overall pattern of rationality (see (Dennett 1987, 103–116) and Davidson
(1973) for further discussion of this point).

I hope that either these arguments, or Arntzenius’s, at least make it plausible
that diachronic consistency is a reasonable constraint on rational action. At any
rate, for the rest of this paper I shall take it as read.

What does a diachronically consistent decision theory look like? It should
respect the basic insight of causal decision theory: that an agent should choose
that strategy on which his rewards are maximised given his actual credence func-
tion. But it also had better not be the case that that rule is self-undermining,
so that when an agent updates his credence function by conditionalisation on
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that strategy, he now prefers some other strategy.
What does this entail for Bob? EDT said: choose p to maximise UB(p, g(p)).

CDT said: choose p to maximise UB(p, q) for whatever q is your prior credence
in Alice’s choice. DDT — diachronically consistent decision theory4 — says: do
what CDT says, but make sure that your credence q satisfies q = g(p).

DDT looks somewhat unfamiliar. We are used to thinking of decision the-
ory as being a rule for choosing preferences for given credences; we are less
used to simultaneous constraints on credence and preference. But the idea that
rationality constrains one’s credence function is not new. After all, why re-
quire a credence function to satisfy the probability axioms in the first place?
A simple answer is that if it doesn’t, the agent will be committed to accept-
ing bets which always lose money, and that this is irrational; a better answer
comes through decision-theoretic representation theorems like those of Savage
(1972), Jeffrey (1983) or Joyce (1999), which establish that agents satisfying cer-
tain qualitative constraints of rationality must act as if they maximised some
utility function with respect to some credence function conforming the prob-
ability axioms. Similarly, diachronic Dutch book arguments Lewis (1997) are
widely taken to establish that since having a credence function which updates
other than through Bayesian conditionalisation commits one to losing money,
it is irrational to have such a credence function. (And it is possible to prove a
representation theorem to the same effect analogous to Savage’s representation
theorem provided one takes diachronic consistency as an assumption; see the
appendix of Wallace (2010) for such a theorem.)

In normal circumstances, the constraints that rationality places on credence
are fairly mild: any function which synchronically satisfies the probability cal-
culus and diachronically conforms to Bayesian updating will do. Similarly, ra-
tionality places essentially no constraints on an agent’s utility function. But
where an agent regards his own choices as affecting the probabilities of vari-
ous outcomes, the constraints are more severe: only certain choices of credence
and utility function will give rise to diachronically consistent behaviour, so if
diachronic consistency is a prerequisite for rationality, only certain choices of
credence and utility function will count as rational. And since our evidence
for ascribing given credence and utility functions to an agent comes from the
assumption that their behaviour is rational or approximately so, it ought to
follow that we will never have reason to ascribe non-diachronically-consistent
credences and utilities to any agent. Indeed, if rationality is to be understood in
interpretative terms, there simply cannot be agents whose credences and utilities
are not diachronically consistent.

3 Bob’s choice again

Recall Bob’s situation: he has available to him a continuous one-parameter
family of actions parametrised by p (0 ≤ p ≤ 1): the p-strategy involves choosing

4Conveniently, this could also stand for Arntzenius’s deliberational decision theory.
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box A with probability p and box B otherwise. So the expected utility of the
strategy, given q, is

UB(p, q) = 3p(1− q) + 2q(1− p). (4)

Bob’s credence on Alice putting the money in box B, conditional on his choosing
strategy p, is g(p). According to DDT, q and p are jointly determined by the
requirement that p maximises UB(p, q) when q = g(p).

UB(p, q) is linear in p, so there are three possibilities for its maxima:

1. the rate of change of UB with respect to p is positive, so the maximum
value occurs at p = 1;

2. the rate of change of UB with respect to p is negative, so the maximum
value occurs at p = 0;

3. the rate of change of UB with respect to p is zero, so that all choices of p
give the same expected utility.

Now ∂UB

∂p (p, q) = 3− 5q, so the maxima are

1. p = 1 (if q < 0.6)

2. p = 0 (if q > 0.6)

3. All values of p (if q = 0.6 exactly).

The first is consistent only if g(1) < 0.6 (that is, only if Bob believes Alice to be
a pretty poor predictor, little better than chance); the second only if g(0) > 0.6
(that is, only if Bob believes he’s managed to fake out Alice, and she’s rather
more likely than not to guess wrong). The third, though, will be consistent
provided there is some value of p such that g(p) = 0.6. And on the assumption
that g(1) < 0.6 and g(0) > 0.6, this will be the case whenever g is continuous —
an assumption which seems reasonable if only on physical grounds Arntzenius
(2007).

If this third case holds, diachronic consistency commits Bob to choose that
value of p such that conditional on his choice he predicts Alice to have probability
0.6 of picking box B. Notice that this doesn’t mean Alice is adopting the strategy
of picking box B with probability 0.6. It just means that Bob, who is predicting
Alice’s behaviour just as she is predicting his, gives credence 0.6 to her picking
box B (conditional on his choosing p).

In any event, we know that the value of U(p, q) in the third case is indepen-
dent of p: it works out as 1.2, rather lower than the 1.5 that Bob could achieve
if he was able to commit to the strategy of picking box B with probability
0.5 + �, and slightly below the 1.25 attainable by EDT in the particular case
where g(p) = p. I take both of these to be symptoms of the same underlying
fact: that it is sometimes rational to constrain the choices of your future self.

Applying the same analysis to Alice: she has some credence ℎ(q) that Bob
picks box A, conditional on her following a q-strategy. DDT requires that
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her credence p in Bob’s choosing box A, and her choice q of strategy, both
(a) maximise UA(p, q) = pq + (1 − p)(1 − q) and (b) satisfy p = ℎ(q). Since
∂UA

∂q = 2p− 1, there are again three possibilities for the maxima of UA:

1. q = 0 (if p < 0.5)

2. q = 0 (if q > 0.5)

3. All values of p (if q = 0.5 exactly).

The first is consistent only if ℎ(1) < 0.5; the second only if ℎ(0) > 0.5; that
is, they are consistent only if Alice believes Bob to be worse than chance at
predicting her actions. If she is more charitable than this, her optimal strategy
is that choice of q for which ℎ(q) = 0.5, and again this is guaranteed to exist
provided ℎ is continuous. Her expected winnings, again, are independent of ℎ:
she expects to win 0.5 dollars.

4 Generalising the game

A more general version of Alice and Bob’s game looks (from Bob’s perspective)
as follows. Bob chooses between options 1 and 2 (boxes A and B in the previous
case); Alice predicts which choice he makes (with Alice’s prediction and Bob’s
choice being causally independent). Bob then receives a payoff dependent on
his choice and Alice’s prediction, so that the general payoff matrix is

Choose 1 Choose 2

Predict 2

Predict 1

x22

x12

x21

x11

For instance, the particular game we have been considering so far has payoff
matrix
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Choose 1 Choose 2

Predict 2

Predict 1

0

2

3

0

(note that the table tracks only Bob’s payoffs; from here on, the details
of Alice’s remuneration don’t matter, provided that she has some incentive to
make correct predictions).

Our analysis generalises straightforwardly. If Bob has credence q in Alice
predicting choice 1, and in fact his strategy is to predict choice 1 with probability
p, his expected utility is

U(p, q) = pqx11 + q(1− p)x12 + p(1− q)x21 + (1− q)(1− p)x22. (5)

If we define �1 = x11 − x22 and �2 = x21 − x22 (so that �i is the difference in
payoff for Bob, conditional on him choosing i, between Alice being right and
being wrong in her prediction) we have

∂U

∂p
(p, q) = q�1 − (1− q)�2 = q(�1 + �2)− �2. (6)

If this is positive, it is maximised by p = 1; if negative, by p = 0; if zero, all
choices of p give the same reward.

DDT requires that p and q be such that p maximises UA(p, q) and q = g(p),
where g(p) is Bob’s credence that Alice picks option 1 given that his strategy is
to pick option 1 with probability p. So as before, there are three possibilities:

1. g(1)(�1 + �2) > �2 and p = 1, in which case the expected utility is

U = g(1)x11 + (1− g(1))x21 = x21 + g(1)(x11 − x21) (7)

2. g(0)(�1 + �2) < �2 and p = 0, in which case the expected utility is

U = g(0)x12 + (1− g(0))x22 = x12 + (1− g(0))(x22 − x12) (8)

3. p satisfies g(p) = qf = �2/(�1 + �2), in which case the expected utility is

U =
x11x22 − x21x12

�1 + �2
= x21+qf (x11−x21) = x12+(1−qf )(x22−x12). (9)

At least one of these conditions is guaranteed to hold provided g is continuous:
if (�1 + �2)g(1) < �2 < (�1 + � + 2)g(0), then (�1 + �2)g(p) − �2 (regarded as
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a function of p) must cross over from positive to negative somewhere between
p = 0 and p = 1.

In nontrivial examples of these prediction games, at least one of �1 and �2
must be nonzero: if both are zero, Bob can ignore Alice’s predictions altogether.
We can further distinguish three classes of these games:

1. Co-operative games, where �1 and �2 are both nonnegative. In these games,
Alice and Bob both benefit from Alice guessing what Bob is going to do.

2. Adversarial games, where �1 and �2 are both negative. Here, Bob benefits
from faking out Alice: if she guesses wrong, he does better than if she
guesses right.

3. Mixed games, where one of �1 and �2 is negative and the other isn’t.

We should expect that when �i > 0, in general it’s diachronically consistent
for Bob to make choice i with certainty: he will predict (assuming Alice is any
good) that conditional on that choice Alice is fairly likely to predict that he
makes that choice, and he will be happy with her making that prediction. Con-
versely, in general where �i < 0, choosing i with certainty will be diachronically
inconsistent, since Bob’s prediction conditional on that choice is that Alice will
predict that he makes that choice, whereupon it becomes rational for him to
change it. We will find that this expectation is borne out.

Recall that qf = �2/(�1 + �2). In a mixed game, either qf > 1 (if ∣�2∣ > ∣�1∣)
or qf < 0 (if ∣�2∣ < ∣�1∣). So there is exactly one diachronically consistent
strategy, and it is either “take choice 1 with certainty” or “take choice 2 with
certainty”; furthermore, the optimal strategy does not depend at all on Bob’s
assessment of Alice’s predictive ability.5

In a co-operative or adversarial game, 0 ≤ qf ≤ 1. On the assumption
that Alice’s predictions are correlated at all with Bob’s actions, if p′ > p then
g(p′) > g(p). There are then three possibilities for the function g(p).

6

-

g(p)

p

qf

1

(i)

(iii)

(ii)

5In the singular case where ∣�2∣ = ∣�1∣, we can see from (6) that the optimal strategy is to
make choice i iff �i > 0.
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(i) g(p) < qf for all values of p.

(ii) g(p) > qf for all values of p.

(iii) g(0) < qf and g(1) > qf , so that (given that g is continuous) there is some
value pf of p such that g(pf ) = qf .

In case (i), if the game is cooperative then the only diachronically consistent
strategy is for Bob to choose option 2 always. This reflects the fact that (a) Bob
is willing to choose either 1 or 2 provided he has confidence in Alice predicting
that choice with reasonable accuracy — but he is insufficiently confident of her
ability to predict his taking option 1 (his threshold is that g(1) must be at least
qf ). So he is left with option 2 as the only choice. By similar reasoning, if the
game is adversarial then the only diachronically consistent strategy for Bob in
case (i) is to choose option 1 always.

Case (ii) follows essentially the same logic: in cooperative games Bob should
choose option 1 always, in adversial games he should choose option 2 always.

In case (iii), if the game is adversarial, the only diachronically consistent
strategy is for Bob to choose option 1 with probability pf , and to have credence
qf in Alice predicting that he takes option 1. But if it is cooperative, there are
three diachronically consistent strategies: choose 1 always, choose 2 always, or
choose 1 with probability pf .

5 Examples of mixed and adversarial games

∙ Newcomb’s problem is a mixed game. Here (recall), Bob chooses whether
to take box A and box B, or only to take box A. Box B always contains a
thousand dollars. Alice predicts whether Bob chooses both boxes; if she
predicts that he does, she leaves box A empty; if she predicts that he does
not, she puts a million dollars into box B. The payoff matrix (assuming
utility to be linear in dollars, and choosing 1000$ =1 util) is

Choose 1 Choose 2

Predict 2

Predict 1

1001

1

1000

0

�1 = −1 and �2 = +1, so the game is indeed mixed: Bob does better
by taking both boxes than by taking one, irrespective of whether or not
Alice predicts that he does so. The only diachronically consistent solution
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is to take both boxes with certainty, in accordance with the predictions
of causal decision theory. From the perspective of this paper, the reason
that causal decision theory suffices for mixed games is that the preferred
strategy for them is independent of any considerations about how accurate
the predictor is.

∙ The game with which I began this article is adversarial: whatever Alice
predicts, Bob stands to gain from making the opposite choice. As we
found before, Bob’s optimal strategy depends upon how much credit he
gives Alice as a predictor. If he believes her to be sufficiently inaccurate,
his best strategy will be to choose either 1 always or 2 always and take a
chance on her getting it wrong; if she is reasonably accurate, he will do
better to adopt a mixed strategy.

∙ Andy Egan’s “Newcomb’s Firebomb” example Egan (2007) is adversarial.
In this example, there are again two boxes, and Bob’s choice is to take only
box A or to take both. However, unlike Newcomb’s original problem, he
knows the contents of the boxes: box A definitely contains a million dollars
and box B definitely contains a thousand dollars. If Alice predicts that
Bob will take both boxes, though, she wires up an undetectable firebomb
which will destroy the million dollars iff Bob takes the thousand dollars.
So the payoff matrix is

Choose 1 Choose 2

Predict 2

Predict 1

1000

1000

1001

0

Here �1 = −1000 and �2 = −1: whatever Alice guesses, Bob does better
by confounding her guess than by confirming it. qf is 1/1001, and so
unless Alice is a truly superb predictor, g(p) > qf for all p, and Bob’s best
strategy is to take only one box. At the other extreme, g(p) < qf for all p
only if Bob believes Alice will almost certainly predict that he takes one
box no matter what he actually does; only in this unlikely circumstance
will his best strategy be to take both boxes.

The intermediate case arises only if Bob believes Alice to be an extremely
accurate predictor: one who is more than 99.9% likely to have predicted
that he takes one box given that he in fact does but who is less likely
than this to have made that prediction given that he actually takes both.
In this case, both the extreme strategies are diachronically inconsistent:
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conditional on him taking both boxes he believes he is likely to be incin-
derating a fortune; conditional on him taking only one box he believes he
is leaving money on the table. The consistent strategy is to choose p such
that g(p) = 1/1001: in other words, to choose a strategy conditonal on
which Alice will almost but not quite certainly put the million dollars in
the box.

There is something a little counter-intuitive about this strategy, to be
sure, since its expected winnings are (from 9) exactly 1 million dollars,
and Bob stood to do just as well as that by adopting the strategy of taking
only one box with certainty (this, incidentally, is the strategy which Egan
regards as rationally required). It is somewhat reassuring to note that
this exact equality depends on the fact that two payoffs in the matrix
are exactly equal. From equations (8) and (9), the difference between
the expected utilities of the always-take-one-box strategy and the mixed
strategy (worked out in both cases with conditional probabilities) is

EUalways 1 − EUmixed = (qf − g(0))(x22 − x12). (10)

So if the amount of money in box A was just slightly less conditional on
Alice predicting that Bob would take one box, the mixed strategy pays
better than the alternative: Bob’s gamble has a nonzero expected payoff
relative to playing it safe. And conversely, if Alice slightly decreases the
amount of money in box A when she predicts that Bob takes both boxes,
then Bob’s expected returns would be better if he played it safe than if he
took a gamble — but this is just another instance of the “if you’re so smart,
why aren’t you rich” objection to the two-box strategy in Newcomb’s
problem. Bob would indeed be better off if he could commit to the strategy
of playing it safe, but he cannot so commit, because conditional on the
assumption that he commits he stands to make a profit by changing his
mind. (Because the benefit is only probabilistic, the case is less intuitively
obvious than Newcomb’s problem, but the basic structure is the same.)

∙ Egan’s “psychopath” case can also be thought of as adversarial. In that
case,

Paul is deciding whether to press the “kill all psychopaths” but-
ton. It would, he thinks, be much better to live in a world with
no psychopaths. Unfortunately, Paul is quite confident that only
a psychopath would press such a button. Paul very strongly
prefers living in a world with psychopaths to dying. Should
Paul press the button? (Egan 2007, p.97)

(Egan’s position is that (i) CDT advocates pressing the button (assuming
that Paul is fairly confident that he’s not a psychopath); (ii) it’s intuitively
obvious that the right strategy is not pressing the button.)

No actual person is trying to predict whether Paul will press the button,
but his credence in being a psychopath is higher conditional on him press-
ing the button than on him not doing so, and that’s all that’s needed to
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apply the adversarial-game analysis. The payoff matrix looks like this (as-
suming that Paul puts utility, say, +10 on wiping out all the psychopaths
(whilst surviving himself) and −1000 on dying):

Choose 1 Choose 2

Predict 2

Predict 1

0

0

10

-1000

so that �1 = −1000, �2 = −10, and qf = 1/101.

In this case, though, we’re not assuming that Paul thinks whether he’s
a psychopath depends on what (potentially mixed) strategy he chooses,
but only on the end result: what button he presses, that is. Suppose, say,
that conditional on his pressing the button he has credence 0.9 in being
a psychopath, and that conditional on his not pressing it he has credence
0.1. (After all, merely taking seriously the possibility of wiping out all the
psychopaths should give Paul pause in his assessment of his own mental
state, whether or not he actually goes through with it!) By definition,
his credence in pressing the button, conditional on adopting a strategy of
pressing the button with probability p, is just p. So his credence in being
a psychopath conditional on adopting that strategy is

g(p) = 0.9p+ 0.1(1− p) = 0.1 + 0.8p (11)

so that g(p) > qf always. The diachronically consistent strategy here,
then, accords with Egan’s intuitions: definitely don’t press the button.

Things change interestingly, though, if we shift the numbers a little. Let’s
suppose that Paul is quite sure that a psychopath would press the button,
so that his credence in being a psychopath conditional on not pressing the
button is zero. Now we have

g(p) = 0.9p (12)

so that g(p) = qf for p = 10/909 ≃ 0.011. And now Paul’s only diachron-
ically consistent strategy is to press the button with probability 10/909.

Interestingly, having pressed the button, Paul’s credence in having pressed
it shifts to 1: this being the case, his credence in being a psychopath shifts
to 0.9, and he believes that he has very probably signed his own death
warrant. Conversely, once the chance to press the button has definitely
gone (for simplicity, suppose the device has a time limit for use), Paul’s
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credence in being a psychopath drops to zero, and he believes now that
pressing the button would have done him no harm. So he is in the rather
unfortunate position of regretting his action, whatever it actually was.

At first sight this might look like a violation of diachronic consistency,
but it isn’t. Diachronic consistency, as I’ve formulated it, enforces a con-
sistency between agent’s preferences at different times when those prefer-
ences are understood as dispositions to choose one action over another.
Having pressed the button, though, Paul has no further actions to choose.
His regret, however tragic from a humanitarian perspective, is decision-
theoretically irrelevant. Furthermore, any plausible decision theory must
predict that Paul will regret his choice, whatever it is. We can see this
further by supposing that there is a very small chance (one in a million,
say) that Paul will be offered a chance to change his mind after pressing or
not pressing the button. Since the chance is so small, its presence won’t
appreciably affect his original strategy, but we can predict that he will
always change his mind.6

∙ “Death at Damascus” is adversarial: recall that Death predicts if his vic-
tim is hiding in Damascus (option A) or Samarah (option B), and waits
for him there. Assuming that Death is a very good predictor, the optimal
strategy is to choose at random. (If Death’s powers go beyond prediction
into actual prophecy, I’m less sure if the analysis applies.)

6 What to do in cooperative games? Choosing
between diachronically consistent alternatives

A simple example of a cooperative game would be: Bob chooses box A or box
B; Alice has placed either three dollars in box A or two dollars in box B; unlike
our original example, Alice is rewarded whenever she chooses the box that Bob
actually selects. For this game, the payoff matrix (for Bob) is

Choose 1 Choose 2

Predict 2

Predict 1

2

0

0

3

6More accurately, we can make this prediction conditional on our believing that Paul is
rational. If Paul pressed the button, he’s probably a psychopath, so this belief is pretty
questionable!
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so that �1 = 3 and �2 = 2: the game is indeed cooperative, with qf = 0.4.
If Bob regards Alice as sufficiently biased towards him taking box A (g(p) >

0.4 always) or box B (g(p) < 0.4 always) then his best option is to take box
A, or box B, with certainty, depending on her bias. But if he regards Alice as
at all skilled as a predictor, then there will be some value pf for p such that
g(p) = 0.4, and then all three strategies — box A always, box B always, and
box A with probability pf — are diachronically consistent.

This raises the obvious question: what should Bob do in this case? A natu-
ral, and intuitively reasonable, rule would be: take that strategy which has the
largest expected payoff.7 (Call this the maxicon strategy: choose that diachron-
ically consistent strategy which maximises expected utility.)

But maxicon should be rejected. For one thing, there are straight counter-
examples. Suppose we modify the Alice/Bob game a little. Alice still chooses
to put either three dollars in box A or two dollars in box B (recall that this
isn’t her own money), but now she receives three dollars if she puts money in
box B and Bob takes it, and two dollars in she puts money in box A and Bob
takes it. So her payoff matrix is

Choose 1 Choose 2

Predict 2

Predict 1

3

0

0

2

Let’s assume that Alice and Bob both believe the other to be a pretty good
predictor of their actions. For Bob, this means g(1) ∼ 1 and g(0) ∼ 0. There are
three diachronically consistent strategies for him, but the one with the biggest
payoff is ‘box A always’, which has an expected payoff of ∼ 3. Alice’s situation
is the mirror of Bob’s: she presumably has some credence function ℎ(q) which
is her credence in Bob choosing box A given that she follows a q-strategy, and
(given the assumption that she believes Bob to be a good predictor of her
actions) ℎ(0) ∼ 0 and ℎ(1) ∼ 1. So she too has three diachronically consistent
strategies, and the one which pays best is ‘box B always’. And so, if Alice and
Bob both follow a maxicon principle, she will choose B and he will choose A,
and both will get nothing.

Now, we’re used to Prisoner’s Dilemma situations8 where both players miss
out on a mutually beneficial strategy because each benefits by deviating from
the strategy. But this game isn’t like that: conditional on Alice choosing box

7This rule is espoused by Arntzenius (2007): “[A]n ideally rational person is always in an
equilibrium state such that there is no other equilibrium state which has higher utility.”

8Prisoner’s Dilemma is another mixed game, incidentally.

16



A, both Alice and Bob do better by choosing box A. So if Bob really believes
that (i) Alice is a good predictor of his actions; (ii) Alice believes him to be a
good predictor of her actions; (iii) Alice follows maxicon, then it is irrational
for him too to follow maxicon.

This points us towards the positive story as to what’s wrong with maxicon.
Diachronic consistency says that rational agents cannot but have credences and
preferences such that (a) they prefer that action which maximises utility given
their credences; (b) their credence in anything conditional on their carrying out
their actions are the same as their unconditional credence in it. Maxicon exhorts
agents to choose to be that rational agent — that is, to choose their credences
and preferences so as to be that rational agent — whose expected utility on
performing their preferred strategy is greater than any other such agent.

But if agents really are allowed to adjust their credence functions so as to
maximise utility, the sky’s the limit. Currently, my credence in Bill Gates giving
me a billion dollars, conditional on my writing and asking for it, is (alas) pretty
low; that being the case, I’m not planning to write. If I change that credence to
something close to one, writing to Gates will have a pretty impressive expected
utility — but that doesn’t make it rational to make that change, nor to write
the letter.

Diachronic decision theory, just like causal decision theory, tells agents to
choose that strategy which maximises utility given the agent’s actual credence.
It additionally requires that agents’ credences satisfy constraints somewhat more
stringent than just the probability calculus and the Bayesian update rule, but
it does not pretend to be a rule for choosing which of the various credence s
satisfying those constraints should actually be selected. The story as to which
credences an agent has at some time will, as usual, be determined by a combina-
tion of their initial beliefs and various ways of updating in the face of evidence.

For instance, suppose (reverting to the original cooperative game) that Alice
is a very good predictor and Bob resolves, before she makes her prediction, that
he will take box A. Then he will predict that she predicts he takes box A, and
so it makes sense for him to follow through on that resolution. Indeed, from the
perspective of diachronic consistency it is only because (being rational) he will
follow through on the resolution that it is a resolution, rather than an empty
utterance of “I resolve that . . . ”. On the other hand, if for some reason (be it a
moment of madness or a lucrative side bet) Bob resolves that he will take box
B, it makes sense for him to follow through on that resolution too. Indeed, if
communication is possible between Alice and Bob, it is in both of their interests
to agree a strategy and then stick to that strategy. (This is what separates
cooperative games from adversarial or mixed games: in the Prisoner’s Dilemma,
for instance, it would be in Alice and Bob’s interests to agree a strategy, but
since it would be irrational for them to follow through on that agreement, they
won’t be able to make it in the first place.)

In one sense, then, Bob can be said to be choosing his strategy by maxicon:
any provisional decision he makes as to which box to take will be self-reinforcing,
and so it makes sense to provisionally choose that decision which leads to the
best expected return. (Again, note the contrast with Newcomb’s problem and
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similar adversarial games: there, such resolutions are self-undermining, and so
rational agents will be unable to form them in the first place). But once the pre-
diction has been made, Bob needs to choose that strategy which maximises his
utility given his actual credence function. Since he is (ex hypothesi) diachron-
ically consistent, conditionalising on that choice will not change his credence,
but he is not licenced to change both credence and preference so as to enter a
different diachronically consistent state.

7 What are mixed strategies?

Taking stock: in the two-option games I have been considering so far, we have
seen that it is always possible for an agent to be diachronically consistent. And
in fact this generalises to games where Bob chooses one of N options, provided
we continue to assume that Bob’s conditional credences in Alice’s choices are
continuous functions of his chosen strategy.9

However, all of this does assume that agents have access to mixed strategies,
and we need to revisit the question of what these are. In the stylised cases
we have considered so far, we can at least imagine that Bob is consulting a
real random-number generator. But in most circumstances, this doesn’t seem
realistic.

I wish to defend the claim, though, that mixed strategies really are available
to (idealized) agents, even when they don’t have some handy source of objective
randomness to hand. This suggestion has been considered, and criticized, by
Arntzenius (2007), who writes

The natural alternative view [to the one Arntzenius proposes] is that
a mixed decision is a decision to perform certain acts Ai with certain
probabilities pi. But what is it to decide to perform certain acts
Aiwith certain probabilities pi? A natural suggestion would be that
one does this just in case one has a chance device at one’s disposal,
where one can delegate responsibility of which act is to be performed
to this chance device, and one can set the chances with which this

9LetXij be the elements of the payoff matrix; then if Bob has credence qi in Alice predicting
that he takes option i, the strategy of taking option i with probability pi has utility U(p,q) =
q ⋅X ⋅ p (in vector notation). If gi(p) is Bob’s credence in Alice making choice i conditional
on his following strategy p, we can define the set-valued function S by

S(p) = {y : yis a maximum of U(y,g(p)}.

p represents a diachronically consistent strategy provided that p ∈ S(p). By the Kakutani
fixed point theorem (Kakutani 1941), there will be such a point provided that the graph of
S is closed and that S(p) is convex and non-empty for every p. Since U(p,q) is linear in p,
convexity of S(p) is trivial; since for each q U(p,q) is a continuous function on a compact
set, S(p) is never empty. (Conversely, in the unphysical case where there are infinitely many
possibilities, diachronically consistent strategies need not exist.)

Let Y be the complement of the graph of S and suppose that (p,y) ∈ Y . Then there exists
some z such that (z− y) ⋅X ⋅ g(p) > 0. Since this is a continuous function of z and p, there
must be some neighborhood of (p,y) which is contained in Y ; hence, Y is open and so the
graph of S is closed.
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chance device will act one one’s behalf to values pi of one’s choosing.
However, in the first place we are hardly ever in a situation in which
we can perform such actions. (It is not as if one has such a chance
device stored away in some convenient part of one’s brain.) In the
second place, even if we did it would amount to a different decision
situation, namely one in which we have an uncountable infinity of
pure acts that we can perform, the acts being the possible ways we
have of setting the chance ‘dials’ of the chance device.

Now, from my perspective Arntzenius’s second objection is unproblematic. I
agree fully that the mixed strategies, conceived my way, are indeed just “an
uncountable infinity of pure acts”; indeed, I have relied on it, and assumed
that Bob has credences in Alice’s behaviour conditional on each element of that
uncountable infinity. Arntzenius’s first objection has rather more force.

... And yet, consider: what would you actually do if you had, say, Bob’s
role in Alice and Bob’s original, adversarial game? (Notice that there’s nothing
at all science-fictional about that game: feel free to take time out of the paper,
borrow a colleague, and play a few rounds if you don’t know the answer). I’m
pretty sure I know what I’d do: choose at random. I’m pretty sure I have the
capacity to do so: certainly I frequently do something that feels subjectively like
choosing at random. If I really want to be careful (if there’s a lot riding on the
game, say) I might resort to eenie-meenie-minie-moe or some similar prosthetic,
but in general, or if there’s no time to do otherwise, I’ll just pick on a whim.

And what’s more, I believe — indeed, have just spent the better part of a
paper arguing — that picking at random is the rational thing to do in Bob’s
place (at least given that Alice is a moderately good predictor). So if I’ve in
fact chosen at random, and if choosing at random is the rational thing to do, it
seems unreasonable to deny that I decided to act randomly, so that my decision
really was to take box A with probability 0.5 and box B with probability 0.5.

And now consider what you’d do in Alice’s situation. If it were me, I’d
probably put the money in box B, but I might put it in box A. I’d do so because
(a) you’re reasonably likely to predict what I do, if for no other reason than the
assumption that we’re both reasonably intelligent and rational people, liable to
behave the same way in situations like this, and (b) on that prediction, you’ll
pick a box at random, which is my best chance of guessing correctly. And it
seems to me pretty meaningful to resolve to act in that fashion. Will the actual
odds of me choosing box A be 2 in 5? Probably not; but perfect rationality is
hard.

One more case, adjusting the settings on the intuition pump: suppose now
that you’re in Alice’s shoes once more, but that now Bob stands to win fifty
dollars if he correctly chooses box A, and only one dollar if he correctly chooses
box B. In that circumstance, he’s going to choose box A if he thinks there’s
any significant chance there’s money in it. But if he’s 100% certain there’s no
money in box A, he’ll pick box B. Either way, you lose. So what you ought to
do is almost certainly put money in box B. Again, it doesn’t seem unreasonable
to suppose that someone could resolve to act that way.
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This understanding of chance acts is not that far from Arntzenius’s own
preferred understanding:

My tentative view is that to make a certain mixed decision is just
to have certain credences in one’s acts at the end of a rational de-
liberation.(Arntzenius 2007)

The difference, though, is that Arntzenius requires that the process which selects
which action to perform is “a rational deliberation”. I don’t see the need for this
rider and, indeed, in general I need to reject it: for what is a rational deliberation
other than one which results in a rational action? But where mixed acts are
the only diachronically consistent actions available, no rational deliberation will
lead to a definite decision to make one choice rather than another. I’d like
to say, rather, that the internal psychological process by which Bob makes his
random choice is not concern of decision theory: it forms what Dennett calls
“sub-personal cognitive psychology” (Dennett 1987, chapter 3).

Now, to be sure: it’s a little difficult to believe that realistic agents have
such a finely graded set of actions available to them that they can, say, choose
to take option A with probability 357/589. My position is just that

∙ ideal rational agents must be able to perform mixed acts with any proba-
bility, because ideal rational agents must be diachronically consistent, and
this requires access to mixed acts.

∙ Real agents, who actually can decide to pick an option at random, can
approximate ideal rational agents at least reasonably well.

No real agent truly has access to the continuous infinity of mixed acts. No real
agent is more than approximately rational. So what? Rationality is hard, and
perfect rationality is an ideal, not an actually-achievable state. We knew that
already.
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