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Abstract

I attempt to get as clear as possible on the chain of reasoning by which
irreversible macrodynamics is derivable from time-reversible microphysics,
and in particular to clarify just what kinds of assumptions about the ini-
tial state of the universe, and about the nature of the microdynamics, are
needed in these derivations. I conclude that while a “Past Hypothesis”
about the early Universe does seem necessary to carry out such deriva-
tions, that Hypothesis is not correctly understood as a constraint on the
early Universe’s entropy.

1 Introduction

There are no consensus positions in philosophy of statistical mechanics, but
the position that David Albert eloquently defends in Time and Chance (Albert
2000) is about as close as we can get.! It hinges on two views (in Time and
Chance, the latter gets most of the air time, but both play crucial roles):

1. The tendency of systems’ entropy to increase is basically just a conse-
quence of the geometry of phase space. That region of phase space cor-
responding to a system being at equilibrium is so very large compared to
the rest of phase space that unless either the dynamics or the initial state
are (as Goldstein (2001) puts it) “ridiculously special”, then the system
will in fairly short order end up in the equilibrium region.

2. The observed asymmetry in statistical mechanics — in particular, the
tendency of entropy to increase rather than decrease — can be derived
from time-symmetric microphysics provided we are willing to postulate
that the entropy of the early universe is very low compared to the current
entropy of the universe — what Albert has memorably dubbed the “Past
Hypothesis”.

There is something rather puzzling about both views. Take the first: it seems
to suggest that any given system, unless it is “ridiculously special”, will quickly

L Albert-like claims are also espoused by, e. g., Goldstein (2001), Lebowitz (2007), Callender
(2009), and Penrose (1989, 2004).



end up in equilibrium. But of course, in the real world, we very frequently find
systems far from equilibrium — indeed, life itself depends on it. And many of
those systems, even when isolated from their surroundings, refuse to evolve into
equilibrium. A room filled with a mixture of hydrogen and oxygen, at room
temperature, can remain in that state for years or decades, yet one has only
to strike a spark in that room to be reminded that it is not an equilibrium
state. Indeed, a room filled with hydrogen at room temperature is not really at
equilibrium: it is thermodynamically favourable for it to fuse into iron, but you
would wait a long time for this to happen.

Furthermore, we have a detailed, quantitative understanding of exactly how
quickly systems in various non-equilibrium states evolve towards equilibrium.
In particular, chemists (whether of the ordinary or nuclear variety) have precise
and thoroughly tested dynamical theories which predict, from the micrody-
namics, just how quickly systems complete their irreversible movement towards
equilibrium. It is, at best, very difficult to see how these quantitative theories of
the approach to equilibrium fit into the very general argument for equilibration
given by Albert, Goldstein et al.

The Past Hypothesis is puzzling in a different way. It suggests, or seems to
suggest, that our knowledge of the low entropy of the early universe is some-
how special: we are not supposed to know the Past Hypothesis in the way we
usually know information about the past, but rather, we are justified in postu-
lating it because without that postulate, all of our beliefs about the past would
be unjustified. But there is something a little odd here: after all, we have (or
think we have) rather detailed knowledge of the macroscopic state of the early
Universe gained from cosmology, and we can calculate its entropy fairly accu-
rately. It is also not clear (see in particular the trenchant criticisms of Earman
(2006)) exactly how imposing a low entropy at the beginning of time can lead
to irreversible physics here and now.

And yet. . . for all that, there is clearly something to both views. There does
seem to be some important sense in which irreversibility is connected with phase
space volume and the behaviour of typical — that is, not-ridiculously-special
— systems. And it does seem that, absent time-asymmetry in microphysics, as
a matter of logic there must be some link between the boundary conditions of
the Universe and the observed time-asymmetry in macrophysics.

My purpose in this paper is to try to get as clear as possible on just how
the logic of deriving macrophysical irreversibility from microdynamics-plus-past-
hypothesis is supposed to go. My starting point is the observation above: that
we actually have a large body of quantitative theory about irreversible physi-
cal processes, and any adequate account of irreversibility needs to explain the
quantitative success of these theories and not just the qualitative observation
that systems tend to equilibrium. So in sections 2-4 I set aside philosophical
concerns and try to get as clear as possible on what the mathematical route is by
which we derive empirically reliable irreversible macrodynamics from reversible
microdynamics. In sections 56 I examine just when this mathematical route
is physically justified, and conclude that a Past Hypothesis is indeed needed,
but of a rather different character from what is usually argued. I conclude by



making contact again with the two views mentioned above, and in particular
with Albert’s own approach.

I should draw attention to two distinctive features of my approach. Firstly,
one frequent theme in criticism of the two views given above has been on their
lack of mathematical rigor and care (see, in particular, Frigg’s criticism of Gold-
stein (Frigg 2008) and Earman’s objections (Earman 2006) to any assignment of
entropy to the early Universe). By contrast, I am perfectly happy to allow their
proponents to make whatever plausible-sounding mathematical conjectures they
like (and indeed, make several such myself in my own account). My concern,
rather, is in understanding just what those conjectures are supposed to achieve
and why they can be expected to achieve it. The purpose of the philosopher of
physics, it might be argued, is not to prove theorems but to see which theorems
are worth proving.

Secondly, it seems all but universal to conduct discussions of statistical me-
chanics at the classical level. Sklar’s account of the reasons for this appears to
be fairly typical:

[T]he particular conceptual problems on which we focus — the origin
and rationale of probability distributions over initial states, the jus-
tification of irreversible kinetic equations on the basis of reversible
underlying dynamical equations, and so on — appear, for the most
part, in similar guise in the development of both the classical and
quantum versions of the theory. The hope is that by exploring these
issues in the technically simpler classical case, insights will be gained
that will carry over to the understanding of the corrected version of
the theory. ...This way of doing things is not idiosyncratic, but
common in the physics literature devoted to foundational issues.
(Sklar 1993, p.12).

But I am not convinced that the classical case really is “technically simpler” (at
least where study of general features of the theory, rather than rigorous analysis
of specific systems, is our goal), and nor am I confident that the conceptual prob-
lems really do appear “in similar guise”. Notably, quantum mechanics contains
probability at an essential level; it also includes its own form of irreversibility
in the form of decoherence-induced branching. So my approach is in general to
study the classical and quantum cases in parallel, and to neglect the classical
theory in favour of the quantum one where they differ in important respects. If
we are interested in understanding irreversibility in our world, after all, classical
systems should be of interest to us only insofar as they are good approximations
to quantum systems.

In discussing quantum mechanics, I assume that (i) the quantum state is
physically real, (ii) it evolves unitarily at all times, and (iii) there are no hidden
variables. That is, I basically assume the Everett interpretation (discussed
and developed in extenso in Wallace (2011) and Saunders, Barrett, Kent, and
Wallace (2010)). In doing so, of course, I part company with Albert: Time
and Chance is an admirable exception to the usual classical-physics-only trend,



but its quantum-mechanical discussions are largely confined to explicitly time-
asymmetric dynamical-collapse theories. Much of what I say should, however,
carry over to versions of quantum theory with hidden variables of one kind or
another, such as modal interpretations or pilot-wave theories.

2 The macropredictions of microdynamics

For present purposes, classical and quantum mechanics have, essentially, a sim-
ilar dynamical form. In both cases, we have

e A state space (phase space or (projective) Hilbert space);

e A deterministic rule determining how a point on that state space evolves
over time (generated by the classical Hamiltonian and the symplectic
structure, or the quantum Hamiltonian and the Hilbert-space structure,
as appropriate);

e Time reversibility, in the sense that given the state at time ¢, the dynamics
is just as well suited to determine the state for times before ¢ as for times
after ¢.

I will also assume that, whatever particular version of each theory we are
working with, both theories have something which can reasonably be called a
“time reversal” operator. This is a map 7 from the state space to itself, such
that if the ¢t-second evolution of z is y then the t-second evolution of Ty is 7x;
or, equivalently, if () solves the dynamical equations then so does 72:(—t). I'm
not going to attempt a formal criterion for when something counts as a time-
reversal operator; in classical and quantum mechanics, we know it when we see
it. (Though in quantum field theory, it is the transformation called CPT, and
not the one usually called T, that deserves the name).

Both theories also have what might be called, neutrally, an “ensemble” or
“distributional” variant, though here they differ somewhat. In the classical case,
the deterministic dynamics induces a deterministic rule to evolve functions over
phase space, and not just points on phase space: if the dynamical law is given
schematically by a function ¢, so that ¢;(z) is the t-second evolution of z,
then ¢up = p - p¢. In more concrete and familiar terms, this takes us from
the Hamiltonian equations of motion for individual systems to the Liouvillian
equations for ensembles.

In the quantum case, we instead transfer the dynamics from pure to mixed
states. If the ¢-second evolution takes state |1)) to Uy |e), the distributional

variant takes p to T/J\'tpﬁi.

I stress: the existence of these distributional variants is a purely mathemat-
ical claim; no statement of their physical status has yet been made. The space
of functions on, or density operators over, the state space can be thought of,
mathematically speaking, as a state space in its own right, for the distributional
variant of the theory.



In principle, the way we use these theories to make predictions ought to be
simple: if we want to know the state of the system we're studying in ¢ seconds’
time, we just start with its state now and evolve it forward for ¢ seconds under
the microdynamics. And similarly, if we want to know its state ¢ seconds ago,
we just time-reverse it, evolve it forward for ¢ seconds, and time-reverse it again.
(Or equivalently, we just evolve it forwards for —t seconds.)

And sometimes, that’s what we do in practice too. When we use classical
mechanics to predict the trajectory of a cannonball or the orbit of a planet, or
when we apply quantum mechanics to some highly controlled situation (say, a
quantum computer), we really are just evolving a known state under a known
dynamics. But of course, in the great majority of situations this is not the case,
and we have to apply approximation methods. Sometimes that’s glossed as being
because of our lack of knowledge of the initial state, or our inability to solve the
dynamical equations exactly, but this is really only half the story. Even if we
were able to calculate (say) the expansion of a gas in terms of the motions of all
its myriad constituents, we would have missed important generalisations about
the gas by peering too myopically at its microscopic state. We would, that is,
have missed important, robust higher-level generalisations about the gas. And
in quantum mechanics, the emergent behaviour is frequently the only one that
physically realistic observers can have epistemic access to: decoherence strongly
constrains our ability to see genuinely unitary dynamical processes, because it’s
too difficult to avoid getting entangled with those same processes.

The point is that in general we are not interested in all the microscopic
details of the systems we study, but only in the behaviour of certain more
coarse-grained details. It is possible (if, perhaps, slightly idealised) to give a
rather general language in which to talk about this: suppose that t1,...txN is
an increasing sequence of times, then a set of macroproperties for that sequence
is an allocation, to each time ¢; in the sequence, of either

(i) in the classical case, a Boolean algebra of subsets of the system’s phase
space whose union is the entire phase space; or

(ii) in the quantum case, a Boolean algebra of subspaces of the system’s
Hilbert space whose direct sum is the entire Hilbert space.

In both cases, it is normal to specify the macroproperties as being unions
or direct sums (as appropriate) of macrostates: a set of macrostates for a (
classical / quantum) system is a set of mutually (disjoint / orthogonal) (subsets /
subspaces ) whose (union / direct sum) is the entire state space. Throughout this
paper, I will assume that any given set of macroproperties is indeed generated
from some set of macrostates in this way. (And in most practical cases, the
choice of macrostate is time-independent.) For the sake of a unified notation, I
will use @ to denote the union operation for classical sets and the direct sum
operation for quantum subspaces, C to denote the subset relation for classical
sets and the subspace relation for quantum subspaces, and “disjoint” to mean
either set-theoretic disjointness or orthogonality, as appropriate.



The idea of this formalism is that knowing that a system has a given macro-
property at time t; gives us some information about the system’s properties at
that time, but only of a somewhat coarse-grained kind. We define a macrohis-
tory « of a system as a specification, at each time t;, of a macroproperty «(t;)
for that time; the set of all macrohistories for a given set of macroproperties
is the macrohistory space for that set.. It should be fairly clear that given the
macrohistory space of a given set of macroproperties, we can recover that set;
hence I speak interchangably of a macrohistory space for a theory and a set of
macroproperties for the same theory. For simplicity, I usually drop the ‘macro’
qualifier where this is not likely to cause confusion.

A few definitions: by a history of length K (where K < N) I mean a history
which assigns the whole state space to all times t; for ¢ > M. Given histories
a and 8 of lengths K and K’ (with K < K') then « is an initial segment
of B if a(t;) = B(¢;) for i < M. Given macrohistories o and [, we can say
that « is a coarsening of 5 if B(t;) C «(t;) for each time t; at which they are
defined, and that « and f are disjoint if B(t;) and «(t;) are disjoint at each ¢;.
A history f is the sum of a (countable) set of mutually disjoint histories {c;}
(write 8 = @;a;)if B(t;) = @j;(t;) for all ¢;, and, in particular, a set of disjoint
histories is complete if their sum is the trivial history 1 whose macroproperty
at each time is just the whole state space. And a probability measure Pr for a
given history space is a real function from histories to [0, 1] such that

L. If {a;} is a countable set of disjoint histories then Pr(6;a;) = 3, Pr(a;),
and

2. Pr(l) =1.

The point of a probability measure over a history space is that it determines
a (generally stochastic) dynamics: given two histories o and 8 where « is an
initial segment of 8, we can define the transition probability from « to § as
Pr(B)/Pr(a). A macrodynamics for a (classical or quantum) system is then just
a history space for that system, combined with a probability measure over that
history space. A macrodynamics is branching iff whenever o and ( agree after
some time t,, but disagree at some earlier time, either Pr(a) = 0 or Pr(8) = 0;
it is deterministic if whenever a and [ agree before some time t,, but disagree
at some later time, either Pr(a) =0 or Pr(3) = 0.

With this formalism in place, we can consider how classical and quantum
physics can actually induce macrodynamics: that is, when it will be true,
given the known microdynamics, that the system’s macroproperties obey a
given macrodynamics. The simplest case is classical mechanics in its non-
distributional form: any given point z in phase space will have a determinate
macrostate at any given time, and so induces a deterministic macrodynamics: if
U(t) - « is the t—second evolution of & under the classical microdynamics, then

Pry(a) =1 @ Uty —1t1) -2 € afty,) for all n)
Pry(a) =0 (otherwise) (1)



To get stochastic dynamics from classical microdynamics, we need to con-
sider the distributional version. Suppose that at time ¢; the probability of the
system having state x is p(x); then the probability at time ¢, of it having state
x is given by evolving p forward for a time ¢,, — t; under the distributional (Li-
ouville) dynamics. Writing L(t) - p for the t—second evolution of p and P(M)-p
for the restriction of p to the macrostate M, we define the history super-operator
H(a) by

H(a)p=Pla(ty)) L(tn,—tn—1)-Pla(tn—1))L(tn—1—tn—2 - Lta—t1)P(a(t1))-p.

(2)
H(a) - p is the distribution obtained by alternately evolving p forward and then
restricting to the successive terms in «. So we have that the probability of
history « given initial distribution p is

Pry(a) = [ Hia):s 3)

where the integral is over all of phase space.s

A formally similar expression can be written in quantum mechanics. There,
we write p for the system’s density operator at time ¢y, L(¢) - p for the t-second
evolution of p under the unitary dynamics (so if U(t) is the t-second unitary
time translation operator, L(t) - p = ﬁ(t)p(A]T (t)), and P(M) - p for the projec-
tion of p onto the subspace M (so that if I M is the standard projection onto

that subspace, P(M) - p = Iy pIlys). Then (2) can be understood quantum-
mechanically, and (3) becomes

Pr,(a) = Tr(H(a) - p). (4)

The resemblance is somewhat misleading, however. For one thing, in classical
physics the macrodynamics are probabilistic because we put the probabilities
in by hand, in the initial distribution p. But in quantum physics, (4) generates
stochastic dynamics even for the pure-state version of quantum theory (relying
on Part II to explain why the weights of histories deserve to be called “prob-
abilities”). And for another, (4) only defines a probability measure in special
circumstances. For if we define the history operator C(«) by

~

Cla) =Ta, Uty — tn1)g, - Ulty — t)(ay), (5)

we can express H(«) by

H(a) - p=C(a)pC () (6)
and rewrite (4) as
Pry(a) = Tr(C(a)pC (a), (7)

in which case

Pro(Y0y) = 3 Tr(Cla)pC (o). (8)
J J.k



which in general violates the requirement that Pr,(3_; a;) = >_, Pr,y(ay). To
ensure that this requirement is satisfied, we need to require that the history
space satisfies the decoherence condition: that the decoherence function

~

dy(a, B) = Tr(C(a)pC (8)) (9)

vanishes unless « is a coarsening of 8. (A weaker requirement — that the real
part of the decoherence functional vanishes — would be formally sufficient but
seems to lack physical significance.) In general, this is ensured in practical
examples by environment-induced decoherence (cf Wallace (2011, chapter 3)
and references therein for further discussion).

Before moving on, I should stress that the entire concept of a history opera-
tor, as defined here, builds in a notion of time-asymmetry: by construction, we
have used the system’s distribution at the initial time ¢; to generate a probabil-
ity measure over histories defined at that and all subsequent times. However,
we could equally well have defined histories running backwards in time — ‘an-
tihistories’, if you like — and used the same formalism to define probabilities
over antihistories given a distribution at the final time for those antihistories.

3 Coarse-grained dynamics

The discussion so far has dealt entirely with how macroscopic dynamics can be
extracted from the microscopic equations, assuming that the latter have been
solved exactly. That is, the framework is essentially descriptive: it provides
no shortcut to determining what the macrodynamics actually are. In reality,
though, it is almost never the case that we have access to the exact micro-
level solutions to a theory’s dynamical equations; instead, we resort to certain
approximation schemes both to make general claims about systems’ macrody-
namics and to produce closed-form equations for the macrodynamics of specific
systems. In this section, I wish to set out what I believe to be mathematically
going on in these approximation schemes, and what assumptions of a purely
technical nature need to be made. For now, I set aside philosophical and con-
ceptual questions, and ask the reader to do likewise.

The procedure we use is intended to allow for the fact that we are often sig-
nificantly ignorant of, and significantly uninterested in, the microscopic details
of the system, and instead wish to gain information of a more coarse-grained
nature, and it seems to go like this. Firstly, we identify a set of macroproperties
(defined as above) in whose evolution we are interested. Secondly, we define
a map C — the coarse-graining map — which projects from the distribution
space onto some subset S¢ of the distributions. By “projection” I mean that
C? = C, so that the distributions in S¢ — the “coarse-grained” distributions —
are unchanged by the map. It is essential to the idea of this map that it leaves
the macroproperties (approximately) unchanged — or, more precisely, that the
probability of any given macroproperty being possessed by the system is ap-
proximately unchanged by the coarse-graining map. In mathematical terms,



this translates to the requirement that for any macroproperty M,

| ewr={ s (10)

Tr(IlxC(p)) = Tr(np) (11)

in the classical case, and

in the quantum case. I will also require that C commutes with the time reversal
operation (so that the coarse-graining of a time-reversed distribution is the
time-reverse of the coarse-graining of the distribution).

We then define the forward dynamics induced by C — or the C+ dynamics for
short — as follows: take any distribution, coarse-grain it, time-evolve it forward
(using the microdynamics) by some small time interval At, coarse-grain it again,
time-evolve it for another At, and so on. (Strictly speaking, then, At ought to
included in the specification of the forward dynamics. However, in practice,
we are only interested in systems where (within some appropriate range) the
induced dynamics are insensitive to the exact value of A;.)

By a forward dynamical trajectory induced by C, I mean a map from (¢;,00)
into the coarse-grained distributions (for some ¢;), such that the distribution at
to is obtained from the distribution at ¢; by applying the C+ dynamics whenever
to > t1. A section of this trajectory is just a restriction of this map to some
finite interval [t,#'].

What is the coarse-graining map? It varies from case to case, but some of
the most common examples are

The coarse-grained exemplar rule: Construct equivalence classes of distri-
butions: two distributions are equivalent if they generate the same proba-
bility function over macroproperties. Pick one element in each equivalence
class, and let the coarse-graining map take all elements of the equivalence
class onto that element. This defines a coarse-graining rule in classical
or quantum physics; in practice, however, although it is often used in
foundational discussions, rather few actual applications make use of it.

The measurement rule: Replace the distribution with the distribution ob-
tained by a nonselective measurement of the macrostate: that is, apply

p— Z Harpllng (12)
M

where the sum ranges over macrostates.? (This obviously only counts as
a coarse-graining in quantum mechanics; the analogous classical version,
where p is replaced by the sum of its restrictions to the macrostates, would
be trivial.)

2To avoid problems with the quantum Zeno effect (Misra and Sudarshan (1977); see Home
and Whitaker (1997) for a review) for very small §¢, the measurement rule strictly speaking
ought to be slightly unsharpened (for instance, by using some POVM formalism rather than
sharp projections onto subspaces); the details of this do not matter for our purposes.



The correlation-discard rule: Decompose the system’s state space into ei-
ther the Cartesian product (in classical physics) or the tensor product
(in quantum physics) of state spaces of subsystems. Replace the dis-
tribution with that distribution obtained by discarding the correlations
between subsystems (by replacing the distribution with the product of its
marginals or the tensor product of its partial traces, as appropriate).

One note of caution: the correlation-discard rule, though very commonly
used in physics, will fail to properly define a coarse-graining map if the
probability distribution over macroproperties itself contains nontrivial cor-
relations between subsystems. In practice this only leads to problems if
the system does not behave deterministically at the macroscopic level,
so that such correlations can develop from initially uncorrelated starting
states. Where this occurs, the correlation-discard rule needs generalis-
ing: decompose the distribution into its projections onto macrostates,
discard correlations of these macrostates individually, and re-sum. Note,
though, that in quantum mechanics this means that two coarse-grainings
are being applied: to “decompose the distribution into its projections onto
macrostates and then re-sum” is just to perform a non-selective measure-
ment on it — that is, to apply the measurement rule for coarse-grainings.

Another example is again often used in foundational discussions of statistical
mechanics, but turns up rather less often in practical applications:

The smearing rule: Blur the fine structure of the distribution by the map
P = /dq’ dp’ f(¢",p)T(d,p") - p (13)

where T'(¢’, p’) is translation by (¢’p’) in phase space and f is some function
satisfying [ f = 1 and whose macroscopic spread is small. A simple choice,
for instance, would be to take f to be a suitably-normalised Gaussian
function, so that

p’:N/dq’dp’ exp[—(q—¢')*/(Ag®)] exp[—(p—p')*/(Ap*)|p(q, p) (14)

where p is to be read as either the phase-space probability distribution
(classical case) or the Wigner-function representation of the density oper-
ator (quantum case).

For a given system of C+ dynamics, I will call a distribution stationary if its
forward time evolution, for all times, is itself. (So stationary distributions are
always coarse-grained.) Classic examples of stationary distributions are the
(classical or quantum) canonical and microcanonical ensembles. Distributions
involving energy flow (such as those used to describe stars) look stationary, but
generally aren’t, as the energy eventually runs out.

How do we generate empirical predictions from the coarse-grained dynamics?
In many cases this is straightforward, because those dynamics are deterministic

10



at the macroscopic level (“macrodeterministic”): if we begin with a coarse-
grained distribution localised in one macrostate, the C+ dynamics carries it into
a coarse-grained distribution still localised in one (possibly different) macrostate.

More generally, though, what we want to know is: how probable is any given
sequence of macrostates? That is, we need to apply the history framework used
in the previous section. All this requires is for us to replace the (in-practice-
impossible-to-calculate) macrodynamics induced by the microdynamics with the
coarse-grained dynamics: if LEF(t) - p is the t—second evolution of p under the
C+-dynamics, and P(M) - p is again projection of p onto the macroproperty M,
then we can construct the coarse-grained history superoperator

HE (o) = P(a(tn)) LT (ty—tn_1)-P(a(tn_1))-LE (ty_1—tn_2)- - LC+(t2(—t;)~P(a(t1)).
15

(It should be pointed out for clarity that each LET(ty — tx_y) typically in-

volves the successive application of many coarse-graining operators, alternat-

ing with evolution under the fine-grained dynamics; put another way, typically

tr, — tp_1 > At. Even for the process to be well-defined, we have to have

tr, — ty_1 > At; in the limiting case where t — t;_; = At, we obtain H°* ()

by alternately applying three operations: evolve, coarse-grain, project.)

We can then define the probability of a history by

PiC* () = / HO* () p (16)
in the classical case and
P& (a) = Tr(H (@) - p) (17)

in the quantum case.

The classical expression automatically determines a (generally stochastic)
macrodynamics (that is, a probability measure over histories); the quantum ex-
pression does provided that all the coarse-grained distributions are diagonalised
by projection onto the macrostates: that is, provided that

C-p=> P(M)-C-p (18)

where the sum ranges over macrostates. This condition is satisfied automatically
by the measurement and correlation-discard rules (the latter rules, recall, build
in the former); it will be satisfied by the coarse-grained exemplar rules provided
the exemplars are chosen appropriately; it will be satisfied approximately by the
smearing rules given that the smearing function is small on macroscopic scales.

Examples in physics where this process is used to generate a macrodynamics
include:?

31t is of interest to note that all these examples — and indeed all the examples of which
I am aware — use the correlation-discard coarse-graining rule or the coarse-grained exemplar
rule. The other rules, so far as I know, are used in foundational discussions but not in practical
applications — though I confess freely that I have made no systematic study to verify this.
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Boltzmann’s derivation of the H theorem Boltzmann’s “proof” that a clas-
sical gas approached the Maxwell-Boltzmann distribution requires the
“Stosszahlansatz” — the assumption that the momenta of gas molecules
are uncorrelated with their positions. This assumption is in general very
unlikely to be true (cf. the discussion in Sklar (1993, pp.224-7)), but we
can reinterpret Boltzmann’s derivation as the forward dynamics induced
by the coarse-graining process of simply discarding those correlations.

More general attempts to derive the approach to equilibrium As was
already noted, the kind of mathematics generally used to explore the ap-
proach of classical systems to equilibrium proceeds by partitioning phase
space into cells and applying a smoothing process to each cell. (See Sklar
(1993, pp. 212-4) for a discussion of such methods; I emphasise once again
that at this stage of the discussion I make no defence of their conceptual
motivation.)

Kinetic theory and the Boltzmann equation Pretty much all of non-equilibrium

kinetic theory operates, much as in the case of the H theorem, by discard-
ing the correlations between different particles’ velocities. Methods of this
kind are used in weakly interacting gases, as well as in the study of galactic
dynamics (Binney and Tremaine 2008). The BBGKY hierarchy of succes-
sive improvements of the Boltzmann equation (cf Sklar (1993, pp.207-
210) and references therein) can be thought of as introducing successively
more sophisticated coarse-grainings which preserve N-body correlations
up to some finite N but not beyond.

Environment-induced decoherence and the master equation Crucially given
our goal of understanding the asymmetry of quantum branching, quanti-
tative results for environment-induced decoherence are generally derived
by (in effect) alternating unitary (and entangling) interactions of system
and environment with a coarse-graining defined by replacing the entangled
state of system and environment with the product of their reduced states
(derived for each system by tracing over the other system).

Local thermal equilibrium In pretty much all treatments of heat transport
(in, for instance, oceans or stars) we proceed by breaking the system up
into regions large enough to contain many particles, small enough to treat
properties such as density or pressure as constant across them. We then
take each system to be at instantaneous thermal equilibrium at each time,
and study their interactions.

In most of the above examples, the coarse-graining process leads to deterministic
macrodynamics. Some (rather theoretical) examples where it does not are:

Rolling dice We don’t normally do an explicit simulation of the dynamics
that justifies our allocation of probability 1/6 to each possible outcome of
rolling a die. But qualitatively speaking, what is going on is that (i) sym-
metry considerations tell us that the region of phase space corresponding
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to initial conditions that lead to any given outcome has Liouville vol-
ume 1/6 of the total initial-condition volume; (ii) because the dynamics
are highly random, any reasonably large and reasonably Liouville-smooth
probability distribution over the initial conditions will therefore overlap to
degree 1/6 with the region corresponding to each outcome; (iii) any coarse-
graining process that delivers coarse-grained states which are reasonably
large and reasonably Liouville-smooth will therefore have probability 1/6
of each outcome.

Local thermal equilibrium for a self-gravitating system Given a self-gravitating

gas, the methods of local thermal equilibrium can be applied, but (at least
in theory) we need to allow for the fact that a distribution which ini-
tially is fairly sharply peaked on a spatially uniform (and so, un-clumped)
state will in due course evolve through gravitational clumping into a sum
of distributions peaked on very non-uniform states. In this situation,
the macrodynamics will be highly non-deterministic, andso if we want to
coarse-grain by discarding long-range correlations, we first need to decom-
pose the distribution into macroscopically definite components.

Decoherence of a system with significant system-environment energy transfer

If we have a quantum system being decohered by its environment, and if
there are state-dependent processes that will transfer energy between the
system and environment, then macro-level correlations between, say, sys-
tem centre-of-mass position and environment temperature may develop,
and tracing these out will be inappropriate. Again, we need to decompose
the system into components with fairly definite macroproperties before
performing the partial trace.

4 Time reversibility in coarse-grained dynamics

The process used to define forward dynamics — as the name suggests — is
explicitly time-asymmetric, and this makes it at least possible that the forward
dynamics are themselves time-irreversible. In fact, that possibility is in general
fully realised, as we shall see in this section.

Given a dynamical trajectory of the microdynamics, we know that we can
obtain another dynamical trajectory by applying the time-reversal operator and
then running it backwards. Following this, we will say that a given segment of
a dynamical trajectory of the coarse-grained dynamics is time-reversible if the
corresponding statement holds true. That is, if p(¢) is a segment of a dynamical
trajectory (for t € [t1,t2]) then it is reversible iff Tp(—t) is a segment of a
dynamical trajectory (for t € [—tq, —t1]).*

Although the microdynamics is time-reversible, in general the coarse grain-
ing process is not, and this tends to prevent the existence of time-reversible

4Note that I assume, tacitly, that the dynamics is time-translation-invariant, as is in fact
the case in both classical and quantum systems in the absence of explicitly time-dependent
external forces.
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coarse-grained trajectories. It is, in fact, possible to define a function Sg —
the Gibbs entropy — on distributions, such that S is preserved under micro-
dynamical evolution and under time reversal, but such that for any distribution
p, Sa(Cp) > Sa(p), with equality only if Cp = p. (And so, since the forward
dynamics consists of alternating microdynamical evolution and coarse-graining,
S¢ is non-decreasing on any dynamical trajectory of the forward dynamics.) In
the classical case, we take

&Wﬂ=—/pmp (19)
and in the quantum case we use

Sa(p) = =Tr(plnp). (20)

(At the risk of repetitiveness: I am assuming absolutely nothing about the con-
nection or otherwise between this function and thermodynamic entropy; I use
the term “entropy” purely to conform to standard usage.) Of the coarse-graining
methods described above, the facts that correlation-discard, measurement, and
smearing increase Gibbs entropy are well known results of (classical or quantum)
information theory; the exemplar rule will increase Gibbs entropy provided that
the exemplars are chosen to be maximal-entropy states, which we will require.

The existence of a Gibbs entropy function for C is not itself enough to entail
the irreversibility of the C+ dynamics. Some coarse-grained distributions might
actually be carried by the microdynamics to other coarse-grained distributions,
so that no further coarse-graining is actually required.

I will call a distribution Boring (over a given time period) if evolving its
coarse-graining forward under the microdynamics for arbitrary times within
that time period leads only to other coarse-grained distributions, and Interesting
otherwise. The most well-known Boring distributions are stationary distribu-
tions — distributions whose forward time evolution under the microdynamics is
themselves — such as the (classical or quantum) canonical and microcanonical
distributions; any distribution whose coarse-graining is stationary is also Bor-
ing. On reasonably short timescales, generic states of many other systems —
planetary motion, for instance — can be treated as Boring or nearly so.’ How-
ever, if the ergodic hypothesis is true for a given system (an assumption which
otherwise will play no part in this paper), then on sufficiently long timescales
the only Boring distributions for that system are those whose coarse-grainings
are uniform on each energy hypersurface.

If a segment of a dynamical trajectory of the C+ dynamics contains any
distributions that are Interesting on timescales short compared to the segment’s
length, that segment is irreversible. For in that case, nontrivial coarse-graining
occurs at some point along the trajectory, and so the final Gibbs entropy is
strictly greater than the initial Gibbs entropy. Time reversal leaves the Gibbs
entropy invariant, so it follows that for the time-reversed trajectory, the initial

5More precisely, in general a system’s evolution will be Boring on timescales short relative
to its Lyapunov timescale.
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Gibbs entropy is higher than the final Gibbs entropy. But we have seen that
Gibbs entropy is nondecreasing along any dynamical trajectory of the forward
dynamics, so the time-reversed trajectory cannot be dynamically allowed by
those dynamics.

So: the coarse-graining process C takes a dynamical system (classical or
quantum mechanics) which is time reversal invariant, and generates a new dy-
namical system (C+, the forward dynamics induced by C) which is irreversible.
Where did the irreversibility come from? The answer is hopefully obvious: it
was put in by hand. We could equally well have defined a backward dynamics
induced by C (C- for short) by running the process in reverse: starting with
a distribution, coarse-graining it, evolving it backwards in time by some time
interval, and iterating. And of course, the time reversal of any dynamical tra-
jectory of C+ will be a dynamical trajectory of C—, and vice versa.

It follows that the forward and backwards dynamics in general make contra-
dictory claims. If we start with a distribution at time t;, evolve it forwards in
time to ty using the C+ dynamics, and then evolve it backwards in time using
the C— dynamics, in general we do not get back to where we started.

This concludes the purely mathematical account of irreversibility. One more
physical observation is needed, though: the forward dynamics induced by coarse-
graining classical or quantum mechanics has been massively empirically success-
ful. Pretty much all of our quantitative theories of macroscopic dynamics rely on
it, and those theories are in general very well confirmed by experiment. With a
great deal of generality — and never mind the conceptual explanation as to why
it works — if we want to work out quantitatively what a large physical system
is going to do in the future, we do so by constructing a coarse-graining-induced
forward dynamics.

On the other hand (of course), the backwards dynamics induced by basically
any coarse-graining process is not empirically successful at all: in general it
wildly contradicts our actual records of the past. And this is inevitable given the
empirical success of the forward dynamics: on the assumption that the forward
dynamics are not only predictively accurate now but also were in the past (a
claim supported by very extensive amounts of evidence) then — since they
are in conflict with the backwards dynamics — it cannot be the case that the
backwards dynamics provides accurate ways of retrodicting the past. Rather,
if we want to retrodict we do so via the usual methods of scientific inference:
we make tentative guesses about the past, and test those guesses by evolving
them forward via the forward dynamics and comparing them with observation.
(The best-known and best-developed account of this practice is the Bayesian
one: we place a credence function on possible past states, deduce how likely
a given present state is conditional on each given past state,and then use this
information to update the past-state credence function via Bayes’ Theorem.)
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5 Microdynamical underpinnings of the coarse-
grained dynamics

In this section and the next, I turn my attention from the practice of physics to
the justification of that practice. That is: given that (we assume) it is really the
macrodynamics induced by the microdynamics — and not the coarse-grained
dynamics — that describe the actual world, under what circumstances do those
two processes give rise to the same macrodynamics?

There is a straightforward technical requirement which will ensure this: we
need to require that for every history «,

CH(a)p = H " (a)p. (21)

That is, the result of alternately evolving p forward under the fine-grained dy-
namics and restricting it to a given term in a sequence of macro-properties
must be the same, up to coarse-graining, as the result of doing the same with
the coarse-grained dynamics. If p and C jointly satisfy this condition (for a
given history space), we say that p is forward predictable by C on that history
space. (Mention of a history space will often be left tacit.) Note that in the
quantum case, if p is forward predictable by C, it follows that the macrohistories
are decoherent with respect to p.

I say “Forward” because we are using the coarse-grained forward dynamics.
Pretty clearly, we can construct an equivalent notion of backwards predictability,
using the backward coarse-grained dynamics and the anti-histories mentioned
in section 2. And equally clearly, p is forward predictable by C if and only if its
time reverse is backwards predictable by C.

Forward predictability is closely related to the (slightly weaker) notion of for-
ward compatibility. A distribution p is forward compatible with a given coarse-
graining map C if evolving p forward under the microdynamics and then coarse-
graining at the end gives the same result as evolving p forward (for the same
length of time) under the coarse-grained dynamics. (Note that forward compat-
ibility, unlike forward predictability, is not defined relative to any given history
space.) Forward predictability implies forward compatibility (just consider the
trivial history, where the macrostate at each time is the whole state space) and
the converse is true in systems that are macrodeterministic. More generally, if
H(a)p is forward compatible with C for all histories a in some history space,
then p is forward predictable by C on that history space.

Prima facie, one way in which forward compatibility could hold is if the
coarse-graining rule is actually physically implemented by the microdynamics:
if, for instance, a distribution p is taken by the micrograined dynamics to the
distribution Cp on timescales short compared to those on which the macroprop-
erties evolve, then all distributions will be forward compatible with C. And
indeed, if we want to explain how one coarse-grained dynamics can be compat-
ible with another even coarser-grained dynamics, this is very promising. We
can plausibly explain the coarse-graining rule for local equilibrium thermody-
namics, for instance, if we start from the Boltzmann equation and deduce that
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systems satisfying that equation really do evolve quickly into distributions which
are locally canonical. (Indeed, this is the usual defence given of local thermal
equilibrium models in textbooks.)

But clearly, this cannot be the explanation of forward compatibility of the
fine-grained dynamics with any coarse-graining rule. For by construction, the
coarse-graining rules invariably increase Gibbs entropy, whereas the fine-grained
dynamics leave it static. One very simple response, of course, would be just to
postulate an explicit modification to the dynamics which enacts the coarse-
graining. In classical mechanics, Ilya Prigogine has tried to introduce such
modifications (see, e.g., Prigogine (1984) and references therein); in quantum
mechanics, of course, the introduction of an explicit, dynamical rule for the
collapse of the wavefunction could be thought of as a coarse graining, and the
final chapter of Time and Chance can be seen as developing this idea.

However, at present there remains no direct empirical evidence for any such
dynamical coarse-graining. For this reason, I will continue to assume that the
unmodified microdynamics (classical or quantum) should be taken as exact.

Nonetheless, it would not be surprising to find that distributions are, in gen-
eral, forward compatible with coarse graining. Putting aside exemplar rules for
coarse-graining, there are strong heuristic reasons to expect a given distribution
generally to be forward compatible with the other three kinds of rules:

e A distribution will be forward compatible with a smearing coarse-graining
rule whenever the microscopic details of the distribution do not affect
the evolution of its overall spread across phase space. Whilst one can
imagine distributions where the microscopic structure is very carefully
chosen to evolve in some particular way contrary to the coarse-grained
prediction, it seems heuristically reasonable to suppose that generically
this will not be the case, and that distributions (especially reasonably
widespread distributions) which differ only on very small lengthscales at
one time will tend to differ only on very small lengthscales at later times.
(However, I should note that I find this heuristic only somewhat plausible,
and in light of the dearth of practical physics examples which use this rule,
would be relaxed if readers are unpersuaded!)

e A distribution will be forward compatible with a correlation-discard coarse-
graining rule whenever the details of the correlation do not affect the
evolution of the macroscopic variables. Since macroscopic properties are
typical local, and correlative information tends to be highly delocalised,
heuristically one would expect that generally the details of the correlations
are mostly irrelevant to the macroscopic properties — only in very special
cases will they be arranged in just such a way as to lead to longer-term
effects on the macroproperties.

e A distribution will be forward compatible with a measurement coarse-
graining rule (which, recall, is nontrivial only for quantum theory) when-
ever interference between components of the distribution with different
macroproperties does not affect the evolution of those macroproperties.
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This is to be expected whenever the macroproperties of the system at
a given time leave a trace in the microproperties at that time which
is not erased at subsequent times: when this is the case, constructive
or destructive interference between branches of the wavefunction cannot
occur. Decoherence theory tells us that this will very generically occur
for macroscopic systems: particles interacting with the cosmic microwave
background radiation or with the atmosphere leave a trace in either; the
microscopic degrees of freedom of a non-harmonic vibrating solid record a
trace of the macroscopic vibrations, and so forth. These traces generally
become extremely delocalised, and are therefore not erasable by local phys-
ical processes. In principle one can imagine that eventually they re-localise
and become erased — indeed, this will certainly happen (on absurdly long
timescales) for spatially finite systems — but it seems heuristically rea-
sonable to expect that on any realistic timescale (and for spatially infinite
systems, perhaps on any timescale at all) the traces persist.

At least in the deterministic case, forward compatibility implies forward pre-
dictability; even in probabilistic cases, these kind of heuristics suggest — again,
only heuristically — that forward predictability is generic.

In any case, my purpose in this paper is not to prove detailed dynamical
hypotheses but to identify those hypotheses that we need. So — given the
above heuristic arguments — we could try postulating a

Bold Dynamical Conjecture: For any system of interest to studies of irre-
versibility, all distributions are forward predictable by the appropriate
coarse-grainings of that system on the appropriate history space for that
system.

It is clear that, were the Bold Dynamical Conjecture correct, it would go a long
way towards explaining why coarse-graining methods work.

But the line between boldness and stupidity is thin, and — alas — the
Bold Dynamical Conjecture strides Boldly across it. For suppose X = Cp is the
initial state of some Interesting segment of a dynamical trajectory of the forward
coarse-grained dynamics (Interesting so as to guarantee that Gibbs entropy
increases on this trajectory) and that X’ is the final state of that trajectory (say,
after time t). Then by the Bold Dynamical Conjecture, X’ can be obtained by
evolving p forward for time ¢ under the fine-grained dynamics (to some state p’,
say) and then coarse-graining.

Now suppose we take the time-reversal T X’ of X’ and evolve it forward for
t seconds under the coarse-grained forward dynamics. By the Bold Dynamical
Conjecture, the resultant state could be obtained by evolving Tp’ forward for
t seconds under the fine-grained dynamics and then coarse-graining. Since the
fine-grained dynamics are time-reversible, this means that the resultant state is
the coarse-graining of T'p. And since coarse-graining and time reversal commute,
this means it is just the time reverse TX of X.

But this yields a contradiction. For Gibbs entropy is invariant under time
reversal, so Sg(TX) = Sg(X) and Sg(TX') = Se(X’). It is non-decreasing
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on any trajectory, so Sg(TX) > Sg(TX’). And it is increasing (since the
trajectory is Interesting) between X and X', so Sg(X’) > S¢(X). So the Bold
Dynamical Conjecture is false; and, more generally, we have shown that if Cp
is any coarse-grained distribution on a trajectory of the forward coarse-grained
dynamics which has higher Gibbs entropy than the initial distribution on that
trajectory, then T'p is not forward compatible with C.

So much for the Bold Dynamical Conjecture. But just because not all dis-
tributions are forward compatible with C, it does not follow that none are; it
does not even follow that most aren’t. Indeed, the (admittedly heuristic) argu-
ments above certainly seem to suggest that distributions that are in some sense
“generic” or “typical” or “non-conspiratorial” or somesuch term will be forward
compatible with the coarse-grainings. In general, the only known way to con-
struct non-forward compatible distributions is to evolve a distribution forward
under the fine-grained dynamics and then time-reverse it.

This suggests a more modest proposal:

Simple Dynamical Conjecture (for a given system with coarse-graining C):
Any distribution whose structure is at all simple is forward predictable by
C;any distribution not so predictable is highly complicated and as such is
not specifiable in any simple way except by stipulating that it is generated
via evolving some other distribution in time (for instance, by starting with
a simple distribution, evolving it forwards in time, and then time reversing
it).

Of course, the notion of “simplicity” is hard to pin down precisely, and I will
make no attempt to do so here. (If desired, the Simple Dynamical Conjecture
can be taken as a family of conjectures, one for each reasonable precisification
of “simple”.) But for instance, any distribution specifiable in closed functional
form (such as the microcanonical or canonical distributions, or any distribution
uniform over a given (reasonably-simply-specified) macroproperty, would count
as ‘specifiable in a simple way’.

In fact, it will be helpful to define a Simple distribution as any distribution
specifiable in a closed form in a simple way, without specifying it via the time
evolution of some other distribution. Then the Simple Dynamical Conjecture is
just the conjecture that all Simple distributions are forward predictable by the
coarse-graining. Fairly clearly, for any precisification of the notion of Simple, a
distribution will be Simple iff its time reverse is.

Are individual states (that is, classical single-system states or quantum pure
states) Simple? It depends on the state in question. Most classical or quan-
tum states are not Simple at all: they require a great deal of information to
specify. But there are exceptions: some product states in quantum mechanics
will be easily specifiable, for instance; so would states of a classical gas where
all the particles are at rest at the points of a lattice. This in turn suggests
that the Simple Dynamical Conjecture may well fail in certain classical systems
(specifically, those whose macrodynamics is in general indeterministic): Simple
classical systems will generally have highly unusual symmetry properties and so
may behave anomalously. For example, a generic self-gravitating gas will evolve
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complex and highly asymmetric structure because small density fluctuations get
magnified over time, but a gas with no density fluctuations whatever has sym-
metries which cannot be broken by the dynamics, and so will remain smooth at
all times.

This appears to be an artefact of classical mechanics, however, which disap-
pears when quantum effects are allowed for. A quantum system with a similar
dynamics will evolve into a superposition of the various asymmetric structures;
in general, the classical analogue of a localised quantum wavefunction is a nar-
row Gaussian distribution, not a phase-space point. So I will continue to assume
that the Simple Dynamical Conjecture holds of those systems of physical interest
to us.

6 Microdynamical origins of irreversibility: the
classical case

It is high time to begin addressing the question of what all this has to do with
the real world. I begin with the classical case, although of course the quantum
case is ultimately more important. The question at hand is: on the assump-
tion that classical microphysics is true for some given system, what additional
assumptions need to be made about that system in order to ensure that its
macroscopic behaviour is correctly predicted by the irreversible dynamics gen-
erated by coarse-graining?

The most tempting answer, of course, would be “none”. It would be nice
to find that absolutely any system has macroscopic behaviour well-described
by the coarse-grained dynamics. But we know that this cannot be the case:
the coarse-grained dynamics is irreversible, whereas the microdynamics is time-
reversal-invariant, so it cannot be true that all microstates of a system evolve
in accordance with the coarse-grained dynamics. (A worry of a rather different
kind is that the coarse-grained dynamics is in general probabilistic, whereas the
classical microdynamics are deterministic.)

This suggests that we need to supplement the microdynamics with some
restrictions on the actual microstate of the system. At least for the moment,
I will assume that such restrictions have a probabilistic character; I remain
neutral for now as to how these probabilities should be understood.

A superficially tempting move is just to stipulate that the correct probability
distribution over microstates of the system is at all times forward predictable
by the coarse-graining. This would be sufficient to ensure the accuracy of the
irreversible dynamics, but it is all but empty: to be forward predictable by
the coarse graining is to evolve, up to coarse-graining, in accordance with the
irreversible dynamics.

Given the Simple Dynamical Conjecture, an obvious alternative presents
itself: stipulate that the correct probability distribution over microstates is at
all times Simple. This condition has the advantage of being non-empty, but it
suffers from two problems: it is excessive, and it is impossible. It is excessive
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because the probability distribution at one time suffices to fix the probability
distribution at all other times, so there is no need to independently impose it at
more than one time. And it is impossible because, as we have seen, in general
the forward time evolution of a Simple distribution is not Simple. So if we’re
going to impose Simplicity as a condition, we’d better do it once at most.

That being the case, it’s pretty clear when we have to impose it: at the
beginning of the period of evolution in which we’re interested. Imposing Sim-
plicity at time ¢ guarantees the accuracy of the forward coarse-grained dynamics
at times later than ¢; but by time reversibility (since the time-reverse of a Simple
distribution is Simple) it also guarantees the accuracy of the backwards coarse-
grained dynamics at times earlier than ¢, which we need to avoid. So we have a
classical recipe for the applicability of coarse-grained methods to classical sys-
tems: they will apply, over a given period, only if at the beginning of that period
the probability of the system having a given microstate is specified by a Simple
probability function.

So, exactly when should we impose the Simplicity criterion? There are
basically two proposals in the literature:

1. We should impose it, on an ad hoc basis, at the beginning of any given
process that we feel inclined to study.

2. We should impose it, once and for all, at the beginning of time.

The first proposal is primarily associated with the objective Bayesian approach
pioneered by Jaynes (see, e.g., Jaynes (1957a, 1957b, 1968) — and I have to
admit to finding it incomprehensible. In no particular order:

e We seem to be reasonably confident that irreversible thermodynamic pro-
cesses take place even when we're not interested in them;

e Even if we are uninterested in the fact that our theories predict anti-
thermodynamic behaviour of systems before some given time, they still do.
(i.e., the problem that our theories predict anti-thermodynamic behaviour
doesn’t go away just because they make those predictions before the point
at which we are ”inclined to study” the system in question.)

e The direction of time is put in by hand, via an a priori assumption that
we impose our probability measure at the beginning, rather than the end,
of the period of interest to us. This seems to rule out any prospect of
understanding (for instance) humans themselves as irreversible physical
systems.

Perhaps the most charitable way to read the first proposal is as a form
of strong operationalism, akin to the sort of operationalism proposed in the
foundations of quantum mechanics by, e.g., Fuchs and Peres (2000). In this
paper, though, I presuppose a more realist approach to science, and from that
perspective the second proposal is the only one that seems viable: we must
impose Simplicity at the beginning of time. The time asymmetry in irreversible
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processes is due to the asymmetry involved in imposing the condition at one
end of time rather than the other.

(Incidentally, one can imagine a cosmology — classical or quantum — ac-
cording to which there is no well-defined initial state — for instance, because
the state can be specified at arbitrarily short times after the initial singularity
but not at the singularity itself, or because the notion of spacetime itself breaks
down as one goes further into the past. If this is the case, some somewhat more
complicated formulation would presumably be needed, but it seems unlikely
that the basic principles would be unchanged. For simplicity and definiteness,
I will continue to refer to “the initial state”.)

At this point, a technical issue should be noted. My definition of the Simple
Dynamical Conjecture was relative to a choice of system and coarse-graining;
what is the appropriate system if we want to impose Simplicity at the begin-
ning of time? The answer, presumably, is that the system is the universe as a
whole, and the coarse-graining rule is just the union of all the coarse-graining
rules we wish to use for the various subsystems that develop at various times.
Presumably there ought to exist a (probably imprecisely-defined) maximally
fine-grained choice of coarse-graining rule such that the Simple Dynamical Con-
jecture holds for that rule; looking ahead to the quantum-mechanical context,
this seems to be what Gell-Mann and Hartle (2007) mean when they talk about
a maximal quasi-classical domain.

So: if the probabilities we assign to possible initial states of the Universe are
given by a Simple probability distribution, and if we accept classical mechanics
as correct, we would predict that the coarse-grained forward dynamics are ap-
proximately correct predictors of the probability of the later Universe having a
given state. We are now in a position to state an assumption which suffices to
ground the accuracy of the coarse-grained dynamics.

Simple Past Hypothesis (classical version): There is some Simple distri-
bution p over the phase space of the Universe such that for any point
x, p(x)dV is the objective probability of the initial state of the Universe
being in some small region §V around z.

(By “objective probability” T mean that the probabilities are not mere expres-
sions of our ignorance, but are in some sense objectively correct.)

To sum up: if (a) the world is classical; (b) the Simple Dynamical Conjec-
ture is true of its dynamics (for given coarse-graining C); (c) the Simple Past
Hypothesis is true, then the initial state of the world is forward predictable by
theC+ dynamics: the macrodynamics defined by the C+ dynamics is the same
as the macrodynamics induced by the microdynamics.

7 Microdynamical origins of irreversibility: the
quantum case

Rather little of the reasoning above actually made use of features peculiar to
classical physics. So the obvious strategy to take in the case of quantum me-
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chanics is just to formulate a quantum-mechanical version of the Simple Past
Hypothesis involving objective chances of different pure states, determined by
some Simple probability distribution.

There are, however, two problems with this: one conceptual, one technical.
The technical objection is that quantum distributions are density operators, and
the relation between density operators and probability distributions over pure
states is one-to-many. The conceptual objection is that quantum mechanics
already incorporates objective chances, and it is inelegant, to say the least, to
introduce additional such.

However, it may be that no such additional objective chances are in fact
necessary, for two reasons.

1. There may be many pure states that are Simple and which are reasonable
candidates for the state of the very early Universe.

2. It is not obvious that pure, rather than mixed, states are the correct way
to represent the states of individual quantum systems.

To begin with the first: as I noted previously (p.20) there is no problem
in quantum mechanics in regarding certain pure states as Simple, and the (as
always, heuristic) motivations for the Simple Dynamical Conjecture are no less
true for these states. As for the second, mathematically speaking mixed states
do not seem obviously more alien than pure states as representations of quantum
reality. Indeed, if we wish to speak at all of the states of individual systems in
the presence of entanglement, the only option available is to represent them by
mixed states. And since the universe appears to be open, and the vacuum state
of the universe appears to be entangled on all lengthscales (cf. Redhead (1995)
and references therein), even the entire observable universe cannot be regarded
as in a pure state.

This being the case, I tentatively formulate the quantum version of the
Simple Past Hypothesis as follows.

Simple Past Hypothesis (quantum version): The initial quantum state of
the Universe is Simple.

What is the status of the Simple Past Hypothesis? One way to think of it is
as a hypothesis about whatever law of physics (fundamental or derived) specifies
the state of the very early universe: that that law requires a Simple initial state.
Indeed, if one assumes that probabilistic physical laws must be simple (which
seems to be part of any reasonable concept of ‘law’), and that simplicity entails
Simplicity, all the Simple Past Hypothesis amounts to is the

Past Law Hypothesis: The initial quantum state of the Universe is deter-
mined by some law of physics.

Alternatively, we might think of the Simple Past Hypothesis as a (not very
specific) conjecture about the contingent facts about the initial state of the
Universe, unmediated by law. Indeed, it is not clear that there is any very
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important difference between these two readings of the Hypothesis. In either
case, the route by which we come to accept the Hypothesis is the same: because
of its power to explain the present-day observed phenomena, and in particular
the success of irreversible macrodynamical laws. And on at least some under-
standings of ‘law’ (in particular, on a Humean account like that of Lewis (1986)
where laws supervene on the actual history of the Universe) there is not much
metaphysical gap between (i) the claim that the initial state of the Universe
has particular Simple form X and this cannot be further explained, and (ii) the
claim that it is a law that the initial state of the Universe is X.

8 A low entropy past?

The suggestion, espoused by Albert, that the origin of irreversibility lies in con-
straints on the state of the early universe is hardly new: it dates back to Boltz-
mann, and has been espoused in recent work by, among others, Penrose (1989,
2004), Goldstein (2001), and Price (1996). But their Past Hypotheses differ
from mine in an interesting way. Mine is essentially a constraint on the mi-
crostate of the early universe which is essentially silent on its macrostate (on
the assumption that for any given macroscopic state of the universe, there is a
Reasonable probability distribution concentrated on that macrostate). But the
normal hypothesis about the past is instead a constraint on the macrostate of
the early universe:

Low Entropy Past Hypothesis: The initial macrostate of the universe has
very low thermodynamic entropy.

Is such a Hypothesis needed in addition to the Simple Past Hypothesis? I think
not. For if the Simple Past Hypothesis is true (and if the Simple Dynamical
Conjecture is correct) then it follows from the Hypothesis and our best theo-
ries of microdynamics that the kind of irreversible dynamical theories we are
interested in — in particular, those irreversible theories which entail that ther-
modynamic entropy reliably increases — that the entropy of the early universe
was at most no higher than that of the present universe, and was therefore
“low” by comparison to the range of entropies of possible states (since there
are a great many states with thermodynamic entropy far higher than that of
the present-day universe). So the Low Entropy Past “Hypothesis” is not a Hy-
pothesis at all, but a straightforward prediction of our best macrophysics —
and thus, indirectly, of our best microphysics combined with the Simple Past
Hypothesis.

It will be helpful to expand on this a bit. On the assumption that the rel-
evant irreversible dynamics (in this case, non-equilibrium thermodynamics) is
predictively accurate, predictions about the future can be made just by taking
the current state of the universe and evolving it forward under those dynamics.
Since the dynamics do not allow retrodiction, our route to obtain information
about the past must (as noted earlier) be more indirect: we need to form hy-
potheses about past states and test those hypotheses by evolving them forward
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and comparing them with the present state. In particular, the hypothesis that
the early universe was in a certain sharply specified way very hot, very dense,
very uniform, and very much smaller than the current universe — and therefore
much lower in entropy than the current universe® — does very well under this
method: conditional on that hypothesis, we would expect the current universe
to be pretty much the way it in fact is. On the other hand, other hypotheses
— notably the hypothesis that the early universe was much higher in entropy
than the present-day universe — entail that the present-day universe is fantas-
tically unlikely, and so very conventional scientific reasoning tells us that these
hypotheses should be rejected.

In turn, we can derive the assumption that our irreversible dynamical theo-
ries are predictively accurate by assuming (i) that our microdynamical theories
are predictively accurate, and (ii) that the Simple Past Hypothesis and the Sim-
ple Dynamical Conjecture are true. So these hypotheses jointly give us good
reason to infer that the early universe had the character we believe it to have
had. On the other hand, (i) alone does not give us reason to accept (ii). Rather,
we believe (ii) because combined with (i), it explains a great deal of empirical
data — specifically, the success of irreversible dynamical theories.

The difference between the Simple Past Hypothesis and the Low Entropy
Past Hypothesis, then, does not lie in the general nature of our reasons for
believing them: both are epistemically justified as inferences by virtue of their
explanatory power. The difference is that the Reasonable Past Hypothesis, but
not the Low Entropy Past Hypothesis, is justified by its ability to explain the
success of thermodynamics (and other irreversible processes) in general. The
Low Entropy Past Hypothesis, by contrast, is justified by its ability to explain
specific features of our current world. (Although the hypothesis that does this
is better understood as a specific cosmological hypothesis about the state of
the early universe, rather than the very general hypothesis that its entropy was
low.)

Albert himself gives a particularly clear statement of his framework for in-
ducing the (Low Entropy) Past Hypothesis, which makes an interesting contrast
to my own. He makes three assumptions:

1. That our best theory of microdynamics (which for simplicity he pretends
is classical mechanics) is correct.

2. That the Low Entropy Past Hypothesis is correct.

3. That the correct probability distribution to use over current microstates
is the uniform one, conditionalised on whatever information we know (no-
tably, the Low Entropy Past Hypothesis).

He also makes a tacit mathematical conjecture, which is a special case of the
Simple Dynamical Conjecture: in my terminology, he assumes that those distri-

61t is widely held that (i) such a universe ought to be much higher in entropy than the
present-day universe, but (ii) this supposed paradox is solved when gravity is taken into
account. This is very confused; I attempt to dispel the confusion in Wallace (2009).
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butions which are uniform over some given macrostate and zero elsewhere are
forward compatible with coarse-graining.

Now, (2) and (3) together entail that the correct distribution to use over
initial states (and Albert is fairly explicit that “correct” means something like
“objective-chance-giving”) is the uniform distribution over whatever particu-
lar low entropy macrostate is picked out by the Low Entropy Past Hypothesis.
Since these distributions are Simple, Albert’s two assumptions entail the Simple
Past Hypothesis. But the converse is not true: there are many Simple distri-
butions which are not of the form Albert requires, but which (given the Simple
Dynamical Conjecture) are just as capable of grounding the observed accuracy
of irreversible macrodynamics.

Put another way: let us make the following abbreviations.

SPH: Simple Past Hypothesis
LEPH: Low Entropy Past Hypothesis

UPH: Uniform Past Hypothesis: the hypothesis that the initial distribution of
the universe was a uniform distribution over some macrostate

SDC: Simple Dynamical Conjecture

PAyi: Predictive Accuracy of Microphysics (i.e., our current best theory of
microphysics is predictively accurate)

PAM: Predictive Accuracy of Macrophysics (i. e., the macrodynamics derived
from microphysics by coarse-graining is predictively accurate)

My argument is that
SPH + SDC + PAy —s PAM. (22)
Albert’s (on my reading) is that
LEPH+UPH + SDC + PAu — PAM. (23)

But in fact
UPH — SPH (24)

so actually LEPH appears to play no important role in Albert’s argument.
All that really matters is that the initial distribution was uniform over some
macrostate; the fact that this macrostate was lower entropy than the present
macrostate is then a straightforward inference from PAM and the present-day
data.

9 Conclusion

There are extremely good reasons to think that, in general and over timescales
relevant to the actual universe, the process of evolving a distribution forward
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under the microdynamics of the universe commutes with various processes of
coarse-graining, in which the distribution is replaced by one in which certain
fine structures — most notably the small-scale correlations and entanglements
between spatially distant subsystems — are erased. The process of alternately
coarse-graining in this manner and evolving a distribution forwards leads to dy-
namical processes which are irreversible: for instance, when probabilistic, they
will have a branching structure; where a local thermodynamic entropy is de-
finable, that entropy will increase. Since coarse-graining, in general, commutes
with the microdynamics, in general we have good grounds to expect distribu-
tions to evolve under the microdynamics in a way which gives rise to irreversible
macrodynamics, at least over realistic timescales.

Given that the microdynamics is invariant under time reversal, if this claim
is true then so is its time reverse, so we have good reason to expect that, in
general, the evolution of a distribution both forward and backwards in time
leads to irreversible macrodynamics on realistic timescales. It follows that the
claim can be true only ‘in general’ and not for all distributions, since — for
instance — the time-evolution of a distribution which does behave this way
cannot in general behave this way. However, we have no reason to expect this
anomalous behaviour except for distributions with extremely carefully chosen
fine-scale structure (notably those generated from other distributions by evolv-
ing them forwards in time). I take this to be a more accurate expression of
Goldstein’s idea of ‘typicality’: it is not that systems are guaranteed to achieve
equilibrium unless they or their dynamics are “ridiculously special”; it is that
only in “ridiculously special” cases will the micro-evolution of a distribution not
commute with coarse-graining. Whether, and how fast, a system approaches
thermal equilibrium is then something that can be determined via these coarse-
grained dynamics.

In particular, it seems reasonable to make the Simple Dynamical Conjec-
ture that reasonably simple distributions do not show anomalous behaviour. If
the correct distribution for the Universe at some time ¢ is simple in this way,
we would expect that macrophysical processes after ¢ are well-described by the
macrodynamics generated by coarse-graining (and so exhibit increases in ther-
modynamic entropy, dispersal of quantum coherence, etc), in accord with the
abundant empirical evidence that these macrodynamics are correct. But we
would also expect that macrophysical processes before t are not at all described
by these macrodynamics — are described, in fact, by the time reversal of these
macrodynamics — in wild conflict with the empirical evidence. But if ¢ is the
first instant of time (or at least, is very early in time) then no such conflict will
arise.

It follows that any stipulation of the boundary conditions of the Universe
according to which the initial distribution of the Universe is reasonably simple
will (together with our microphysics) entail the correctness of our macrophysics.
Since any law of physics specifying the initial distribution will (essentially by
the nature of a law) require that initial distribution to be reasonably simple,
it follows that any law which specifies the initial distribution suffices to ground
irreversible macrodynamics.
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It is virtually tautologous that if microscopic physics has no time asymmetry
but the emergent macroscopic dynamics does have a time asymmetry, that time
asymmetry must be due to an asymmetry in the initial conditions of the uni-
verse. The most common proposal for this asymmetry is the proposal that the
initial distribution is the uniform distribution over a low-entropy macrostate.
From the point of view of explaining irreversibility, all the work in this proposal
is being done by the “uniform distribution” part: the low-entropy part alone
is neither necessary nor sufficient to establish the correctness of the irreversible
macrodynamics, though of course if the initial macrostate is a maximum-entropy
state then its macroevolution will be very dull and contradicted by our obser-
vations.

And in fact, the only special thing about the uniformity requirement is that
we have good (if heuristic) grounds to expect the microdynamical evolution
of uniform distributions to be compatible with coarse-grainings. But we have
equally good (if equally heuristic) grounds to expect this of any simply specified
distribution. So really, the asymmetry of the Universe’s macroscopic dynamics is
not a product of the particular form of the physical principle which specifies the
initial conditions of the Universe: it is simply a product of some such principle
being imposed at one end of the Universe rather than at the other.
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